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Representation of Signals
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What is a representation of a signal?

e Sum of delta functions in time or space (sampling domain)

- good for display or playback

- not good for analysis (e.g., denoising, compression)
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What is a representation of a signal?

e |n a time-series setting, useful representation could be past samples

e More generally, it involves transformation of the signal into a new domain

- where signal characteristics are revealed

- example: Fourier coefficients reveal rate of change of the signal
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e Usefulness of the representation depends on the analysis goal

- which may vary but all share the core desire for simplification
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Example: Denoising

10 I
— Original Signal
- Denoised Signal

0 200 400 600 800 1000 1200

goal: recover signal from noisy observation
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Example: Compression

original JPEG 2000 (10% in size) JPEG 2000 (1% in size)

goal: compress file size without sacrificing quality
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Example: Recognition

samples true “causes” PCA ICA sparse coding KSVD

[Tosicl1]

goal: capture true “causes’ of signals
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Signal representation via dictionaries

signal dictionary coefficients
= X
X P = o 1 -+ PN_1] C
“atoms”
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Signal representation via dictionaries

e Complete dictionaries

synthesis analysis
) )
x P c i x |
\—/ \—/

B T

equivalent for complete dictionaries
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Signal representation via dictionaries

e Overcomplete dictionaries

synthesis ) analysis )
= X X =
X P T
< o x

&
[x:@czzncnqan [ a, = ¢l x }

not equivalent for over-complete dictionaries
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Signal representation via dictionaries

design of dictionaries
- from mathematical modelling of data (transforms/analytic dictionaries)

- from a set of realisations of data (dictionary learning)
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Outline

e A historical overview of dictionary design techniques
- signal representation via stochastic models
- transforms & analytic dictionaries

- trained dictionaries (dictionary learning)

e Discussion
- applications

- connection with deep learning
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1920s-30s: Stochastic models

e Stochastic models
- examples of parametric models
- describe how data were generated

- provide a special representations of signal from a time-series viewpoint

e Typical examples
- autoregressive (AR) models
- moving average (MA) models

- autoregressive moving average (ARMA) models
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Autocorrelation

e Autocovariance (covariance between the signal and a lagged version of

itself)
02z(T) = Nl_ 1 ;N; ux)@— fz)

lagged version

by T samples signal
e Autocorrelation (normalised autocovariance)
Oxx (T) 2
T (1) = here 0,,(0) =0
vz (1) 7(0) where 075 (0) T

e Both are symmetric or even functions
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Autocorrelation
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Figure 4.7: Signal x, (top) and x.,s (bottom). The bottom trace leads the t
may say it lags the top by -5 samples.

80 100

op trace by 5 samples. Or we

0.5

0200 _50 0

La

Figure 4.8: Autocorrelation function for x;. Notice the negative correlation at lag 20 and positive correlation
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at lag 40. Can you see from Figure 4.7 why these should occur?
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Autoregressive (AR) models

e An AR model predicts the value of a time-series from previous values

p
ve= - f)re)
i=1

e Matrix form

XN-1 XN-2 XN-3 XN-—4

embedding matrix

-

AR coefficients

XN—-1 XN-2 XN-3 XN-4

x = Ma -+ e

prediction error e; ~ N(0, 02)
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Autoregressive (AR) models

e The AR model is a special case of the multivariate regression model
e |t also provides a special representation of the signal

e To compute AR coefficients and predictions

a=(M"M)"'M'x
x = Ma + e - % = Ma
e=X—X
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Autoregressive (AR) models

e Use an AR(4) model to analyse data shown before:

a =[1.46,—1.08,0.60,—0.186]" 02 =0.079 o2 = 0.3882

1.5 1.5
1} 1

0.5_.5 0.5}

ov,‘:: of

-0.5 ~0.5

1 _1qt

1% 20 40 t 60 80 100 % 20 40 t 60 80

(a) (b)

Figure 4.9: (a) Original signal (solid line), X, and predictions (dotted line), X, from an AR(4) model and (b)
the prediction errors, e. Notice that the variance of the errors is much less than that of the original signal.

100
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Autoregressive (AR) models

e Relation to autocorrelation

Tt = A1Tt_1 T A2Tt_2 + ... T ApTt_p T €4

‘ multiply by ;1

TtTp—fp = QLT 1Tt—k + Q2T 2Tt T oo T ApTt—pTt—k + €Ttk

‘ sum over t and divide by N-1

19/70



Autoregressive (AR) models

e For an AR(4) model

[ Fee(1)
rex(2)
Fex(3)

rex(4)

e More efficient way to estimate AR coefficients: a=R ™ 'r

rex(0)
rex(1)
rex(2)
rex(3)

o —

1 rex(1)
rex(1) 1

rex(2) rex(1)
hex(3) rex(2)

roc(—=1) ree(=2) r(=3) | [ &

fxx(O) rXX(_l) rxx(_2) an ]
Fo(1) rx(0) Fee(—1) 2 Yule-Walker relations
r(2)  nll)  mx(0) | | @ |

r = Ra

1

- - autocorrelation matrix is symmetric
rex(2) Hex(3) and Toeplitz

rx(1) rxx(2) s o
1 fxx(l) - erncient computation via a

Fc(1) 1 recursive estimation technique
- (Levinson-Durbin)
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Multivariate processes

Cross-covariance (covariance between one signal and the lagged version of

another)
02y (T) = Nl_ 1 EN: Nw)@ Hy)
t=1

e Cross-correlation

Ory(T)

\/Uxx Oyy

Tay (1) =

This is not symmetric and has non-unity at lag 0 (unlike
autocorrelation)
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Cross-correlation
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Multivariate AR (MAR) models

e Univariate p

Multivariate

Extending to multiple time steps
(stacking x; into embedding matrix M )

X=MA+E mp A=M'M) 'M'X
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Multivariate AR (MAR) models

solid: original multivariate time-series

dashed: predictions

0 20 40 60 80 100
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Outline

e A historical overview of dictionary design techniques
- signal representation via stochastic models

- transforms & analytic dictionaries
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1960s: Fourier basis and DFT

discrete
Fourier
transform

!

1960s E:j>

- recall the LTI system

Fourier basis functions (real part)

w O— ] —w =N

L \ L / L 1
1 1.5 2 2.5 3 3.5 4

)
__ jw(t—T1) Fourier basis diagonalises
y(t) o / € g(T)dT G(w) convolution operator
— 0
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1960s: Fourier basis and DFT

discrete
Fourier
transform

!

1960s E:j>

- Fourier basis describes a signal in terms of its global frequency content and hence
is good at representing uniformly smooth signals

- discrete Fourier transform (DFT) provides an orthogonal dictionary:[qbn(k) = 6321\7;”"“}

[ ol \ (11 1 Lo 1 X[\

1 %% W2 w3 W
z(1] clrowr o owr owe L N2 X1 .
(2] =~ | 1 W W6 we . N3 X 2] with W =¢e/ N
K [N —1] } K 1 WwN-1 yyN-2 ppN-3 W ) \ X[N —1] )

- fast Fourier transform (FFT) reduces complexity from O(N?®) to O(NlogN)
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1960s: Fourier basis and DFT

discrete
Fourier
transform

!

1960s E:j>

- DFT produces complex coefficients (“wasteful” for real signals)

- DFT assumes periodic extension (discontinuity at boundary)

oo oo

r(t)e Ividt = / x(t)[cos(wt) — jsin(wt)]|dt

— OO0

Fourier transform X (w) :/

— OO0

t) =x(—t >
.CIZ( ) 33( )) X(w) — / :E(t)COS((Ut)dt cosine transform

— OO

- a real and even signal leads to a real cosine transform
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1970s: DCT

discrete discrete
Fourier cosine
transform transform

Vo

1960s 1974 C:j>

- the discrete version is called the discrete cosine transform (DCT)

- several variants of symmetric extension, which all make the signal even and lead to
smoother boundary

DCT-I DCT-II
® ® () ®
32-1l01 23 n 4-3-2-1101 2 n
- DCT-II provides a real dictionary: [qbn(k)—cos j

- DCT-Il is behind the JEPG image compression standard
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1970s-80s: KLT and PCA

discrete discrete Karhunen-
Fourier cosine Loéeve
transform transform transform

!

Vo

1960s

1974 1970s-80s >

projection onto a fixed subset of DFT or DCT atoms leads to compaction

X R Z (Tl'x)®,
neSk

but data themselves can also be a source of compaction

Karhunen-Loéve transform (KLT) or principal component analysis (PCA) fits a low-
dimensional subspace to data

CH-@per

known /empirical covariance eigenvectors (dictionary atoms as k largest eigenvectors)

representation is efficient (maximally compacts energy) but expensive to compute
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DCT vs KLT

discrete discrete Karhunen-
Fourier cosine Loéeve
transform transform transform

S
—

- DCT atoms (12x12) vs. KLT atoms (trained using 12x12 image patches)

DCT KLT

Rubinstein et al., “Dictionaries for sparse representation modeling,” Proceedings of the IEEE, 2010. 31/70



The need for sparsity

discrete discrete Karhunen-
Fourier cosine Loéeve
transform transform transform

S

1960s 1974  1970s-80s >

- simplicity motivates sparsity: signal as linear combination of a few atoms

- sparsity requires shift from linear to nonlinear approximation

X =~ Ck ¢k S subset of atoms which is
different for each x

- sparsity requires localisation: atoms with concentrated supports

- allow more flexible representations based on local characteristics

- limit effects of irregularities (a main source of large coefficients)
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Time-frequency representation

time localisation

w 1 00
[y = 2/ tla(t)|=dt
o IR
1 >0 3
A, = t— )| (t)|2dt
X (w)]? t t (H'CUHQ ’/_OO( :ut) ‘x( )’ )
v
(t)]?

frequency localisation

time-frequency tile 1 o© 5
(Heisenberg box) M f :[277"5’3’2j/ WEX(W)‘}]!W

time-frequency

e = (gt | X @R

2m||z|[* J o

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 33/70



Time-frequency representation

e Consider three basic operations

shift in time shift in frequency

it Mt
b1 M g
[ [
- > wo
to Rl i i
S~ .
X (w) 2 t X ()™ t
v - _\/
J(t)]* 2 (t)[?

y(t) = *°ra(t)

FTd

Y(w) = X(w— wp)

y(t) = x(t —to)

FTd

Y(w) =e 79 X (w)

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014.

scaling in time

\~~
-~
-~
~
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Time-frequency representation

Heisenberg’s uncertainty principle

w
1
i Let z € L*(R), then AjA; > —
2N ~ :
2A¢
examples
|X(w)|2 !
N
jz(£)|°
FT

FT

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 35/70



Time-frequency representation

e Consider three structured sets of functions

shift in time shift in frequency scaling in time
14
m /—1 0 1 1
0
1 1 t OUU t = i L
2
] o g
2 [ —1
to 1 Eﬂtwo 0 i
-k L [l-msiimm e
e s S o A R o R 0tz t t
m-2 -1 (¢ 1 2 -1 []
-2 [

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 36/70



Time-frequency representation

time shift and modulation

time shift and scaling

W (m7k) w (m,l)
=2,3) . _ _ o)), N O 7))
. . (12) | .
- - 02.0 - -
) i i i {—1.1) .
- — (oo [ - . t
Or.m(t) = eI*lo(t —mty) k,m€Z 01 (t) {gp(a_lt —mty) I,m€Z

¢

go(a_l(t — malto))

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 37/70



1970s-80s: STFT

discrete discrete Karhunen-
Fourier cosine Loéeve
transform transform transform

ool

1960s 1974 1970s-80s >

- delta functions are not localised in frequency

- Fourier basis functions (complex exponentials) are not localised in time

time-domain frequency-domain
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1970s-80s: STFT

discrete discrete Karhunen- short-time
Fourier cosine Loéve Fourier
transform transform transform transform

SR T A

1960s 1974 1970s-80s  1970s-80s >

- consider a set of shifted and modulated versions of a low-pass function

Orm(t) = eT*0lo(t —mty) k,meZ
W w (m, k)
(_2.’3) - L " .
¢ . . (0,0) e e y
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1970s-80s: STFT

discrete discrete Karhunen- short-time
Fourier cosine Loeve Fourier
transform transform transform transform

SR T A

1960s 1974  1970s-80s  1970s-80s >
- example: consider a box function . 1, for |t| < i
B - Cr.m(t) = e p(t —m), t) = ’ —
and tp =1, wo =2 m(®) ( ) elD) 0, otherwise.
k=0 k=1 k=2

©Yo0,—1, $0,0, $0,1 $1,—1, P1,0, P1,1 $2,—1, ¥2,0, P2,1
1

1, AAA L LARAL,
TR ARVAR AT AT

Basis functions (real parts only).

|®o,m (w)] |[@1,m (w)] |@2,m (w)]

w w

-2r 2n 4m 6nm -2r 2n 4m 671 -2 2n 4A7r 61

Magnitudes of the Fourier transform.

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 40/70



1970s-80s: STFT

discrete discrete Karhunen- short-time
Fourier cosine Loéve Fourier
transform transform transform transform

N T A
e ww e emees

- we can define the following transform

Xpom = / T(t) 0, (t)dt = / x(t)(t — mtg)e 7Fwot gt

— o0 — o0

= = [ sons [ )

- applying time-localised window to the signal before taking Fourier transform:
windowed or short-time Fourier transform (STFT)

- Gaussian window achieves localisation in frequency: Gabor transform

- STFT maps a 1-D function into a 2-D function (highly over-complete)
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DCT vs STFT

discrete discrete Karhunen- short-time
Fourier cosine Loéeve Fourier
transform transform transform transform

S T A
—

- discrete STFT provides a non-orthogonal and over-complete dictionary

STFT

’

Rubinstein et al., “Dictionaries for sparse representation modeling,” Proceedings of the IEEE, 2010. 42/70



1980s: wavelet transform

discrete discrete Karhunen- short-time
Fourier cosine Loéeve Fourier
transform transform transform transform

SR S A
—

- STFT atoms have fixed time-frequency resolution

wavelet
transform

- often times a multi-resolution representation is needed to capture various scales in
natural signals
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1980s: wavelet transform

discrete discrete Karhunen- short-time

wavelet

Fourier cosine Loeve Fourier
transform transform transform transform

S T T T

transform

1960s 1974 1970s-80s  1970s-80s 1980s

- consider a set of shifted and scaled versions of a band-pass function

Prm(t) = pla™'t —mto) =

t — maltg

) I,m e Z

al

—> good time resolution (short-term)

> good frequency resolution (long-term)
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1980s: wavelet transform

discrete discrete Karhunen- short-time
. ) . . wavelet
Fourier cosine Loéeve Fourier
transform
transform transform transform transform

S T T T

1960s 1974 1970s-80s 1970s-80s 1980s >
- example: consider a square wave ¢ ol (1, for0<t<gy;
function and tg =1, a =2 Prm(t) = gO(T)v p(t) =4 -1, for 5 <t<ly
L0, otherwise.
(= —1 (=0 (=1
Y—-1,—1, P-1,0, P-1,1 ©0,—1, ¥0,0, ¥0,1 ®1,—-1, ¥1,0, P1,1

o

il U SRy

Basis functions.

|P—1,m (w)] |@0,m ( |P1,m (w)]

M/\mmj

-8 —47r 4 8nr -8n —-4n -8n —4n 4 8

St

Magnitudes of the Fourier transform.

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014.
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1980s: wavelet transform

discrete discrete Karhunen- short-time
Fourier cosine Loéve Fourier
transform transform transform transform

N T A T
e en e emee wes

- consider a more general function and define the following transform

- the prototype function ¥(t)

wavelet
transform

- has a compact support (small or “-let"”)

- is band-pass with zero mean (“wave"): / Y(t)dt =0

- this is called the continuous wavelet transform (CWT)

- CWT maps a 1-D function into a 2-D function (highly over-complete)
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1980s: wavelet transform

discrete discrete Karhunen- short-time
Fourier cosine Loeve Fourier
transform transform transform transform

S T T T

wavelet
transform

1960s 1974  1970s-80s 1970s-80s  1980s >

- examples of prototype function (mother wavelet)

Haar Morlet Derivative of Gaussian = Marr (Mexican hat)

1.5

‘ ‘ ‘ ‘ ‘ ‘ ‘
‘— Haar wavelet - wavelet — Mexican hat wavelet ‘

i
ol |
Ar 1 At 1 Ar 1 Ar

15 . . . . . . . 15 . . . . . . . 5 . . . . . . . 15

. T T . . . T T T T
— Morlet wavelet = order 1 Gaussian wavelet
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1980s: wavelet transform

discrete discrete Karhunen- short-time
Fourier cosine Loeve Fourier
transform transform transform transform

S T T T

wavelet
transform

1960s 1974 1970s-80s 1970s-80s  1980s >

- CWT can be discretised to define a discrete-time wavelet transform (DTWT), but
both CWT and DTWT are non-orthogonal and over-complete

- however, unlike STFT, we can design an orthogonal wavelet transform through a
multi-resolution analysis

design principle

- functions at given scale [ form an

w m (t) — _@\( lm) h
L, 1 orthogonal basis of a space at scale [
\/iU 2:l r &

- all functions across different scales
are also orthogonal
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1980s: wavelet transform

discrete discrete Karhunen- short-time
Fourier cosine Loéve Fourier
transform transform transform transform

N T A T
e en e emee wes

- the discrete version is the discrete wavelet transform (DWT) which provides an

wavelet
transform

orthogonal dictionary

Approximation Coefficients Horizontal Detail Coefficients

20 20 Fi

40 40
60 60
sof 80
of 100

120 120

40 60 80 100 120

Diagonal Detail Coefficients
20 Fh
40
60
80

100

120

60 80 100 120

100 120

- DWT is behind the JEPG 2000 image compression standard
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DCT vs KLT vs STFT vs DWT

discrete discrete Karhunen- short-time
Fourier cosine Loéeve Fourier
transform transform transform transform

SR S A
—

- comparison of the dictionaries we looked at so far

wavelet
transform

DCT KLT

DWT

s

Rubinstein et al., “Dictionaries for sparse representation modeling,” Proceedings of the IEEE, 2010. 50/70



Transform /analytic dictionary design

discrete discrete Karhunen- short-time
Fourier cosine Loéve Fourier
transform transform transform transform

S T T T

wavelet
transform

1960s 1974 1970s-80s 1970s-80s  1980s >

- summary

modelling data by a simpler class of mathematical functions
+ smooth functions (DFT, DCT)

¢ piecewise-smooth functions (wavelets)

desired properties
+ localisation (STFT, wavelets)
+ multi-resolution (wavelets)

+ adaptivity (KLT, wavelet packets)

fast implementation is usually available

limited expressiveness
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Outline

e A historical overview of dictionary design techniques
- signal representation via stochastic models

- transforms & analytic dictionaries

- trained dictionaries (dictionary learning)
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A paradigm shift in dictionary design

discrete discrete Karhunen- short-time
Fourier cosine Loéve Fourier
transform transform transform transform

S T T T

wavelet
transform

1960s 1974 1970s-80s  1970s-80s 1980s

HEEEEEEE
I
X

Lt 1 [1

< LI LI 01111

orthogonal atoms
complete dictionary

all signals use all atoms
dense coefficients

mathematical modelling

o LLL T T I T 111

non-orthogonal atoms
over-complete dictionary

different signals use different atoms
sparse coefficients

adaptation to data realisations
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lllustrative example

e Modelling assumption: Each data point is a combination of only a few
(sparse) fundamental elements, i.e., dictionary atoms

Signals Dictionary Coefficients
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Sparse representations

discrete discrete Karhunen- short-time
Fourier cosine Loéve Fourier
transform transform transform transform

S T T T

wavelet
transform

1960s 1974 1970s-80s 1970s-80s  1980s >

- given dictionary, express signal as linear
combination of a small number of atoms

[minc||c||0 subject to x = ®c+1n and ||n|5 < ej

- the problem is NP-hard

- two approximation algorithms

< LI LT 1011

= matching pursuit (MP)

o LI LT T 111111

= |east absolute shrinkage and selection
operator (Lasso)

Mallat and Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE TSP, 1993.
Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society: Series B, 1996. 55/70



Sparse representations

discrete discrete Karhunen- short-time
Fourier cosine Loéve Fourier
transform transform transform transform

S T T T

wavelet
transform

1960s 1974 1970s-80s  1970s-80s 1980s

- MP
= choose a subset of atoms from P

= one atom at a time to maximally
(greedily) reduce approximation error

- Lasso

= solve a convex relaxation by replacing

< LI LT 1011

the 0-norm with 1-norm on c

o LI LT T 111111

minfx— el el

56,70



Sparse representations

discrete discrete Karhunen- short-time
Fourier cosine Loéve Fourier
transform transform transform transform

S T T T

wavelet
transform

1960s 1974 1970s-80s 1970s-80s  1980s >

- given dictionary, MP and Lasso can find

a sparse approximation of the data

- the sparsity depends on not only data

but also the dictionary

< LI LT 1011

- finding optimised dictionaries is the goal

o LI LT T 111111

of dictionary learning
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Dictionary learning: Probabilistic approach

discrete discrete Karhunen- short-time
Fourier cosine Loéve Fourier
transform transform transform transform

SR T TN TR R

wavelet sparse
transform  coding

1960s 1974  1970s-80s 1970s-80s  1980s 1996 >
- probabilistic approach: maximum likelihood

" = arg mgx[log P(x|®)]
= argmgx[log/ P(x|c,®)P(c)dc]

‘ - assumption 1: Laplace distribution of coefficients c;

- assumption 2: Gaussian distribution of error n

®* = arg r(]%in —log|P(x|c, ®)P(c)]

—@rgmmnx— Be|2 +A|\c||1}
P.c

Olshausen and Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature, 1996. 58/70



Dictionary learning: Probabilistic approach

discrete discrete Karhunen- short-time
Fourier cosine Loéve Fourier
transform transform transform transform

SR T TN TR R

wavelet sparse
transform  coding

1960s 1974 1970s-80s  1970s-80s 1980s 1996 >

- the problem is solved by iterating between two steps

[ min ||x — ®c| 2 + Allells ]
P.c

= sparse approximation: given @ , solve for c via Lasso

= dictionary update: given c, update ® via gradient descent

- works at patch level for efficiency
- does not necessarily find global optimum

- trained atoms are remarkably similar to mammalian simple-cell receptive fields

Olshausen and Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature, 1996. 59/70



Dictionary learned with sparse coding
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Olshausen et al., “ “Learning real and complex overcomplete representations from the statistics of natural images,” SPIE, 2009. 60/70



Dictionary learning

discrete  discrete Karhunen- short-time supervised
i . . : wavelet sparse double S
Fourier cosine Loéve Fourier : K-SVD . dictionary
transform  coding sparsity :
transform transform transform transform learning

S T TR TR SRR TN SR R

1960s 1974 1970s-80s  1970s-80s 1980s 1996 2006 2010 2000s-10s >

- summary
= learning representations directly from data realisations
= desired properties

¢ over-completeness
¢ sparse representations
+ efficiency in training
= may be combined with analytical dictionary design

+ trained dictionary with structures (e.g., parametric dictionary learning)
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Outline

e A historical overview of dictionary design techniques
- signal representation via stochastic models
- transforms & analytic dictionaries

- trained dictionaries (dictionary learning)

e Discussion
- applications

- connection with deep learning
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Signal denoising

10 I
— Original Signal
- Denoised Signal

0 200 400 600 800 1000 1200

denoising using the order 4 symlets wavelets
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Image compression

original JPEG 2000 (10% in size) JPEG 2000 (1% in size)

compression using the Cohen-Daubechies-Feauveau wavelets
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Image reconstruction

Learned reconstruction Haar reconstructionOverComplete DCT reconstruction
Average # coeffs: 4.0202 Average # coeffs: 4.7677 Average # coeffs: 4.7694
MAE: 0.012977 MAE: 0.022833 MAE: 0.015719

50 % missing pixels RMSE: 0.029204 RMSE: 0.071107 RMSE: 0.037745

RS M
S RN ) S

- J

Learned reconstruction Haar reconstructionOverComplete DCT reconstruction

Average # coeffs: 3.5623 Average # coeffs: 3.9747 Average # coeffs: 4.0539
MAE: 0.020035 MAE: 0.032831 MAE: 0.025001
RMSE: 0.055643 RMSE: 0.097571 RMSE: 0.063086
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Image restoration
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Connection with deep learning

e Dictionary learning vs. Deep learning
- both extract feature representations from data realisations
- both apply sparsifying operations such as shrinkage or rectified linear units

- the former leads to representations that are not necessarily hierarchical (shallow
model, no convolution operator, no pooling)
- the former is normally for reconstruction/approximation (similar to

autoencoders) while the latter is mainly for classification

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected
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Dictionary-inspired deep architectures

e Scattering transform
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Dictionary-inspired deep architectures

e Multi-layer convolutional sparse coding
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Dictionaries for Sparse
Representation Modeling

Digital sampling can display signals, and it should be possible to expose a large part
of the desired signal information with only a limited signal sample.

By RON RUBINSTEIN, Student Member IEEE, ALFRED M. BRUCKSTEIN, Member IEEE, AND

MiIcHAEL ELAD, Senior Member IEEE

ABSTRACT | Sparseand redundant repr i deling of
data assumes an ability to describe signals as linear combina-
tions of a few atoms from a pre-specified dictionary. As such,
the choice of the dictionary that sparsifies the signals is crucial
for the success of this model. In general, the choice of a proper
dictionary can be done using one of two ways: i) building a
sparsifying dictionary based on a mathematical model of the
data, or ii) learning a dictionary to perform best on a training
set. In this paper we describe the evolution of these two
p i As i i of the first approach, we cover
topics such as wavelets, wavelet packets, contourlets, and
curvelets, allaiming toexploit 1-D and 2-D mathematical models
for constructing effective dictionaries for signals and images.
Dictionary learning takes a different route, attaching the
dictionary to a set of examples it is supposed to serve. From
the seminal work of Field and Olshausen, through the MOD, the
K-SVD, the Generalized PCA and others, this paper surveys the
various options such training hasto offer, up to the mostrecent
contributions and structures.

KEYWORDS | Dictionary learning: harmonic analysis; signal
approximation; signal representation; sparse coding; sparse
representation

I. INTRODUCTION
The process of digitally sampling a natural signal leads to its
representation as the sum of Delta functions in space or
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time. This representation, while convenient for the pur-
poses of display or playback, is mostly inefficient for anal-
ysis tasks. Signal processing techniques commonly require
more meaningful representations which capture the useful
characteristics of the signal—for recognition, the repre-
sentation should highlight salient features; for denocising,
the representation should efficiently separate signal and
noise; and for compression, the representation should
capture a large part of the signal with only a few coeffi-
cients. Interestingly, in many cases these seemingly differ-
ent goals align, sharing a core desire for simplification.

Representinga signal involves the choice of a dictionary,
which is the set of elementary signals—or atoms—used to
decompose the signal. When the dictionary forms a basis,
every signal is uniquely represented as the linear combi-
nation of the dictionary atoms. In the simplest case the
dictionary is orthogonal, and the rep tion coeffi-
cients can be computed as inner products of the signal and
the atoms; in the non-orthogonal case, the coefficients are
the inner products of the signal and the dictionary inverse,
also referred to as the bi-orthogonal dictionary.

For years, orthogonal and bi-orthogonal dictionaries
were dominant due to their mathematical simplicity. How-
ever, the weakness of these dictionaries—namely their
limited expressiveness—eventually outweighed their sim-
plicity. This led to the develog of newer overcomp
dictionaries, having more atoms than the dimensions of the
signal, which promised to represent a wider range of signal
phenomena.

The move to overcomplete dictionaries was done cau-
tiously, in an attempt to minimize the loss of favorable
properties offered by orthogonal transforms. Many dictio-
naries formed tight frames, which ensured that the repre-
sentation of the signal as alinear combination of the atoms
could still be identified with the inner products of the
signal and the dictionary. Another approach, ifested by
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Dictionary Learning

What is the right

representation for my signal?

uge amounts of high-dimensional

information are captured every second

by diverse natural sensors such as the

eyes or ears, as well as artificial sensors

like cameras or microphones. This

information is largely redundant in two main aspects: it

often contains multiple correlated versions of the same

physical world and each version is usually densely sampled

by generic sensors. The relevant information about the

underlying processes that cause our observations is generally of

much reduced dimensionality compared to such recorded data sets.

The extraction of this relevant information by identifying the generat-

ing causes within classes of signals is the central topic of this article. We

present methods for determining the proper representation of data sets by means of

reduced dimensionality subspaces, which are adaptive to both the characteristics of the signals and the

processing task at hand. These representations are based on the principle that our observations can be

described by a sparse subset of atoms taken from a redundant dictionary, which represents the causes of

our observations of the world. We describe methods for learning dictionaries that are appropriate for the

representation of given classes of signals and multisensor data. We further show that dimensionality

reduction based on dictionary representation can be extended to address specific tasks such as data analy-

sis or classification when the learning includes a class separability criteria in the objective function. The

benefits of dictionary learning clearly show that a proper understanding of causes underlying the sensed
world is key to task-specific representation of relevant information in high-dimensional data sets.
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WHAT IS THE GOAL OF DIMENSIONALITY REDUCTION?

Natural and artificial sensors are the only tools we have for sensing the world and gathering information
about physical processes and their causes. These sensors are usually not aware of the physical process
underlying the phenomena they “see,” hence they often sample the information with a higher rate than
the effective dimension of the process. However, to store, transmit or analyze the processes we observe,
we do not need such abundant data: we only need the information that is relevant to understand the
causes, to reproduce the physical processes, or to make decisions. In other words, we can reduce the
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