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Outline

e lectures
- Monday-Thursday 10:00-12:00
- lecture slides: http://www.robots.ox.ac.uk/~xdong/teaching.html

e Lab sessions
- Tuesday-Thursday 14:00-17:00
- lab notes: http://www.robots.ox.ac.uk/~xdong/teaching.html

- lab demonstrators
Yin-Cong Zhi (yin-cong.zhi©@st-annes.ox.ac.uk)

Pierre Osselin (pierre.osselin@eng.ox.ac.uk)

Bohan Tang (bohan.tang@eng.ox.ac.uk)

- light-weight assessment (exercise at the end of Lab 2)
to be submitted to xdong@robots.ox.ac.uk by Monday Oct 24th 18:00

o Questions & Comments
- Xiaowen Dong (xdong®@robots.ox.ac.uk)
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Outline

e Part | Classical signal processing

- Day 1: Basic concepts and tools (thanks to Steve Roberts)

- linear systems, convolution, time-frequency analysis, filtering, analogue & digital
filters, discrete Fourier transform

semaphore telegraph (1792)
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Outline

e Part | Classical signal processing

- Day 2: Representation of signals
- stochastic models, time-frequency representation, transforms, dictionary learning

- Lab 1: Autoregressive models

original JPEG 2000 (1% in size)
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Outline

e Part Il Graph signal processing

- Day 3: Introduction to graph signal processing

- Lab 2: Graph signal processing
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Outline

e Part Il Graph signal processing

- Day 4: Introduction to graph machine learning (by Dorina Thanou)

- graph ML tasks, graph convolution, spatial-domain vs spectral-domain approaches

- Lab 3: Graph neural networks
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Textbooks (Part |)

Lynn. An introduction to the analysis and
processing of signals. Macmillan, 1989.

Oppenheim and Schafer. Digital signal
processing. Prentice Hall, 1975.

Proakis and Manolakis. Digital signal processing:

Principles, algorithms and applications. Prentice
Hall, 2007

Orfanidis. Introduction to signal processing.
Prentice Hall, 1996. Available online at

http://ecewebl.rutgers.edu/~orfanidi/intro2sp/

An Introduction to

the Analysis and
Processing of
Signals

Paul Alynn

v

{
{ \
"v \ \

l’
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Third Edition

DIGITAL
SIGNAL
PROCESSING

Principles, Algorithms,
and Applications
Fourth Edition

Alan V. Oppenheim/Ronald W. Schafer

Signal
Processing

Saphocles J. Orfanidis
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Textbooks (Part |)

e Vetterli et al. Foundations of signal processing.
Cambridge University Press, 2014. Available Signal Processing
online at http://www.fourierandwavelets.org

Signal Processing
\_ |

e Kovacevi¢ et al. Fourier and wavelet signal
processing. Available online at
http://www.fourierandwavelets.org

Toolboxes

e MATLAB Signal Processing Toolbox:
- https://www.mathworks.com /help/signal/

e SciPy Signal Processing Toolbox:

- https://docs.scipy.org/doc/scipy/reference/tutorial /signal.html

- https://scipy-cookbook.readthedocs.io/items/idx signal processing.html
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Textbooks (Part Il)

e Ortega. Introduction to graph signal processing.
Cambridge University Press, 2022.

'} &\t MORGAN &CLAYPOOL PUBLISHERS
|
Graph l l

B /8 ‘Y W Representation

e Hamilton. Graph representation learning.

T
LA F\/\ Learning
Morgan & Claypool Publishers, 2020. Available ’ & L\

O n | i n e at G |ntri)‘d§c.t|0n t(l:‘%“ William L. Hamilton
) . ~ A rapin sigha
https://www.cs.mcgill.ca/“wlh/grl _book/ . Processing Bl
Antonio Ortega ‘r ‘"’””W ”"‘“‘G

Resources

e https://web.media.mit.edu/~xdong/resource.html

e https://github.com/naganandy/graph-based-deep-learning-literature
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Signal types
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Analogue vs. Digital signal processing

e Many signals of practical interest are analogue: e.g., speech, seismic,
radar, and sonar signals

e Analogue signal processing systems are based on analogue equipment:
e.g., channel vocoder

Modulator Carrier
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Linear systems

e Principle of superposition

axl(t) —+ b.CUQ (t) —>» system

e Frequency preservation: F,,; C Fiy

y\/ /\ —> system
>
t

A

VANV

e Can be broken down into simpler sub-systems

sub- |
system

€L =—>» system — X —>

sub-
system

— ay1(t) + by2(1)

sub- |
system

sub-
system

13/68



Time-invariant systems

e [ime-invariance

r(t) —>

system

— y(t) W (t— t) =] satem
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Linear time-invariant (LTI) systems

e Linear time-invariant (LTI) systems are both linear and time-invariant

y(t) = [z()]? @ yt)=22) @ yt)=z(t)—zt-1) @

Causality: “present” only depends on “present” and “past”

y(t) =zt +1) —2(t) @ y)==20)-z(t-1) ©

Stability: a system is bounded-input bounded-output (BIBO) stable if
(1) < M < oo W Jy(0)] < M, < oo

yt) = — @ ) ==z@)-z(t-1) ©
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Linear processes

ot R LTI > tout
Inpu system outpu

amplification, (un)-mixing, filtering, etc.

e |nput-output characteristics can be defined by
- impulse response in the time domain

- transfer function in the frequency domain

e There is an invertible mapping between time- and frequency-domain
representations
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Time-domain analysis - Convolution

e Convolution allows the evaluation of the output signal from an LTI
system, given its impulse response and input signal

—>» system

55(75 R 7_) —>» system

e Evaluate system output for

A
g(t)

AR

t

%mt—ﬂ

- input: succession of impulse functions (which generate weighted impulse responses)

- output: sum of the effect of each impulse function
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Time-domain analysis - Convolution
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Time-domain analysis - Convolution

system —>

- this gives the convolution integral
o
Z{x Virtg(t — 7) =P / 2(r)g(t — 7)dr
0

- the system response is the convolution of the input and the impulse response

- the system is completely characterised by impulse response in time-domain
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Time-domain analysis - Convolution

e Convolution is commutative

O
f(t) = / x(T)g(t — 7)dT integral over lags at a fixed time

@)
Ry (T) = / x(t)y(t — 7)dt integral over time for a fixed lag
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Frequency-domain analysis

e Consider the following LTI system

- e is an eigenfunction of an LTI system with eigenvalue G(s) , which is the
Laplace transform of the impulse response ¢(t)

- knowledge of G(s) for all s completely characterises the system
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The Laplace transform

e Laplace transform of x(t)

e Transfer function G(s)

X (s) »  G(s) > Y(s) =G(s)X(s)

e Can be expressed as a pole-zero representation of the form

A(s—z1)... (85— 2zm) pole at infinity (G(c0) =o0) if n <m
(s —p1)(s—p2)...(s—pn) zero at infinity ( G(o0) =0) if n > m

G(s) =
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The Laplace transform and LTI system

G(s) = |

Jw

high freq

low freq

S

---------------x.-----------.---

s-plane

g(t)e tdt = / g(t)e e %t < oo

— OO

g(t) — e_atu(t) where a > 0

‘ region of convergence (ROC): 0 > —a

1
G(s) = T a

causal system: if the ROC extends
rightward from the rightmost pole and n > m

stable system: ROC includes the
Imaginary axis

causal and stable system: all poles must
be in the left-half of the s-plane
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The Fourier transform

e Laplace transform reduces to Fourier transform with s = jw
OO .
X (jw) :/ x(t)e It dt
— 00

e Transfer function reduces to frequency response G(jw)

X(jw) » Gjw) > Y (jw) = Gjw) X (jw)

e |nverse Fourier transform
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The Fourier series

e Fourier series for periodic signal

Amplitude

FWWWMQ — )ﬂv + iﬂvﬁvﬂw + ’QUQ

Amplitude

Amplitude

Amplitude

\ﬁgquency

(Hz)

fundamental
frequency fo=1/To

0.
x(t) = Z C, el2™nfot

n=—oo

1 [To/2 |
Cn = —/ x(t)e 72 ot gt
To J_14/2

e When the period approaches infinity, the spectrum becomes continuous
leading to Fourier transform for aperiodic signal (previous slide)
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Laplace vs. Fourier transform

Laplace transform

X (s) :/ x(t)e *tdt
complex s-plane

transfer function

may exist when FT doesn't

Fourier transform

©.@)

X(Jjw) = / r(t)e 79t dt
— OO

imaginary axis of complex s-plane

frequency response

may exist when LT doesn't
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Time-domain vs. Frequency-domain

e Theorem

If g(t) is the impulse response of an LTI system, then its Fourier
transform, G(jw), is the frequency response of the system

e Proof Consider z(t) = Acoswt , by convolution:

y(t) = / " Acosw(t — 7)g(r)dr

— _/ pJw (t— T) d7'+—/ p—Jw(t— T) (7)dr

= 567“75/ g(T)e Tdr + §€_JWt/ g(T)e?*dr

— g{ejth(jw) + e G(—jw)}
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Time-domain vs. Frequency-domain

Let G(jw) = Ce’? | ie., C=|G(jw)|, ¢ =arg{G(jw)}

AC

then y(¢) = T{Bj(w“(b) + e_j(wt+¢)} = C'A cos(wt + ¢)

that is, an input sinusoid has its amplitude scaled by |G(jw)]
and phase changed by arg{G(jw)}, where G(jw) is the
Fourier transform of the impulse response ¢(t).
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Time-domain vs. Frequency-domain

e Theorem

Convolution in the time domain is equivalent to multiplication in the
frequency domain, i.e.,

e Proof

By letting s = jw we prove the result for the Fourier transform.

(ﬁ/ (t—7)g(T ﬂ%
- / Tﬂdf@{f )}

= L9 Lf (1)}
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Time-domain vs. Frequency-domain

e We can move losslessly between time and frequency domains, choosing

whichever is the easier to work with

e Convolution theorem provides the mathematical underpinning that helps
understand stability and characteristics of linear systems such as filters

|7+

Jws

Jw2
Jw1

s-plane

stable system: ROC extends rightward
from the rightmost pole and n > m

low-pass system: frequency response can

be analysed by drawing vectors from poles
and zeros to imaginary axis
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Filtering

e Filtering as input-output relationship

: LTI
Input > system » output
z(t) > 9(t) > y(t)

impulse response

X (s) > G(s) > Y (s)

transfer function

X (juw) . G(jw) > Y (jw)

frequency response
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Filtering

e Filters are frequency-selective linear systems
- Low-pass: extract short-term average or to eliminate high-frequency fluctuations

- High-pass: follow small-amplitude high-frequency perturbations in presence of
much larger slowly-varying component

- Band-pass: select a required modulated carrier frequency out of many

- Band-stop: eliminate single-frequency interference (also known as notch filtering)

Gl

low-pass band-pass high-pass
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Design of analogue filters

e A filter may be described by its impulse response or by its frequency
response (or transfer function)

e Filter design takes into account
- the desired magnitude response

- the desired phase response

e Squared magnitude of the transfer function

§ = Jw

G(s)]" = G(s)G"(s) == G(s)G(—s)

e Design procedure

2

- consider some desired response |G(s)|“ as a ratio of two polynomials in even

powers of s (or w)

- design the filter by assigning “stable” poles (those on L.H.S of s-plane) to G(s)
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Butterworth low-pass filters

Gjw)|? S

n : order of the filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 g
w/we
(b)
10° , E
e
=
Q
33
=
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o
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Figure 3-26. Normalized Butterworth LP impulse response.
10_1 2 ‘ I1
10 107
log w/we

Figure 1.5: Butterworth filter response on (a) linear and (b) log scales. On a log-log scale the response, for
w > w falls off at approx -20db/decade.

frequency response impulse response
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Analogue vs. Digital filters

e Analogue filters

- constructed from analogue circuit
components (e.g., resistors, inductors,
capacitors)

Digital filters

- “hardware” form: set of digital circuits (logic
gates, integrated circuits)

- "software’ form: general-purpose micro-
computer

x[n] » yln]
>> X = sin([1:100]/10);
>> p]Ot(\)
>> xn = X + randn(1,100)%0.2;
>> plot(xn)
>> y = zeros(1,100);
>> for n=3:100,
y(n) = 0.20657%x(n)+0.41314%x(n-1)+0.207%x(n-2)+0.36953%y(n-1)-0.19582%y(n-2) ;
end;
>> plot(y)
>> plot(xn)
>> hold on
>> plot(y, ‘9", 'Tinewidth',2)
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Digital filtering
e Can be easily (re-)programmed to implement a number of different filters

e Accuracy only depends on round-off error in the arithmetic

- hence is predictable and performance known a priori

- can meet very tight specifications on frequency response

e Widespread use of mini- and micro-computers increased number of digital
signals stored and processed

e Robust against noise and change in external environment (e.g., power
supply issues, temperature variations)
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Digital filtering

e Digital filtering can be done in
- time domain: convolution with the impulse response
- frequency domain: multiplication by the desired filter characteristics

z k] > glkl > ylk| = x|k] * g[k]

impulse response

X(2) > G(2) > Y (2) = X(2)G(2)

pulse transfer function
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The sampling process

A sampling A

t T t
sample  sec
sec  sample
continuous discrete
Tq(t) = Acos(2m fut + @) rq(n) = Acos(2m fonT + ¢) = Acos(27r%n + ¢)
= Acos(wat + ¢) = Acos(27 fyn + ¢) = Acos(wgn + @)
We = 27 f4 Cmm—) wq = 27 fq
radians cycle H fa radians cycle
sec sec (Hz) fd — f_ sample sample
S
T < < /4 Wqg = We T’ < <
—— < w — — Swg <
T = a > T ~ Wd >
1 1 1 1 1 1
= < fu < —|= = fa o< fy< =
2f 2T — I ZT[ 2f ]Nyquist frequency 2 'fd - 2
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Aliasing

aliasing frequencies:

/ _025£k
a — T Z

1
4
57 t 0
f(t):COS(gf) - Ja=7 (k=1,2,..)

1 | | | | | | |
oT 1T 2T 3T 4T 5T 6T 7T 8T oT 10T

0T 1T 2T 3T 4T 5T 6T 7T 8T oT 10T
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Aliasing

e Sampling in time results in repeated spectrum in frequency

F(®) .

d

~

Y((x)) A

m“’m

Not aliased

/ \/ \7

(Ds

Aliased

20 30\

Figure 4.6: Aliasing in the frequency domain

(from lecture notes by David Murray)
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Digital filtering and reconstruction

suppress freq. above §fs

1

input —>

anti-aliasing
(anal. LPF)

passband well below %fs

—

output €<—

smoothing
(anal. LPF)

A/D
converter

—

- —

step inter-
polation

N —

D/A
converter

(recovery filter) (staircase approx.)

samples

digital
filter

G

/LPF
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Digital filtering as regression

e Noise reduction: Polynomial fit using least-squares

2 -1 0 1 2

parabolic fit .’

2 -1 0 1 2
centre point, k=0
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Parabolic fit

p[k] = S0 T ksl + k232 for k= {_27 _1707 17 2}

Nl S

coefficients of the fit

2
approximation error:  FE(sqg, s1,82) = Z (k] — [0 + ksy + k2s5])?
f=—2
k=2
1
830 =0 ‘ 550 + 1059 = k__;c[k] ‘ S0 = 5z (—32[~2] + 122[~1] + 172[0] + 122[1] — 3z[2))
1
881 ~ 0 105 - k_Z_zkw B o = (22— o1+ 21 + 2202)
1
‘x —(2z[-2] — z|-1| — 220 — x X
882 =0 ‘ 10sg + 3459 = k;2k ‘ 14(2 [—2] (—1] — 22[0] 1] + 2x[2))
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Parabolic fit

parabolic fit

2 -1 0 1 2
centre point, k=0

plk] |k=0 = so + ks1 + k? s, [k=0= S0
1

— g(—3:1;[—2] + 12z|—1] 4+ 172[0] 4+ 12x[1] — 3z[2])

- the parabola coefficient sq is the filtering output

- it provides a smoothed approximation of each set of five data points
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Parabolic fit

G (jw)]

1.5

A
N\ \
A YAY.
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4 A~ N MY LA AR
\ \ | N\ '
0.5 ‘( /A ' “ 7
NS ‘
ok N' 2 \ _
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Fig 2.5: Noisy data (thin line) and 5-point parabolic filtered (thick line).
1 -
0.8} ]
0.4 E .
0.2f |
O 1 | :
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Fig 2.6: Frequency response of the 5-point parabolic filter.
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Parabolic fit

e The parabolic filter we just considered is
- a low-pass filter (LPF)

- a non-causal filter:

ylk] = 3—]‘5([—3:1:[1@ P2 E A2 1)+ 170(K]) + 122[k — 1] — e[k — 2)

‘ delay by 2T

_ 3_15(_3;1@[/@] + 1220k — 1] + 172k — 2] + 122k — 3] — 3x[k — 4])

ylk]

- a non-recursive filter: ylk| = Z a; x|k — i

N
1=0
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Impulse response of digital filters

E azz _7/

e The equation y

represents a discrete convolution of

the input data with the filter coefficients

e Theorem The coefficients constitute the impulse response of the filter.

1, ifk=0

0, otherwise

- as

Proof Let z[k] = {

Then ylk

Finite-lmpulse Response (FIR):

Infinite-lmpulse Response (lIR):

— 1] = axx|0] = ag

. ; [k—l] —I—{z:bzy[kzﬂ

recursive!

47/68



The ztransform

e The ztransform is important in digital filtering

- it describes frequency-domain properties of discrete (sampled) data

- it is similar to the Laplace transform in analogue filtering

e Consider the Laplace transform of a discrete function as a succession of
Impulses

Fy(s) = f(0 e 1 Ne 21 4. ke FTs ..
o f(f) o) gy O IORSOTE e

T T ) ‘ZzeTszeaT{eijJ

0 1T 2T kT t

z may be thought of as a shift operator
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The ztransform

e For many functions, the infinite series can be represented in “closed-form"”

as the ratio of two polynomials in z*

step function
0, ifk<O

k]l =< -
U {1, if k>0

decaying exponential

Fl2)=1+zt 4224+ +27F4. ..
B 1
1zl

(=71 < 1)

sinusoid
1 1 1
t) = t— _
f(t) = cosw | | F(2) =S T 7o)
T 4 kT L
flk] = cos kwT = 1 —coswTz

2 T 1_2coswlz-1 + z—2
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Pulse transfer function (PTF)

e PTF is ratio of ztransform of output to that of input

e Consider an FIR filter with the impulse response

aq :
I ] as l - G(z):a0+a12_1+a22_2+...+ai2_z+...+aNZ_N
ao T R
TO 1 2 3 N n

2]
z|l] @
z[0]f ¢ | z (3] ‘ X(2) =2[0] + z[l]e" +z[2]z > + ...+ a[k]z " +
.
01 2 3 n
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Pulse transfer function (PTF)

the product G(2)X(z) is
G(2)X(2)=(ag+arz ' +.. . +az 4+ ... +anz ([0 + 1]z + ...+ ak]z7F+..)

in which the coefficient for z7% is

apx|k] + arzlk — 1]+ ...+ a;xlk — 1]+ ...+ ayz|k — N]

this is again a discrete convolution that gives the output y|k], and
therefore Y (z) = G(2)X(2) : similar to the transfer function!

X (s) »  G(s) > Y (s) = G(s)X(s)

ransfer function

=+

X(z) > G(2) > YV(z) = G(2)X(2)

pulse transfer function
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Pulse transfer function (PTF)

PTF is the ztransform of impulse response

e For non-recursive filters

N

G(z) = apz™ m) k= Z a;z[k — i

1=0

e For recursive filters

N

Y(2) = Zaz "X (2 +szz_zY

1=0
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The ztransform and LTI system

©.@
T G(z) = Zx[n]z_” < 00
z=e p
xrn] = a"uln| whee 0<a<1

‘ region of convergence (ROC): |z| > |a|

1
X(z) = 1—az 1

- causal system: if the ROC extends outward
from the outmost pole

- stable system: ROC includes the unit circle

- causal and stable system: all poles must
zplane be inside the unit circle
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Mapping from s-plane to zplane

z=et -
s=0+jw ) z=c
s-plane z-plane
Im(s)f Im(z )

w=m/T
7/ o /\
> — >
Re(s) T \/(e(z)
(from lecture slides by

\ W = :i:ﬂ'/T
Mark Cannon)

imaginary axis (o = 0) unit circle (|z| = 1)
left-half plane (o < 0) inside unit circle (|z| < 1)
right-half plane (o > 0) outside unit circle (|z]| > 1)

poles in left-half plane for stability  poles inside unit circle for stability
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Example

e What's the condition for the following filter to be stable?

ylk] =

zlk — 1]+ aylk — 1]

hence for the filter to be stable we need |a| < 1.
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Frequency response of a digital filter

e Theorem

The frequency response of a digital filter can be obtained by evaluating the
PTF on the unit circle (z = /“7)

e Proof Consider the general form of a digital filter

ylk] = Z a;x[k — i]

Consider an input cos(wt + 6) sampled at t =0,T,..., kT

therefore

1 |
r|k| = cos(wkT + 0) = i{ej(wkTM) + g JWRTHON
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Frequency response of a digital filter

= _j{wlk—i]T+6} - - —J{wlk—1]T+06}
ylk] = > EO a;e’ 1+ 5 EO ae”’

— %ej(wkT—l—H){Z aiejwiij+ %ej(wkT—l—H)[Z aiejmTJ

i=0 i=0
N.B. D aie 7T =) "a;(") 7 =) aiz7|.meior = G(2)]omsor
i=0 i=0 i=0
let  G(2)|zpior = AeMl then ZaiejmT :
i=0
1 (wkT'+-0) ¢ 1 _ (wWkT+60) A, —j¢
hence ylk| = 563 Ae’? 4+ —e™/ Ae™/

or Yylk] = Acos(wkT + 60+ ¢) while x|k] = cos(wkT + 0)

thus A and ¢ represent the gain and phase of the frequency response, i.e., the

frequency response is G(2)|,—pjwr -
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Example

1

1
wl' =0
5
_ 47
Ll
&)
1,
*
00 0.5 1 1.5 2 2.5 3 3.5
Wl

z-plane
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Example

e Consider the 5-point parabolic filter

Yy k] —3x|k] + 12z|k — 1] + 17z[k — 2] + 122k — 3] — 3x|k — 4])

:g(

1
(=3 + 1227 + 17272 +1227° — 3271 X(2)

Y(z) = T

1 . | | |
G(2)|=eiwt = g(—3 4 1279wl 1720wl | 1930w T _ 36—4ng)

1 .
— g@_2~7°"T(17 + 24coswT — 6¢cos2wT)
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Example

therefore

G(e”)

1
= £|171L 24 cos wT — 6 cos 2wT |

wl =0 — |G| =1

wT ~ 0.487 (i.e., f/fs = 0.24) — |G(e?“1)| = 0.707

/G(e?¥T) = —2wT (linear-phase - all frequencies delayed by 2T)

3dB cut-off

/T

2 /T

W
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Design of digital filters

e Three basic steps
- specification of desired frequency response

- approximation of the specification using a causal discrete-time system

- realisation of the system using finite-precision arithmetic

passband transition stopband

o Different design techniques for FIR and |IR filters
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Continuous vs. Discrete

continuous

linear differential equation
(impulse response)

convolution integral

Laplace transform
(transfer function)

Frequency response
(imaginary axis ->

Fourier transform)

analogue filter

system

discrete

linear difference equation
(impulse response)

convolution sum

z-transform
(pulse transfer function)

Frequency response
(unit circle -> discrete-
time Fourier transform)

digital filter
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Fourier transform for discrete-time signals

We have introduced Fourier series (FS) for continuous periodic signals

1 [To/2 . s .
x(t)e—jQW'nfotdt .CE(t)Z Z Cn6327rnfot

Cn = —
To J -1y n=—oc

and Fourier transform (FT) for continuous aperiodic signals

X (ju) = / Taeta y(t) = 2 / T Y (jw)etdu

oo 27 ) _ o

In digital signal processing and filtering we need to deal with discrete-time
signals - what about the discrete-time counterparts of FS and FT7
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Discrete Fourier transform

FS:
N=
: WN—3 f[.2]
1 WN—l WN—2 WN—3 W } \f[N_]-]
where W =¢e¢ % and WN=w2N = . =1
IDFT:

64/68



Example

e Consider the following signal

ft)=_5 +?COS(2ﬂt — 900) + 3 cos 4t

dc le
sample at fy =4 Hz
t=kT = k/4 sec

= 5 + 2cos( 2 k- 90°) + 3cosmk

& ot
N
W
.
(6]
(o]
~
¥ o
©
8 !
@
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Example

e Compute DFT

Fln] = flkle 73" =" fk](—j)"*

20+ ®
(FlOo\ (11 1 1)\ [fo [20) *
FIU | |1 — -1 J flLl | _ | 4| =, ?
Fol | |1 -1 1 -1 fl2] | — | 12 =
\FBI ) \1J -1 )\fB1) \Jj4a) s T T
0 0 1 2 3
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The Fourier transform - Four different forms

Proakis and Manolakis, “Digital signal processing: Principles, algorithms and applications,” Prentice Hall, 2007.




Summary

e LTI systems are of central importance to modern signal processing

e Time- and frequency-domain representations of the system are equivalent;
such equivalence is established by the convolution theorem

e Frequency-selective filters are one of the most important signal processing
tools

e The DFT, which represents a finite sequence with finite number of
coefficients, plays a central role in digital signal processing and filtering
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