AIMS CDT - Signal Processing Michaelmas Term 2022

Xiaowen Dong

Department of Engineering Science

Lectures

- Monday-Thursday 10:00-12:00
- lecture slides: http://www.robots.ox.ac.uk/~xdong/teaching.html

Lab sessions

- Tuesday-Thursday 14:00-17:00
- lab notes: http://www.robots.ox.ac.uk/~xdong/teaching.html
- lab demonstrators
 - Yin-Cong Zhi (yin-cong.zhi@st-annes.ox.ac.uk)
 - Pierre Osselin (pierre.osselin@eng.ox.ac.uk)
 - Bohan Tang (bohan.tang@eng.ox.ac.uk)
- light-weight assessment (exercise at the end of Lab 2)
 - to be submitted to xdong@robots.ox.ac.uk by Monday Oct 24th 18:00

Questions & Comments

- Xiaowen Dong (xdong@robots.ox.ac.uk)

- Part I Classical signal processing
 - Day 1: Basic concepts and tools (thanks to Steve Roberts)
 - linear systems, convolution, time-frequency analysis, filtering, analogue & digital filters, discrete Fourier transform

smoke signal (1570)

Morse code (1830s)

semaphore telegraph (1792)

speech processing (1950s-)

- Part I Classical signal processing
 - Day 2: Representation of signals
 - stochastic models, time-frequency representation, transforms, dictionary learning
 - Lab 1: Autoregressive models

- Part II Graph signal processing
 - Day 3: Introduction to graph signal processing
 - graph signals, graph Fourier transform, filtering, representation of graph signals
 - Lab 2: Graph signal processing

political preference

- Part II Graph signal processing
 - Day 4: Introduction to graph machine learning (by Dorina Thanou)
 - graph ML tasks, graph convolution, spatial-domain vs spectral-domain approaches
 - Lab 3: Graph neural networks

Textbooks (Part I)

- Lynn. An introduction to the analysis and processing of signals. Macmillan, 1989.
- Oppenheim and Schafer. Digital signal processing. Prentice Hall, 1975.
- Proakis and Manolakis. Digital signal processing:
 Principles, algorithms and applications. Prentice
 Hall, 2007
- Orfanidis. Introduction to signal processing.
 Prentice Hall, 1996. Available online at http://eceweb1.rutgers.edu/~orfanidi/intro2sp/

Textbooks (Part I)

- Vetterli et al. Foundations of signal processing.
 Cambridge University Press, 2014. Available online at http://www.fourierandwavelets.org
- Kovačević et al. Fourier and wavelet signal processing. Available online at http://www.fourierandwavelets.org

Toolboxes

- MATLAB Signal Processing Toolbox:
 - https://www.mathworks.com/help/signal/
- SciPy Signal Processing Toolbox:
 - https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html
 - https://scipy-cookbook.readthedocs.io/items/idx_signal_processing.html

Textbooks (Part II)

- Ortega. Introduction to graph signal processing.
 Cambridge University Press, 2022.
- Hamilton. Graph representation learning.
 Morgan & Claypool Publishers, 2020. Available online at https://www.cs.mcgill.ca/~wlh/grl_book/

Resources

- https://web.media.mit.edu/~xdong/resource.html
- https://github.com/naganandy/graph-based-deep-learning-literature

Basic Concepts and Tools

Signal types

Analogue vs. Digital signal processing

 Many signals of practical interest are analogue: e.g., speech, seismic, radar, and sonar signals

Analogue signal processing systems are based on analogue equipment:

e.g., channel vocoder

Dramatic advance of digital computing moves the trend towards digital systems

Linear systems

Principle of superposition

$$ax_1(t) + bx_2(t) \longrightarrow system \longrightarrow ay_1(t) + by_2(t)$$

• Frequency preservation: $\mathcal{F}_{\mathrm{out}} \subseteq \mathcal{F}_{\mathrm{in}}$

Can be broken down into simpler sub-systems

$$x o system \equiv x o sub-system \equiv x o sub-system \equiv x o sub-system system$$

Time-invariant systems

Time-invariance

Linear time-invariant (LTI) systems

• Linear time-invariant (LTI) systems are both linear and time-invariant

$$y(t) = [x(t)]^2$$
 $y(t) = x(2t)$ $y(t) = x(t) - x(t-1)$ $y(t) = x(t) - x(t-1)$

Causality: "present" only depends on "present" and "past"

$$y(t) = x(t+1) - x(t)$$
 ② $y(t) = x(t) - x(t-1)$ ②

• Stability: a system is bounded-input bounded-output (BIBO) stable if

$$|x(t)| \le M_x < \infty \qquad |y(t)| \le M_y < \infty$$

$$y(t) = \frac{1}{x(t)} \quad \textcircled{2} \qquad y(t) = x(t) - x(t-1) \quad \textcircled{2}$$

Linear processes

- Input-output characteristics can be defined by
 - impulse response in the time domain
 - transfer function in the frequency domain
- There is an **invertible** mapping between time- and frequency-domain representations

Convolution allows the evaluation of the output signal from an LTI system, given its impulse response and input signal

- Evaluate system output for
 - input: succession of impulse functions (which generate weighted impulse responses)
 - output: sum of the effect of each impulse function

- this gives the convolution integral

$$y(t) = \sum_{\tau} \{x(\tau)d\tau\}g(t-\tau) \xrightarrow{d\tau \to 0} \int_{0}^{\infty} x(\tau)g(t-\tau)d\tau$$

- the system response is the convolution of the input and the impulse response
- the system is completely characterised by impulse response in time-domain

Convolution is commutative

$$y(t) = \int_0^\infty x(\tau)g(t-\tau)d\tau = \int_0^\infty x(t-\tau)g(\tau)d\tau$$

Convolution vs. Correlation

$$f(t) = \int_{-\infty}^{\infty} x(\tau)g(t-\tau)d\tau \qquad \text{integral over lags at a fixed time}$$

$$R_{xy}(\tau) = \int_{-\infty}^{\infty} x(t)y(t-\tau)dt \qquad \text{integral over time for a fixed lag}$$

Frequency-domain analysis

Consider the following LTI system

$$x(t) = e^{st} \longrightarrow g(t) \longrightarrow y(t)$$

$$y(t) = \int_{-\infty}^{\infty} e^{s\tau} g(t - \tau) d\tau = \int_{-\infty}^{\infty} g(t) e^{-st} dt \cdot e^{st}$$

$$G(s)$$

- e^{st} is an **eigenfunction** of an LTI system with eigenvalue G(s), which is the Laplace transform of the impulse response g(t)
- knowledge of G(s) for all s completely characterises the system

The Laplace transform

• Laplace transform of x(t)

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

• Transfer function G(s)

$$X(s) \longrightarrow G(s)$$
 $Y(s) = G(s)X(s)$

• Can be expressed as a pole-zero representation of the form

$$G(s) = \frac{A(s-z_1)\dots(s-z_m)}{(s-p_1)(s-p_2)\dots(s-p_n)}$$
 pole at infinity $(G(\infty) = \infty)$ if $n < m$ zero at infinity $(G(\infty) = \infty)$ if $n > m$

The Laplace transform and LTI system

$$G(s) = \int_{-\infty}^{\infty} g(t)e^{-st}dt = \int_{-\infty}^{\infty} g(t)e^{-\sigma t}e^{-j\omega t}dt < \infty$$

$$g(t) = e^{-at}u(t)$$
 where $a > 0$

- **causal system:** if the ROC extends rightward from the rightmost pole and $n \ge m$
- stable system: ROC includes the imaginary axis
- **causal and stable system:** all poles must be in the left-half of the *s*-plane

The Fourier transform

• Laplace transform reduces to Fourier transform with $\,s=j\omega\,$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

• Transfer function reduces to frequency response $G(j\omega)$

$$X(j\omega) \longrightarrow G(j\omega) \longrightarrow Y(j\omega) = G(j\omega)X(j\omega)$$

Inverse Fourier transform

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(j\omega) e^{j\omega t} d\omega$$

The Fourier series

Fourier series for periodic signal

 When the period approaches infinity, the spectrum becomes continuous leading to Fourier transform for aperiodic signal (previous slide)

Laplace vs. Fourier transform

Laplace transform

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

complex s-plane

transfer function

may exist when FT doesn't

Fourier transform

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt \qquad X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

imaginary axis of complex s-plane

frequency response

may exist when LT doesn't

Theorem

If g(t) is the **impulse response** of an LTI system, then its Fourier transform, $G(j\omega)$, is the **frequency response** of the system

• **Proof** Consider $x(t) = A\cos\omega t$, by convolution:

$$y(t) = \int_0^\infty A\cos\omega(t-\tau)g(\tau)d\tau$$

$$= \frac{A}{2} \int_0^\infty e^{j\omega(t-\tau)}g(\tau)d\tau + \frac{A}{2} \int_0^\infty e^{-j\omega(t-\tau)}g(\tau)d\tau$$

$$= \frac{A}{2} e^{j\omega t} \int_{-\infty}^\infty g(\tau)e^{-j\omega\tau}d\tau + \frac{A}{2} e^{-j\omega t} \int_{-\infty}^\infty g(\tau)e^{j\omega\tau}d\tau$$

$$= \frac{A}{2} \{e^{j\omega t}G(j\omega) + e^{-j\omega t}G(-j\omega)\}$$

Let
$$G(j\omega)=Ce^{j\phi}$$
 , i.e., $C=|G(j\omega)|, \quad \phi=arg\{G(j\omega)\}$

then
$$y(t) = \frac{AC}{2} \{e^{j(\omega t + \phi)} + e^{-j(\omega t + \phi)}\} = CA\cos(\omega t + \phi)$$

that is, an input sinusoid has its amplitude scaled by $|G(j\omega)|$ and phase changed by $arg\{G(j\omega)\}$, where $G(j\omega)$ is the Fourier transform of the impulse response g(t).

Theorem

Convolution in the time domain is equivalent to multiplication in the frequency domain, i.e.,

$$y(t) = g(t) * x(t) \equiv \mathcal{F}^{-1}\{Y(j\omega) = G(j\omega)X(j\omega)\}$$
$$y(t) = g(t) * x(t) \equiv \mathcal{L}^{-1}\{Y(s) = G(s)X(s)\}$$

Proof

$$\mathcal{L}\{f(t) * g(t)\} = \int_{\tau} \int_{\tau} \underbrace{f(t - \tau)} g(\tau) d\tau e^{-st} dt$$
$$= \int_{\tau} g(\tau) e^{-s\tau} d\tau \mathcal{L}\{f(t)\}$$
$$= \mathcal{L}\{g(t)\}\mathcal{L}\{f(t)\}$$

By letting $s=j\omega$ we prove the result for the Fourier transform.

- We can move losslessly between time and frequency domains, choosing whichever is the easier to work with
- Convolution theorem provides the mathematical underpinning that helps understand stability and characteristics of linear systems such as filters

- **stable system:** ROC extends rightward from the rightmost pole and $n \ge m$
- low-pass system: frequency response can be analysed by drawing vectors from poles and zeros to imaginary axis

Filtering

Filtering as input-output relationship

Filtering

- Filters are **frequency-selective** linear systems
 - Low-pass: extract short-term average or to eliminate high-frequency fluctuations
 - High-pass: follow small-amplitude high-frequency perturbations in presence of much larger slowly-varying component
 - Band-pass: select a required modulated carrier frequency out of many
 - **Band-stop**: eliminate single-frequency interference (also known as notch filtering)

Design of analogue filters

- A filter may be described by its impulse response or by its frequency response (or transfer function)
- Filter design takes into account
 - the desired magnitude response
 - the desired phase response
- Squared magnitude of the transfer function

$$|G(s)|^2 = G(s)G^*(s) = G(s)G(-s)$$

- Design procedure
 - consider some desired response $|G(s)|^2$ as a ratio of two polynomials in even powers of s (or ω)
 - design the filter by assigning "stable" poles (those on L.H.S of s-plane) to G(s)

Butterworth low-pass filters

$$|G(j\omega)|^2=\frac{1}{1+H\{(\frac{\omega}{\omega_c})^2\}}=\frac{1}{1+(\frac{\omega}{\omega_c})^{2n}} \qquad n: \text{ order of the filter}$$

Figure 1.5: Butterworth filter response on (a) linear and (b) log scales. On a log-log scale the response, for $\omega > \omega_c$ falls off at approx -20db/decade.

impulse response

Analogue vs. Digital filters

Analogue filters

 constructed from analogue circuit components (e.g., resistors, inductors, capacitors)

Digital filters

- "hardware" form: set of digital circuits (logic gates, integrated circuits)
- "software" form: general-purpose microcomputer


```
>> x = sin([1:100]/10);

>> plot(x)

>> xn = x + randn(1,100) \(^{\alpha}\)0.2;

>> plot(xn)

>> y = zeros(1,100);

>> for n=3:100,

y(n) = 0.20657 \(^{\alpha}\)x(n)+0.41314 \(^{\alpha}\)x(n-1)+0.207 \(^{\alpha}\)x(n-2)+0.36953 \(^{\alpha}\)y(n-1)-0.19582 \(^{\alpha}\)y(n-2);

end;

>> plot(y)

>> plot(xn)

>> hold on

>> plot(y,'g','linewidth',2)
```

Digital filtering

- Can be easily (re-)programmed to implement a number of different filters
- Accuracy only depends on round-off error in the arithmetic
 - hence is predictable and performance known a priori
 - can meet very tight specifications on frequency response
- Widespread use of mini- and micro-computers increased number of digital signals stored and processed
- Robust against noise and change in external environment (e.g., power supply issues, temperature variations)

Digital filtering

- Digital filtering can be done in
 - time domain: convolution with the impulse response
 - frequency domain: multiplication by the desired filter characteristics

The sampling process

continuous

$$x_a(t) = A\cos(2\pi f_a t + \phi)$$
$$= A\cos(\omega_a t + \phi)$$

discrete

$$x_d(n) = A\cos(2\pi f_a nT + \phi) = A\cos(2\pi \frac{f_a}{f_s} n + \phi)$$
$$= A\cos(2\pi f_d n + \phi) = A\cos(w_d n + \phi)$$

$$w_a = 2\pi f_a rac{ ext{cycle}}{ ext{sec}}$$
 (Hz)

$$-\frac{\pi}{T} \le \omega_a \le \frac{\pi}{T}$$
1 1 1 1

$$-\frac{1}{2}f_s = -\frac{1}{2T} \le f_a \le \frac{1}{2T} = \frac{1}{2}f_s$$

$f_d = \frac{f_a}{f_s}$

$$\omega_d = \omega_a T$$

$$w_d = 2\pi f_d$$

radians sample

sample

$$-\pi \le \omega_d \le \pi$$

$$-\frac{1}{2} \le f_d \le \frac{1}{2}$$

Aliasing

$$f(t) = \cos(\frac{\pi}{2} \frac{t}{T})$$

$$f_d = \frac{1}{4}$$

$$f(t) = \cos(\frac{5\pi}{2} \frac{t}{T})$$

$$f_d = \frac{5}{4}$$

aliasing frequencies:

$$f_a = rac{0.25 \pm k}{T}$$
 Hz $(k=1,2,...)$

Aliasing

• Sampling in time results in repeated spectrum in frequency

Figure 4.6: Aliasing in the frequency domain

(from lecture notes by David Murray)

Digital filtering and reconstruction

Digital filtering as regression

Noise reduction: Polynomial fit using least-squares

$$p[k] = s_0 + ks_1 + k^2s_2 \qquad \text{for} \qquad k = \{-2, -1, 0, 1, 2\}$$
 coefficients of the fit

approximation error:
$$E(s_0, s_1, s_2) = \sum_{k=-2}^{2} (x[k] - [s_0 + ks_1 + k^2s_2])^2$$

$$\frac{\partial E}{\partial s_0} = 0 \qquad 5s_0 + 10s_2 = \sum_{k=-2}^{k=2} x[k] \qquad s_0 = \frac{1}{35}(-3x[-2] + 12x[-1] + 17x[0] + 12x[1] - 3x[2])$$

$$\frac{\partial E}{\partial s_1} = 0 \qquad 10s_1 = \sum_{k=-2}^{k=2} kx[k] \qquad s_1 = \frac{1}{10}(-2x[-2] - x[-1] + x[1] + 2x[2])$$

$$\frac{\partial E}{\partial s_2} = 0 \qquad 10s_0 + 34s_2 = \sum_{k=-2}^{k=2} k^2x[k] \qquad s_2 = \frac{1}{14}(2x[-2] - x[-1] - 2x[0] - x[1] + 2x[2])$$

parabolic fit

$$p[k] \mid_{k=0} = s_0 + ks_1 + k^2 s_2 \mid_{k=0} = s_0$$

$$= \frac{1}{35} (-3x[-2] + 12x[-1] + 17x[0] + 12x[1] - 3x[2])$$

- the parabola coefficient $\,s_0\,$ is the filtering output
- it provides a smoothed approximation of each set of five data points

Fig 2.5: Noisy data (thin line) and 5-point parabolic filtered (thick line).

Fig 2.6: Frequency response of the 5-point parabolic filter.

- The parabolic filter we just considered is
 - a low-pass filter (LPF)
 - a non-causal filter:

$$y[k] = \frac{1}{35} \left(-3x[k+2] + 12x[k+1] + 17x[k] + 12x[k-1] - 3x[k-2] \right)$$

delay by 2T

$$y[k] = \frac{1}{35}(-3x[k] + 12x[k-1] + 17x[k-2] + 12x[k-3] - 3x[k-4])$$

- a non-recursive filter: $y[k] = \sum_{i=0}^{N} a_i x[k-i]$

Impulse response of digital filters

- The equation $y[k] = \sum_{i=0}^{N} a_i x[k-i]$ represents a **discrete convolution** of the input data with the filter coefficients
- **Theorem** The coefficients constitute the **impulse response** of the filter.

Proof Let
$$x[k] = \begin{cases} 1, & \text{if } k = 0 \\ 0, & \text{otherwise} \end{cases}$$

Then
$$y[k] = \sum_{i} a_i x[k-i] = a_k x[0] = a_k$$

Finite-Impulse Response (FIR):
$$y[k] = \sum_{i=0}^{n} a_i x[k-i]$$

Finite-Impulse Response (FIR):
$$y[k] = \sum_{i=0}^{N} a_i x[k-i]$$
Infinite-Impulse Response (IIR): $y[k] = \sum_{i=0}^{N} a_i x[k-i] + \sum_{i=1}^{M} b_i y[k-i]$

recursive!

The z-transform

- The z-transform is important in digital filtering
 - it describes frequency-domain properties of discrete (sampled) data
 - it is similar to the Laplace transform in analogue filtering
- Consider the Laplace transform of a discrete function as a succession of impulses

$$F_d(s) = f(0) + f(1)e^{-Ts} + f(2)e^{-2Ts} + \dots + f(k)e^{-kTs} + \dots$$

$$F(z) = f(0) + f(1)z^{-1} + f(2)z^{-2} + \dots + f(k)z^{-k} + \dots$$

z may be thought of as a **shift operator**

The z-transform

• For many functions, the infinite series can be represented in "closed-form" as the ratio of two polynomials in z^{-1}

step function

$$f[k] = \begin{cases} 0, & \text{if } k < 0 \\ 1, & \text{if } k \ge 0 \end{cases} \qquad F(z) = 1 + z^{-1} + z^{-2} + \dots + z^{-k} + \dots$$
$$= \frac{1}{1 - z^{-1}} \quad (|z^{-1}| < 1)$$

decaying exponential

$$f(t) = e^{-\alpha t} \longrightarrow f[k] = e^{-\alpha kT}$$

$$F(z) = 1 + e^{-\alpha T} z^{-1} + e^{-\alpha 2T} z^{-2} + \dots + e^{-\alpha kT} z^{-k} + \dots$$

$$= \frac{1}{1 - e^{-\alpha T} z^{-1}}$$

sinusoid

$$f(t) = \cos \omega t \longrightarrow F(z) = \frac{1}{2} \left(\frac{1}{1 - e^{j\omega T} z^{-1}} + \frac{1}{1 - e^{-j\omega T} z^{-1}} \right)$$

$$f[k] = \cos k\omega T = \frac{e^{jk\omega T} + e^{-jk\omega T}}{2}$$

$$= \frac{1 - \cos \omega T z^{-1}}{1 - 2\cos \omega T z^{-1} + z^{-2}}$$

Pulse transfer function (PTF)

- PTF is ratio of z-transform of output to that of input
- Consider an FIR filter with the impulse response

• Consider an input x[n]

$$x[0] \begin{picture}(200,0) \put(0,0){\line(1,0){150}} \put(0,0){\line(1,$$

Pulse transfer function (PTF)

the product G(z)X(z) is

$$G(z)X(z) = (a_0 + a_1z^{-1} + \dots + a_iz^{-i} + \dots + a_Nz^{-N})(x[0] + x[1]z^{-1} + \dots + x[k]z^{-k} + \dots)$$

in which the coefficient for z^{-k} is

$$a_0x[k] + a_1x[k-1] + \ldots + a_ix[k-i] + \ldots + a_Nx[k-N]$$

this is again a discrete convolution that gives the **output** y[k], and therefore Y(z) = G(z)X(z): similar to the transfer function!

Pulse transfer function (PTF)

- PTF is the z-transform of impulse response
- For non-recursive filters

$$G(z) = \sum_{i=0}^{N} a_i z^{-i}$$
 $y[k] = \sum_{i=0}^{N} a_i x[k-i]$

For recursive filters

$$Y(z) = \sum_{i=0}^{N} a_i z^{-i} X(z) + \sum_{i=1}^{M} b_i z^{-i} Y(z)$$

$$G(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{i=0}^{N} a_i z^{-i}}{1 - \sum_{i=1}^{M} b_i z^{-i}} \qquad y[k] = \sum_{i=0}^{N} a_i x[k-i] + \sum_{i=1}^{M} b_i y[k-i]$$

The z-transform and LTI system

z-plane

$$G(z) = \sum_{-\infty}^{\infty} x[n]z^{-n} < \infty$$

$$x[n] = a^n u[n] \quad \text{where} \quad 0 < a < 1$$

- causal system: if the ROC extends outward from the outmost pole
- **stable system:** ROC includes the unit circle
- causal and stable system: all poles must be inside the unit circle

Mapping from s-plane to z-plane

(from lecture slides by Mark Cannon)

imaginary axis ($\sigma = 0$)

left-half plane ($\sigma < 0$)

right-half plane ($\sigma > 0$)

poles in left-half plane for stability

unit circle (|z| = 1)

inside unit circle (|z| < 1)

outside unit circle (|z| > 1)

poles inside unit circle for stability

What's the condition for the following filter to be stable?

$$y[k] = x[k-1] + \alpha y[k-1]$$

$$Y(z)(1 - \alpha z^{-1}) = z^{-1}X(z)$$

$$G(z) = \frac{Y(z)}{X(z)} = \frac{z^{-1}}{1 - \alpha z^{-1}} = \frac{1}{z - \alpha}$$

hence for the filter to be stable we need $|\alpha| < 1$.

Frequency response of a digital filter

Theorem

The frequency response of a digital filter can be obtained by evaluating the PTF on the unit circle ($z=e^{j\omega T}$)

• Proof Consider the general form of a digital filter

$$y[k] = \sum_{i=0}^{\infty} a_i x[k-i]$$

Consider an input $\cos(\omega t + \theta)$ sampled at $t = 0, T, \dots, kT$

therefore

$$x[k] = \cos(\omega kT + \theta) = \frac{1}{2} \left\{ e^{j(\omega kT + \theta)} + e^{-j(\omega kT + \theta)} \right\}$$

Frequency response of a digital filter

$$\begin{split} y[k] &= \frac{1}{2} \sum_{i=0}^{\infty} a_i e^{j\{\omega[k-i]T+\theta\}} + \frac{1}{2} \sum_{i=0}^{\infty} a_i e^{-j\{\omega[k-i]T+\theta\}} \\ &= \frac{1}{2} e^{j(\omega kT+\theta)} \underbrace{\sum_{i=0}^{\infty} a_i e^{-j\omega iT}}_{i=0} + \frac{1}{2} e^{-j(\omega kT+\theta)} \underbrace{\sum_{i=0}^{\infty} a_i e^{j\omega iT}}_{i=0} \end{split}$$
 N.B.
$$\sum_{i=0}^{\infty} a_i e^{-j\omega iT} = \sum_{i=0}^{\infty} a_i (e^{j\omega T})^{-i} = \sum_{i=0}^{\infty} a_i z^{-i}|_{z=e^{j\omega T}} = G(z)|_{z=e^{j\omega T}} \end{split}$$

let
$$G(z)|_{z=e^{j\omega T}} = Ae^{j\phi}$$
 then $\sum_{i=0}^{\infty} a_i e^{j\omega iT} = Ae^{-j\phi}$

hence
$$y[k] = \frac{1}{2}e^{j(\omega kT+\theta)}Ae^{j\phi} + \frac{1}{2}e^{-j(\omega kT+\theta)}Ae^{-j\phi}$$

or
$$y[k] = A\cos(\omega kT + \theta + \phi)$$
 while $x[k] = \cos(\omega kT + \theta)$

thus A and ϕ represent the gain and phase of the frequency response, i.e., the frequency response is $G(z)|_{z=e^{j\omega T}}$.

Consider the 5-point parabolic filter

$$y[k] = \frac{1}{35}(-3x[k] + 12x[k-1] + 17x[k-2] + 12x[k-3] - 3x[k-4])$$

$$Y(z) = \frac{1}{35}(-3 + 12z^{-1} + 17z^{-2} + 12z^{-3} - 3z^{-4})X(z)$$

$$G(z)|_{z=e^{j\omega T}} = \frac{1}{35}(-3 + 12e^{-j\omega T} + 17e^{-2j\omega T} + 12e^{-3j\omega T} - 3e^{-4j\omega T})$$

$$= \frac{1}{35}e^{-2j\omega T}(17 + 24\cos\omega T - 6\cos2\omega T)$$

$$G(z)|_{z=e^{j\omega T}} = \underbrace{\frac{1}{35}}_{e^{-2j\omega T}} (17 + 24\cos\omega T - 6\cos2\omega T)$$

therefore

$$|G(e^{j\omega T})| = \frac{1}{35}|17 + 24\cos\omega T - 6\cos2\omega T|$$

$$\omega T = 0 \to |G(e^{j\omega T})| = 1$$

$$\omega T \approx 0.48\pi \text{ (i.e., } f/f_s = 0.24) \rightarrow |G(e^{j\omega T})| = 0.707$$

$$\angle G(e^{j\omega T}) = -2\omega T$$
 (linear-phase - all frequencies delayed by 2T)

Design of digital filters

- Three basic steps
 - specification of desired frequency response
 - approximation of the specification using a causal discrete-time system
 - realisation of the system using finite-precision arithmetic

Different design techniques for FIR and IIR filters

Continuous vs. Discrete system

continuous

linear differential equation (impulse response)

convolution integral

Laplace transform (transfer function)

Frequency response (imaginary axis -> Fourier transform)

analogue filter

discrete

linear difference equation (impulse response)

convolution sum

z-transform (pulse transfer function)

Frequency response (unit circle -> discrete-time Fourier transform)

digital filter

Fourier transform for discrete-time signals

We have introduced Fourier series (FS) for continuous periodic signals

$$C_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t)e^{-j2\pi n f_0 t} dt \qquad x(t) = \sum_{n=-\infty}^{\infty} C_n e^{j2\pi n f_0 t}$$

and Fourier transform (FT) for continuous aperiodic signals

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \qquad y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(j\omega)e^{j\omega t}d\omega$$

• In digital signal processing and filtering we need to deal with discrete-time signals - what about the discrete-time counterparts of FS and FT?

Discrete Fourier transform

DFT:
$$F[n] = \sum_{k=0}^{N-1} f[k]e^{-j2\pi \frac{n}{N}k} \text{ for } n = 0, 1, ..., N-1$$

where
$$W=e^{-j\frac{2\pi}{N}}$$
 and $W^N=W^{2N}=...=1$

IDFT:
$$f[k] = \frac{1}{N} \sum_{n=0}^{N-1} F[n] e^{+j\frac{2\pi}{N}nk}$$

Consider the following signal

$$f(t) = \underbrace{5}_{\text{dc}} + \underbrace{2\cos(2\pi t - 90^o)}_{\text{1Hz}} + \underbrace{3\cos 4\pi t}_{\text{2Hz}}$$

sample at $f_s=4~{
m Hz}$ $t=kT=k/4~{
m sec}$

$$f[k] = 5 + 2\cos(\frac{\pi}{2}k - 90^{\circ}) + 3\cos\pi k$$

$$f[0] = 8, f[1] = 4, f[2] = 8, f[3] = 0$$
 $(N = 4)$

Compute DFT

$$F[n] = \sum_{0}^{3} f[k]e^{-j\frac{\pi}{2}nk} = \sum_{k=0}^{3} f[k](-j)^{nk}$$

$$\begin{pmatrix} F[0] \\ F[1] \\ F[2] \\ F[3] \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{pmatrix} \begin{pmatrix} f[0] \\ f[1] \\ f[2] \\ f[3] \end{pmatrix} = \begin{pmatrix} 20 \\ -j4 \\ 12 \\ j4 \end{pmatrix} \stackrel{15}{\sqsubseteq}_{10}$$

The Fourier transform - Four different forms

Summary

- LTI systems are of central importance to modern signal processing
- Time- and frequency-domain representations of the system are equivalent; such equivalence is established by the convolution theorem
- Frequency-selective filters are one of the most important signal processing tools
- The DFT, which represents a finite sequence with finite number of coefficients, plays a central role in digital signal processing and filtering