
AIMS CDT Signal Processing Lab Session 1
Classical Signal Processing

Xiaowen Dong (xdong@robots.ox.ac.uk)

Part 1 - Auto- and cross-regressive models.

In this lab session1, we will be looking into developing auto- and cross-regressive models. Recall that the generic form of
the auto-regressive model is

ŷ[t] =

p∑
i=1

aiy[t− i].

We can solve for the unknown set of coefficients, {ai}, in two differrent ways:

1. By forming the embedding matrix, M, from lagged versions of a data series. As M in general is non-square, we
will have to use the pseudo-inverse, i.e., evaluate (MTM)−1MT.

2. Estimate the autocorrelation matrix, R, and use R−1 to infer the coefficients.

Preamble Load the data, provided at http://www.robots.ox.ac.uk/˜xdong/teaching/aims/lab/
qbo.txt. This consists of three data streams from temperature readings associated with the Quasi-Biennial Oscilla-
tion (QBO)2, sampled at one month intervals. These are shown below.

0 50 100 150 200 250 300 350 400
−400

−300

−200

−100

0

100

200

300

months

Figure 1: QBO data.

1This lab session was originally devised by Steve Roberts.
2https://en.wikipedia.org/wiki/Quasi-biennial oscillation

1

http://www.robots.ox.ac.uk/~xdong/teaching/aims/lab/qbo.txt
http://www.robots.ox.ac.uk/~xdong/teaching/aims/lab/qbo.txt

Direct 1-D solutions We start out by looking at one of these time series - up to you which one.

• By evaluating the least-squares solution for a using the embedding method, write code to infer the coefficients.

• Re-evaluate the solution for a using a direct inversion of the autocorrelation matrix.

• Use a Toeplitz solver - the Yule-Walker recursions, for example, to evaluiate the coefficients rather than a direct
inversion of the autocorrelation matrix. For large model orders, p >> 1, can you notice a difference in speed?

• As the AR models represent one-step prediction models, you can use this as a metric of performance.

Cross-regression Modify the embedding matrix method, so that

ŷ[t] =

p∑
i=1

aiz[t− i]

in which y is being modelled by observing another timeseries, z. The coefficients of this model now describe the cross-
regression i.e. how the past of z effects the present value of y. We can look at the magnitude of the coefficients as well as
the predictions of y to give an idea about the information that ‘flows’ from z to y. Do any of the timeseries have strong
interactions? If so, is there any indication of which one is driving which?

Regularisation If you have the time, you can look at regularising the solutions of the least-squares linear models. From
a Bayesian perspective this is equivalent to putting priors on the coefficients which penalise large values. A simple method
to achieve this is shrinkage, which adds ‘jitter’, of magnitude α say along the leading diagonal of anything we invert - in
other words A−1 becomes (A+αI)−1. This has the effect of helping reduce rank-deficiency in A and has the knock on,
in our system, of shrinking the values of a towards zero. If you get a chance try it, and see what effect it has. You should
be able to obtain coefficients for model orders close to the number of data points without getting singular solutions.

[Checkpoint] You are now done with the first part of the exercises. Please ask a lab demonstrator to evaluate your work.

Part 2 - Image processing.

In this lab session3, we look at several classical image processing operations based on the representations enabled
by the Fourier and wavelet transform. First, download the toolbox provided at https://github.com/gpeyre/
numerical-tours/raw/master/python/nt_toolbox.zip, and make sure the folder nt toolbox is in the
current working directory. Then, install and import the necessary Python modules.

python3 -m pip install numpy scipy matplotlib scikit-learn scikit-image
import numpy as np
import scipy as scp
import pylab as pyl
import matplotlib.pyplot as plt
from nt_toolbox.general import *
from nt_toolbox.signal import *

Plot an image. Let’s load and plot an example image.

n0 = 512
f = rescale(load_image("nt_toolbox/data/hibiscus.bmp", n0))
plt.figure(figsize = (5, 5))
imageplot(f, ’Image f’)

We can zoom in to see more detail of one part of the image.

plt.figure(figsize = (5, 5))
imageplot(f[n0//2 - 32:n0//2 + 32, n0//2 - 32:n0//2 + 32], ’Zoom’)

3This lab session was largely based on the excellent Numerical Tours by Gabriel Peyré.

2

https://github.com/gpeyre/numerical-tours/raw/master/python/nt_toolbox.zip
https://github.com/gpeyre/numerical-tours/raw/master/python/nt_toolbox.zip

Fourier transform. Now let’s perform the 2-D Fourier transform.

F = pyl.fft2(f)/n0 # forward transform

from pylab import linalg
print("Energy of Image: %f" %linalg.norm(f))
print("Energy of Fourier: %f" %linalg.norm(F))

• Why is the signal energy preserved in the frequency domain?

Display the log amplitude of the Fourier coefficients. The fftshift function shifts the zero-frequency component to the
centre of the spectrum.

L = pyl.fftshift(np.log(abs(F) + 1e-1))
plt.figure(figsize = (5, 5))
imageplot(f, ’Image’, [1, 2, 1])
imageplot(L, ’Log(Fourier transform)’, [1, 2, 2])

Filtering. One of the most common signal processing operations is filtering. Let’s consider a low-pass filtering example,
where we only keep M coefficients corresponding to the low frequencies while setting the rest to zero, before carrying
out an inverse transform.

M = n0**2//64
q = int(np.sqrt(M))
F = pyl.fftshift(pyl.fft2(f))
Sel = np.zeros([n0, n0])
Sel[n0//2 - q//2:n0//2 + q//2, n0//2 - q//2:n0//2 + q//2] = 1
F_zeros = np.multiply(F, Sel)
imageplot(np.log(abs(F_zeros) + 1e-1), ’Log(Fourier transform)’) # plot in frequency domain

f_lpf = np.real(pyl.ifft2(pyl.fftshift(F_zeros))) # inverse transform
plt.figure(figsize = (5, 5))
imageplot(f, ’Image’, [1, 2, 1])
imageplot(clamp(f_lpf), ’Low-pass filtered image’, [1, 2, 2])

• Can you observe the difference between the original image and the filtered one?
• Now perform a high-pass filtering (how can you do this?). Can you explain the filtering outcome?

Fourier vs wavelet transform. The low-pass filtering example above corresponds to image approximation using M
low-frequency Fourier coefficients. We can also use the wavelet transform for the same purpose and compare the outcome.
Let’s first perform the 2-D wavelet transform.

Jmin = 0
from nt_toolbox.perform_wavelet_transf import *
Fw = perform_wavelet_transf(f, Jmin, + 1) # forward transform
plt.figure(figsize = (5, 5))
plot_wavelet(Fw)
plt.title(’Wavelet coefficients’)
plt.show()

Let’s implement a wavelet approximation by only keep the M largest wavelet coefficients while setting the rest to zero.

a = np.sort(np.ravel(abs(Fw)))[::-1] # sort a 1D copy of fw in descending order
Fw_zeros = np.multiply(Fw,(abs(Fw) > a[M])) # keeping the M largest wavelet coefficients
plt.figure(figsize = (5, 5))
plot_wavelet(Fw_zeros) # comapre with the plot of coefficients above

3

plt.title(’Wavelet coefficients (thresholded)’)
plt.show()

f_wav = perform_wavelet_transf(Fw_zeros, Jmin, -1) # inverse transform
plt.figure(figsize = (5, 5))
imageplot(clamp(f_lpf), ’Fourier approximation’, [1, 2, 1])
imageplot(clamp(f_wav), ’Wavelet approximation’, [1, 2, 2])

• Can you comment on the comparison between the two approximations above. Why is one better than the other?

Denoising. The final example is image denoising, i.e., removing noise from an image. First let’s generate and plot a
noisy image.

n = 256
N = n**2
name = ’nt_toolbox/data/boat.bmp’
x0 = load_image(name, n)
plt.close(’all’)
imageplot(x0)
sigma = .08
y = x0 + sigma*np.random.standard_normal(x0.shape)
imageplot(clamp(y))

We will implement a denoising strategy via convolution. Define a Gaussian convolutional kernel as follows.

cconv = lambda a, b : np.real(pyl.ifft2(pyl.fft2(a)*pyl.fft2(b)))
normalize = lambda h : h/sum(h.flatten())
t = np.transpose(np.concatenate((np.arange(0, n/2), np.arange(-n/2, 0))))
[Y, X] = np.meshgrid(t, t)
h = lambda mu: normalize(np.exp(-(X**2 + Y**2)/ (2*mu**2)))

Now denoise the image by convolving it with a Gaussian kernel with a given width.

mu = 5
plt.figure(figsize = (5, 5))
imageplot(pyl.fftshift(h(mu)), ’kernel’, [1, 2, 1])
imageplot(pyl.fftshift(np.real(pyl.fft2(h(mu)))), ’FT of kernel’, [1, 2, 2])
denoise = lambda x, mu : cconv(h(mu), x)
plt.figure(figsize = (5, 5))
imageplot(x0, ’Image’, [1, 3, 1])
imageplot(y, ’Noisy image’, [1, 3, 2])
imageplot(denoise(y, mu), ’Denoised image’, [1, 3, 3])

• Vary the kernel width µ, and compare the denoising outcome.
• Can you find an optimal µ that minimises the `2-norm of the difference between original and denoised image?

[Checkpoint] You are now done with the second part of the exercises. Please ask a lab demonstrator to evaluate your
work.

[Optional] You can try more advanced image processing exercises as part of the Numerical Tours at http://www.
numerical-tours.com/python/.

4

http://www.numerical-tours.com/python/
http://www.numerical-tours.com/python/

