AIMS CDT Signal Processing Lab Session 1 Auto- & cross-regressive models

Xiaowen Dong (xdong@robots.ox.ac.uk)

In this session¹, we will be looking into developing (auto)regressive models. Recall that the generic form of the model is

$$\hat{y}[t] = \sum_{i=1}^{p} a_i y[t-i]$$

We can solve for the unknown set of coefficients, $\{a_i\}$, in two different ways:

- By forming the *embedding* matrix, M, from lagged versions of a data series. As M in general is non-square, we will have to use the pseudo-inverse, i.e., evaluate (M^TM)⁻¹M^T.
- 2. Estimate the *autocorrelation* matrix, \mathbf{R} , and use \mathbf{R}^{-1} to infer the coefficients.

Preamble Load the data, provided at http://www.robots.ox.ac.uk/~xdong/teaching/aims/lab/ qbo.txt. This consists of three data streams from temperature readings associated with the Quasi-Biennial Oscillation (QBO)², sampled at one month intervals. These are shown below.

Figure 1: QBO data.

¹This lab session was originally devised by Steve Roberts.

²https://en.wikipedia.org/wiki/Quasi-biennial_oscillation

Direct 1-d solutions We start out by looking at one of these time series - up to you which one.

- By evaluating the least-squares solution for a using the embedding method, write code to infer the coefficients.
- Re-evaluate the solution for a using a direct inversion of the autocorrelation matrix.
- Use a Toeplitz solver the Yule-Walker recursions, for example, to evaluiate the coefficients rather than a direct inversion of the autocorrelation matrix. For large model orders, p >> 1, can you notice a difference in speed?
- As the AR models represent one-step prediction models, you can use this as a metric of performance.

Cross-regression

• Modify the embedding matrix method, so that

$$\hat{y}[t] = \sum_{i=1}^{p} a_i z[t-i]$$

in which y is being modelled by observing another timeseries, z. The coefficients of this model now describe the cross-regression i.e. how the past of z effects the present value of y. We can look at the magnitude of the coefficients as well as the predictions of y to give an idea about the information that 'flows' from z to y. Do any of the timeseries have strong interactions? If so, is there any indication of which one is driving which?

Regularisation If you have the time, you can look at regularising the solutions of the least-squares linear models. From a *Bayesian* perspective this is equivalent to putting *priors* on the coefficients which penalise large values. A simple method to achieve this is *shrinkage*, which adds 'jitter', of magnitude α say along the leading diagonal of anything we invert - in other words A^{-1} becomes $(A + \alpha I)^{-1}$. This has the effect of helping reduce rank-deficiency in A and has the knock on, in our system, of *shrinking* the values of a towards zero. If you get a chance try it, and see what effect it has. You should be able to obtain coefficients for model orders close to the number of data points without getting singular solutions.

[Checkpoint] You are now done with the exercises. Please ask a lab demonstrator to evaluate your work.