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Recap: Graph signal processing

e Graph Fourier transform - 2T

A

FOO) ={xe, f): |Xo = Xaa| S

sensor
G.N=60 nodes, G.Ne=302 edges

1.0
2.0
( L X 1.5
0.8 - e ) 2.0
| / N
V2N <2 1.0
f‘“‘»"‘{? [S
0.6 + | \ , 0.5 1.5 4
i \\\-': )
0 0.0
041 g 2NN 1.0 1 T
L -0.5
AN
¥ \ 7 \n
O \ "
0.2 1 | nn ' 0.5
0.0 A 2.0 0.0 A

1.0

sensor
0.1 0.6 1
0.0 0.5 4

G.N=60 nodes, G.Ne=302 edges
-0.1 0.4 1

L ), =3
0.6 - "’Q%!‘ .‘ | / ‘\\‘

-0.2 0.3 1

4
044 \I .‘l\??égé\ ,
‘\\4” /

0.2 1

-0.3 0.2 1

-0.4 0.1 4

0.0 A

‘I‘ !

0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 12

3/30



Recap: Graph signal processing

e Graph spectral filtering
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Recap: Graph signal processing

e Graph spectral filtering
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An example on movie rating
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An example on movie rating
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Graph Neural Networks

7/30



CNNSs exploit structure within data

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

checklist

convolution: translation equivariance

localisation: compact filters (independent of sample dimension)

multi-scale: compositionality

efficiency: O(NN) computational complexity

https://en.wikipedia.org/wiki/File:Typical cnn.png 8/30



https://en.wikipedia.org/wiki/File:Typical_cnn.png

CNNs on graphs?

checklist

convolution: how to do it on graphs?

localisation: what's the notion of locality?

multi-scale: how to down-sample on graphs?

efficiency: how to keep the computational complexity low?
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Convolution on graphs

classical convolution

time domain

(f*g)(t / ft—m7)g(r)dr

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel 10/30
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Convolution on graphs

classical convolution

time domain

(f gt / 1t —7)g
4

frequency domain

(f*9)(w) = f(w) - §(w)
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Convolution on graphs

classical convolution convolution on graphs

time domain

(f gt / 1t —7)g
4

frequency domain graph spectral domain

/\

(f*9)(w) = f(w) - §(w) (F+9)N) = (" £ og)(N)

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel 10/30



Convolution on graphs

classical convolution convolution on graphs

time domain spatial (node) domain

frg=xgN)x"f=9(L)f

1)

graph spectral domain

Tro0= [ T f(t = T)g(r)dr

4

frequency domain

/\

(f *9)(w) = f(w) - §(w)

/\

(fxg)N) = (X" feog)(N)

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel
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Convolution on graphs

classical convolution convolution on graphs

time domain spatial (node) domain

frg= Xﬁ(A)XTf _[3)f convolution

1)

graph spectral domain

Tro0= [ T f(t = T)g(r)dr

4

frequency domain

= filtering

/\

(f *9)(w) = f(w) - §(w)

/\

(fxg)N) = (X" feog)(N)

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel 10/30



A non-parametric filter

Frg=xgN)x"f=9(L)f

4

learning a non-parametric filter:

0.6
0.4 4

Go(A) = diag(9), 0 € RN - 0,

0.0 4

Bruna et al., “"Spectral networks and deep locally connected networks on graphs,” ICLR, 2014. 11/30



A non-parametric filter

Frg=xgN)x"f=9(L)f

4

learning a non-parametric filter:

0.6
0.4 4

Go(A) = diag(9), 0 € RN - 0,

0.0 4

- convolution expressed in the graph spectral domain
- no localisation in the spatial (node) domain

- computationally expensive

Bruna et al., “"Spectral networks and deep locally connected networks on graphs,” ICLR, 2014. 11/30



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K
go(N) =D _0;X, 0 € RFH! =) Go(L) =3 6,17

j=0 j=0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 12/30



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
Go(N) =Y 0N, 0 € REH! —> Go(L) = Zej@
=0

j=0

what do powers of graph Laplacian capture?

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 12/30



Powers of graph Laplacian

L* defines the k-neighborhood
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Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 13/30



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K
go(N) =D _0;X, 0 € RFH! =) Go(L) =3 0,17

j=0 j=0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 14/30



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
Go(N) =) _0;M, 0 € RFH! ) Go(L) = 0,1
J=0

i=0

- localisation within K-hop
neighbourhood

- efficient computation via recursive
multiplication with L

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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A simplified parametric filter

Frg=xgM)x"f=g(L)f

simplified parametric filter

K
go(L) =) 6,L ) =0 0, (D WD 2)
=0

(localisation within 1-hop neighbourhood)

K=1

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 15/30
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A simplified parametric filter

Frg=xgM)x"f=g(L)f

simplified parametric filter

K
go(L) = Zﬁij — =00l — (D ZWD?)
j=0

(localisation within 1-hop neighbourhood)

K=1

o = (90 = —61
mmmmm) ol +D WD 2)

renormalisation

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter

ja(L) =a(I+ D 2WD"2)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 16/30



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) =a(I+ D 2WD"2)

#

1
VPt

J

Yi = of;

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 16/30



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) =a(I+D WD 3)

1 1
yz‘ZOémeOé\/dfi Z wz‘jﬁfj

7:(4,)€E

‘ unitary edge weights

1
yi:@fi+104 Z fi

j:(4,5)€E

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 16/30



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) = a(l + D 2WD™?)

4

1 1

\/—] (2,5)€E \/_

‘ unitary edge weights

Yi = af;

1
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Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 16/30



Pooling on graphs

Feature maps
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Pooling on graphs
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e pooling = downsampling on graphs, but how?
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Pooling on graphs

e pooling = downsampling on graphs, but how?

e natural idea: graph coarsening
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Pooling on graphs

- coarsening is straightforward on
regular grids
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Pooling on graphs

- coarsening is straightforward on
o— regular grids

- not so much on irregular graphs
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Pooling on graphs

- coarsening is straightforward on

o— regular grids
- not so much on irregular graphs

- can be achieved via node clustering

= multi-level partitioning
= roughly fixed downsampling factor (e.g., 2)

= need for efficiency

18/30



Pooling on graphs

e pooling based on Graclus algorithm (Dhillon et al. 2007)
- local greedy way of merging vertices: maximising w;;(1/d; +1/d;)

- adding artificial vertices to ensure two children for each node

Dhillon et al., “Weighted graph cuts without eigenvectors: A multilevel approach,” IEEE TPAMI, 2007. 19/30
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Pooling on graphs

Go —» G1 —» G

e pooling based on Graclus algorithm (Dhillon et al. 2007)
- local greedy way of merging vertices: maximising w;;(1/d; +1/d;)

- adding artificial vertices to ensure two children for each node

Dhillon et al., “Weighted graph cuts without eigenvectors: A multilevel approach,” IEEE TPAMI, 2007. 19/30



Pooling on graphs

Go —» G1 —» G
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Defferrard et al. 2016

e pooling based on Graclus algorithm (Dhillon et al. 2007)

- local greedy way of merging vertices: maximising w;;(1/d; +1/d;)

- adding artificial vertices to ensure two children for each node

Dhillon et al., “Weighted graph cuts without eigenvectors: A multilevel approach,” IEEE TPAMI, 2007. 19/30



Pooling on graphs
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Defferrard et al. 2016

e pooling based on Graclus algorithm (Dhillon et al. 2007)

local greedy way of merging vertices: maximising w;;(1/d; + 1/d;)

adding artificial vertices to ensure two children for each node

- 1D grid pooling: [ max(0,1) max(4,5,6) max(8,9,10) ]

Dhillon et al.,

“Weighted graph cuts without eigenvectors: A multilevel approach,” IEEE TPAMI, 2007.
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Pooling on graphs
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Defferrard et al. 2016

e pooling based on Graclus algorithm (Dhillon et al. 2007)
- local greedy way of merging vertices: maximising w;;(1/d; +1/d;)
- adding artificial vertices to ensure two children for each node
- 1D grid pooling: [ max(0,1) max(4,5,6) max(8,9,10) ]

- only based on graph (and no signal) information

Dhillon et al., “Weighted graph cuts without eigenvectors: A multilevel approach,” IEEE TPAMI, 2007. 19/30



CNN on graphs: Graph classification

G=G"°
/

Graph
Ex: social, biological,
telecommunication graphs

Input signal
on graphs

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 20/30



CNN on graphs: Graph classification

O(K) parameters

e
O(E.K) operations (GPUs) & f: @0
e

=0
G=G f\géKl

Spectral Filters :%
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Graph
Ex: social, biological, :\40 [0
telecommunication graphs m A
| ’
‘ =0 noF1
1'=0 ¢ R™M=0 g € R
91 = RK 1 Fy
Input signal Graph convolutional layers
on graphs (extract local stationary features on graphs)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.



CNN on graphs: Graph classification

Relu activation =2

'

O(K) parameters p Factor 2P

O(E.K) operations (GPUs) Pre- Computed
b=4
1 Poolmg (GPUs)
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G=G E gpxcs
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CNN on graphs: Graph classification

Spectral Filters
O(K) parameters
O(E.K) operations (GPUs)

Relu activation ==

Gl— 1 P
Graph coarsening 3\\j

Factor 2P
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Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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CNN on graphs: Node classification

Goe+v (L) (RGLU@@(k) (L)f))

X =H

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 21/30



CNN on graphs: Node classification

Gorn (L) (ReLU (GRNEND)

Hidden layer

T
AN

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 21/30



CNN on graphs: Node classification

Hidden layer

2

20

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 21/30



Hidden layer
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Hidden layer

CNN on graphs: Node classification

I

~

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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CNN on graphs: Node classification

Hidden layer Hidden layer
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Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 21/30



CNN on graphs: Node classification

HD — 4 ( AHU)WU))

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 21/30



Application |: Document classification

Theory

Reinforcement Leamning
Genetic Algorithms
Neural Networks
Probabilistic Methods
Case Based

Rule Learning

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7

LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 58.1

ICA [18] 69.1 75.1 73.9 23.1
Planetoid* [29] 64.7 (26s) 75.7(13s) 77.2(25s) 61.9 (185s)
GCN (this paper)  70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)
GCN (rand. splits) 67.9+0.5 80.1+£0.5 789+0.7 584+1.7

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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Application |l: Fake news detection

Average tweets/URL
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Monti et al., “Fake news detection on social media using geometric deep learning,” ICLR Workshop, 2019. 23/30



Application |ll: Finding patient zero

T=5,8=0.9, y=0.13 T=10,8=0.9, y=0.13

T=0,8=0.9, y=0.13

Shah et al.,
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“Finding patient zero: Learning contagion source with graph neural networks,” arXiv, 2020.
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Application IV: Learning contagion dynamics
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Murphy et al., “Deep learning of contagion dynamics oncomplex

networks,” Nature Communications, 2021.
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Application V: Learning social interactions

Li Quadrat Linear Influence BH
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Rossi et al., “Learning to infer structures of network games,” ICML, 2022. 26/30



Application V:

Linear Quadratic

'
wt& O\

Learning social interactions
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Rossi et al., “Learning to infer structures of network games,” ICML, 2022.
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Application V: Learning social interactions

Linear Quadratic Linear Influence BH
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Application VI: Language and social media analysis

| hope USA finds the [...] Most people who do ) O O—@
vaccine first. That should vaccine research are pretty o< 0O X
put eurofags and good people, even if they aren't O 0
democrats to their place. all American or Republican. O O l
BERT layer WSGCN layer
. . + - + -
parent post child post parent stance child stance
MLP classifier
’ [0.67 0.23 0.10] {

disagreement prediction

Hofmann et al., “Modeling ideological salience and framing in polarized online groups with graph neural networks and structured sparsity,” NAACL, 2022.

Zhang et al., “Predicting polarisation of dynamic social networks via graph auto-encoders,” 1C252, 2023.
Lorge et al., “STEntConv: Predicting disagreement between reddit users with stance detection and a signed graph convolutional network,” LREC-Coling 2024. 27/30



Application VI: Language and social media analysis

/ﬁ Encoder Decoder Geconstruction Loss\

BCE | ROC AUC | AP

a8 AR @ s
o--¢--0 0. 0—=G
EE= 3 SEL B
o---0--0 O—O—

I hope USA finds the [...] Most people who do 9 o )
vaccine first. That should vaccine research are pretty O P X
put eurofags and good people, even if they aren't O/ O '
democrats to their place. all American or Republican. . l
BERT layer WSGCN layer
3 3 i
parent post child post parent stance child stance
MLP classifier
I [0.67 0.23 0.10] |

disagreement prediction

polarisation prediction

Hofmann et al., “Modeling ideological salience and framing in polarized online groups with graph neural networks and structured sparsity,” NAACL, 2022.
Zhang et al., "Predicting polarisation of dynamic social networks via graph auto-encoders,” 1C252, 2023.
Lorge et al., “STEntConv: Predicting disagreement between reddit users with stance detection and a signed graph convolutional network,” LREC-Coling 2024.

27/30



Application VI: Language and social media analysis

et Bscods: Geconstruction Loss\
BCE | ROCAUC | AP
A A
o-¢--0 c c
a8 O8
o--0--0 L .
I hope USA finds the [...] Most people who do O o
vaccine first. That should vaccine research are pretty Qi,‘j O X /
put eurofags and good people, even if they aren't O/ O ’
democrats to their place. all American or Republican. O l
[ [ \ 4 polarisation prediction
BERT layer WSGCN layer
: & 3 > - + -
A (o]
parent post child post parent stance child stance syrianconflict [ .
foreignpolicy
.’ ‘ ‘ ‘ — geopolitics
MLP classifier The Europe AmalaNetwork . .
. | t
europeannaﬁéﬁ%ﬁélﬁg;a 5 g Dogalgl AgerioRhPolitacs oo
l > ‘ Mueller, .
‘ PoliticalMemes
I [0.67 0.23 0.10] l conservativecartoonsg acgotn N &Rk kebea
NSALeaks
liberalgunowners . ﬂc . iillfor- a-Politics alltheleft
[] . . u ¢ r . . . .
disagreement prediction oWThe s issouriPolitics

g@dncontro

0 2
iberalgunowner

)€
actualj
neveragainmovement

elrateCommunism
DebateaCommunist

ideological modelling

communism

Hofmann et al., “Modeling ideological salience and framing in polarized online groups with graph neural networks and structured sparsity,” NAACL, 2022.
Zhang et al., "Predicting polarisation of dynamic social networks via graph auto-encoders,” 1C252, 2023.
Lorge et al., “STEntConv: Predicting disagreement between reddit users with stance detection and a signed graph convolutional network,” LREC-Coling 2024. 27/30



Some Final Thoughts

28/30



Summary

e Graph machine learning
- fast-growing field that extends data analysis to non-Euclidean domain

- highly interdisciplinary: machine learning, signal processing, harmonic analysis,
applies statistics, differential geometry

e Limitations and open challenges
- models on directed and signed graphs
- models for temporal dynamics and online/adaptive settings
- construction/refinement of initial graphs
- robustness & generalisation & scalability
- interpretability & causal inference

- expect more applications in social sciences & economics!
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The Emerging Field
of Signal Processing
on Graphs

Extending high-dimensional data analysis
to networks and other irregular domains

n applications such as social, energy, transportation, sen been proposed to efficiently extract information from high-
and neuronal networks, high-dimensional data miun.lly
lopeni
of signal pect
i INTRODUCTION

yeis to process such signals on graphs. In this tutorial overview,  Graphs are generic data representation forms that are useful
i i the area, discuss different

to define graph

for describing the geometric structures of data domains in

spectral domains, which are the analogs to the  numerous applications, including social, energy, t

classical frequency domain, and highlight the importance of tion, sensor, and neuronal networks. The weight associated
i ing the irregular structures of graph data domains  with each edge in the graph often represents the similarity
when processing signls on graphs. We then review methods to  between the two vertices it connects. The connectivities and
‘generalize fundamental operations such as fiktering, tnshation,  edge weights are either dictated by the physics of the problem
‘modulation, dilation, and downsaimpling to the graph setting  at hand or inferred from the data. For instance, the edge
and survey the localized, multiscale transforms that have  weight may be inversely proportional to the physical distance
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between nodes in the network. The data cn these graphs can
be visualized as a fnite colkection of samples, with one sample
at each vertes in the graph. Collectively, we refer to these

Michael M. Bronstein, Joan Bruna, Yann LeCun,
Arthur Szlam, and Pierre Vandergheynst

any scientific fields study data with an underlying
structure that is non-Euclidean. Some examples
include social networks in computational social sci-
ences, sensor networks in communications, func- @

tional networks in brain imaging, regulatory networks in

‘genetics, and meshed surfaces in computer graphics. In

‘many applications, such geometric data are large and com-

plex (in the case of social networks, on the scale of billions)

and are natural targets for machine-learning techniques.

In particular, we would like to use deep neural networks,

‘which have recently proven to be powerful tools for a broad

range of problems from computer vision, natural-langua

processing, and audio analysis. However, these tools have

Euclidean or
gridHlike structure and in cases where the invariances of these
structures are built into networks used to model them.
Geometric deep learning is an umbrella term for emerging

els to non-Euclidean domains, such as graphs and manifolds. The
‘purpose of this article is o overvierw different examples of geometric.
deep-learning problems and present available solutions, key difficul-
ties, applications, and future research directions in this nascent field.

Overview of deep learning
Deep learning refers to learning complicated concepts by building them from
simplr ones in » hierartical or mulilayer manner Aical neurl netvorks re
popt i In the past few years, the growi
computational power of modern graphics processing unit (GPU)-based computers and e i
ability of large training data sets have allowed successfully training neural networks with many layers

and degrees of freedom (DoF) [1]. This has led to qualitative breakihroughs on a wide variety of tasks, from
speech recogition [2], [3] and machine translation [4] to image analysis and computer vision [S}-[11] (see [12]
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A Comprehensive Survey on Graph
Neural Networks

Zonghan Wu'
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Abstract—Deep learning has revolutionized many machine
learning tasks in recent years, ranging from image classification
and video processing to speech recognition and natural language
understanding. The data in these tasks are typically represented
in the Eucidean space, Howeve, there s an Increasng suraber
of applications, where data are generated from non-Euclidean
dnnums and are represented as raphs with complex relation.
and interdependency between objects. The compl
gnph data has imposed significant challenges on the existing
machine learing aorithms. Recently, many stuies o extend-
ing decp learning approaches for graph data have emerged.
I this seticle, we provide  compesaeasive orerview of greph
neural networks (GNNs) in data mining and machine learning
fields. We propose a new taxonomy to divide the state-of-the-art
GNNs int four caegoris, amely recureat GNNs comoh-
jonal GNNs, graph autoencoders, and spatial-temporal GNNs.
We Turihcr dicuss the sppiications of CNNs scrom various
domains and summarize the open-source codes, benchmark data
sets, and model evaluation of GNNs. Finally, we propose pote
Tessarch drecion i ths rgidly groving 8.
Index h autoencoder (GAE), graph
convolutional networks (GCNs), graph neural networks (GNNs),
graph representation learning, network embedding.

L. INTRODUCTION
IE recent success of neural networks has boosted
research on pattern recognition and data mining. Many
machine learning tasks. such as object detection [1]. [2],
‘machine translation [3], [4], and speech recognition [5], which
once heavily relied on handerafted featre engineering to
informative feature sets, have recently been revolu-
tionized by various end-to-end deep learning paradigms, e.g.,
convolutional neural networks (CNNs) [6], recurrent neural
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networks (RNNs) [7], and autoencoders [8]. The success
of deep learning in many domains is partially atributed to
the rapidly developing computational resources (e.g., GPU),
the availability of big training data, and the effectiveness
of deep learning to extract latent representations from the
Euclidean data (¢.g., images, text, and videos). Taking image
data as an example, we can represent an image as a regular
able 10 exploit the shift-
and compositionality of image
data [9]. As a resull, CNNs can extract local meaningful
features that are shared with the entire data sets for various
image analyses.

While deep leaming effectively captures hidden patterns of
Euclidean data, there are an increasing number of applica-
tions, where data are represented in the form of graphs. For
example, in e-commerce, a graph-based learning system can
exploit the interactions between users and products to make
highly accurate recommendations. In chemistry, molecules
are modeled as graphs, and their bioactivity needs to be
identified for drug discovery. In a citation network, articles
are linked to each other via citationships, and they need to be
categorized into different groups. The complexity of graph data
has imposed significant challenges on the existing machine
learning algorithms. As graphs can be irregular, a graph may
have a variable size of unordered nodes, and nodes from a
graph may have a different number of neighbors, resulting in
some important operations (e.g., convolutions) being easy to
compute in the image domain but difficult o apply t the graph
domain. Furthermore, a core assumption of existing machine
learning algorithms is that instances are independent of each
other. This assumption no longer holds for graph data because
each instance (node) is related to others by links of various
types, such as citations, friendships, and interactions.

Recently, there is increasing interest in extending deep
learning approaches for graph data. Motivated by CNNs,

INs, and autoencoders from deep learning, new generaliza-
tions and definitions of important operations have been rapidly
developed over the past few years to handle the complexity
of graph data. For example, a graph convolution can be
generalized from a 2-D convolution. As illustrated in Fig. 1
an image can be considered as a special case of graphs
where pixels are connected by adjacent pixels. Similar to 2-D
convolution, one may perform graph convolutions by taking
the weighted average of a node’s neighborhood information

There are a limited number of existing reviews on the
topic of graph neural networks (GNNs). Using the term
geometric deep learning, Bronstein et al. [9] give an overview
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Abstract

There has been a surge of recent interest in graph representation learning (GRL). GRL
methods have generally fallen into three main categorics, based on the availability of la-
beled data. The first, network embedding, focuses on learning unsupervised representations
of relational structure. The sccond, graph regularized neural networks, leverages graphs to
augment neural network lsses with a regularization objoctive for semi-supervised learning.
The third, graph neural networks, aims to learn differentiable functions over discrete topolo-
gies with arbitrary structure. However, despite the popularity of these areas there has been
surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap
betwoen network embedding, graph regularization and graph neural networks. We pro-
pose a comprehensive taxonomy of GRL methods, aiming to unify several disparate bodies
of work. Specifically, we propose the GraprEDM framework, which generalizes popular
algorithms for semi-supervised learning (.g. GraphSage, GCN, GAT), and unsupervised
learning (e.g. DeepWalk, node2vec) of graph representations into a single consistent ap-
proach. To illustrate the generality of GrapnEDM, we fit over thirty existing methods
into this framework. We believe that this unifying view both provides a solid foundation
for understanding the intuition behind these methods, and enables future research in the
area.

Keywords: Network Embedding, Graph Neural Networks, Geometric Deep Learning,
Manifold Learning, Relational Learning
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Abstract

Social scientists are now in an cra of data abundance, and machine learning
tools are increasingly used to cxtract meaning from data scts both massive
and small. We cxplain how the inclusion of machinc lcaming in the social
sciences requires us to rethink not only applications of machine learning
mcthods but also best practices in the social scicnces. In contrast to the tra-
ditional tasks for machinc lcarning in computer scicnce and statistics, when
machinc Icarning is applicd to socil scicntific data, it is used to discover
new concepts, measure the feh I effects,
and make predictions. The abundance of data and resources facilitates the
move away from a deductive social science to a more scquential, intcractive,
and ultimately inductive approach to inference. We explain how an agnostic
approach to machine lcarning methods focused on the social science tasks
facilltates progress across a wide range of questions.
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