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Networks are pervasive

geographical network

a~a '\
1 \

social network brain network

graphs provide mathematical representation of networks
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The field of network science

community
detection

network
centrality

Regular Small-world

random graph
models

Increasing randomness

Watts and Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, 1998.
Newman, “Networks: An introduction,” Oxford University Press, 2010. 4/42



The field of network science

community
detection

network
centrality

Regular Small-world

random graph
models

Increasing randomness

from edge attributes to node attributes
from graphs to graph-structured data

Watts and Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, 1998.
Newman, “Networks: An introduction,” Oxford University Press, 2010. 4/42



Graph-structured data are pervasive

e nodes
- geographical regions
e edges
- geographical proximity between
regions
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Graph-structured data are pervasive

e nodes
- geographical regions

Mean Yearly Temperature (degC) 1981-2010

: e edges
- geographical proximity between
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regions

e signal
- temperature records in these

regions
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Graph-structured data are pervasive

e nodes
- road junctions

e edges
- road connections
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Graph-structured data are pervasive

| | e nodes
e edges
- road connections

-----

: e signal
N ey - traffic congestion at junctions

6/42



Graph-structured data are pervasive

- e nodes
ﬂ%\l \ - individuals
ﬁ!h/l\\ y4 l/n% e edges
‘Il/ \l/\\ - friendship between individuals
2~ hed
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Graph-structured data are pervasive

o] _J -u- e nodes
v o \ \ . _ individuals
5 /\\ y4 Eﬁ/ﬁiﬁﬂ e edges
\ /\ / \ - friendship between individuals
ﬁiﬂ» /\ . e signal
(i oo - political view

7/42



Graph-structured data are pervasive

e nodes
- brain regions

o edges
- structural connectivity between
brain regions

Richiardi et al., “Machine learning with brain graphs,” IEEE SPM, 2013. 8/42



Graph-structured data are pervasive

e nodes
- brain regions

e edges

[ C/MWMWW - structural connectivity between

brain regions

e signal
- blood-oxygen-level-dependent
(BOLD) time series

Richiardi et al., "Machine learning with brain graphs,” IEEE SPM, 2013. 8/42



Graph-structured data are pervasive

cien
sl N VoD wcnw.
- o S e nodes
e@ia@@e Y o o - com pa n IeS
e w@wﬁﬁ.O./O ® * edges
*ee 0T 9 % » - co-occurrence of companies in

financial news

Wan et al., “Sentiment correlation in financial news networks and associated market movements,” Scientific Reports, 2021. 9/42



Graph-structured data are pervasive

E@B
‘@ NE vop =
o B e e nodes
GA@@ERQ%” g , Vad .
PO R e - companies
O aa W 2 ® cdges
® o«® 0 - co-occurrence of companies in
& o , ; financial news
@ i .
& @ .0 ® .... 1.. : e signal
g ® 0’.1‘?’"' - stock prices of these
LoeT g mpani
o ® ¢ ., companies
e s

Wan et al., “Sentiment correlation in financial news networks and associated market movements,” Scientific Reports, 2021. 9/42



Graph-structured data are pervasive

e nodes
- pixels

e edges
- spatial proximity between pixels

e signal

- pixel values
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Learning with graph-structured data

et
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et condition?

(g% q\ no condition?

(supervised) graph-level classification
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Learning with graph-structured data
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(semi-supervised) node-wise classification
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Learning with graph-structured data
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(unsupervised) clustering
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Learning with graph-structured data
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inferring graph topology from data
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Exciting possibilities enabled by graph ML

fake news detection

Science Current t Issue First rel pap
GC GC
Imperial College ™"
— — - London The spread of true and false news online
@ Home Science Engineering Health
Y .
Twitter buys Al startup founded by Imperial
T F academic to tackle fake news

Monti et al., “Fake news detection on social media using geometric deep learning,” ICLR Workshop, 2019. 15/42



Exciting possibilities enabled by graph ML

drug discovery

Growth

[antibiotic]

Stokes et al., “A deep learning approach to antibiotic discovery,” Cell, 2020.

FINANCIAL TIMES
Artificial intelligence
Al discovers antibiotics to treat drug-resistant
diseases EE @ Your account A Home News Sport

NEWS

Home | Coronavirus | Climate | UK | World | Business | Politics | Tech | Science

Health

Scientists discover powerful
antibiotic using Al
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Exciting possibilities enabled by graph ML

odour perception

A B

Structurally similar pair
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green, fruity
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Molecular representations from
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Blog v Special Edition v PodCast Art v PublicEvents v AboutUs v Subscribe

B
SEPTEMBER4;2023

BLOG

This Al smells better than you

Lee et al., “A principal odor map unifies diverse tasks in olfactory perception,” Science, 2023.



Exciting possibilities enabled by graph ML

traffic prediction
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data
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Derrow-Pinion et al., “ETA prediction with graph neural networks in Google Maps,” CIKM, 2021.
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Exciting possibilities enabled by graph ML

weather forecasting

c) Roll out a forecast

nature

Explore content v  About the journal v  Publish withus v Subscribe

nature > news > article

NEWS \ 14 November 2023

DeepMind Al accurately forecasts
weather — on a desktop computer

The machine-learning model takes less than a minute to predict future weather
worldwide more precisely than other approaches.

Lam et al., “Learning skillful medium-range global weather forecasting,” Science, 2023. 19/42



How to incorporate graphs into learning?

e Naive approach

N | ] ]
a ‘y. | |
a . |
& - m
graph embedding node features labels

e Limitations
- embedding of graph structure leads to information loss

- (sometimes) computationally expensive
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How to incorporate graphs into learning?

e |dea: directly incorporate graph structure in data analysis

=g
o -
1 o
o @
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l/co\@/ \ + - H
N e | : Graph ML , .
l l e
2 II m
graph node features embedding labels

e Need new modelling tools
- graph signal processing

- graph neural networks
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Graph signal processing

e Graph-structured data can be represented by graph signals

= {V,¢} RY f:V—R

a2 -

takes into account both structure (edges) and data

(values at nodes)
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Graph signal processing

1D signal 2D signal f )Y —- R

how to generalise classical signal processing tools on
irregular domains such as graphs?
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Graph signal processing

classical signal processing

- complex exponentials provide
“building blocks” of 1D signal
(different oscillations or frequencies)

- leads to Fourier transform
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Graph signal processing

classical signal processing

- complex exponentials provide
“building blocks” of 1D signal
(different oscillations or frequencies)

- leads to Fourier transform

graph signal processing

ﬂigenvector uy
ANa— 0.6

SR\

P ‘x g \ y

sensor
G.N=60 nodes, G.Ne=302 edges

1.0

- Laplacian eigenvectors provide
“building blocks” of graph signal
(different oscillation or frequencies)

- leads to graph Fourier transform

0.2

0.0 A

- enables convolution and filtering
on graphs

-0.4
-0.6
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Convolutional neural networks on graphs
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Convolutional neural networks on graphs

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Input graph signals > Feature extraction - Classification - Output signals

e.g. bags of words Convolutional layers Fully connected layers e.g. labels

1

SRy

Graph signal filtering \*. 4 Graph coarsening
1. Convolution () '. 3. Sub-sampling
2. Non-linear activation % 4. Pooling

0=A1 <A< Am, o
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(More generally) Graph neural networks

GNN Spectral CNN PATCHY-SAN GCN GraphSAGE GAT CayleyNet GIN
Gori et al. Bruna et al. Niepert et al.  Kipf and Welling Hamilton et al.  Velickovi¢ et al. Levie et al. Xu et al.

GNN Gated GNN ChebNet MPNN MoNet GN CNNs on graphs SGN
Scarselli et al. Li et al. Defferrard et al. Gilmer et al. Monti et al. Battaglia et al. Gama et al. Wu et al.
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Graph Signal Processing
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Graphs and graph Laplacian

weighted and undirected graph:

G =1{V,&}
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Graphs and graph Laplacian

weighted and undirected graph:

G
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Graphs and graph Laplacian

weighted and undirected graph:

V3 g — {va}
U1 U3 4 D = diag(d(v1),--- ,d(vn))

" L=D—-W equivalent to G!

3

=

V2 V4 5
00000 0 01000000 1 -1 0 0 0 0 0 0 :
000000 /10100100\ (—1 3 -1 0 0 -1 0 0\ e symmetricC
400000 01010110 0 -1 4 -1 0 -1 -1 0
020000 00101000 __fo o -1 2 -1 0 0o o o A ' _ i
Dz ool oot e 000 — 0 0 L2 oL 000 off-diagonal entries non-positive
00040 0 01101010 0 -1 -1 0 -1 4 -1 0
000030 00100101 0 0 -1 0 0 -1 3 -1 e rows sum up to zero
0000001 \0 0 0000 1 0/ \o 0 0 0 0 0 -1 1)
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Graphs and graph Laplacian

O OO OO koo

weighted and undirected graph:

V3 g — {va}
U1 U3 4 D = diag(d(v1),--- ,d(vn))
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symmetric

equivalent to G!

Loorm = D™ 2(D —W)D™ 2

off-diagonal entries non-positive

rows sum up to zero
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Graph Laplacian

graph signal f : ) — R
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Graph Laplacian

28/42
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Graph Laplacian

graph signal f : ) — R

1 -1 0 0 0 0 0 0 £(1) £(1) T/1 10 0 0 0 0 o0 £(1)
(—1 3 -1 0 0 -1 0 o\ (f(Q)\ /f(Q)\ (—1 3 -1 0 0 -1 0 0\ (f(2)\
0 -1 4 -1 0 -1 -1 0 7(3) £(3) 0 -1 4 -1 0 -1 -1 0 £(3)
0 0 -1 2 -1 0 0 0 f(4) £(4) 0 0 -1 2 -1 0 0 O £(4)
0 0 0 -1 2 -1 0 0 f(5) £(5) 0 0 0 -1 2 -1 0 O F(5)
0 -1 -1 0 -1 4 -1 0 £(6) £(6) 0 -1 -1 0 -1 4 -1 0 7(6)
o 0 -1 0 o -1 3 —1|/{re £(7) 0o 0 -1 0 0 -1 3 —1|/|7£®
\o 0 0 0 0o 0 -1 1) \s®) \/®)/) \o 0o 0o o o o -1 1) \5®)
N
N . . T . AN 2
Lf(i) = E Wi () — f(5)) foLf = § Wii (f () = F(J))
7=1 1,7=1

a measure of “smoothness”

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 28/42



Graph Laplacian

[’09 Pg
nr nr
1 05 -1 -05 1 05 -1 -05

ffLf=1 frLf =21
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx”

- X(?_-

T
L Xyi— -

XT
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx”

- X(?_-

T
L Xyi— -

XT

Eigenvalues are usually sorted increasingly: 0 = A\g < Ay < ... < An_1
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Graph Fourier transform
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31/42

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.



Graph Fourier transform

e AN s
(=
e
LN M2

IS
“4.@-“ )
< LS

L/
wh
AN

X50
low frequency high frequency S
ngxO =X =0 XgoLX5o = As0

e Eigenvectors associated with smaller eigenvalues have values that vary less rapidly
along the edges

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 31/42



raph Fourier transform

ra A

X50
low frequency high frequency S
ngxO =X =0 ><5TOL><50 = As0

graph Fourier transform:
- AT

FOO ={xe,f): [ Xo - Xai| f

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 31/42



raph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 31/42



Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxs = Apxy
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxs = Apxy

one-dimensional Laplace operator: —V/?

$

eigenfunctions: e/%*

Classical FT:

_ / (&%) f(x)da

fla)= o / F(w)e™= duw
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxs = Apxy

one-dimensional Laplace operator: —V/? . graph Laplacian: L

$

$

eigenfunctions: e7%% ' eigenvectors: X/

$ $oF
A N

Classical FT:  f(w) = / (&%) f(x)da Graph FT: f(£) = (x¢. f) = ZXZ(i)f(i)

fo) = 5 [ Fper o F6) = 3 F0xli
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxs = Apxy

one-dimensional Laplace operator: —V/? . graph Laplacian: L

$

$

eigenfunctions: e7%% ' eigenvectors: X/

$ $oF

Classical FT: f(w) = Ilteij)*uf(iﬁ)‘dﬂf ; Graph FT: f(f) = (X0, f) = Z XZ(@“f(Z)

1=1

N—-1

fo) = 5 [ Fper o fiy =Y o

=

32/42



Graph Fourier transform

e Graph Fourier transform -‘ ‘ - T‘

FO =(xe, f: [Xo - Xaa [
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Graph Fourier transform

e Graph Fourier transform -‘ ‘ -T‘

A

f(€)=<X£af>3 Xo 0 Xy S

eigenvector u; eigenvector u;

0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6

0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
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Graph Fourier transform

e Graph Fourier transform -‘ ‘ -T‘

A

f(g):<X£7f>i Xo 0 Xy S

i ; sensor
elgenveCtor U1 elgenveCtor uz Lo G.N=60 nodes, G.Ne=302 edges
’ 2.0
15
2.0 A
1.0
0.5 1.5
0.0
1.0 A \1\
-0.5
-1.0 05 4
-15
-2.0 0.0 A
0 2 4 6 8 10 12
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Graph Fourier transform

e Graph Fourier transform -‘ ‘ -T‘
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Graph spectral filtering

GFT: f(0) = {xe, f) = ZXE FG) =" FO)xe(i)
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Graph spectral filtering

GFT: f(€)=<x£,f>=ZxZ(i)f(i) FG@) = f(O)xe(i)

1.01

1.0
0.8 0.5
0.6 1 0.0
0.4 - ‘T\\v/'ll// -0.5

-1.0
0.2 1

-15
0.0 A -2.0
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Graph spectral filtering

N N-—-1

GFT: f(6) = {xes f) =D _xi (@) f(@)  f() = ) f(O)xe(d)

1=1 ¢=0

GFT

fo o= | f)

1.0 2.00
1.0
, 1.75 1
0.8 1 )
0-5 1'50_
0.6 1 0.0 1.2541
0.5 1.00 -
7/ —VU.
41 W4
04 {i_ 0.75 1
-1.0
0.50 -
0.2 1
-15 0.25 1
0.0 -2.0 0.00
0.0 0.2 0.4 0.6 0.8 0 2 4 6 8 10 12 14
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Graph spectral filtering

N

GFT: f(0) = (xe, f) =Y x5 (i) (i)

GFT

1=1

0.0

(€)xe(2)
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Graph spectral filtering

N N-—-1

2.00

1.75 A1

1.50 1

1.25 4

1.00 A
0.75 A
0.50 A
0.25 A L
0.00

0 2 4 6 8 10 12 14
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Graph spectral filtering

N

GFT: f(0) = (xe, f) =Y x5 (i) (i)

GFT

1=1

0.0
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0.75 1

0.50 A

0.25 A L
0.00 ~— T

1.01

0.8 1

0.6

0.4 1

0.2 1

0.0 A

1.25
1.00
%74
\\Y, 0.75
ANV ‘ 0.50
g \'/:wr IS5\
i U/ %\
| = \?‘(’Ji\i‘ﬂs!’(/é /i 0.00
TR /\
"“\%{7/
W 0.25
P
0.50

34/42



A practical example

GFT

T

X' f

S\i
§=

gA)X" f
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A practical example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

problem: we observe a noisy graph signal f = yo +n and wish to recover

[ Y = argm;n{||y — fll3 +vy" Ly} J
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A practical example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

problem: we observe a noisy graph signal f = yo +n and wish to recover

— data fitting term

“smoothness’ assumption
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A practical example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

problem: we observe a noisy graph signal f = yo +n and wish to recover

— data fitting term

y = +yL)"'f
g(L)

“smoothness’ assumption
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A practical example

GFT g(A) IGFT

f| = ' f = | gAY f| = Wf

problem: we observe a noisy graph signal f = yo +n and wish to recover

— data fitting term

y =T +~vL) " f =x(T+~yA) "N f remove noise by low-pass filtering

N in graph spectral domain!
g(L)

“smoothness’ assumption

35/42



A practical example

e noisy image as observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 36/42



A practical example

e noisy image as observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Gaussian Filtered Gaussian Filtered
(Std. Dev. = 1.5) (Std. Dev. = 3.5)

Original Image Noisy Image Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013, 36/42



GSP and the literature

there is a rich literature about data analysis and learning on graphs

network science (node centrality)

unsupervised learning (dimensionality

) . semi-supervised learnin
reduction, clustering) P g
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Network centrality

eigenvector centrality degree centrality

PageRank: http://www.ams.org/publicoutreach /feature-column /fcarc-pagerank
Sandryhaila and Moura, “Discrete signal processing on graphs,” IEEE TSP, 2013. 38/42



http://www.ams.org/publicoutreach/feature-column/fcarc-pagerank

Network centrality

eigenvector centrality degree centrality

- Google's PageRank is a variant of eigenvector centrality

- eigenvectors of W can also be used to provide a frequency
interpretation for graph signals

PageRank: http://www.ams.org/publicoutreach /feature-column /fcarc-pagerank
Sandryhaila and Moura, “Discrete signal processing on graphs,” IEEE TSP, 2013. 38/42



http://www.ams.org/publicoutreach/feature-column/fcarc-pagerank

Diffusion on graphs
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Smola and Kondor, “Kernels and regularization on graphs,” COLT, 2003. 39/42



Diffusion on graphs

Smola and Kondor, “Kernels and regularization on graphs,” COLT, 2003. 39/42



Diffusion on graphs

..Ul 1731

~~~~~~ U3 _..el4 heat diffusion ‘~~..J?_J§____lq4.
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/09‘¢" [ /09',"’
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Ox

heat diffusion on graphs is a typical physical process on graphs
other possibilities exist (e.g., random walk on graphs)

- many have an interpretation of filtering on graphs

Smola and Kondor, “Kernels and regularization on graphs,” COLT, 2003. 39/42



Graph clustering (community detection)

von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, 2007. 40/42



Graph clustering (community detection)

von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, 2007. 40/42



Graph clustering (community detection)

von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, 2007. 40/42



Graph clustering (community detection)

WA, A)
Zv(o)

NCUt(Al,

l\DIr—\

1=1

- first k eigenvectors of graph Laplacian provide solution to
graph cut minimisation

- eigenvectors of graph Laplacian enable a Fourier-like analysis
for graph signals

von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, 2007. 40/42



Semi-supervised learning

Zhu, “Semi-supervised learning with graphs,” Ph.D. dissertation, CMU, 2005. 41/42
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Semi-supervised learning
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- learning by assuming smoothness of predicted labels (label

propagation)

- this is equivalent to a denoising problem for graph signal y

Zhu, “Semi-supervised learning with graphs,” Ph.D. dissertation, CMU, 2005. 41/42



GSP and the literature

centrality, diffused information, cluster membership, node labels
(and node features in general) can ALL be viewed as graph signals

network science

unsupervised learning (dimensionality

: : semi-supervised learnin
reduction, clustering) P g

42/42



