A Journey into Graph Representation Learning
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Relational data and
inductive bias

Why is relational data
prominent and where?

Overview of the Lecture

GRL: an encoder-decoder
framework

What is GRL and what
are the tasks of interest?

Message passing neural
networks
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graph neural network
architectures
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Relational Data




Knowledge Graphs
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Knowledge graphs: Graph-structured data models, storing relations (e.g., isFriendOf) between
entities (e.g., Alice, Bob) and thereby capture structured knowledge.
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Biomedical Data: Molecular Scale
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Molecules (Rao et al, 2013): Figure shows the of
NSAID drugs. “Me" is an abbreviation for "methyl" (CH3).

Molecular scale: Small molecule drugs can be represented as graphs relating their and

structure. Complex molecules, such as proteins can be represented as graphs capturing
spatial and structural relationships between their amino acid residues.



Biomedical Data: Intermediary Scale
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Excerpt from Schizophrenia interactome (Ganapathiraju et al, 2016): are shown as nodes
and as edges connecting the nodes. Schizophrenia-associated genes are shown as dark blue

nodes, novel interactors as red color nodes and known interactors as blue color nodes. Red edges are
the novel interactions, whereas blue edges are known interactions.

Intermediary scale: An interactome defines a set of in a particular cell — They can

be represented as graphs, e.g., protein—protein interaction graphs.



Biomedical Data: Abstract Scale

all genes

all proteins

all drugs

PharmGKB (Hewett et al., 2002): Abstract, complex relationships among the objects,

including ‘expresses’, as in ‘a gene expresses a protein’: 600+ different relationships.

Abstract scale: KGs can represent the between drugs, side effects, diagnosis,
associated treatments, and test results etc.



Social Networks
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Social networks: Entities (e.g., individuals, groups, organizations) with other
entities on social platforms.



Computer Vision: Scene Graphs
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Scene graphs (Johnson et al., 2015): A scene as a graph.
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Road Networks
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Programs: Dependency Graphs

1 def normalize_and_encode ( content , max_len , min_len ) :
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Program dependency graphs (Allamanis, 2021): Figure shows a Python
program and its represented as a graph.
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Plethora of Applications
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. : . Real world
e ML-assisted directed evolution d &
(affinity, specificity, immunogenicity) . X i Personalisation evi encg

) Ta‘r.get‘ o Protein engineering C!lmcal trial Qe5|gn & (precision and/or personalised e!ectronlc
identification e De novo design biomarker discovery medicine) medical records
[ 1M 1 [ 1M 1M 1

~25 >$1

programs

Drug discovery | Drug development Billion

Pre-
Target clinical
Developed -to- Hit Lead .
techniques - optimisation Phase | Phase Il Phase Il Submission
and/or
mature
applications
‘ 1 drug
lo 2 4 , 5 vears 8 10 12 |
Design of small molecules: Drug repurposing & product line extensions:
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Drug Discovery

Plethora of Applications

Target identification, property prediction,

drug repurposing, protein engineering
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Design of biologics:
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Drug repurposing & product line extensions:
e Off-target repurposing

Design of small molecules:
e Enhanced HTS [target-based]

(property prediction) . e On-target repurposing

e Enhanced HTS [phenotypic] e Combinations repurposing
(reporter analysis) o ADME

e De novo design .-
(generative chemistry) (property prediction)

Drug Discovery

identification, property prediction,
repurposing, protein engineering

Plethora of Applica

Protein Folding

How do amino acids fold to form
proteins?
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Plethora of Applications
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Design of small molecules: Drug repurposing & product line extensions:
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Target identification, property prediction,
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Protein Folding

How do amino acids fold to form
proteins?
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Jet Classification

What is the original object that gave rise
to the jet?
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Recommender Systems

Realistic recommendations for users
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How do amino acids fold to form
proteins?
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Jet Classification

What is the original object that gave rise
to the jet?
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Drug Discovery

Target identification, property prediction,
drug repurposing, protein engineering

Recommender Systems

Realistic recommendations for users
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Jet Classification

What is the original object that gave rise
to the jet?
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Traffic Forecasting

Estimating Times of Arrivals



Graph Representation Learning



Graph Machine Learning

Node degrees?
Contains an odd-length cycle?

Minimum vertex cover size 1, 27

Functions over graphs, or nodes, necessarily relate to , which carry valuable
information: needs to be taken into account adequately.

Idea: Define for nodes/graphs, and then use for the optimization task.
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What Kind of Graphs?

Context: | | graphs G = (V, E, X) attributed with node features.

e V. Set of vertices/nodes
e FC VXYV:Set of edges

e X € R™V: Node feature matrix, which stores a feature vector X, = X[u]' for each node u.
domain-specific , or , or simply

15



What Kind of Representations?

10 1 1 1
|11 O 1 0O
w11 1 0 1
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Representations: We can represent the graph in terms of its adjacency matrix and feature matrix:
e A is the of a graph G = (V, E).
o X € RIVIXd s 5 of a graph G = (V, E) where d is the embedding dimensionality.
e We sometimes write G = (A, X) instead of G = (V, E, X).
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What Kind of Functions?

Consider k-ary functions f, which define, for every
of the form A(G) : V¥ - D.

Graph-level functions: Node-level functions:
fG) - B f(G):V—DB
f(G) - R f(G): V>R

f(G) - R? AG): V- R

17

graph G = (V, E, X), a mapping

Edge-level functions:
f(G): V> B
f(G): V> - R

f(G): V> R



Graph Isomorphism




Graph Isomorphism

Isomorphism: Two graphs G = (V, E, X;) and H = (V, Ey, X ;) with node features are isomorphic if
there exists a bijection between the node sets V and V} such that

(u,v) € E. it and only if (f(u), f(v)) € Ey for all u,v € V,
and

Xolul = Xyl f(w)] for all u € V..

18



Inductive Bias: Invariance and Equivariance

G

Invariance: A function f over graphs is if for all isomorphic graphs G, H it holds
that f(G) = f(H), i.e., the function f does not depend on the ordering of the nodes in the graph.

Equivariance: A function f over graph nodes (G) : V — RVl s if for every

graph G and, for every permutation & of V, it holds that f(G)(V*) = f(G)(V)7”, i.e., the output of fis
permuted in a consistent way when we permute the nodes in the graph.

19



An Encoder-Decoder Perspective
E ............ -G = (V,E) nd G’



An Encoder-Decoder Perspective
E ............ -G = (V,E) nd G’
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Goal: nodes, edges, graphs, along with their features, and use these embeddings for

Intuition: Nodes/edges/graphs with “similar properties” should have representations closer to each other

than nodes/edges/graphs with “dissimilar properties”.
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An Encoder-Decoder Perspective
E ............ -G = (V,E) nd G’
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Training: Let S[u, v] be a similarity measure between the nodes u, v and suppose:
Fnc:V — R Dec : RYX R - R™
Optimization: Vu,v € V: Dec(Enc(u), Enc(v)) = Dec(z,,z,) ~ S[u,v], i.e.,
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An Encoder-Decoder Perspective
E ............ -G = (V,E) nd G’
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Graph representation learning tasks: Various node/edge/graph level tasks are of interest.
. Node classification/clustering/regression

. Link prediction, knowledge graph completion

. Graph classification/clustering /regression /generation

22



Shallow Node Embeddings




An Encoder-Decoder Perspective

G =(V,E) R G’
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Encoder and Decoder: Let S[u, v] be a similarity measure between the nodes u, v and suppose:

Enc: V— R? Dec: Rix RY » R

Shallow encoder: A Enc(v) = Z[v]', where Z: R!VX? is 3 matrix of d-dimensional embeddings.

Unsupervised: We do use node labels or features and the resulting embeddings are task-independent!
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Optimization

G =(V,E) R G’
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Optimization: Given a dataset D = {(u;,v;) | | <i < n}, minimize the loss:

Z f(Dec(zu, Z,),5|u, v]),

(u,v)eD

where f: R X R — R (e.g., mean-squared error), between Dec(z,,z,) and S[u, v].
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Characterizing a Node

G=(V,E) R4
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P

Idea: Node embedding models produce an embedding vector !

Embedding Model

G’ ,

Uy

_—

\

/
Uy

/
Uy

‘or each node such that nodes with

properties are in to one another in the embedding space.

Intuition: Two nodes are similar if their

according to some notion of neighbourhood.

(1) What kind of decoder? (2) What kind of node/graph similarity? (3) Which loss function?
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Matrix Factorization Approaches: Inner Product

Decoder: Similarity between two nodes is proportional to the
dot product of their embeddings:

T
MZV

S~ Z7Z'

P = Z |Dec(z,,z,) — S(u, V)H%

(u,v)eD

Dec(z,,Z,) =7

Mapping back to the matrix Z of node embeddings, reveals
the connection to matrix factorization:

¥ ~ || ZZ" - S||;

27



Matrix Factorization Approaches: Inner Product

In its simplest form, we can set S = A and minimise

L = Z |Dec(z,,,z,) — A(u, V)“%

(u,v)eD

This objective approximately recovers the graph: T
T Al A~ 17
P~ ||ZZT - A2 ~

To capture multi-hops, we can set a similarity defined over:
k
Alu,v], ..., A%u, v].

Decoder (i.e., any pairwise similarity) and accordingly the
target similarity (neighbourhood overlap measures) can vary...
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Other Approaches

«[3 000 =~[011 1] =|3 -1 -1 -1
w0 2 0 0] =1 010 =(-1 2 -1 0
510 0 3 0 11 1 0 1 »|l—-1 -1 3 =1
!0 0 02| ~|1 010 *»|-1 O -1 2

Similarity: In terms of generalizations of other matrices, i.e., the

Decode: We can decode differently, i.e., based on the L,-distance: Dec(z,,Z,) = ||z, — ZVH%.

Random walk approaches: Models such as DeepWalk and node2vec, inspired by word2vec.
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Beyond Shallow Embeddings

The embeddings of the nodes do not share any Node/graph-level features cannot be

parameters, i.e., hard to model dependencies. utilised effectively. Encoder which can

incorporate node features?
Stronger encoder t.o U Us Ui Uy p
capture dependencies?’

Hard to capture graph-level, global
G properties, hence worse on graph-level tasks.

Better encoder to capture

1 ’ Better capturing global
structural properties? 2 8

properties’?

It is hard to capture certain structural — -eereenn. IEERREREY

similarities, e.g., u; and u. Uy Us . U;  Transductive: No embeddings for
' new nodes, unseen during training

® Inductive models?
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Message Passing Neural Networks

Goal: Designing neural architectures satistying the desired desideratal

\_/ " GQ\_/Q
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Message Passing Neural
Networks



Message Passing Neural Networks
NSO
N\

(MPNNs) capture popular GNNs (Gilmer et al., 2017).

Idea: lteratively initial node features with the information received from their respective

Notation: The representation of u € V at iteration ¢ is h'”), i.e., the initial representation is h'”) = x = X[u]".
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Message Passing Neural Networks

Given a graph G = (V, E, X), an MPNN iteratively computes hg) for every node u € V:

hY = x initialize
m{’ =y (h{~", {h{~" | ve Nu}}), aggregate

h?) = qﬁ(”(hg‘l), mg)), update/combine
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Message Passing Neural Networks

Given a graph G = (V, E, X), an MPNN iteratively computes hg) for every node u € V:

(0) mean, sum, max, ... o
h, =xu,/ initialize

m’ =y (h{~", {{h!~" | v e Nuw)}}), aggregate
/ h?) = gb(f)(hg‘l), mg)), update/combine

message

l

non-linearity
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Message Passing Neural Networks

<]
N\

Given a graph G = (V, E, X), an MPNN defines Vit € V the features hg)) = X, and iteratively updates them:

W = 0 (00 D, (00 v € M) ).

where ¢ and w'” are differentiable functions.

_— |
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Message Passing Neural Networks
NSO
N\

You may encounter variations, where a message computation function msg is defined w.r.t the source node:

h? = ¢ (B, ({{msey™ b [ v e N ) ).

Remark: The function msg typically depends on the neighborhood - hard to decouple msg from yw'”. Following
a common convention, we view the message computation as part of aggregation.
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Message Passing Neural Networks

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the , and yellow boxes denote . At least 3

iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with k = 2.
37



Message Passing Neural Networks

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the , and yellow boxes denote . At least 3
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Message Passing Neural Networks
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Message Passing Neural Networks

e~/\::>e

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the , and yellow boxes denote . At least 3

iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with k = 2.
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Message Passing Neural Networks
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Message Passing Neural Networks

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the , and yellow boxes denote . At least 3
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Message Passing Neural Networks

t =3 L =2

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the , and yellow boxes denote . At least 3

iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with k = 2.
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Message Passing Neural Networks

. @ = h©
/@“‘B
<+ <—G = h(EO)

(0)
,e ;

— h©

(0)
hC

(0)
hD

: : : h|(=0)
t =3 L =2 § t=1 =0
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Message Passing Neural Networks

. @ = h©
/@“‘B
<+ <—G = h(EO)

5 _ O
@-n

The i-th Is the i-th of the MPNN, since each iteration can be seen as an “unrolling” of the
network. The #layers defines the , and the embedding dimensionality the of the network.
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Message Passing Neural Networks

NSO
\

Node-level final representation: The are denoted as Z, = hglk).
Graph-level final representation: A Z:; for a graph G through a mapping from the
{z, ...z, }} to z; known as (Murphy et al., 2019).

Common choices are sum, or mean, which are normalized, e.g., w.r.t. number of the nodes.
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Deriving a Basic Graph Neural Network Model

Model design space is very large: many possible choices for aggregate and update.

= ¢ (00,5 (BS0, {{D | v e Na ) )

— qb(f)(hg—l), Z h‘(f‘l)> aggregate: sum
vEN(u)

— (1) RE—=1) (7) (r—1)
_o-(w WD+ W ) h )

self U neig
vEN(u)

update: linear transformations
with a nonlinearity at the end
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The Basic Graph Neural Network Model

W = sum aggregation

T

h( = a(w@ (D4 W ) Re 4 b<f>)

self U neigh
/ l l VEN(u) \
- (t) d(1)
0. element-wise WO WO e Rdoxdi-1 b € |

self’ ~ neigh

\ l bias term
@

= update
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Message Passing With Self-Loops

Message passing: Define an which treats the source node also as a neighbor:

b =y ({{n¢" | v € Na}} u {{n D)} )

Self-loop: This can be thought as (implicitly) adding to the nodes, hence the name.

42



Message Passing With Self-Loops

Message passing: Define an which treats the source node also as a neighbor:
N — (1 —1 —1
b =y ({{n¢" | v € Na}} u {{n D)} )
Self-loop: This can be thought as (implicitly) adding to the nodes, hence the name.

Basic model: Note that this further simplifies the base model:

h() = a(w@ PR Gt hg—D)
VEN(X)

Expressivity: This since the information coming from the node's neighbor's
cannot be differentiated from the information from the node itself.
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A Limitation of Message Passing

Problem: The presented message passing approach is . no information flows across disjoint subgraphs.

Remark: Pooling yields a graph embedding, which is ~ but there is still no communication between

during message passing, so the node embeddings are “blind” to disjoint subgraphs.

Solution: or , on each layer of the MPNN (Battaglia et al., 2018).
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Message Passing with Global Readout

The representation h, for each node u € V'is updated with the information received from its neighborhood
as well as a global feature vector as:

09 = 4 (060, (0D, (B0 v € Nao ). (Y. (D 1w € YY)

where is a differentiable function, and all aggregate functions are typical candidates also for
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Message Passing with Global Readout

An instance of generalized message

passing (Battaglia et al., 2018)

The representation h, for each node u € V'is updated with the information received from its neighborhood
as well as a global feature vector as:

09 = 4 (060, (0D, (B0 v € Nao ). (Y. (D 1w € YY)

where is a differentiable function, and all aggregate functions are typical candidates also for
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Message Passing with Global Readout

An instance of generalized message

passing (Battaglia et al., 2018)

A difference in the expressive power
of MPNNSs (Barcelo et al., 2020).

The representation h, for each node u € V'is updated with the information received from its neighborhood
as well as a global feature vector as:

09 = 4 (060, (0D, (B0 v € Nao ). (Y. (D 1w € YY)

where is a differentiable function, and all aggregate functions are typical candidates also for
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Encoder-Decoder

o< — 1 = NN

The learned embeddings can be used for many graph machine learning task, e.g.,
, depending how they are learned.
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Graph Neural Networks

o GNN-RNI
Original GNN PPGN (Sato et al., 2021) Exphormer
(Gori et al., 2005) (Li et al., 2016) (Gilmer et al., 2017) (Maron et al., 2019) (Abboud et al., 2021) (Shirzad et al., 2023)
® | 4 ¢ ® Over-squashin ®
¢ ree LSTM Relation Nets Logical (Alon etqal., 2021)g
(Tai et al., 2015) (Santoro et al., 2017) (Xuetal, 2019) | £ essiveness o NodePi
P VGAE ¢ ® (Barcelo et al., 2020) oderiece

NBFNets (Galkin et al., 2022)
(Zhu et al., 2021)]

(Kipf &Welling, 2016) (Velickovic et al., 2018)

2014 2015 2013 2019 2022
Graph GraphGPS
@, @, @, Transformers (Rampasek et al., 2022) @
ChebNet | k._G|\||\|5 (Dwiwedi et al., 2021) C-MPNNs
(Defferrard et al., 2016) [(Hamilton et al., 2017) ® (Morris et al., 2019) ® (Huang et al., 2023)
O O . RGCN GRAIL ®

Spectral CNN Structure2Vec (Schlichtkrull et al., 2018)
(B?una et al., 2014) (Dai et al., 2016) (Kipf et al., 2017) - (Teru et al., 2020) Graphormer

Over-smoothing (Ying et al., 2021)

(Li et al., 2018)
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Graph Convolutional Networks




Graph Convolutional Networks

The base GCN model (Kipf et al., 2017) can be seen as a self-loop message passing approach:

Sum aggregation over degree-normalized features

T hg— 1)

h'Y) = 5( W v
” f( 2 o)

Self-loop approach: single parameter
matrix with a non-linearity

hg) — G(W(t) Z hg_l)) Very similar to the basic

self-loop approach
veEN(u)U{u} 0 app
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Revisiting the Basic Model

vEN(u)

(1) — (1) RE—=1) (7) (r—1)
hu_g(w R )

H® e RIYex4: Node H — g(H(t_l)W(t) + A HEEDWwWW ) Graph-level

representations at layer ¢ self neigh

|dentity Adjacency
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Revisiting the Basic Model

h( = a(w@ hi-Dewo Y hg‘”)

self U neigh Node-level
vEN(u)
(7) Volxd. f t—1 t t—1 f
HO € R Node 0 = 0<H< WO 4 A HE-DWO h) oo love
representations at layer ¢ self neig
|dentity Adjacency

Filter: The layers apply a A=1+ A combined with some weight matrices and a non-linearity.

49



Graph Convolutional Networks

HO — 0( A, H(r—nW(t))

o

(D+1) 7(1+A)(D+1)"

GCN is a local, first-order approximation of spectral
graph convolution based on Chebyshev polynomials.

Intuitively, in the base GCN model:

~/

'As

m €nables messaging between

e Node's own embedding is treated

h(=D
h) = O-(W(r) Z v )

vENu)U{u) \/N ()N(v)

GCN applies filters based on the
symmetric normalized adjacency

matrix, ensures values: [0,]1]

and with node’s representation through the identity.

to messages from other nodes: self-loops.
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Graph Attention Networks



Learning Aggregation

h(—D
2 h‘(}t_ 1) Z v Wh(t— 1)
veEN(u) veNu)U{u} V N(M)N(V) vE%(u) v

Sum aggregation with

Fixed aggregation: sum over .
587e6 learnable transformation

Fixed aggregation: sum .
5516 degree-normalized features

matrix on features

Goal.: non-uniformly across neighbors?
Idea: Use as a means to non-uniformly aggregate over the neighborhood.

Background: Attention models obtained strong results in, e.g., machine translation (Bahdanau et al., 2015).
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Attention: Allocate

Attention

to ~based on

their relevance to the learned task.

Transformer (Vaswani et a
for the word ‘making’ encoc

., 2017): Figure shows attention weights
ing "

Breaking uniformity: Attend to more relevant tokens, rather than

uniformly considering all possible tokens.

Graph attention: A node can benefit from weighing the relative

importance of its neighbors.
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Attention over Graphs

This task relies only to
the fact that a node
has a red neighbor.

Example: Classity all nodes

connected to a red node as true Y
and every other node as false. /

Neighborhood attention: Richer weighing of a node's neighbors, which results in potentially more
descriptive and

Idea: Learn an for each neighbor, which yields
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Graph Attention Networks

e

(Velickovic et al., 2018) use a weighted sum aggregation, with a
pairwise node attention mechanism during message passing (using a self-loop approach):

hg) = G(W(t) Z A (y,v) hg_l))
veNu)U{u}

where (X, | is the attention weight on a node V & N(I/t) U {I/t} with respect to a source node u.
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Graph Attention Networks

Aggregate: Weighted
sum based on attention

e,, = LeakyReLU(h, Wh ) Bilinear

T = LeakyReLU(a'[Wh, @ Wh ]) GAT
(1) — (7) (t—l) ’

h = o W 2

\ / veN(u)U{u} . =a' LeakyReLUW[h, @& h,]) GATV?2
Update: linear transformation
combined with non-linearity I

- oexple,,)
05

v 'eN(u) €Xp(€u V )
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Graph Attention Networks

Multi-head attention: Learn multiple,

distinct, independently parametrized
attention weights.

e Learn k attention weights Uy 15 oo ms

Transformer: Multiple attention heads

to compute attention weights between
all pairs of positions in the input.

Coincides with GAT using multi-head
attention on a fully connected graph.

a, ., for the nodes u,v.

e Concatenate resulting k node representations h [1], ..., h [k] for each node u:

h =h[1]®...®h [k]
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A Closer Look at Aggregation

N
~

e

Question: What is the impact of different choices of aggregation on the of GNNSs?
Task: Input graph with node types red, green and where the features are the RGB values.

Setup: Consider a red node to analyze how different functions aggregate neighbor messages.
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A Closer Look at Aggregation

o]
%

e

Sum: Can discern between neighborhoods based on their sizes, but it can lead to false equality.

Example: Sum cannot distinguish between a 2- and a red-green neighborhood.
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A Closer Look at Aggregation

o]
%

e

Mean: Useful for bounding the range of aggregate messages, but cannot recognize multiplicities.

Example: 2-red or 3-red neighbours are indifferent, as the mean operation eliminates cardinality.
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A Closer Look at Aggregation

o]
%

e

Max: Highlights a relevant element, but limited in discriminative ability.

Example: Considering red < < green, green is answer for any neighborhood involving
at least 1 green node.
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Aggregation and Expressiveness

Observation: An aggregation function must distinguish between distinct neighborhoods, and return different
results given different neighborhood

Injective: The aggregation function must be

Expressive power: MPNNSs are at their with injective functions (Xu et al.,2019).
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Aggregation and Expressiveness

W W
W W ® © -
e O *e o . o
v v U ¥ W
Input sum - multiset mean - distribution max - set

Figure 2: Ranking by expressive power for sum, mean and max aggregators over a multiset.
Left panel shows the input multiset, i.e., the network neighborhood to be aggregated. The next three
panels 1llustrate the aspects of the multiset a given aggregator 1s able to capture: sum captures the
full multiset, mean captures the proportion/distribution of elements of a given type, and the max
aggregator 1ignores multiplicities (reduces the multiset to a simple set). (Xu et al., 2019)
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Aggregation and Expressiveness

T @ T 9 T 1
* VS. ’\ ? VS. /*\ Y VS. ‘ .
v v 9 - - -

(a) Mean and Max both fail (b) Max fails (¢) Mean and Max both fail

Figure 3: Examples of graph structures that mean and max aggregators fail to distinguish.
Between the two graphs, nodes v and v’ get the same embedding even though their corresponding
graph structures differ. Figure 2 gives reasoning about how different aggregators “compress’ different
multisets and thus fail to distinguish them. (Xu et al., 2019)
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Graph Isomorphism Networks

NP
[

e

(GINs) (Xu et al., 2019) update the representation h, for each node u € V as:

h( = MLP((I reo)-ni, Y hgf—D)
vEN(u)
...and GIN layers are injective.
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Graph Representation Learning

G:(VaE) [ d G’

Ne oG T s s
o= b e X

/
Uy

Graph representation learning with strong relational inductive bias

(1) — (1) J(=1) (7) (r—1)
h _a(w WD+ W ) h )

self U neig
vEN(1)
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Graph Representation Learning

H ............ -G = (V,E) nd G’

U u§

u Y

. U u6/7 - E E . o Uy _—
o= b e <SS
/ ” “é\, / .

”2\ g
Learned parameters are independent of graph size

h( = a(W@ hi-Dewe Y h$f—1>)

self U neigh
vEN(1)
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Graph Representation Learning

H ............ v G = (V, E) nd G’

N\

U i

8

Applies to variable-size graphs

(1) — (1) p=1) (7) (r—1)
hu—0<W WD+ W ) h )

self U neig
vEN(1)
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Graph Representation Learning

H ............ v G = (V, E) nd G’

N\

U i

8

What is the expressive power?

(1) — (1) p=1) (7) (r—1)
hu—0<W WD+ W ) h )

self U neig
vEN(1)
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A Journey into Model
Representation Capacity



Model Representation Capacity

Expressive power: Capacity of a model (e.g., neural network) to approximate functions.

Feedforward networks: MLPs can approximate any continuous function f on a compact domain: for any
such function, there is a for an MLP, corresponding to an approximation of the

function (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989).
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Model Representation Capacity
o — |
X

\

Expressive Power in the World of Graphs: One way of characterizing the expressive power would be
through . Learn Z, Zy for graphs G and H-

2z, =12y ifand only it G is to H
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Model Representation Capacity

Problem: Contains graph isomorphism \ /
testing, an NP-intermediate problem, \

where the best algorithm requires quasi-
polynomial time (Babai, 2016).

Expressive Power in the World of Graphs: One way of characterizing the expressive power would be
through . Learn Z, Zy for graphs G and H-

2z, =12y ifand only it G is to H
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Model Representation Capacity

Problem: Contains graph isomorphism \ / Question: Where do MPNNs
testing, an NP-intermediate problem, \ stand in graph distinguishability?

where the best algorithm requires quasi-
polynomial time (Babai, 2016).

Expressive Power in the World of Graphs: One way of characterizing the expressive power would be
through . Learn Z, Zy for graphs G and H-

2z, =12y ifand only it G is to H

73



A Tale of Two Graphs

G G,

NN C )

Problem: Any MPNN will learn representations for the graphs G; and G,.
MPNNSs between two triangles and a 6-cycle: severe limitation for graph classification!
Predictions for these graphs will be regardless of the function we are trying to learn!

Is this only a problem for graph classification?
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A Tale of Two Graphs

G, G,
00— / N
\‘ \‘ AN /

Separator: A node is a if it has two neighbors which are non-adjacent to one another.
Input: Consider the graph G that is the disjoint union of the graphs G, and G,.
Node classification task: Classify the nodes of G as separator or non-separator.

An MPNN randomly predicts 2!l nodes to be separator nodes, or all of them as non-separator nodes.
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A Tale of Two Graphs

Gl GZ
_ — / AN
\ ‘ \ ‘ AN /
All nodes are non-separator

Separator: A node is a if it has two neighbors which are non-adjacent to one another.
Input: Consider the graph G that is the disjoint union of the graphs G, and G,.
Node classification task: Classify the nodes of G as separator or non-separator.

An MPNN randomly predicts 2!l nodes to be separator nodes, or all of them as non-separator nodes.
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A Tale of Two Graphs

G G,

NN C )

All nodes are non-separator All nodes are separator

Separator: A node is a if it has two neighbors which are non-adjacent to one another.
Input: Consider the graph G that is the disjoint union of the graphs G, and G,.
Node classification task: Classify the nodes of G as separator or non-separator.

An MPNN randomly predicts 2!l nodes to be separator nodes, or all of them as non-separator nodes.
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Graph Isomorphism and Color
Refinement




Color Refinement

is a simple and effective algorithm for graph isomorphism testing:

1. Initialization: All nodes in a graph are initialized to their
2. Refinement: All nodes are re-colored depending on their and the

3. Stop: Terminate when the coloring
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Color Refinement: Example




Color Refinement: Example




Color Refinement: Example
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Color Refinement: Example

(Y.{1B}}) (Y.{1B}})

3 4 3
(Y.{{R, (Y.1{R, B}})

5
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Color Refinement: Example

(Y.{1B}}) (B.A1Y.Y.Y.R}}) (Y.{1B}})

1 2 1

3 4 3
(Y.{{R, (Y.1{R, B}})
5

(B.1R, Y}})
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Color Refinement: Example

(Y.{1B}}) (B.A1Y.Y.Y.R}}) (Y.{1B}})

1 2

1

(RA{1Y.Y,B,B}})

A

3 3

(Y.{1R, B}})

(Y.{1R, B}})

5
(B.A1R, Y}})
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Color Refinement: Example

(Y.{1B}}) (B.A1Y.Y.Y.R}}) (Y.{1B}})

1 2

(R{{Y.Y,B,B}}) \
3 4
(Y. {{R, (Y.1{R, B}}) \

5

(B.1R, Y}})
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Color Refinement: Example

(Y.{1B}}) (B.A1Y.Y.Y.R}}) (Y.{1B}}) (1.{{2}}) (1412}})

1 2

1

(RA{1Y.Y,B,B}})

A

3 3

(Y.{1R, B}})

(Y.{1R, B}})

5
(B.A1R, Y}})
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Color Refinement: Example

(Y.{1B}}) (B.A1Y.Y.Y.R}}) (Y.{1B}}) (1.{{2}}) (1412}})

1 2

1

(RA{1Y.Y,B,B}})

A

3 3

(Y.{1R, B}}) (3.4{4. 5}})

(3,412, 4}})

(Y.{1R, B}})

5
(B.A1R, Y}})

78



Color Refinement: Example

(Y.{1B}}) (B.A1Y.Y.Y.R}}) (Y.{1B}}) (1.{12}}) (2111,1.3,4} }) (1412}})

1 2

1

(RA{1Y.Y,B,B}}) (4.{{2.3.3,5}})

A

3 3

(Y.{1R, B}}) (3.4{4. 5}}) (3,12, 4}})

(Y.{1R, B}})

5
(B.A1R, Y}})

(5,413, 4}})
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Color Refinement: Example

Two graphs: Node color classes differ for these graphs - color refinement can distinguish...
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Color Refinement

Given a graph G = (V, E) and a set C of colors, we define a over the nodes of the graph:
A: Ve C

Each such A the nodes of the graph and hence induces a of VG into
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Color Refinement

Refinement: A coloring A a coloring A’, denoted as A < A, if for any u,v € V., the following holds:

A(u) = A(v) implies A' (1) = A'(v)

Equivalence: A coloring A is to a coloring A, denoted as A = A', ifand only if A < A" and 4" < 4.
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Color Refinement

We respect the following notation:
e We can apply this function to different graphs, and therefore we will write A(G)(u) instead of A(11).

e We also need to refer to different coloring functions (at different iterations), which will be denoted by A”(G)(1).
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Color Refinement

Input: A graph G = (V;, E;) with an initial coloring 219(G) - Ve = C.
1. Initialization: All nodes u € V; are to their initial colors AY(G)(u).

2. Refinement: All nodes u € V; are recursively
A6 ) = 7(A2G)w), {A(G)W) | v € Nw)}} ).

where double-braces denote a , and 7 bijectively maps any (composed of a color and a
multiset of colors) to a unique color.

3. Stop: The algorithm terminates at iteration j, where j is the integer satisfying:

Vu,v € Vs : AVT(G)(w) = AVTD(G)(v) if and only if AV(G)(u) = AYV(G)(v).
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Color Refinement: Graph-Level

To apply the color refinement algorithm for isomorphism testing, we need graph-level colors:
MG = 2({AG)(w) | u € Vs}})

Colour refinement can then be used to graphs. In particular, we can state the following:

G and H are A(G) # A)(H) for stable colorings AY and 1.
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Color Refinement

Soundness: Color refinement is for non-isomorphism checking: whenever it returns yes for two

graphs G and H, they are non-isomorphic.

Incompleteness: Colour refinement is for non-isomorphism checking: even it G and H
agree in every color class size in the stable coloring, the graphs might not be isomorphic.
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1-WL Algorithm for Graph Isomorphism Testing

G \ ‘ | | G,

1-dimensional Weisfeiler Lehman algorithm (1-WL): A popular algorithm for graph isomorphism testing.
1-WL is very similar to color refinement, where the refinement considers both and
w . . .
Wi TG W) = (WG @), {{WIP(G)W) | v € N}, {HwI(GY0) | v € VE\N @)1} )

Remark: 1-WL and color refinement coincide on the graph-level:

wl(G)) # wl’(G,) and 2(G)) # 1(G,)
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1-WL Algorithm for Graph Isomorphism Testing

G \ ‘ | | G,

1-dimensional Weisfeiler Lehman algorithm (1-WL): A popular algorithm for graph isomorphism testing.
1-WL is very similar to color refinement, where the refinement considers both and
1 . . .
Wi TA(G) () = (W (G) @), {{WIP(G)) | v € Napl}, {wl(G)) | v € Va\Nw)}})
Remark: They are different when we look at node-level refinements on different graphs:

W(G)(w) # WID(Gy)(v) while 20(G))(u) = AD(G,)(v)
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Expressive Power of MPNNSs



Color Refinement: Example

and aggregate information from the neighborhoods and accordingly:

= ¢ (BS,u (n0, {{hSD v e N ) )

MPNN layers are feature maps over graphs: VG and V¢, 1 <t < L, we have the mapping

Taking this perspective, we can view as an abbreviation of
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Color Refinement: Example

Ne N

and aggregate information from the neighborhoods and accordingly:

= ¢ (BS,u (n0, {{hSD v e N ) )

AF(G)w) = (4G W), {ANG)() | v € Nw)}} )
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Color Refinement: Example

Ne N

Can we view the of the color refinement algorithm as the of an MPNN?

= ¢ (BS,u (n0, {{hSD v e N ) )

AF(G)w) = (4G W), {ANG)() | v € Nw)}} )
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An Upper Bound for Expressiveness of MPNNs

NN C )

Theorem ([Morris et al., 2019, Xu et al., 2019]). Consider any MPNN that consists of k message-passing layers:

W = 0 (00 D, (0 v € M)

Given a graph G = (V, E, X) with only discrete input features hg)) =X, € Zd, we have that
hlgk) ?é h‘(}k)only if the nodes u and v in G have different labels after k iterations of the 1-WL algorithm.

92



An Upper Bound for Expressiveness of MPNNs

<~ C )

MPNNSs are as powerful as the 1-WL test:

e |f the 1-WL algorithm assigns the , then any MPNN will also assign the

e |f the 1-WL test cannot distinguish between two graphs, then an MPNN is also incapable of
distinguishing between these two graphs.
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A Lower Bound for Expressiveness of MPNNs

o 0— /N
AN

DN Y

Theorem ([Morris et al., 2019, Xu et al., 2019]). Given a graph G = (V, E, X), there exists an MPNN such that

hl(/tk) . h‘(/k) if and only if the two nodes u and v in G have the same label after k iterations of the 1-WL
algorithm. In particular, the basic MPNN model is as powerful as 1-WL.:

h() = a(W@ hi-Dewe Y hg—D)

self U neigh
vEN(u)
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Summary and Outlook

~—

Expressive power of
GNNs

Message passing neural
networks

Graph representation
learning

Graphs and inductive
biases
1-WL

Encoder decoder GCN, GAT, GIN

Relational data
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Summary and Outlook

~—

Expressive power of
GNNs

Message passing neural
networks

Graph representation
learning

Graphs and inductive

biases

Relational data Encoder decoder GCN, GAT, GIN 1-WL

\/V

A Journey into Graph Representation Learning

e |nductive learning via MPNNs.
e Expressiveness limitations are at the origin of many other problems.
e Expressiveness studies: uniformity conditions are necessary.

e Other limitations: related to information bottlenecks.
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