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- “spatial” approaches enabled by message passing
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https://www.cs.mcgill.ca/“wlh/grl _book/
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- https://pytorch-geometric.readthedocs.io/en/latest/
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Networks are pervasive

traffic network

social network

brain network

networks are mathematically represented by graphs

5/66



The field of network science

graph
clustering

node
centrality

Regular Small-world

random graph
models

Increasing randomness

primarily focused on graphs (edge relations) but not node attributes

Watts and Strogatz, “Collective dynamics of ‘small-world" networks,” Nature, 1998.
Newman, “Networks: An introduction,” Oxford University Press, 2010. 6/66



Graph-structured data are pervasive

congestion in road junctions preferences of individuals activities in brain regions

from graphs to graph-structured data
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Learning with graph-structured data
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Learning with graph-structured data

fake news detection

traffic prediction

Growth

[antibiotic]
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Monti et al., “Fake news detection on social media using geometric deep learning,” ICLR Workshop, 2019.

Stokes et al., “A deep learning approach to antibiotic discovery,” Cell, 2020.

Derrow-Pinion et al., “ETA prediction with graph neural networks in Google Maps,” CIKM, 2021.
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Classical ML vs Graph ML

Classical ML

Graph ML

-

regular domain
(real line, 2D grid)
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irregular domain )
(graphs)
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time series
forecasting

image
classification/
segmentation
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node classification

link prediction

graph classification

graph clustering

J
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How to incorporate graphs into learning?

Traditional machine learning on graphs
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e Limitations

- hand-crafted features or optimised embeddings, often focused on graph structure
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How to incorporate graphs into learning?

e Traditional machine learning on graphs

Sl traditional ML
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srap embeddings features

e Limitations
- hand-crafted features or optimised embeddings, often focused on graph structure

- respect notion of “closeness” in the graph, but do not adapt to downstream tasks

- can incorporate additional node features, but in a mechanical way
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How to incorporate graphs into learning?

e Graph machine learning
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graph node features learned embeddings tasks

e Advantages

- naturally combine graph structure and node features in analysis and learning

= new tools: graph signal processing, graph neural networks
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How to incorporate graphs into learning?

e Graph machine learning

=S graph ML
c.o
. 3 e
(?;\r,‘ a5 9,1
C93_—:.\\ / =2 : :
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graph node features learned embeddings tasks

e Advantages
- naturally combine graph structure and node features in analysis and learning

= new tools: graph signal processing, graph neural networks

- embeddings can adapt to downstream tasks and be trained in end-to-end fashion

- offers more flexibility and enables “deeper” architectures and embeddings
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Graph signal processing

e Graph-structured data can be represented by graph signals

= {V,¢} RY f:V—R

a2 -

takes into account both structure (edges) and data

(values at nodes)
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Graph signal processing

1D signal 2D signal graph signal

how to generalise classical signal processing tools on
irregular domains such as graphs?
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Graph signal processing

1.0
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classical signal processing

- complex exponentials provide
“building blocks” of 1D signal
(different oscillations or frequencies)

- leads to Fourier transform

- enables filtering and convolution
on regular grids

graph signal processing

- Laplacian eigenvectors provide
“building blocks” of graph signal
(different oscillation or frequencies)

- leads to graph Fourier transform

- enables filtering and convolution
on graphs
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Convolutional neural networks on graphs

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Input graph signals > Feature extraction - Classification - Output signals

e.g. bags of words Convolutional layers Fully connected layers e.g. labels

o
+

Graph signal filtering \*. Graph coarsening
1. Convolution () '. 3. Sub-sampling
2. Non-linear activation % 4. Pooling
0=/\1</\</\1\,1,_1 .
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(More generally) Graph neural networks

GNN Spectral CNN PATCHY-SAN GCN GraphSAGE GAT CayleyNet GIN
Gori et al. Bruna et al. Niepert et al.  Kipf and Welling Hamilton et al.  Velickovi¢ et al. Levie et al. Xu et al.

2005 2009 2014 2016 2016 2016 2017 201r 2017 2017 2018 2018 2019 2019 2019 2019

GNN Gated GNN ChebNet MPNN MoNet GN CNNs on graphs SGN
Scarselli et al. Li et al. Defferrard et al. Gilmer et al. Monti et al. Battaglia et al. Gama et al. Wu et al.

B spectral (GSP) approach [l spatial approach
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Graph Machine Learning

e Overview of graph machine learning

e Convolutional neural networks on graphs

- “spectral’ approaches enabled by graph signal processing

e State-of-the-art graph neural networks
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CNNSs exploit structure within data

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

checklist

convolution: translation equivariance

localisation: compact filters

multi-scale: compositionality

efficiency: O(NN) computational complexity

https://en.wikipedia.org/wiki/File: Typical cnn.png 18/66
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CNNs on graphs?

checklist

convolution: how to define convolution? what about invariance?

localisation: what is the notion of locality?

multi-scale: how to down-sample on graphs?

efficiency: how to keep computational complexity low?
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Convolution on graphs

classical convolution

time domain

(f*g)(t / ft—m7)g(r)dr

Dumoulin and Visin, “A guide to convolution arithmetic for deep learning,” arXiv, 2018. 20/66
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classical convolution

time domain
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Convolution on graphs

classical convolution convolution on graphs

time domain

(f*g)(t / f(t—7)g(r)dr

Dumoulin and Visin, “A guide to convolution arithmetic for deep learning,” arXiv, 2018. 20/66



Convolution on graphs

classical convolution convolution on graphs

time domain

(f gt / 1t —7)g
4

frequency domain

(f*9)(w) = f(w) - §(w)

Dumoulin and Visin, “A guide to convolution arithmetic for deep learning,” arXiv, 2018. 20/66



Convolution on graphs

classical convolution convolution on graphs

time domain

(f gt / 1t —7)g
4

frequency domain

)

(f*9)(w) = f(w) - §(w)

Dumoulin and Visin, “A guide to convolution arithmetic for deep learning,” arXiv, 2018. 20/66
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Graph Laplacian

weighted and undirected graph:

V3 g — {va}
U1 U3 4 D = diag(d(v1),--- ,d(vn))

)’ L=D—-W equivalent to G!

V9 V4 5 L o
000000 0100000 0 1 -1 0 0 0 0 0 0 :
00000 0 /10100100\ (—1 3 -1 0 0 -1 0 0\ e symmetric
40000 0 010107110 0 -1 4 -1 0 -1 -1 0
02000 0 00101000] __]lo0o 0o -1 2 -1 0 0 o0 o 1 ' _ e
Dz ool oot e 000 — 0 0 L2 oL 000 off-diagonal entries non-positive
000400 011010710 0 -1 -1 0 -1 4 -1 0
000030 00100101 0 0 -1 0 0 -1 3 -1 e rows sum up to zero
0000O0O0°1 \0 0 0000 1 0/ \o 0 0 0 0 0 -1 1)

3
=
~
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Graph Laplacian

graph signal f : ) — R

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 22/66



Graph Laplacian

graph signal f : ) — R

0 -1 -1 0 -1 4 -1 (6
0 0 -1 0 0 -1 1| | F(7
\o 0 0 0 0 0 -1 1) \f(s/

Lf(i) = Z Wi; (f (@) — £(5))

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 22/66



Graph Laplacian

graph signal f : ) — R

T
1 -1 0 0 0 0 0 0 £(1) £(1) 1 -1 0 0 0 0 0 0 £(1)
(—1 3 -1 0 0 -1 0 o\ (f(Q)\ /f(Q)\ (—1 3 -1 0 0 -1 0 0\ (f(2)\
0 -1 4 -1 0 -1 -1 0 7(3) £(3) 0 -1 4 -1 0 -1 -1 0 £(3)
0 0 -1 2 -1 0 0 0 f(4) £(4) 0 0 -1 2 -1 0 0 O £(4)
0 0 0 -1 2 -1 0 0 f(5) £(5) 0 0 0 -1 2 -1 0 O F(5)
0 -1 -1 0 -1 4 -1 0 £(6) £(6) 0 -1 -1 0 -1 4 -1 0 7(6)
o 0 -1 0 o -1 3 —1|/{re £(7) 0o 0 -1 0 0 -1 3 —1|/|7£®
\o 0 0 0 0o 0 -1 1) \s®) \/®)/) \o 0o 0o o o o -1 1) \5®)
N
N . . T . AN 2
Lf(i) = E Wi () — f(5)) foLf = § Wii (f () = F(J))
7=1 1,7=1

a measure of “smoothness”

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 22/66



Graph Laplacian

[’09 Pg
nr nr
1 05 -1 -05 1 05 -1 -05

ffLf=1 frLf =21
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx”

- X(?_-

T
L Xyi— -

XT
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx”

- X(?_-

T
L Xyi— -

XT

Eigenvalues are usually sorted increasingly: 0 = A\g < Ay < ... < An_1
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Graph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.



Graph Fourier transform

e AN s
(=
e
LN M2

N/ N2 e
“4.@-“ )
< S

X50
low frequency high frequency S
ngxO =X =0 XgoLX5o = As0

e Eigenvectors associated with smaller eigenvalues have values that vary less rapidly
along the edges

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 25/66



raph Fourier transform

e AN s

&
-
S

e
- =

low frequency high frequency S
ngxO =X =0 ><5TOL><50 = As0

graph Fourier transform:
- AT

FOO ={xe,f): [ Xo - Xai| f

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 25/66



raph Fourier transform

ra A

low frequency high frequency S
ngxO =X =0 XgoLX5o = As0
graph Fourier transform:
_ _ T‘ O
FO = e f): [ Xo o Xy £ == T
_ I L[ L] >
AOAT A2 A3 A+ 0 AN
low frequency high frequency

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 25/66



Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxs = Apxy
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxs = Apxy

one-dimensional Laplace operator: —V/?

4

eigenfunctions: e7%%

Classical FT: f(w) = / (e79%)* f(z)dz

fla)= o / F(w)e™= duw
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Ly,

one-dimensional Laplace operator: —V/? . graph Laplacian: L
eigenfunctions: /%% E eigenvectors: X/

‘ i ‘ f:V%RN
Classical FT:  f(w) = / (7)Y f(2)dz & Graph FT: F(£) = (xo. f) —

N—-1

= AoXe

N

ZXZ

fo) = 5 [ Fper o F6) = 3 F0xli

¢=0
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxs = Apxy

one-dimensional Laplace operator: —V/? . graph Laplacian: L

4

eigenfunctions: e7%%

4

Classical FT: f(w) = ﬂteij)*uf(ﬂf)‘dib ; Graph FT: f(f) = (X0, f) = Z ]
f(x) = %/f(w)eijdwi i) = 2_: F(0)xe (i)

4

' eigenvectors: X/

‘ f:V->RY

=
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Example on movie rating

O amOL 2—@-A
(2.75) X k +X k
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MO0 amOL
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4 @) D) &
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Example on movie rating
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Classical frequency filtering

Classical FT:  f(w) :/(ej“"’)*f(x)dx f(z) = %/f’(w)ejmdw
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Classical frequency filtering

Classical FT:

fw)

FT

=)

[y t@de f@) =5 [ fued

]ﬁ

(W)

g(w)

=)

(@) f(w)

IFT

=)

f*g
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Classical frequency filtering

Classical FT:

fw)

FT

[y t@de f@) =5 [ fued

=)

Jﬁ

(W)

=)

(@) f(w)

[ [T

IFT

=)

f*g
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Graph spectral filtering

GFT: F(0) = (xe, f) = ng i)y =3 F(0)xei)
=0
GFT G(Ae) IGFT _
f ol mp | fo) m | g\)fE) = 0= i
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Graph spectral filtering

........
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Graph spectral filtering

GFT: f(0) = (xe. ) =) _xi(i)f(i)  f(i) =D F(O)xe(i)

1=1 ¢=0

GFT IGFT
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NN, T | s
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0.50 - | ¥
o2 ’, ""”\“% -0.25
0.25 = ="\
0.00 0.0 1 ~0.50
0 2 4 6 8 10 12 ' 0 2 4 6 8 0 12 14 0.0 0.2 0.4 0.6 0.8
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Graph spectral filtering

N-—-1

GFT: f(€)=<x£,f>=ZxZ(i)f(i) FG@) = f(O)xe(i)

¢=0

GFT @ IGFT

fo| = T gA)X" f | = xg(A)x f

[G(Mo) 0 ] g(L): function of L!
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Example on movie rating
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Example on movie rating

O amOL MO0 amOL:
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ee ;

. Q—@* 2 G—=
@ [N @ [N
Youn of Yora of

2 (—D= 2 @Q—0®>
(25) X lll..b -+ (-0.67) X lII..b
JOmOF 2(D—D2
(3)

3) 4 2—A O amOL
+O k +@ x k
AO)—D) 4 AO—D) &

30/66



Convolution on graphs

classical convolution convolution on graphs

time domain

(f gt / 1t —7)g
4

frequency domain
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Convolution on graphs

classical convolution convolution on graphs

time domain

(f gt / 1t —7)g
4

frequency domain : graph spectral domain

(f*g)(w) = f(w) - g(w) v (frg) )= (T Hoeg)(N)
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Convolution on graphs

classical convolution convolution on graphs
time domain : spatial (node) domain

Fro) = [ rie=mg L frg=xg(AXTf = §(D)f
frequency domain E graph spectral domain

(f*g)(w) = f(w) - g(w) v (frg) )= (T Hoeg)(N)
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Convolution on graphs

classical convolution convolution on graphs
time domain : spatial (node) domain
E A h convolution
(f*g)(t / flt—1)g v frg=xg(M)X" f=g9(L)f _ o
' = filtering
frequency domain E graph spectral domain

(f*g)(w) = f(w) - g(w) v (frg) )= (T Hoeg)(N)
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A non-parametric filter

Frg=xgN)x"f=9(L)f

4

learning a non-parametric filter:

0.6
0.4 4

Go(A) = diag(9), 0 € RN - 0,

0.0 4

Bruna et al., “Spectral networks and deep locally connected networks on graphs,” ICLR, 2014. 32/66



A non-parametric filter

Frg=xgN)x"f=9(L)f

4

learning a non-parametric filter:

0.6
0.4 4

Go(A) = diag(9), 0 € RN - 0,

0.0 4

- convolution expressed in the graph spectral domain
- no localisation in the spatial (node) domain

- computationally expensive (e.g., eigendecomposition)

Bruna et al., “Spectral networks and deep locally connected networks on graphs,” ICLR, 2014. 32/66



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K
go(N) =D _0;X, 0 € RFH! =) Go(L) =3 6,17

j=0 j=0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
go(N) =) _60;X, 6 e RFH! —> go(L) = Zej@
=0

j=0

what do powers of graph Laplacian capture?

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 33/66



Powers of graph Laplacian

L* defines the k-neighborhood

LO L1 L2 L3 L4
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0 -il I I I I 0 -*=. =I I I I 0 II I I 0 EEEEEEER i:l I
5 - l-.- 5 .-IIEE-I.. 5 S 5 S
10 - 104 =, "ms "w, 10 10
15 - 15 - 15 15
20 1 20 1 e 20 20 £
1 1 1 T L] .. 1 L 1 T ..I .='= L] ] 1 I...l "33 “aan
IL%6g| > 0 IL166| > 0 IL466| > 0
® 6 6 0 O ?— sl =l=l=
[\ <A</ |
EXE XX S5 SRS,
\ARRAANK! |
o0 000 ShEaT O
S e ees S S
| “'» XA '—
® 6 06 0 O
[|W°||o = 0 edges ||W?||o =40 edges [|W?2||o = 62 edges [|W3]|o = 108 edges [|W*||o = 122 edges
T : : K (source: M. Deferrard)
Localization: dg(v;, vj) > K implies (L"); =0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K
go(N) =D _0;X, 0 € RFH! =) Go(L) =3 0,17

j=0 j=0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
Go(N) =) _0;M, 0 € RFH! ) Go(L) = 0,1
J=0

i=0

- localisation within K-hop
neighbourhood

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 35/66



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
Go(N) =) _0;M, 0 € RFH! ) Go(L) = 0,1
J=0

i=0

- localisation within K-hop
neighbourhood

- Chebyshev approximation for efficient
computation via recursive multiplication

- scaled Laplacian for stability
in learning

35/66

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.



A simplified parametric filter

f kg = Xﬁ(A)XTf _ §(L)f fnormalised Llaplaci?n A
Loorm = D" 2LD™=

‘ — D 3(D - W)D"3
—[—-D WD~

. _ u =1 — WnormJ
simplified parametric filter K1

N

normalised Laplacian

K
go(L) = Zﬁij — =00l — (D ZWD?)
j=0

(localisation within 1-hop neighbourhood)
K=1

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 36/66



A simplified parametric filter

f kg = Xﬁ(A)XTf _ §(L)f Knormalised Llaplaci?n A
Loorm = D" 2LD™=

‘ — D 3(D - W)D"3
—[—-D WD~

. _ u =1 — Wnormj
simplified parametric filter K1

N

normalised Laplacian

K
go(L) = Zﬁij — =00l — (D ZWD?)
j=0

(localisation within 1-hop neighbourhood)

KZl 042(90:—61
% -

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 36/66



A simplified parametric filter

K L] L]

normalised Laplacian
xg=x0(Mx' f=g(L

frg=x9(M)x"f=g(L)f R

‘ — D 3(D-W)D"

—J—-D WD 2 =1 Wi
\_ ")

simplified parametric filter K1

K | normalised Laplacian
go(L) = ZQjLJ — =60yl — 0, (D" 2WD™2)
j=0

(localisation within 1-hop neighbourhood)

K=1

o = (90 = —61
mmmmm) ol +D WD 2)
renormalisation

mmm) = (D WD)

renormalisation
W=W+I D=D+1I

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 36/66




A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter

ja(L) =a(I+D WD 3)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 37/66



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) =a(I+ D 2WD"2)

#

1
f Z) b

J

Yi = of;

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 37/66



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) =a(I+D WD 3)

1 1
yz‘ZOémeOé\/dfi Z wz‘jﬁfj

7:(4,)€E

‘ unitary edge weights

1
yi:@fi+104 Z fi

j:(4,5)€E

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 37/66



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) = a(l + D 2WD™?)

4

1 1

\/—] (2,5)€E \/_

‘ unitary edge weights

Yi = af;

1
inOéfi+ZOé Z fi

g:(4,7)€E

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 37/66



Convolution on graphs - Remarks

e Convolution is defined via the graph spectral domain..

frg=x9Mx"f=a(L)f
e ..but can be implemented in the spatial (node) domain
- simplified filter: y = go(L)f = a(ﬁ—%ﬁ/ﬁ—%)f

- interpretation: at each layer nodes exchange information in 1-hop neighbourhood

- general filter: receptive field size determined by degree of polynomial

38/66



Convolution on graphs - Remarks

e Convolution is defined via the graph spectral domain..

frg=x9Mx"f=a(L)f
e ..but can be implemented in the spatial (node) domain
- simplified filter: y = go(L)f = a(ﬁ—%ﬁ/ﬁ—%)f

- interpretation: at each layer nodes exchange information in 1-hop neighbourhood

- general filter: receptive field size determined by degree of polynomial

e Other possibilities exist (e.g., a direct spatial approach)

38/66



ChebNet

Graph
Ex: social, biological,
telecommunication graphs

reR"
|
.’13'1':0 = R"t=0

Input signal
on graphs

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 39/66



ChebNet

Spectral Filters
O(K) parameters ;\‘\ \;b”
O(E.K) operations (GPUs) o/

Graph \
Ex: social, biological, ‘:\l\_ $
telecommunication graphs .<:ig>o/

xeR" pot
|
=0 F
xl:O e R"=0 ;Eg € R"oM1
91 =1 = RK 1 Fy
Input signal Graph convolutional layers
on graphs (extract local stationary features on graphs)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 39/66



ChebNet

Q
I

Relu activation
+

Spectral Filters Graph coarsening
O(K) parameters Factor 2P
O(E.K) operations (GPUs) Pre-computed

+
Pooling (Gpus)

Ex: social, biological,
telecommunication graphs

2 RNV RNVA
ANNANNANN

xr e R"
|
= Ny / 2p !
Input signal Graph convolutional layers
on graphs (extract local stationary features on graphs)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 39/66



ChebNet

Relu activation
+

Spectral Filters Graph coarsening
O(K) parameters Factor 2P
O(E.K) operations (GPUs) Pre-computed

+
Pooling (Gpus)

/N 7T\ /1N

O\\
/\

(Y X ]
o ® @
<T o) o)
® ' Output signal
Ex: social, biological, [<:’[7 CIsEs Iabe;:
telecommunication graphs y - R ¢
xr e ]Rn “@7 Hl—G = Rnsn(_
| _ <T =5 ns Fs
=0 ¢ R™M=0 R0 z=  eRMD | xl 5 © RK F,...F
Input signal Graph convolutional layers Fully connected layers
on graphs (extract local stationary features on graphs)
Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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Graph convolutional network

Go+v) (L) (RGLU(%(m (L)f))

Input

X =H

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 40/66



Graph convolutional network

gou-rn (L) (ReLU (GRNEND)

Hidden layer
e a

-

°
r 2
°
°
°
¢ N o
o ® e
® o
°

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 40/66



Graph convolutional network

Hidden layer

A

20

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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Hidden layer

Vs

\ 4

~

Hidden layer

Graph convolutional network

-

~

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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Graph convolutional network

Hidden layer Hidden layer
Input ® o ® o Output
. '. RelLU RelLU ..
)\ o ® "l e : @ ’ - e o °
¢ ® o ¢ 0() ¢ 0() ¢ * o
X = H(O) o ° 7 — H(N)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 40/66



Graph convolutional network

HD — 4 ( AH(Dw(‘))

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 40/66



Implementing CNNs on graphs

e Node-level task

- cross-entropy loss function for (semi-supervised) node classification

F
L::— }/lfanlf

/

set of labelled
(training) nodes

label prediction (final layer
node representation)
label groundtruth

- training by minimising loss function and making predictions on testing nodes
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Implementing CNNs on graphs

e Node-level task

- cross-entropy loss function for (semi-supervised) node classification

F
L=— Ylfanlf

/

set of labelled
(training) nodes

label prediction (final layer
node representation)
label groundtruth

- training by minimising loss function and making predictions on testing nodes

e Factors influencing model behaviour

- graph connectivity, label distribution, neural architecture, training dynamics

41/66



Graph Machine Learning

Overview of graph machine learning

Convolutional neural networks on graphs

- “spectral” approaches enabled by graph signal processing

State-of-the-art graph neural networks

- “spatial’ approaches enabled by message passing

Latest developments and applications

42/66



A look into invariance

e Permutation equivariance: function equivariant w.r.t. permutation

(permutation of input should lead to same permutation of output)

U7
Uy
P v3 ﬁ
Vo V4 Us

X

PX

|44

Pw Pt

=

f(PX,PWP)

X, W)

=Pf(X, W)

=
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A look into invariance

e Permutation equivariance: function equivariant w.r.t. permutation
(permutation of input should lead to same permutation of output)

U7 X |14 f(X7 W)

v v 4 (F

1 3
(1111 (T
DN— =
v v5 T EREEEE
2 (W]
f(PX,PWPh)

v PX PwW Pt —PHX.)

U1 (3 .8
y 1111 » T

() Uy 5

e Spectral GNNSs: gy(L) is permutation equivariant because it acts on local
neighbourhood and its behaviour is invariant to permutation

43/66



GNNs - A spatial approach

e Graph convolution can also be defined in spatial (node) domain

via a graph shift operator ~ EEp S = Z 0,.S*x
via a spatial weighted summation » (x * g)( Z x(v
v'eV

Isufi et al., “Graph filters for signal processing and machine learning on graphs,” IEEE TSP, 2024.
Walker and Glocker, “Graph convolutional Gaussian processes,” ICML, 2019.
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GNNs - A spatial approach

e Graph convolution can also be defined in spatial (node) domain

via a graph shift operator ~ EEp S = Z 0,.S*x
via a spatial weighted summation » (x * g)( Z x(v
v'eV

e Common idea: nodes exchange information locally, which can be
summarised into a basic form

JEN;

[rd
U8
vs , hl—l_l (Wlelfhl + Wlelgh Z hl)
- .
(oY v

(%)

Isufi et al., “Graph filters for signal processing and machine learning on graphs,” IEEE TSP, 2024.
Walker and Glocker, “Graph convolutional Gaussian processes,” ICML, 2019. 44/66



GNNs - A spatial approach

e Graph convolution can also be defined in spatial (node) domain

via a graph shift operator ~ EEp S = Z 0,.S*x
via a spatial weighted summation » (x * g)( Z x(v v')
v' eV

e Common idea: nodes exchange information locally, which can be
summarised into a basic form

U7 self information neighbour information

[+1
hz' T el@+ neigh )
JEN;
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GNNs - A spatial approach

e Graph convolution can also be defined in spatial (node) domain

via a graph shift operator ~ EEp S = Z 0,.S*x
via a spatial weighted summation » (x * g)( Z x(v v')
v' eV

e Common idea: nodes exchange information locally, which can be
summarised into a basic form

U7 self information neighbour information

[+1 _ Q ;
hz' _ el@+ nelgh )

Iocal neighbourhood

permutation invariant

Isufi et al., “Graph filters for signal processing and machine learning on graphs,” IEEE TSP, 2024.
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GNNs - A spatial approach

e Graph convolution can also be defined in spatial (node) domain

via a graph shift operator ~ EEp S = Z 0,.S*x
via a spatial weighted summation » (x * g)( Z x(v v')
v' eV

e Common idea: nodes exchange information locally, which can be
summarised into a basic form

self information neighbour information

[+1 __ [ [
J

learnable parameters local neighbourhood

permutation invariant

Isufi et al., “Graph filters for signal processing and machine learning on graphs,” IEEE TSP, 2024.
Walker and Glocker, “Graph convolutional Gaussian processes,” ICML, 2019. 44/66



Message passing neural networks

Gilmer et al., “Neural message passing for quantum chemistry,” ICML, 2017. 45/66



Message passing neural networks

message function

hitl = @ (ht, hl
jEN

- nodes exchange messages with local neighbours

Gilmer et al., “Neural message passing for quantum chemistry,” ICML, 2017. 45/66



Message passing neural networks

update function message function

h,li+1 Q@(hl hl

aggregator function

- nodes exchange messages with local neighbours

- each node aggregates messages from its neighbours before
updating its representation

Gilmer et al., “Neural message passing for quantum chemistry,” ICML, 2017. 45/66



Message passing neural networks

update function message function

h,li+1 Q@ hl hl )

aggregator function

- nodes exchange messages with local neighbours

- each node aggregates messages from its neighbours before
updating its representation

- functions are differentiable and parameters are learned by
minimising loss of downstream task (e.g., classification)

- key difference between architectures: how nodes aggregate
information from neighbours and across layers

Gilmer et al., “Neural message passing for quantum chemistry,” ICML, 2017. 45/66



MPNNSs - A simple example

U1 U3 : u8
‘ 4 .
"'ii!l..-iill
U2 (! v5

welghted sum sum

5 @
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MPNNSs - A simple example

U1 U3 : u8
‘ 4 .
||||iiglllliilll
U2 (! v5

welghted sum sum

-4 S

it _thl + 6! Z ht
FjEN;
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MPNNSs - A simple example

one message passing layer

[h?1=9y4+994 ]

welghted sum sum

hl+1—9lhl—|—9 Z hl
JEN;
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MPNNSs - A simple example

one message passing layer
i = 6phl + 61k,

[R5 = obnk + 0+ B+ B )

welghted sum sum

-4 S

hl+1—9lhl—|—9 Z hl
JEN;
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MPNNSs - A simple example

one message passing layer
i = 6phl + 61k,
A5t = 0hnh + 0t (Y + Rl + AL)

@;1 = 0 hs + 0L (RY + BY + AL + héD

welghted sum sum

-4 S

hl+1—9lhl—|—9 Z hl
JEN;
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MPNNSs - A simple example

welghted sum sum

-4 S

hitt = eghg +60 ) K

JEN;

one message passing layer
i = 6phl + 61k,
Aot = 0 hh + 0L (kL + R + AL)
Cth _ gLhL + 6!

(
1(
hitt = 0Lhk + 64 (R
(
(

+ hi)
+ h)
hitt = OLh + 64 (Y + Ry + AL 4+ RBb)

hl—|—hl—|—hl—|—th
hytt = 0phk + 01 ()

Aot = obnb + 6L (RY + hL + hL)
At = ohnk 4 64 bl

final output after L layers

Z = {hy,hy,h3 by, by he, hy hg}

46,66



Graph isomorphism network

e Motivation: introduce a way of defining expressive power of MPNNs

- e.g., for graph classification, what kinds of graphs can they distinguish?

Xu et al., "How powerful are graph neural networks?,” ICLR, 20109. 47/66



Graph isomorphism network

e Motivation: introduce a way of defining expressive power of MPNNs
- e.g., for graph classification, what kinds of graphs can they distinguish?

e Inspiration from the Weisfeiler-Lehman test for graph isomorphism
(whether two graphs are isomorphic)

hash (.) 2.’.5 )

hosh (e, 0, 0,05)

1-WL test
Input: agraph G = (V,E, W) § § S
Assign an initial color C? (e.g., node degree) to each
node i of V
For each iteration [ + 1 refine node colors as e _I_u.

1 = HASH({c}, {¢! }ien. })
Until stable node coloring is reached
Output: The node colors {Cf-'""}izu.-z......w}

potentially isomorphic graphs [source: M.
(necessary but not sufficient) Bronstein]

Xu et al., "How powerful are graph neural networks?,” ICLR, 20109. 47/66



Graph isomorphism network

e Striking similarity between MPNNs and 1-WL test
- both follow three steps: 1) message passing, 2) neighbourhood aggregation, 3)

node update

1-WL test

Input: agraph G = (V,€, W)

Assign an initial color C? (e.g., node degree) to each
node iof V

For each iteration [ + 1 refine node colors as
it = HASH({c}, {c} }ien. })

Until stable node coloring is reached

Output: The node colors {c;™*= }i—(1.2....n}

Xu et al., “How powerful are graph neural networks?,” ICLR, 2019.

MPNN

Input: a graph G = (V.€, W)

Assign an initial embedding k! (e.g., node attribute) to
each node i of

For each layer [ + 1 refine node embeddings as
Wt = Uik, & M(h,h}))
FEN;
Until maximum number of layers is reached

Output: The node embeddings{ \™*" }i(1.2....n}

[source: D. Thanou]
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Graph isomorphism network

e Striking similarity between MPNNs and 1-WL test
- both follow three steps: 1) message passing, 2) neighbourhood aggregation, 3)

node update

1-WL test

Input: agraph G = (V,E,W)

Assign an initial color C? (e.g., node degree) to each
node iof V

For each iteration [ + 1 refine node colors as
! = HASH({c} @en. })

Until stable node coloring is reached

Output: The node colors {c™**}i—(1.2....n}

Xu et al., “How powerful are graph neural networks?,” ICLR, 2019.

MPNN

Input: a graph G = (V.€, W)

Assign an initial embedding k! (e.g., node attribute) to
each node i of p

For each layer [ + 1 refine node embeddings as

+1 __ l [N AN
Until maximum number of layers is reached

Output: The node embeddings{ \™*" }i(1.2....n}

[source: D. Thanou]
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Graph isomorphism network

e Striking similarity between MPNNs and 1-WL test
- both follow three steps: 1) message passing, 2) neighbourhood aggregation, 3)

node update

1-WL test

Input: agraph G = (V,E,W)

Assign an initial color C? (e.g., node degree) to each
node iof V

For each iteration [ + 1 refine node colors as
= HASH({cﬁ})

Until stable node coloring is reached

Output: The node colors {Cﬁ'"“’}i={1.2.....;\'}

Xu et al., “How powerful are graph neural networks?,” ICLR, 2019.

MPNN

Input: a graph G = (V,&, W)

Assign an initial embedding k! (e.g., node attribute) to
each node i of p

For each layer [ + 1 refine node embeddings as

11 =0, G D)

Until maximum number of layers is reached

Output: The node embeddings{ \™*" }i(1.2....n}

[source: D. Thanou]
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Graph isomorphism network

e Striking similarity between MPNNs and 1-WL test
- both follow three steps: 1) message passing, 2) neighbourhood aggregation, 3)

node update

1-WL test

Input: agraph G = (V,E,W)

Assign an initial color C-? (e.g., node degree) to each
node iof V

For each iteration [ + 1 refine node colors as

&t (asu({(@Dew))

Until stable node coloring is reached

Output: The node colors {Cﬁ'""}.:{l.z.....w}

Xu et al., “How powerful are graph neural networks?,” ICLR, 2019.

MPNN

Input: a graph G = (V,E,W)

Assign an initial embedding k! (e.g., node attribute) to
each node i of

For each layer [ + 1 refine node embeddings as

G

Until maximum number of layers is reached

Output: The node embeddings{ \™*" }i(1.2....n}

[source: D. Thanou]
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Graph isomorphism network

e Striking similarity between MPNNs and 1-WL test

- both follow three steps: 1) message passing, 2) neighbourhood aggregation, 3)

node update

e Can we design an MPNN that is as powerful as the WL test?

- more than graph isomorphism we can use it for graph classification or regression

- hash func in WL is injective => injective aggregator/update func in MPNNSs?

1-WL test

Input: agraph G = (V,E,W)

Assign an initial color C? (e.g., node degree) to each
node iof V

For each iteration [ + 1 refine node colors as

4+ —(uasH({<(@Dew))

Until stable node coloring is reached

Output: The node colors {Cﬁ'"“‘};-:n.-z......w}

Xu et al., “How powerful are graph neural networks?,” ICLR, 2019.

MPNN

Input: a graph G = (V.€, W)

Assign an initial embedding k! (e.g., node attribute) to
each node i of p

For each layer [ + 1 refine node embeddings as

o G

Until maximum number of layers is reached

Output: The node embeddings{ \™*" }i(1.2....n}

[source: D. Thanou]
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Graph isomorphism network

e What aggregator function is injective?

- expressive power on a multiset: sum > mean > max-pooling

: [ 1]
j1.hj1: 0
i, hi
: [ 0 |
j2.11j2: 1
N J N\ J

Y Y
Max fails to discriminate Max, Mean fail to
the red node discriminate the red node
Mean, Sum succeed Sum succeeds

[source: X. Bresson|

Xu et al., “How powerful are graph neural networks?,” ICLR, 20109. 49/66



Graph isomorphism network

e What aggregator function is injective?

- expressive power on a multiset: sum > mean > max-pooling

e GIN is provably as powerful as 1-WL test (under certain conditions)

- aggregator & update: sum + MLP

. [ 1]
g1, hj, = 0
i, h;
. [ 0 |
jQ.]IjQZ 1

y,
Y \ Y
Max fails to discriminate Max, Mean fail to

the red node discriminate the red node
Mean, Sum succeed Sum succeeds

[source: X. Bresson|

"ICLR, 2019.

Xu et al., "How powerful are graph neural networks?,

Wi = Ui (b, @ Mk, 1))

]EN

sum aggregator

rae

learnable parameters

49/66



Graph isomorphism network

e What aggregator function is injective?
- expressive power on a multiset: sum > mean > max-pooling

e GIN is provably as powerful as 1-WL test (under certain conditions)

- aggregator & update: sum + MLP

- global readout: sum + MLP hitt = ( @ M, (R, hl )
]EN

sum aggregator

B
jl-hjlz_o_ i 2 :

"0
jQ.]IjQZ - 1 -

learnable parameters

N J 1\ J
Y Y
Max fails to discriminate Max, Mean fail to E : L
the red node discriminate the red node h g MLP ) )
Mean, Sum succeed Sum succeeds .
[source: X. Bresson| sum aggregator

Xu et al., “How powerful are graph neural networks?,” ICLR, 20109. 49/66



Graph attention network

e l|dea: learn relative importance of neighbours in aggregation

Wi = Ui (kL @ Mi(hl, b))

JEN;

4

relative importance

concat/avg

i o (ol + 3
FjEN;

learnable parameters

Velickovi¢ et al., “Graph attention networks,” ICLR, 2018. 50/66



Graph attention network

e ldea: learn relative importance of neighbours in aggregation

e An attention function compares importance of neighbours and computes

attention scores

pitl = ( P My(hl, ) )

JEN;

relative importance

Y
jEN;

learnable parameters

- @

attention function

softmax

Velickovi¢ et al., “Graph attention networks,” ICLR, 2018. 50/66



Graph Machine Learning

Overview of graph machine learning

Convolutional neural networks on graphs

- “spectral” approaches enabled by graph signal processing

State-of-the-art graph neural networks

- “spatial” approaches enabled by message passing

Latest developments and applications
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Extension |I: Beyond low-pass filtering

e GCN does low-pass filtering (may lead to “over-smoothing’)

(a) Input (b) Input
Low-pass | I Low-_pgs_s_ — Band-pass
: : I | I 1
'la | Cl A u
| 1 | 1
H'=o(AH''0) @ ¥ 1 b L | H' =0 (U,H")
I | 1
O R T i I
I I I | J
_——— el — — =] L e e — '
Output Output
GCN Scattering GCN

Min et al., “Scattering GCN: Overcoming oversmoothness in graph convolutional networks,” NeurlPS, 2020.
Bo et al., “Beyond low-frequency information in graph convolutional networks,” AAAI, 2021. 52/66



Extension IlI: Graph rewiring

e Input graph may not be ideal for message passing (e.g., “over-squashing’)

(b) The bottleneck of graph neural networks

over-squashing caused by
bottlenecks

Alon and Yahav, “On the bottleneck of graph neural networks and its practical implications,” ICLR, 2021.
Topping et al., “Understanding over-squashing and bottlenecks on graphs via curvature,” ICLR, 2022. 53/66



Extension IlI: Graph rewiring

e Input graph may not be ideal for message passing (e.g., “over-squashing’)

e "Rewiring” as pre-processing step to mitigate over-squashing

(b) The bottleneck of graph neural networks

over-squashing caused by bottlenecks are linked to
bottlenecks negatively curved edges

Alon and Yahav, “On the bottleneck of graph neural networks and its practical implications,” ICLR, 2021.
Topping et al., “Understanding over-squashing and bottlenecks on graphs via curvature,” ICLR, 2022. 53/66



Extension |ll: Dynamic message passing

e Modifying the “computational” graph for improved message passing

(a) Classical MPNN (b) DRew (c) vDRew

Gutteridge et al., “DRew: Dynamically rewired message passing with delay,” ICML, 2023. 54/66



Extension |V: Graph transformers

e Generalise GAT to global attention

e Capture long-range dependencies (but computationally expensive)

r | \ i
~—{ Add & Norm ] |
Fe.e d 1;:»er Add&%Norm
Forward FFN;
A
Nx | (Add & Norm )
Multi-Head
Attention
1
— J
Positional D
Encoding
Input
Embedding X A 4
— : PEs retaining
1 gt T : graph info
Inputs . )
transformers graph transformers

Dwivedi and Bresson, “A generalization of transformer networks to graphs,” AAAI Workshop, 2021.
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Extension V: LLMs for graph learning

e Can LLMs/foundation models understand graph-structured data?

(a) Graph Learning in Graph-specific Space . (c) GraphText @ # Tusk prompt and demos
_ Continuous pred.. & . Syntax Tree Graph information:
Y. : label: i
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— ., Text Reasoning | '
=4 Pre-t & . . category of the node
% = raming T and Prediction : Graph ‘TrejConsrruct (choose from [A, B])?
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LILM @ T\ : OTA] Text Attributes | According to the demos, )
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Zhao et al., “GraphText: Graph reasoning in text space,” arXiv, 2023. 56/66



Application |: Drug discovery
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Stokes et al., “A deep learning approach to antibiotic discovery,” Cell, 2020.
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Application II: Odour perception

A B i

Structurally similar pair wlelslelslalalaby /\/\HI\OH : IO}\
: ; : EEEEEEEEEE ey S A
)<_\_®1\ )<_\—Oj\ N\ . . . . - . . . . . roasted, creamy, cocoa

[} [}
EEEEEEEEEE |
muguet, fresh, muguet, fresh, )k W
el floral, sweet floral, rosy . . . . . . . . . . . - el

green, fruity

Perceptually similar pair . GoodScents . Both . Leffingwell

Molecular representations from

penultimate model layer EI:I:I]
>0 >

C GNN model training

citrus  creamy

baked spicy

clean alcoholic beefy

chocolate fruity

Lee et al., “A principal odor map unifies diverse tasks in olfactory perception,” Science, 2023. 58/66



Application Ill: Medical imaging
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Pati et al., “Hierarchical graph representations in digital pathology,” Medical Image Analysis, 2022. 59/66



Application IV: Tratfic prediction

Derrow-Pinion et al., “ETA prediction with graph neural networks in Google Maps,” CIKM, 2021. 60/66



Application IV: Tratfic prediction

Derrow-Pinion et al., “ETA prediction with graph neural networks in Google Maps,” CIKM, 2021. 60/66



Application V: Weather forecasting

a) Input weather state b) Predict the next state c) Roll out a forecast

GraphCast

Lam et al., “Learning skillful medium-range global weather forecasting,” Science, 2023. 61/66



Application VI: Fake news detection
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Monti et al., “Fake news detection on social media using geometric deep learning,” ICLR Workshop, 2019. 62/66



Application VII: Social interactions
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Rossi et al., “Learning to infer structures of network games,” ICML, 2022. 63/66



Application V

. Language modelling
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Lorge et al., “STEntConv: Predicting disagreement between reddit users with stance detection and a signed graph convolutional network,” LREC-Coling 2024.
Hofmann et al., “Modeling ideological salience and framing in polarized online groups with graph neural networks and structured sparsity,” NAACL, 2022.

64,66



Application IV: Stock market analysis
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Gorduza et al., “Understanding stock market instability via graph auto-encoders,” arXiv, 2022.
Zhang et al., “Forecasting realized volatility with spillover effects,” International Journal of Forecasting, 2024. 65/66



Graph machine learning - Closing remarks

Fast-growing field that extends data analysis to non-Euclidean domain

Highly interdisciplinary: machine learning, signal processing, harmonic

analysis, network science, differential geometry, applies statistics

Active research directions

beyond convolutional models or MPNNSs
expressive power of graph ML models
robustness & generalisation & scalability
interpretability & causal inference
optimisation and implementation issues

applications (in particular healthcare!)
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