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Introduction

What is the problem of graph learning?

- given observations on a number of variables and some prior knowledge (distribution,
model, etc)

- build/learn a measure of pairwise relation between variables (correlation/covariance,
graph topology/operator or equivalent)
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Input: fMRI recordings in brain regions Input: history of individual activities
Objective: functional connectivity Objective: behavioural similarity/
between brain regions influence between people
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Introduction

e Why is it important?

- learned relation (graph) captures underlying structure of data

- learning relation between entities benefits numerous application domains

- learned relation may help predict future observations

Input: fMRI recordings in brain regions

Objective: functional connectivity
between brain regions

Input: history of individual activities

Objective: behavioural similarity/
influence between people

how do we build/learn the graph?

image credit: http://blog.myesr.org/mri-reveals-the-human-connectome/, https://www.iconexperience.com
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Outline

o A (very partial) literature overview

e A signal processing perspective
- A brief introduction to graph signal processing (GSP)
- GSP approaches for graph learning

e Concluding remarks
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A (very partial) literature overview

e Simple and intuitive methods

- sample correlation

- similarity function (e.g., Gaussian RBF)

e Need for a meaningful data model: X ~ F(G)

e Two general approaches in the literature

statistical models: F draws realisations from a distribution determined by G (e.g.,

probabilistic graphical models)
physically motivated models: F is based on a physical generative process on G (e.g.,

diffusion processes on graphs)
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A (very partial) literature overview

e Learning pairwise MRF

conditional independence:

(vi,vj) ¢ E S x; Loxj | x\{zi 2}

probability parameterised by O :

exp Zﬁzzx+ Z 0; irix;)

v, €V (vi,vj)€E

P(x|®) =

Gaussian MRF with precision © :

o 1,
(27T)N/Qexp(—§x Ox)

P(x|®) =

learning a sparse © :
- interactions are mostly local
- feasible in high-dimensional space
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A (very partial) literature overview

covariance
selection

Dempster
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A (very partial) literature overview

covariance
selection

Dempster

—

sequentially pruning elements in set | in sample precision
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¢y -regularised
covariance neighbourhood

selection regression
Dembster Meinshausen
P & Buhlmann
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A (very partial) literature overview

¢y -regularised (1-regularised
covariance neighbourhood logistic
selection regression regression
Meinshausen :
Dempster Ravikumar
P & Buhlmann
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A (very partial) literature overview

¢y -regularised (1-regularised
covariance neighbourhood ¢,-regularised logistic
selection regression  log-determinant  regression
Meinshausen Banerjee :
Dempster & Buhlmann  Friedman Ravikumar
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A (very partial) literature

overview

¢y -regularised (1-regularised
covariance neighbourhood ¢,-regularised logistic
selection regression  log-determinant  regression
Meinshausen Banerjee :
Dempster & Buhlmann  Friedman Ravikumar
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graphical Lasso maximises likelihood
of precision matrix © :
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log-likelihood function
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A (very partial) literature overview

¢y -regularised ¢1-regularised  quadratic approx.
covariance neighbourhood ¢,-regularised logistic of Gauss. neg.
selection regression  log-determinant  regression log-likelihood
Meinshausen Banerjee : :
Dempster % Buhlmann  Eriedman Ravikumar Hsieh
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graphical Lasso: estimation of sparse precision matrix
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e Learning graphical models
- classical approaches lead to both positive/negative relations

- learning graphs with non-negative weights?

e Learning graphs with non-negative weights

- M-matrices (symmetric, positive definite, non-positive off-diagonals) have been used
as precision, leading to attractive GMRF [Slawski2015]

- combinatorial graph Laplacian L belongs to M-matrices and is equivalent to graph

topology
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A (very partial) literature overview

¢y -regularised ¢1-regularised  quadratic approx.
covariance neighbourhood ¢,-regularised logistic of Gauss. neg.
selection regression  log-determinant  regression log-likelihood

Meinshausen Banerjee : :
Dempster % Buhlmann  Eriedman Ravikumar Hsieh

\d v \4 \d \ :
1972 2006 2008 2009 2010 2011 2013 ; 2014 >
A A A : A
GSP
Daitch Lake Hu
quadratic form  log-determinant quadratic form signal processing
of power of L program on of power of L perspective

regularised L

from arbitrary precision matrix to graph Laplacian

common setting in graph signal processing (GSP)
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Graph signals

e Structured data can be represented by graph signals
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Graph signals

e Structured data can be represented by graph signals

RN
* f:V—->RY
0
U1
v v
s 3 4 "

takes into account both structure (edges) and
data (values at vertices)
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Graph signals are pervasive

e Vertices:
- regular grid

e Edges:
- 4-nearest neighbour connection

e Signal:
- pixel values
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Graph signals are pervasive

e \ertices:
- 1000 Twitter users

e Edges:
e . - following relationship among
.- users
- . e Signal:
. . - # Apple-related hashtags they

have posted in six weeks
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Graph signals are pervasive

e \ertices:
- brain regions

e Edges:
- structural connectivity (via
diffusion spectrum imaging)
between brain regions

e Signal:
- blood-oxygen-level-dependent
(BOLD) time series
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Graph signals are pervasive

e \ertices:
- brain regions

e Edges:
- structural connectivity (via
diffusion spectrum imaging)
between brain regions

e Signal:
- blood-oxygen-level-dependent
(BOLD) time series

how to generalise signal processing tools on graphs?
- notion of shift invariance? graph shift operator

- notion of frequency? graph Laplacian
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Graph Laplacian

V7 Weighted and undirected graph:

& Vg
U1 U3 Q = {V,g}
D
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Graph Laplacian
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W, €}
D = diag(d(vy), - - -

Weighted and undirected graph:

G

Graph Laplacian

yd(vn))
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Graph Laplacian

Weighted and undirected graph:

G

W, €}
D = diag(d(vy), - - -

L=D-W
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Graph Laplacian

Weighted and undirected graph:

G
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Graph Laplacian
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standard stencil approximation of the Laplace operator

provides a notion of “frequency’” on graphs
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Graph Laplacian
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Graph Laplacian

f:V— RY
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Graph Laplacian

f:V— RY
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAy?!

| | Ao 0 — Xo——
L = X() XNI
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X A X'
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAy?!

| ] [P 0 1[—— Xo—~
L =1Xy XN-1
_‘ ‘ . _O AN_l_ -_XN-I_—
X A X"

e Eigenvalues are usually sorted increasingly: 0 = A\g < A\ < ... < An_1
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Graph Fourier transform
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AN

[Shuman13]

X1 X 50

X0
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raph Fourier transform
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raph Fourier transform

Low frequency

ra A=A N
\ /=

SIS ] K
NPT SN2
w:.«wd- =
-‘4.'»*'/“ ;

V' UST
~

X50 [Shuman13]

High frequency

X&' Lxo =X =0

X50LX50 = As0

Eigenvectors associated with smaller eigenvalues have values that vary less rapidly

along the edges
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Graph Fourier transform

ra A=A N
\ /=

StatNE— N b
N7 SNk %
NS S si2N

DAy g
. >

X50 [Shuman13]

Low frequency High frequency

ngxO =X =0 ><5TOL><50 = As0

Graph Fourier transform:
[Hammond11] - - T

j?,é = (X¢, f) : Xo - Xyl [
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Graph Fourier transform

Low frequency

AN s

= N S
S v .

N

P
7

=

WSA\VAV; S
= D7~
Nl

X50 [Shuman13]

High frequency

Graph Fourier transform:
[Hammond11]

f0) = (xe, f) :

X&' Lxo =X =0

X50LX50 = As0

—_— >
AOAT A2 A3 A+ 0 AN

Low frequency

High frequency
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Graph Fourier transform

e Laplacian L admits the following eigendecomposition: Ly, = Apxy
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Graph Fourier transform

e Laplacian L admits the following eigendecomposition: Ly, = Apxy

one-dimensional Laplace operator: —V/?

$

eigenfunctions: e/%*

'

classical FT:

@) = [ (@) fla)ds

fla)= o / F(w)e™= duw
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Graph Fourier transform

e Laplacian L admits the following eigendecomposition: Ly, = Apxy

one-dimensional Laplace operator: —V/? . graph Laplacian: L
eigenfunctions: /%% E eigenvectors: X/

‘f:V%IR{N
N

classical FT: f(w) — / (e79%)* f(z)dz ; graph FT: f(0) = (x4, f) = sz(z)f(z)

fo) = 5 [ Fper o F6) = 3 F0xli
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Graph Fourier transform

e Laplacian L admits the following eigendecomposition: Ly, = Apxy

one-dimensional Laplace operator: —V/? . graph Laplacian: L
eigenfunctions: /%% E eigenvectors: X/

‘ f:V-RY

classical FT: f(W) = Ilteij uf ‘dll? : graph FT: f = (X0, f) = Z XZ(@“f(Z)

1=1

N—-1

)= o [ e F6) = 3 F0xli

¢=0
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Classical tfrequency filtering

classical FT:  f(w) = /(ejww)*f(ar)dx f(z) = % /f(w)eijdw
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Classical tfrequency filtering

classical FT:  f(w)

[y t@de f@) =5 [ fued

apply filter with transfer function §(-) to a signal f

FT

f| =

]E

(w)

g(w)

=)

(@) f(w)

IFT

f*g
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Classical frequency filtering

[ (=) (@)

classical FT:  f(w)

apply filter with transfer function §(-

FT

f| =

=)

| F

1 ¢ jwx
= %/f(w)e dw
) to a signal f
IFT
g(w)f(w) | == | [fxg
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Graph spectral filtering

N-—-1

GFT: £(0) = (xe, f) = ng f(@i) =Y f(O)xeld)

¢=0
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Graph spectral filtering

GFT: £(6) = (xer f) — ng Fi) = 3 Fepeti

¢=0

apply filter with transfer function g(-) to a graph signal f:V — R"Y

GFT g(Ae) IGFT

Fol m [ f) = | GO0 = |50 = 3 i0nfox
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Graph spectral filtering

GFT: f(0) = (v f) = i) )= 3 FOxl)
1=1 £=0

apply filter with transfer function g(-) to a graph signal f:V — R"Y

GFT IGFT
N—-1

Fol = [ f) = |G| = |50 = 3 i0nfox

= a =

>
-

Low-pass 14 High-pass ¢ Band-pass  /
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Graph spectral filtering

GFT: f(6) = (xu, f) =

N —

:E::ZKE

14

F(0)xe(3)

apply filter with transfer function g(-) to a graph signal f:V — R"Y

fo| mp \Tf

= | G(A)x' f
[§(Mo) 0
0 0w,

IGFT

=)
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Graph spectral filtering

GFT: f(6) = (xu, f) =

N —

:E::ZKE

14

F(0)xe(3)

apply filter with transfer function g(-) to a graph signal f:V — R"Y

fo| mp \Tf

= | G(A)x' f
[§(Mo) 0
0 0w,

IGFT

=)

Xg(M)x f

g(L): function of L!
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Outline

o A (very partial) literature overview

e A signal processing perspective
- A brief introduction to graph signal processing (GSP)
- GSP approaches for graph learning
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GSP for graph learning
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GSP for graph learning

which graph to choose?



GSP for graph learning

which graph to choose?

- depends on the signal/graph model

- idea: choose one that enforces certain signal characteristics
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GSP for graph learning

e Existing approaches have limitations
- simple correlation or similarity function is not enough
- statistical models do not always lead to non-negative edge weights

- many impose a global” distribution or behaviour
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GSP for graph learning

e Existing approaches have limitations
- simple correlation or similarity function is not enough
- statistical models do not always lead to non-negative edge weights

- many impose a global” distribution or behaviour

e Opportunity and challenge for GSP

- GSP tools offer another “regulariser’ for complicated inference: frequency or
spectral representation

- filtering-based approaches can provide generative models for signals with complex
(non-Gaussian) behaviour
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GSP for graph learning

e Signal processing is about F ¢ = x
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GSP for graph learning

e Graph signal processing is about F(G) ¢ = x

X L] = | w -
| I Ul
X

F(©) c
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GSP for graph learning

e Forward: given G and x, design F to study c

F(9)

Fourier/wavelet
atoms

trained dictionary
atoms

graph Fourier/
wavelet coefficient

graph dictionary
coefficient

(%)

[Coifman06,Narang09,Hammond11,
Shuman13,Sandryhailal3]

[Zhang12, Thanoul4]
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GSP for graph learning

e Backward (graph learning): given x, design F and c to infer G

Us

30/44



GSP for graph learning

e Backward (graph learning): given x, design F and c to infer G

7]

- key is signal/graph model behind F

- via graph operators (adjacency/Laplacian or shift operators)
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GSP for graph learning

e Backward (graph learning): given x, design F and c to infer G

E .; . _ - %
(F9 ©  x ¢

- key is signal/graph model behind F

- via graph operators (adjacency/Laplacian or shift operators)

- assumption on c also determines signal characteristics
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Model 1: Global smoothness

e Signal varies smoothly between all pairs of nodes that are connected

e Example: temperature of different locations in a flat geographical region
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Model 1: Global smoothness

e Signal varies smoothly between all pairs of nodes that are connected
e Example: temperature of different locations in a flat geographical region

e Usually quantified by the Laplacian quadratic form:

XL = o 3" Wy, (x(i) — x(j))°

t,]
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Model 1: Global smoothness

e Signal varies smoothly between all pairs of nodes that are connected
e Example: temperature of different locations in a flat geographical region

e Usually quantified by the Laplacian quadratic form:

XL = o 3" Wy, (x(i) — x(j))°

]
similar to previous approaches:

1
Lake (2010): max  log det® — Mtr(XXT(a) —pl|®|1

Daitch (2009):  min XTL%X

Hu (2013): min tr(X' LX) — B||W]|r
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Model 1: Global smoothness

e Dong et al. (2016) ?7 >< = ] 0 o
m

- F(G) = x (eigenvector matrix of L)

X C X g

- Gaussian assumption on ¢: ¢ ~ A (0, AT)

- x ~N(0,L" + ¢%I): Gaussian Markov random field
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- F(G) = x (eigenvector matrix of L)

X C X g

- Gaussian assumption on ¢: ¢ ~ A (0, AT)
- x ~N(0,L" + ¢%I): Gaussian Markov random field

- maximum a posteriori (MAP) estimate of c leads to minimisation of Laplacian
quadratic form:

min ||x — xcl||5 + a ¢ Ac
C
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- Gaussian assumption on ¢: ¢ ~ A (0, AT)
- x ~N(0,L" + ¢%I): Gaussian Markov random field

- maximum a posteriori (MAP) estimate of c leads to minimisation of Laplacian
quadratic form:

min ||x — xcl||5 + a ¢ Ac
C

& ¥ =xc

min|[x - y||; + @y’ Ly
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Model 1: Global smoothness

e Dong et al. (2016) ?7 >< = ] Qe
m

- F(G) = x (eigenvector matrix of L)

X C X g

- Gaussian assumption on ¢: ¢ ~ A (0, AT)
- x ~N(0,L" + ¢%I): Gaussian Markov random field

- maximum a posteriori (MAP) estimate of c leads to minimisation of Laplacian
quadratic form:

min ||x — xcl||5 + a ¢ Ac 1711
oy
p— C U5
‘ Yy X Vs V7 Vg I
. . 2 TL Vg ]
min|fx — yI3 + o y" Ly l
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Model 1: Global smoothness

e Dong et al. (2016) ?7 >< = ] Qe
m

- F(G) = x (eigenvector matrix of L)

X C X g

- Gaussian assumption on ¢: ¢ ~ A (0, AT)
- x ~N(0,L" + ¢%I): Gaussian Markov random field

- maximum a posteriori (MAP) estimate of c leads to minimisation of Laplacian
quadratic form:

min ||x — xcl||5 + a ¢ Ac l
C

—’

OF] U7 e

min [x — [ + 0 y Ly ]
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Model 1: Global smoothness

e Dong et al. (2016) ?7 >< . ) 3 2
.- \ vs

- F(G) = x (eigenvector matrix of L)

X C X g

- Gaussian assumption on ¢: ¢ ~ A (0, AT)
- x ~N(0,L" + ¢%I): Gaussian Markov random field

- maximum a posteriori (MAP) estimate of c leads to minimisation of Laplacian

quadratic form:

min ||x — xc||3 + o« ¢! Ac 1711
C
~~~~~~ ?3.-.-1724
_ C2Pd A D Vs
y = XC — ot

U8 1)_7_.---1"

min } o i "ng' 1

LY l

data fidelity smoothness on Y regularisation
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Model 1: Global smoothness

e Dong et al. (2016) ?7 >< . ) “Q o
- A

- F(G) = x (eigenvector matrix of L)

X C X g

- Gaussian assumption on ¢: ¢ ~ A (0, AT)
- x ~N(0,L" + ¢%I): Gaussian Markov random field

- maximum a posteriori (MAP) estimate of c leads to minimisation of Laplacian
quadratic form:

min ||x — xc||3 + o« ¢! Ac 101
C
~~~~~~ ?3.-.-1724
_ C2Pd A D Vs
y = XC — ot

U8 1)_7_.---1"

min )} 0 "09,*" 1

LY [

data fidelity smoothness on Y regularisation

learning enforces signal property (global smoothness)
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Model 2: Spectral tiltering

e Signals are outcome of applying filtering to latent (input) signals

o Filtering often corresponds to a diffusion process on graphs (different
spectral characteristics or localisation properties)

e Example: movement of people/vehicles in transportation network
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spectral characteristics or localisation properties)

e Example: movement of people/vehicles in transportation network
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Model 2: Spectral tiltering

e Signals are outcome of applying filtering to latent (input) signals

o Filtering often corresponds to a diffusion process on graphs (different
spectral characteristics or localisation properties)

e Example: movement of people/vehicles in transportation network

1
f‘;2~~...l?;_-..l?z4
. R ot PO Vs
heat diffusion - Ve oo -
6,.°
kernel Us . 10_7_____1.— I observation
0.1.)} l l Vg Lt

..... 'U3 ___..724 [ 4

.232— """""""""" U5
Vg .-*
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Model 2: Spectral tiltering

e Signals are outcome of applying filtering to latent (input) signals

o Filtering often corresponds to a diffusion process on graphs (different
spectral characteristics or localisation properties)

e Example: movement of people/vehicles in transportation network

1
f';2‘~~..l?§.-.-l%
. R ot PO Vs
heat diffusion - Ve oo -
6. .-
kernel 2)_8 _______ 1'0_7_____1.' I Observat|on
! l > 4 vg.-"’
~~~~~ US____.?Z4 .'
2T T Us
(% ‘4:
Us . Vg l
il ‘ U1
vg.. I R vs,...dus
graph shift 1?{2__.—4 ....... Vs _
- operator y v v6,,x'] observation
initial stage (e.g., W) SRR o
Vg, -]
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Model 2: Spectral filtering

e Thanou et al. (2017)

- F(G) = e ™ (localisation in vertex domain)

- sparsity assumption on ¢
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Model 2: Spectral filtering

V3 Vg

e Thanou et al. (2017)

Us

U1

- F(G) = e ™ (localisation in vertex domain)

- sparsity assumption on ¢

- each signal is a combination of several heat diffusion processes at time 7
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Model 2: Spectral filtering

V3 Vg

e Thanou et al. (2017)

Us

U1

- F(G) = e ™ (localisation in vertex domain)

- sparsity assumption on ¢

- each signal is a combination of several heat diffusion processes at time 7

M
; . 2 2 _ [,—7TL _—72L —7sLL
Iflér’lTHX FC|\F+Oz§:1|\CmH1+5HLHF s.t. F=le e S..e ]
m=
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Model 2: Spectral filtering

V3 Vg

e Thanou et al. (2017)

Us

U1

- F(G) = e ™ (localisation in vertex domain)
- sparsity assumption on ¢

- each signal is a combination of several heat diffusion processes at time 7

+ A st. F=[e "l el | e s

m=1

data fidelity sparsity on c regularisation
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Model 2: Spectral filtering

Thanou et al. (2017)

V3 Vg

Us

U1

F(G) = e ™ (localisation in vertex domain)

sparsity assumption on ¢

each signal is a combination of several heat diffusion processes at time 7

M
o )@ 5@ st. F=le
m=1

data fidelity sparsity on c regularisation

local (instead of global) signal characteristics

can be extended to general polynomial case
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Model 2: Spectral tiltering

e Pasdeloup et al. (2017) r— >< i ] - 3 i

- ‘F(g) — Tk — erform

w* c p'e G

orm

- Gaussian assumption on ¢: ¢ ~ N (0,I)
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Model 2: Spectral tiltering

e Pasdeloup et al. (2017) r— ) i _

_mk __ k
F(g)_T _Wnorm Wk c x

norm

Gaussian assumption on ¢: ¢ ~ N (0,I)

two-step approach:

= estimate eigenvector matrix of graph operator from sample covariance:

M M
S=E| > Xm)Xm)"| = 3 WA (olvnomial of W)
m=1 m=1
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Model 2: Spectral tiltering

e Pasdeloup et al. (2017) r— >< i ] - 3 i

_mk k
B ‘F(g) =T Wnorm WF c X G

norm

- Gaussian assumption on ¢: ¢ ~ N (0,I)

- two-step approach:

= estimate eigenvector matrix of graph operator from sample covariance:

M
— E{ Z X(m)X( } Z Wilgﬁg’) (polynomial of Worm )
m=1

= optimise for eigenvalues given constraints of Wy, (e.g., non-negativity of off-
diagonals and range of eigenvalues) and certain priors (e.g., sparsity)
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Model 2: Spectral filtering

e Pasdeloup et al. (2017) r— i ! .
" - B O%Z;:o
- I

F(G) =Tk =Wk

Gaussian assumption on ¢: ¢ ~ N (0, 1)

two-step approach:

= estimate eigenvector matrix of graph operator from sample covariance:

M M
> = E{ Z X(m)X(m)T} — Z W2K(m) - (polynomial of W)
m=1 m=1

= optimise for eigenvalues given constraints of Wy, (e.g., non-negativity of off-
diagonals and range of eigenvalues) and certain priors (e.g., sparsity)

diffusion process based on different operator
statistical vs structural (Thanou et al.) assumption on c

“graph-centric’: cost on graph operators instead of signals
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Model 3: Causal dependency on graphs

e Signals are causal outcome of current or past observations (spectral
characteristics depending on dependence structure)

e Example: evolution of individual behaviour due to influence of different
friends at different timestamps

e Characterised by vector autoregressive models (VARMSs) or structural
equation models (SEMs)

- VARMSs exploits relation between present and past

- SEMs exploits relation between vertices at present
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Model 3: Causal dependency on graphs

e Mei and Moura (2017) o5 (r— >< i) B .0 ..
s=1 - ”2C<QSZ >st

- Fs(G) = P,(W): polynomial of W of degree s P, (W) x[t — 5] x G

- define cs as x|t — 3]

37/44



Model 3: Causal dependency on graphs

Mei and Moura (2017) . (r— X i) _
s=1 B

- Fs(G) = P,(W): polynomial of W of degree s P, (W) X[t — 5] x

- define cs as x|t — 3]
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Model 3: Causal dependency on graphs

e Mei and Moura (2017) o5 (r— >< i) B .0 ..
s=1 - ”2C<QSZ >st

- Fs(G) = P,(W): polynomial of W of degree s P, (W) x[t — 5] x G

- define cs as x|t — 3]

L : :
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vs VT g — B Ve . (LR ST S o
[ e S S [
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1 K S
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Model 3: Causal dependency on graphs

Mei and Moura (2017) . (rﬁ X i) _
s=1 B

- Fs(G) = P,(W): polynomial of W of degree s P, (W) X[t — 5] x

- define cs as x|t — 3]

|-, Lo
Jsake -L}é.i"'i% e . Gk 4
vs L Ty — B et . (L S o
[ e S S [
[
x|[t] x|t — 1] x[t — 9]
1 K S
win L S @R -y PS(W)x[kE}+ >\+ >\
W a
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data fidelity sparsity on W sparsity on a
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Model 3: Causal dependency on graphs

e Mei and Moura (2017) . (rw X i) _
s=1 B

- Fs(G) = P,(W): polynomial of W of degree s P, (W) X[t — 5] x

- define cs as x|t — 3]

v v v
lll”x*l'”ﬁ---l% Ll"ul%.--l“é "1"\1?13.--1’04
2.-°%77  TesllL U5 IU.Q—" .... U5 ..U—z ''''''' 35
Us L VTeaep = et i T g
Vg, [ l’l)g'o' 1 r 1:9, r
[
x|[t] x|t — 1] x[t — 5]
1 K N
min — Z x|k| — ZP W)x )\
win o > (I - Y P CeWl)+
k=S+1 s=1
data fidelity sparsity on W sparsity on a

good for inferring causal relations between signals

can be combined with SEMs and kernelised

V3 Vg
U2
Us
U1
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Comparison of different GSP methods

Table 1. Comparisons between different GSP-based approaches to graph learning.

Method Signal Model Assumption Learning Output Edge Directionality
F(G) c
Dong et al. [39] Global smoothness Eigenvector matrix i.i.d. Gaussian  Llaplacian Undirected
Kalofolias et al. [40]  Global smoothness Eigenvector matrix i.id. Gaussian  Adjacency matrix Undirected
Egilmez et al. [41] Global smoothness Eigenvector matrix i.i.d. Gaussian Generalized Laplacian Undirected
Chepuri et al. [42] Global smoothness Eigenvector matrix i.i.d. Gaussian Adjacency matrix Undirected
Pasdeloup et al. [46]  Spectral filtering (diffusion by ~ Normalized i.i.d. Gaussian Normalized adjacency mafrix ~ Undirected
adjacency) adjacency matrix normalized Laplacian
Segarra et al. [45]  Spectral filtering (diffusion by~ Graph shift operator  i.i.d. Gaussian ~ Graph shift operator Undirected
graph shift operator)
Thanou et al. [47] Spectral filtering (heat diffusion)  Heat kernel Sparsity Laplacian Undirected
Mei and Moura [55]  Causal dependency (SVAR) Polynomials of Past signals Adjacency matrix Directed
adjacency matrix
Baingana et al. [62]  Causal dependency (SEM) Adjacency matrix Present signal Time-varying adjacency matrix  Directed
Shen et al. [54] Causal dependency (SVARM)  Polynomials of Past and present  Adjacency matrix Directed
adjacency matrix signals
[Dongl9]
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Connection with broad literature

e Global smoothness of graph signals is also promoted in Graphical Lasso

1
Lake (2010): o IEaX : log det® — Mtr(XXT@) — p||O]]1
— _|_L2
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Connection with broad literature

e Global smoothness of graph signals is also promoted in Graphical Lasso
1 T
Lake (2010): max log det® — —tr(XX" @) — p||O||1
©=L+-%1 M
e Models based on spectral filtering or causal dependency lead to generative
process of signals, similarly to traditional physically motivated models
lvl lvl L1
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Connection with broad literature

e Global smoothness of graph signals is also promoted in Graphical Lasso
1 T
Lake (2010): max log det® — —tr(XX" @) — p||O||1
©=L+-%1 M
e Models based on spectral filtering or causal dependency lead to generative
process of signals, similarly to traditional physically motivated models
v v lU1 lU1 ‘*vl
s%}; =l§__.3)4£... - - l;; va__lp%... N Efz::;lvﬁ.-lp‘i_v;..% P;::lvs.-lé_v;.:i% :}g:alvs--llf‘i_vg_ﬁ%
A, .z____vz.-rﬁ"' [gl[ = e | + + P
2 2 [ [
e GSP approaches offer design flexibility (via F and c) and extend beyond a

Gaussian statistical model or a simple diffusion model
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Applications

e Image coding and compression (review of [Chungl8])

images are natural graph
signals on regular grid

6 x 10~ 4 x10%2
N T

learning adaptive edge
weights for structure-aware
transform coding

more efficient image

o
o

Learned Graph
Four Nearest-Neighbor Grid Graph |

o©
~
()]

compression

o
© w ©
w o »

Magnitude of GFT Coefficient
o o
o 9 v
(620 \C ¢ ]

Log Magnitude of GFT Coefficient
(=]

0.05

1 L L L = | i
0 20 40 60 80 100 0 20 40 60 80 100

Index for Significant GFT Coefficients Eigenvalue Index

(b) (c)

o

FIGURE 10. Inferring a graph for image coding. (a) The graph learned on a random patch of the image Teddy using [69]. (b) A comparison between the
GFT coefficients of the image signal on the learned graph and the four nearest-neighbor grid graph. The coefficients are ordered decreasingly by log

magnitude. (c) The GFT coefficients of the graph weights.
[Fracastorol7]
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Applications

e Brain signal analysis (review of [Huang18])

- learning functional connectivity of brain regions

[Richiardil3]
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Applications

e Brain signal analysis (review of [Huang18])

- learning functional connectivity of brain regions

&~
et e [Richiardil3]

\

e Other application domains

- learning meteorology graph using temperatures

- learning commuting graph using traffic volume

- learning political relations using voting data
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Outline

o A (very partial) literature overview

e A signal processing perspective
- A brief introduction to graph signal processing (GSP)
- GSP approaches for graph learning

e Concluding remarks
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Xiaowen Dong, Dorina Thanou, Michael Rabbat,
and Pascal Frossard

Learning
Graphs
From Data

A signal representation perspective

crucial role in the effective representation, processing,

analysis, and visualization of structured data. When a nat-
ural choice of the graph is not readily available from the data
sets, it thus desirable to infer or learn a graph topology from
the data. In this article, we survey solutions (o the problem of
‘graph learning, including classical viewpoints from statistics
and physics, and more recent approaches that adopt a graph
signal processing (GSP) perspective. We further emphasize
the conceptual similarities and differences between classical
and GSP-based graph-inference methods and highlight the
potential advantage of the later in a number of theoretical and
practical scenarios. We conclude with several open issues and
challenges that are keys to the esign of future signal pro-
cessing and machine-learning algorithms for learning graphs
from data

Tlm construction of a meaningful graph topology plays

Introduction
Modern data analysis and processing tasks typically involve
large sets of d data, where the criti-

graphs are used as mathematical tools to describe the struc-

ture of such data. They provide a flexible way of representing

the relationship between data entities. In the past decade,
1

have been introduced for analyzing structured data on a priori
known graphs [1]-13]. However, there are often settings where
the graph is not readily available, and the structure of the data
pro-
cessing, analysis, o visualization of the data. In this case, a
crucial task is 1o infer a graph topology that describes the char-
acteristics of the data observations, hence capturing the under-
Iying relationship between these entitie.

Consider an example in brain signal analysis: suppose we
are given blood-oxygen-level-dependent (BOLD) sigaals, ie.,
time series extracted from functional magnetic reson:
imaging data that reflect the activities of different regions of
the brain. An area of significant interest in neuroscience is the
inference of functional connectivity, .., to capture the relation-

dition of a patient, which may help reveal underpin-

cal information about the nature of the data. One can find nu-
‘merous examples of such data sets in a wide diversity of ap-
plication domains, including transportation networks, social
networks, computer networks, and brain networks. Typically,

ngat O g 101105005
o sk it

nings of some neurodegeneralive discases (see Figure 1). This
leads to the problem of inferring 3 graph structure, given the
multivariate BOLD time series data.

Formally, the problem of graph learning is the following:
given M observations on N variables or data entities rep-
resented in a data matrix X € R¥*¥, and given some prior
knowledge (e.g., distribution, data model, and 50 on) about
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David | Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst

The Emerging Field
of Signal Processing
on Graphs

Extending high-dimensional data analysis
to networks and other irregular domains

n applications such as social, energy, transportation, sensor,
and neuronal networks, high-dimensional data naturally
reside on the vertices of weighted graphs. The

been proposed to efficiently extract information from high-
graphs

of signal processing on graphs merges algebraic and spectral
ha L

¥sis to process such signals on graphs. In this tutorial overview,
ine hallenges of t discuss di
to define graph spectral domains, which are the analogs to the
classical frequency domain, and highlight the importance of
Incorporating the irregular structures of graph data domains
when processing signals on graphs. We then review methods to
generalize fundamental operations such as filtering, transhtion,
modulation, dilation, and downsampling to the graph setting
and survey the localized, multiscale transforms that have

gl Objct ot 0. 10S06SP 132235197
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Graphs are generic data representation forms that are useful
for describing the geometric structures of data domains in
numerous applications, including social, energy, transporta-
tion, sensor, and neuronal networks. The weight associated
with each edge in the graph often represents the similarity
between the two vertices it connects. The connectivities and
edge weights are either dictated by the physics of the problem
at hand or inferred from the data. For instance, the edge
weight may be inversely proportional to the physical distance
between nodes in the network. The data on these graphs can
be visualized as a finite collection of sampls, with one sample
at each vertex in the graph. Collectively, we refer to these
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PyGSP: Graph Signal Processing in Python

s ossg s

The Graph Signal Processing toolbox is an easy to use matlab toolbox that
performs a wide variety of operations on graphs, from simple ones like filtering to
advanced ones like interpolation or graph leaming. You can create all sorts of
fiterbanks including wavelets and Gabor. It is based on spectral graph theory and
many of the features can scale to very large graphs.

https://epfl-Its2.github.io/gspbox-html/  https://pygsp.readthedocs.io/en/stable/

The PyGSP is a Python package to ease Signal Processing on Graphs. It is a free software,
distributed under the BSD license, and available on PyPl. The documentation is available on Read
the Docs and development takes place on GitHub. (A Matlab counterpart exists.)

More: http://web.media.mit.edu/~xdong/resource.html

Thank you!
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