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Background

- residential segregation challenges
societies across the globe

Rosenfeld, “Some notes on the effects of residential segregation, and spatial isolation,” 2013.

2/33



Background

Neighborhood Median Income Level

Poor Low Income Low-Middle Income High-Middle Income High Income Affluent
(80-100% of Metro Medizn) {100-125% of Metro Median) (125-150% of Metro Median) (150% of Metro

(<67% of Metro Median) (67-80% of Metro Median) Median)

Percentage of Families Living in High-, Middle-, and Low-Income Neighborhoods
Metropolitan Areas with Population > 500,000, 1970-2007

80%

60%

- residential segregation challenges
societies across the globe

40%

Percentage of Families
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Background

Classical studies on residential segregation

- Schelling’s dynamic model of segregation [Schelling71]
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Schelling, “Dynamic models of segregation,” The Journal of Mathematical Sociology, 1971.

McCown, “Schelling’s Model of Segregation,” 2014.
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Background

e Classical studies on residential segregation
- Schelling’s dynamic model of segregation [Schelling71]

- five key dimensions and twenty indexes in American census reports [Iceland02]
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Iceland et al., “Racial and ethnic residential segregation in the United States: 1980-2000," 2002.
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Background

An individual's visisted locations
and the estimated home
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Wang et al., “Urban mobility and neighborhood isolation in America’s 50 largest cities,” PNAS, 2018.
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Background

e Recent studies on selective exposure in social media

Ideological alignment of content Ideological alignment of content
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Stories shared by friends
(|

Stories seen in News Feed
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Stories clicked on
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Messing, “Ideologically diverse news, an agenda for future research,” 2015. 6/33



Background

Recent studies on selective exposure in social media

YOUR FAGEBOO, ECHO
CHAMBER JUST GOT A WHOLE
LOT LOUDER

“We are updating News Feed over the coming weeks so that the things posted
' ' ' ' ' by the friends you care about are higher up in your News Feed,” Facebook
engineering director Lars Backstrom wrote. That sounds simple enough, but
l ' l ' ' what it really means is the feed will promote content from your friends over

content from publishers.

Barrett, “Your Facebook echo chamber just got a whole lot louder,” 2016. 7/33



In this talk

e Limitation of literature
- focused on residential pattern using static census data
- focused on macro-level (neighbourhood-level) segregation

- focused on measurement or quantification
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In this talk

e Limitation of literature
- focused on residential pattern using static census data

- focused on macro-level (neighbourhood-level) segregation

- focused on measurement or quantification

e Our objective

- from residential segregation to behaviour segregation
- from macro-level to micro-level analysis

- from quantifying to modelling segregation
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Data sets

e Anonymised behavioural data of residents of three metropolitan areas in
three months

- credit card transactions (85K users in European, 200K in Latin American)

- Twitter mentions (1M users in European, 260K in Latin American, 440K in
Northern American)
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Data sets

e Analysis at the level of administrative neighbourhoods in the city
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Data sets

e Analysis at the level of administrative neighbourhoods in the city

- obtain neighbourhood-level socio-economic status from national census
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Data sets

e Analysis at the level of administrative neighbourhoods in the city
- obtain neighbourhood-level socio-economic status from national census

- associate each user with a neighbourhood
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Data sets

e Neighbourhood-level

number of users in transaction data
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Interaction networks

e Nodes: neighbourhoods

e Edges: interaction

- purchase: number of purchases made by users in neighbourhood i at stores in |

- Twitter: number of mentions made by users in neighbourhood i to users in |
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Behavioural diversity
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Measuring segregation

e Construct mixing matrices
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Measuring segregation

e Construct mixing matrices
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Measuring segregation

e Construct mixing matrices

10
o A 10
©) o 9
60 3
2 i O > 8
= . aggregate 27
7 J 7
o 6
O 4
= £
: —> : .
= ;
s | g
- o}
? : 5 3
.9 o
Q 2
S 2
1 1
2 4 6 8 10
1 2 --- 1 O socio-economic status group

>

socio-economic status group

14/33



Measuring segregation

group 3 0.15 0.05 0.1
group 2 0.05 0.15 0.08
group 1 0.2 0.1 0.12

group 1 group 2 group 3

Newman, “Mixing patterns in networks,” Physical Review E, 2003. 15/33



Measuring segregation

b, 0.4 0.3 0.3
group 3 0.15 0.05 0.1
group 2 0.05 0.15 0.08
group 1 0.2 0.1 0.12

group 1 group 2 group 3

Newman, “Mixing patterns in networks,” Physical Review E, 2003.
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Measuring segregation

b, 0.4 0.3 0.3
group 3 0.15 0.05 0.1
group 2 0.05 0.15 0.08
group 1 0.2 0.1 0.12

group 1 group 2 group 3

segregation as mixing coefficient
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Newman, “Mixing patterns in networks,” Physical Review E, 2003.

0.3

0.28

0.42

E Cry — Qg

15/33



Measuring segregation
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Segregation in offline & online interaction
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Segregation in offline & online interaction
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- is it due to expected interaction or wealth distribution imposed by geography?
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Segregation in offline & online interaction
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Two null models of interaction
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Two null models of interaction

simulation via gravity model

fit gravity model to empirical weights
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Krings et al., “Urban gravity: A model for inter-city telecommunication flows,” JSTAT, 2009. 17/33



Two null models of interaction
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Segregation w.r.t. socio-economic "distance’
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Segregation w.r.t. socio-economic "distance’

- construct sub-network from extreme
SOCIO-economic groups

- calculate assortative mixing for sub-
network

socio-economic status group

socio-economic status group

10% extreme each side
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Segregation w.r.t. socio-economic "distance’

socio-economic status group

socio-economic status group

20% extreme each side

construct sub-network from extreme
SOCIO-economic groups

calculate assortative mixing for sub-
network

repeat the calculation with more groups
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Segregation w.r.t. socio-economic "distance’

socio-economic status group

socio-economic status group

50% extreme each side
(complete data set)

construct sub-network from extreme
SOCIO-economic groups

calculate assortative mixing for sub-
network

repeat the calculation with more groups
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Segregation w.r.t. socio-economic "distance
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Segregation w.r.t. geographical distance
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Asymmetry in interaction
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Asymmetry in interaction

socio-economic status group

socio-economic status group
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Asymmetry in interaction

bias towards 'from poor to rich'

0.35

European

0.3

0.25 -

0.2

0.15

0.1

0.05

—4— Purchase network
—4— Twitter network

Purchase network - simulated
—— Twitter network - simulated

10

15 20 25 30 35 40 45 50
percentage of extreme population included

poorer areas interact more with
wealthier ones than opposite
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this asymmetry cannot be simply
attributed to geography
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Segregation and inequality

European
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Cortright, “"How racial segregation leads to income inequality,” 2016.
Louail et al., “Crowdsourcing the Robin Hood effect in cities,” Applied Network Science, 2017. 22/33



Discussion

e Summary & Implication

- segregation in offline & online interaction is stronger than expected by geography
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Discussion

e Summary & Implication
- segregation in offline & online interaction is stronger than expected by geography

- mitigation of segregation may focus on encouraging physical and social interaction
(not merely on exposure [Baill8])

Bail et al., “Exposure to opposing views on social media can increase political polarization,” PNAS, 2018. 23/33
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Discussion

e Summary & Implication

- segregation in offline & online interaction is stronger than expected by geography

- mitigation of segregation may focus on encouraging physical and social interaction
(not merely on exposure [Baill8])

- interaction across segments of society may be promoted by middle SES groups
given their bridging role

- asymmetry in interaction may suggest existence of social hierarchy (wealthier areas
attract unequal amount of money and information)

- better strategy in store allocation may lead to more even distribution of capital and
less segregated interaction pattern

e Limitation
- representativity of data sets
- unobserved confounding variables

- correlation but no causation

Bail et al., “Exposure to opposing views on social media can increase political polarization,” PNAS, 2018. 23/33



Micro-level segregation

e People of different backgrounds do not frequent the same places
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Micro-level segregation

e People of different backgrounds do not frequent the same places

e The Atlas of Inequality

# atlas of Map Cities Methods Research Stories About FAQ @
(MELTIE14%

Inequality index

Very Equal Very Unequal

@D color by category

Place category

Food

Professional & Other Places
Shop & Service

Travel & Transport

Arts & Entertainment
College & University
Outdoors & Recreation
Nightlife Spot

Residence
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Framework

e Data sets

- anonymised high-resolution mobile device location pings in 11 US census core-based
statistical areas (CBSAs) in six months

- verified Foursquare venues with more than 5 check-ins in all CBSAs
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e Data sets
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Framework

Data sets

- anonymised high-resolution mobile device location pings in 11 US census core-based
statistical areas (CBSAs) in six months

- verified Foursquare venues with more than 5 check-ins in all CBSAs

Methodology
- extract stays and attribute stays to places

- identify user home location and income status (in four quantiles)

® 0 [<$67K]
@ 02 [$67K-$90K]

A 03 [$90K-$IK]
M oy [> $iuK]
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Framework

e Data sets

- anonymised high-resolution mobile device location pings in 11 US census core-based
statistical areas (CBSASs) in six months

- verified Foursquare venues with more than 5 check-ins in all CBSAs

e Methodology
- extract stays and attribute stays to places
- identify user home location and income status (in four quantiles)

- compute inequality measure at places
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4
@ 02 [$67K-$90K] ray % sl 25 I %
1] uII ‘.. INEQUALITY ~ Z 7o, — 0.25

1=1
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Place segregation

Place segregation
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Place segregation
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User segregation

User segregation
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individual segregation is not only determined by where people live
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Modelling segregation

Exploration and Preferential Return (EPR) model [Song10]

Time: t + At
A . . .
___— /‘ - exploration vs exploitation
. Frew=pPS7
Time: t new o . . « . .
= . . - if exploration, visit a new location
o S5 according to distance (place
O exploration)
(@)
o . . .
5=4 \ ® - if exploitation, return to a previous
,, = . . .
Pt =1-pS7 location with preferential attachment

Song et al., “Modelling the scaling properties of human mobility,” Nature Physics, 2010. 28/33



Modelling segregation

e Social Exploration and Preferential Return (social-EPR) model

Visit: n+1
1 -0
plS? Oy B
Visit: n ® Py )
[
Social
Sni1=7 Exploration
0
Sn = 6
Pref tial
referentia
$ 3% $$S $%%% S..=6 e

exploration vs exploitation

if exploration, with probability visit a
new location of different income status
(place and social exploration)

if exploitation, return to a previous
location with preferential attachment
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Modelling segregation
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0.09
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0.8 -

0.6 1
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0.0

User Segregation

Model

00 02

0.8

1.0

for each user obtain parameters for
place and social exploration

= Op: # unique place / # place
= Os: # minority place / # place

simulate user visits using social-EPR
model and compute segregation

simulated segregation strongly
correlated with empirical data (r=0.8)
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Explaining place and social exploration

Residential demographics
Race / Poverty / Employment
Education / Transportation

Distance traveled
Radius of gyration

Geographical Mobility

Places visited

Behavior —»

<— Residence

Percentage of variance explained

0% 50% 100%

50%

100%

Op
S Group of
variables
. Residence

demographics

Places

visited

. Geographical
Mobility

individual segregation explained by behaviour (55% variance) as well as
residential (45% variance) factors
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Discussion

e Summary & Implication

- measurement of segregation as an emergent behavioural process in cities
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Discussion

e Summary & Implication
- measurement of segregation as an emergent behavioural process in cities

- study of micro-level segregation in cities and segregation analysis across different
types of venues

- individual segregation explained by patterns of exploration in both physical and
social space

- individual segregation modelled by simple extension (with social factor) of the EPR
mobility model

- from residential redevelopment to city development that impacts who residents
have opportunities to interact with

e Limitation
- focused on individuals for whom home location could be identified
- focused on venues available via the Foursquare API

- focused on segregation by income (not race/ethnicity)
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