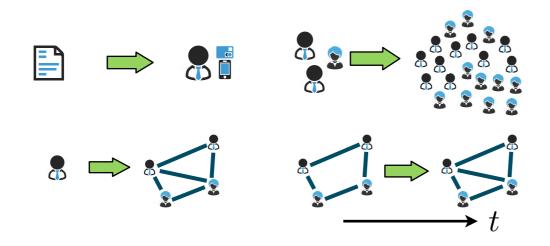
Social bridges in urban purchase behavior

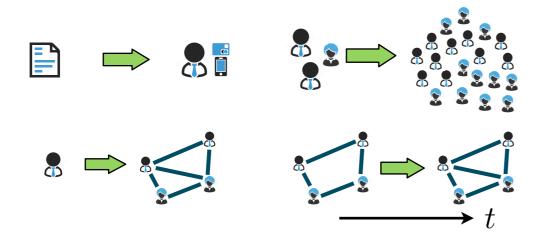
Xiaowen Dong MIT Media Lab

with Yoshihiko Suhara, Burçin Bozkaya, Vivek K. Singh, Bruno Lepri and Alex 'Sandy' Pentland

Cambridge, MA, June 2017


New data sources about human behavior are emerging

New data sources about human behavior are emerging


Computational social science (CSS): A paradigm shift in social science

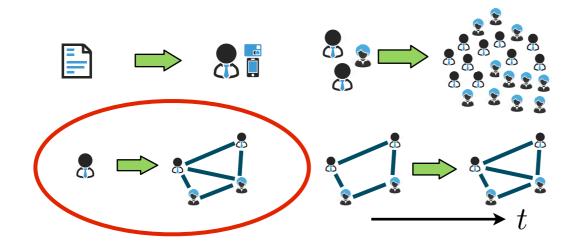
New data sources about human behavior are emerging

Computational social science (CSS): A paradigm shift in social science

Practical impact

Current population management:

- demographics
- individual records
- static information


The new way:

- behavioral traits
- collective behavior
- dynamics

New data sources about human behavior are emerging

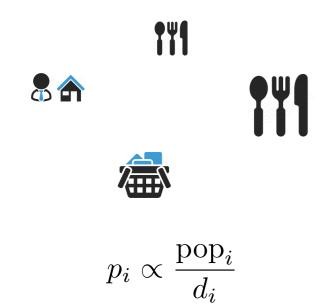
Computational social science (CSS): A paradigm shift in social science

Practical impact

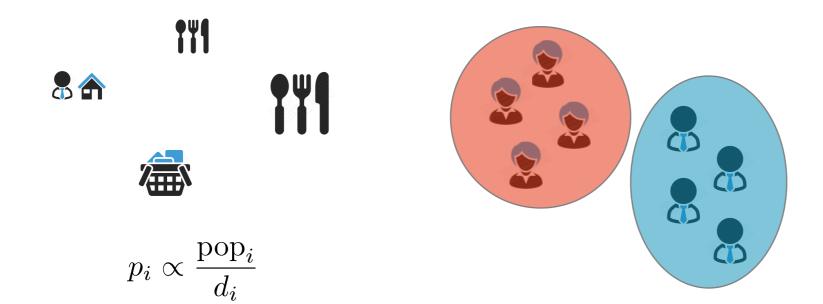
Current population management:

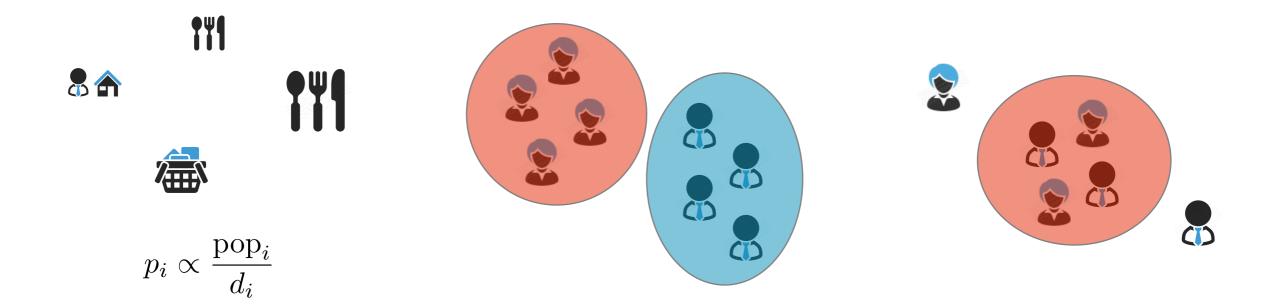
- demographics
- individual records
- static information

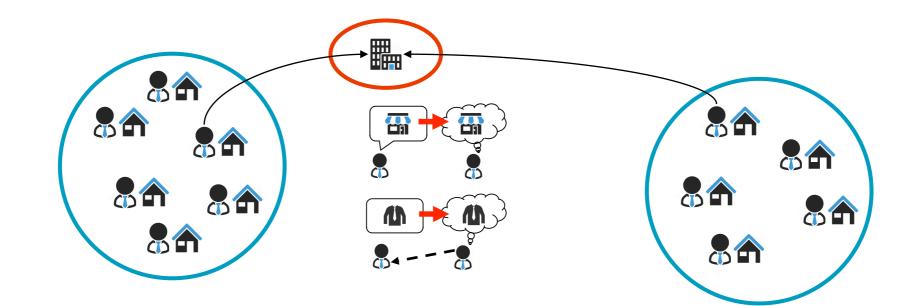
The new way:

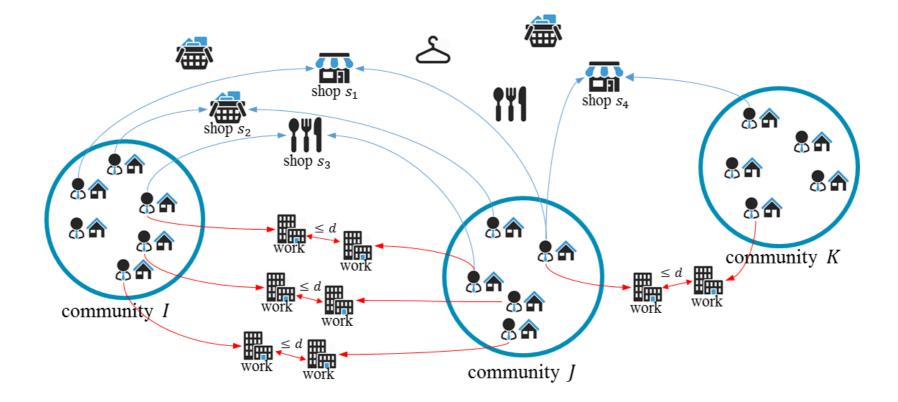

- behavioral traits
- collective behavior
- dynamics

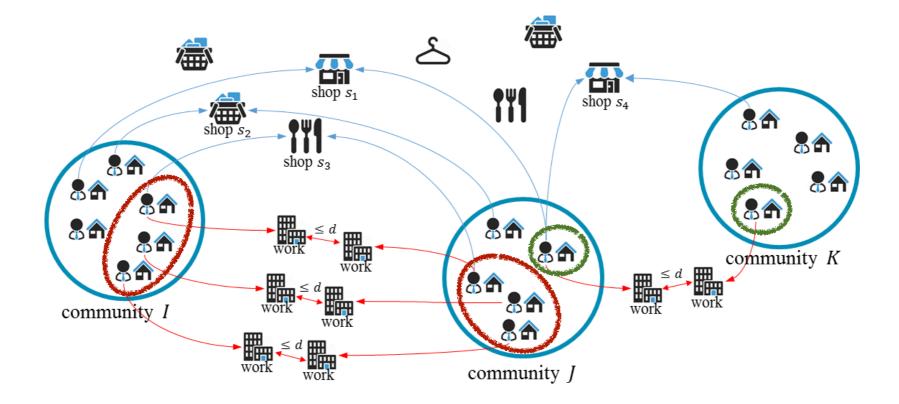
How communication affects human decision-making?

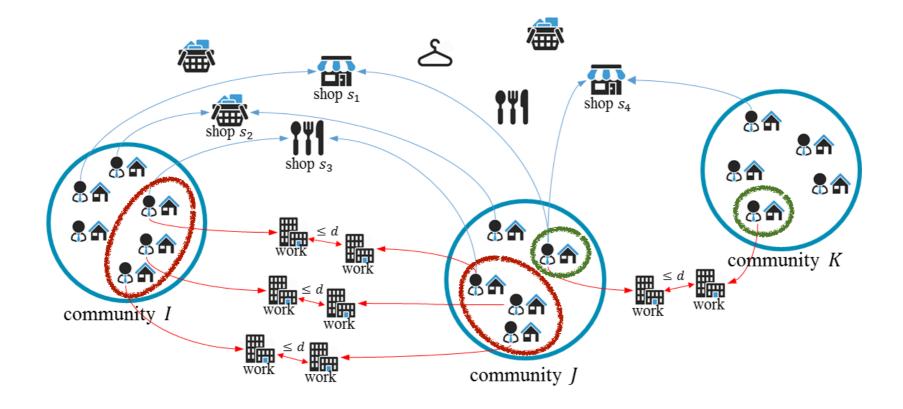



• Classical purchase behavior models treat individual purchases separately (Huff, 1964)


- Classical purchase behavior models treat individual purchases separately (Huff, 1964)
- Study of purchase behavior influence is largely based on socio-demographics (Zeithaml, 1985)


- Classical purchase behavior models treat individual purchases separately (Huff, 1964)
- Study of purchase behavior influence is largely based on socio-demographics (Zeithaml, 1985)
- Word-of-mouth and physical exposure are powerful sources of behavioral propagation (Arndt, 1967; Bikhchandani, 1998; Algesheimer, 2005), but their effectiveness in modern city environment remains unknown

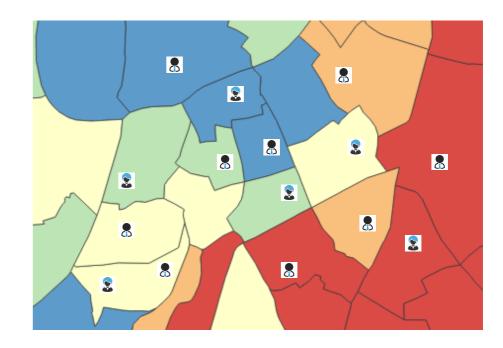

- Hypothesis
 - Physical exposure at work environment promotes idea exchange


- Hypothesis
 - Physical exposure at work environment promotes idea exchange
 - Individuals living in different communities but sharing similar work locations act as social bridges between communities

- Hypothesis
 - Physical exposure at work environment promotes idea exchange
 - Individuals living in different communities but sharing similar work locations act as social bridges between communities

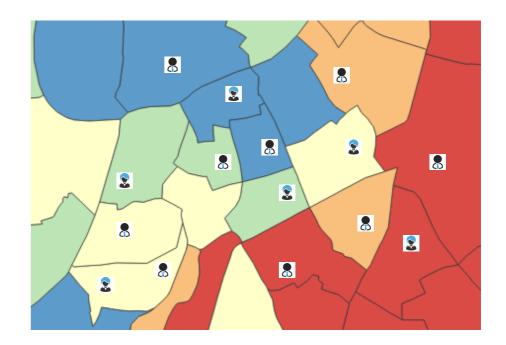


- Hypothesis
 - Physical exposure at work environment promotes idea exchange
 - Individuals living in different communities but sharing similar work locations act as social bridges between communities
- Test at city scale



Data set

• A large-scale credit card transaction data set in two cities in an OECD country during 3 months



• Urban communities

- Urban communities
- Number of social bridges between communities

 $bdg(I, J) = |\{i, j\}|$ s.t. $i \in I, j \in J, D(L_i, L_j) \le d$

- Urban communities
- Number of social bridges between communities

 $bdg(I, J) = |\{i, j\}|$ s.t. $i \in I, j \in J, D(L_i, L_j) \le d$

- Three behavioral indexes
 - choice: number of co-visited stores
 - temporal: similarity between temporal distributions of purchases
 - spending: sum of differences in median spending amount of different categories

- Three behavioral indexes
 - choice: number of co-visited stores
 - temporal: similarity between temporal distributions of purchases
 - spending: sum of differences in median spending amount of different categories
- Remark
 - exclude transactions during working hours
 - exclude transactions at stores in home/work neighborhoods

Social bridge and behavioral indexes

- Multiple OLS regression analysis
 - dependent variable (DV): # co-visits (between community pair)
 - independent variables (IV): # social bridges
 - confounding variables: population, distance, demographics, income

- Multiple OLS regression analysis
 - dependent variable (DV): # co-visits (between community pair)
 - independent variables (IV): # social bridges
 - confounding variables: population, distance, demographics, income
- Remark
 - entries are not independent in DV and IV
 - Quadratic Assignment Procedure (QAP) to test statistical significance
 - random shuffling of communities in DV
 - re-application of OLS

• Regression coefficients

(a) City A

(b) City B

Indicator	β Coefficient	Confidence Interval	Indicator	β Coefficient	Confidence Interval
# Social Bridge	0.760 ***	[0.754, 0.766]	# Social Bridge	0.410 ***	[0.393, 0.426]
Population	0.102 ***	[0.095, 0.108]	Population	0.288 ***	[0.272, 0.305]
Distance	0.094 ***	[0.090, 0.097]	Distance	0.167 ***	[0.156, 0.179]
Age	0.038 ***	[0.034, 0.042]	Age	0.060 ***	[0.048, 0.072]
Gender	0.015 ***	[0.011, 0.019]	Gender	0.155 ***	[0.143, 0.167]
Marital Status	0.017 ***	[0.013, 0.021]	Marital Status	0.023 ***	[0.011, 0.035]
Education	0.046 ***	[0.042, 0.051]	Education	-0.008	[-0.021, 0.005]
Working Style	0.015 ***	[0.011, 0.019]	Working Style	0.031 ***	[0.019, 0.043]
Income	0.034 ***	[0.030, 0.039]	Income	0.085 ***	[0.072, 0.099]
Num. Obs.		61776	Num. Obs.		12403
RMSE		0.465	RMSE		0.643
Adj. \mathbf{R}^2		0.784	Adj. \mathbf{R}^2		0.586
*** . 0.001 **	0.01 1 0.05		444 . 0 001 44	0.01 * 0.05	

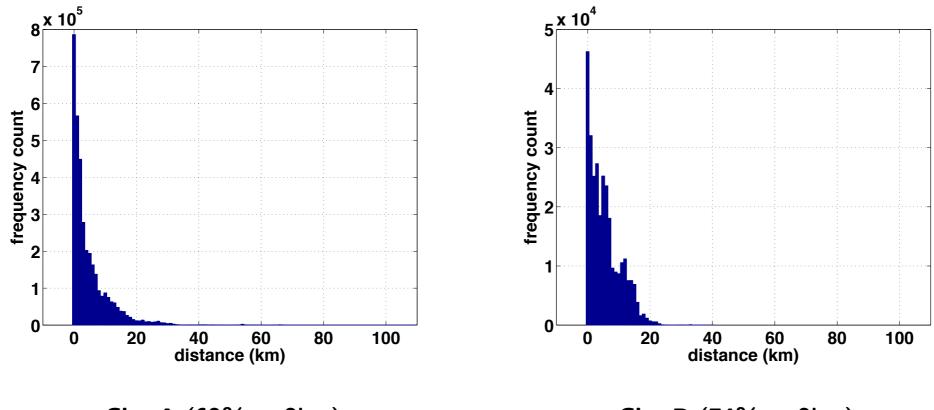
***p < 0.001, **p < 0.01, *p < 0.05

***p < 0.001, **p < 0.01, *p < 0.05

• Regression coefficients

(a)	City A	

(b) City B

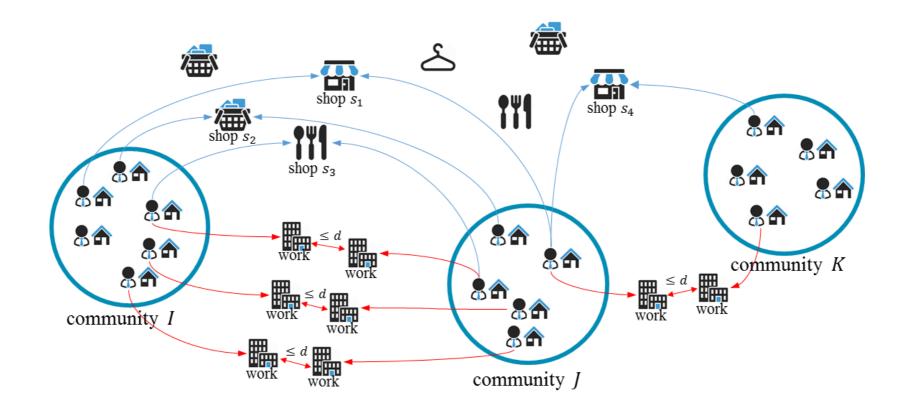

Indicator	β Coefficient	Confidence Interval	Indicator	β Coefficient	Confidence Interval
# Social Bridge	0.760 ***	[0.754, 0.766]	# Social Bridge	0.410 ***	[0.393, 0.426]
Population	0.102 ***	[0.095, 0.108]	Population	0.288 ***	[0.272, 0.305]
Distance	0.094 ***	[0.090, 0.097]	Distance	0.167 ***	[0.156, 0.179]
Age	0.038 ***	[0.034, 0.042]	Age	0.060 ***	[0.048, 0.072]
Gender	0.015 ***	[0.011, 0.019]	Gender	0.155 ***	[0.143, 0.167]
Marital Status	0.017 ***	[0.013, 0.021]	Marital Status	0.023 ***	[0.011, 0.035]
Education	0.046 ***	[0.042, 0.051]	Education	-0.008	[-0.021, 0.005]
Working Style	0.015 ***	[0.011, 0.019]	Working Style	0.031 ***	[0.019, 0.043]
Income	0.034 ***	[0.030, 0.039]	Income	0.085 ***	[0.072, 0.099]
Num. Obs.		61776	Num. Obs.		12403
RMSE		0.465	RMSE		0.643
Adj. \mathbf{R}^2		0.784	Adj. \mathbf{R}^2		0.586
**** < 0.001 *** <	0.01 *- < 0.05		**** < 0.001 *** <	(0.01 * - < 0.05)	

***p < 0.001, **p < 0.01, *p < 0.05

***p < 0.001, **p < 0.01, *p < 0.05

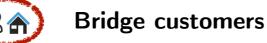
Social bridge is a stronger indicator of similar purchase behavior

• Histogram of distance between co-visited store and co-working location

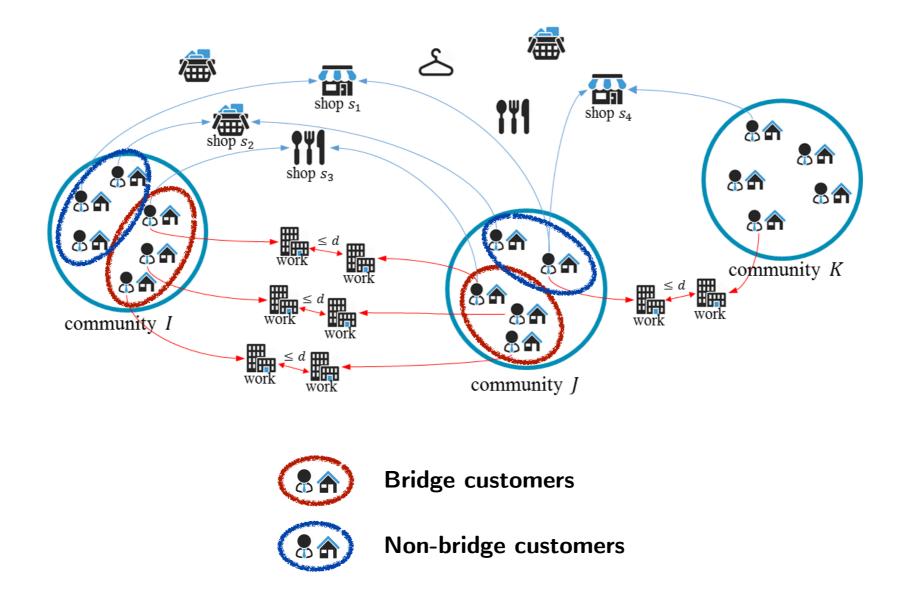


City A (62% > 2km)

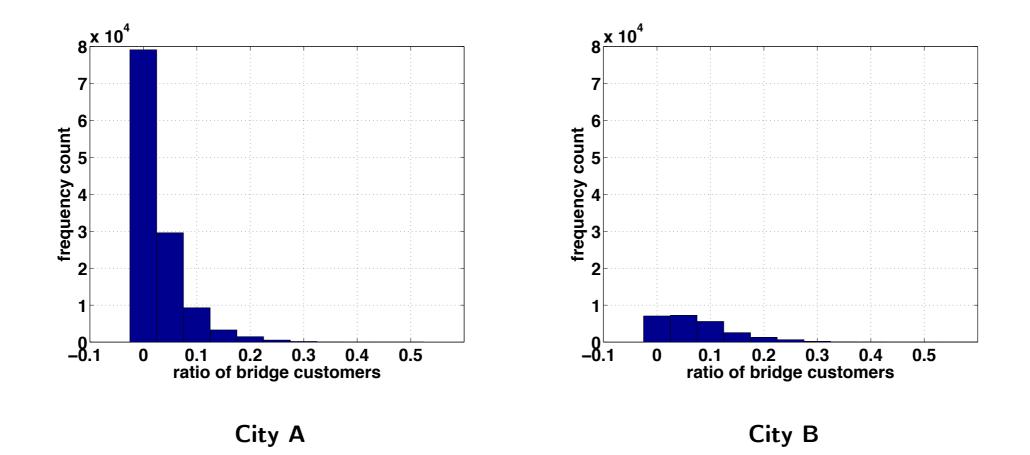

City B (74% > 2km)


Co-visitation is not simply due to proximity between co-visited store and co-working location

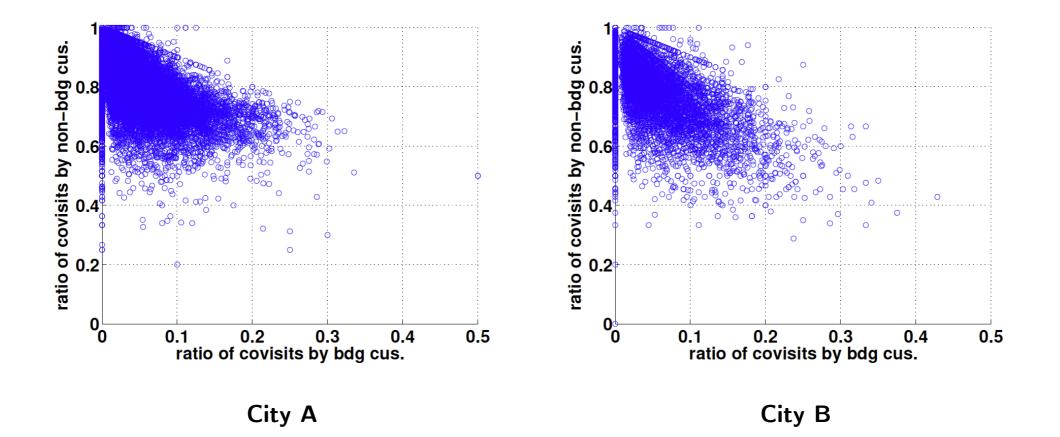
• Bridge customers vs. Non-bridge customers



• Bridge customers vs. Non-bridge customers



• Bridge customers vs. Non-bridge customers



• Histogram of ratio of bridge customers

Ratio of bridge customers are relatively small

• Percentage of co-visits by bridge customers

A large portion of co-visits are by non-bridge customers

• Regression coefficients

(a) City A

Co-Visits Types	β Coefficient	Confidence Interval	Adj. \mathbf{R}^2
By All	0.760 ***	[0.754, 0.766]	0.784
By Bridge Cus.	1.005 ***	[0.999, 1.011]	0.766
By Non-Bridge Cus.	0.653 ***	[0.646, 0.660]	0.705

(b) City B

Co-Visits Types	β Coefficient	Confidence Interval	Adj. \mathbf{R}^2
By All	0.410 ***	[0.393, 0.426]	0.586
By Bridge Cus.	0.717 ***	[0.700, 0.734]	0.558
By Non-Bridge Cus.	0.238 ***	[0.220, 0.256]	0.490

***p < 0.001, **p < 0.01, *p < 0.05

• Regression coefficients

(a) City A

Co-Visits Types	β Coefficient	Confidence Interval	Adj. \mathbf{R}^2
By All	0.760 ***	[0.754, 0.766]	0.784
By Bridge Cus.	1.005 ***	[0.999, 1.011]	0.766
By Non-Bridge Cus.	0.653 ***	[0.646, 0.660]	0.705
***p < 0.001, **p < 0.001	01. * p < 0.05		

(b) City B

Co-Visits Types	β Coefficient	Confidence Interval	Adj. \mathbf{R}^2
By All	0.410 ***	[0.393, 0.426]	0.586
By Bridge Cus.	0.717 ***	[0.700, 0.734]	0.558
By Non-Bridge Cus.	0.238 ***	[0.220, 0.256]	0.490
*** $p < 0.001$, ** $p < 0.001$	01, * $p < 0.05$		

Social bridge is a indicator of similar purchase behavior even for non-bridge customers

Co-visits in three merchant categories

• Regression coefficients

(a) City A

Co-Visits Types		Confidence Interval	Adj. \mathbf{R}^2
Supermarkets	0.610 ***	[0.603, 0.618]	0.693
Restaurants	0.812 ***	[0.805, 0.818]	0.776
Clothing Stores	0.623 ***	[0.615, 0.631]	0.631

 $^{***}p < 0.001, \,^{**}p < 0.01, \,^{*}p < 0.05$

(b) City B

Co-Visits Types	β Coefficient	Confidence Interval	Adj. \mathbf{R}^2
Supermarkets	0.291 ***	[0.274, 0.309]	0.537
Restaurants	0.445 ***	[0.426, 0.465]	0.399
Clothing Stores	0.330 ***	[0.312, 0.347]	0.539

 $^{***}p < 0.001, \, ^{**}p < 0.01, \, ^{*}p < 0.05$

Co-visits in three merchant categories

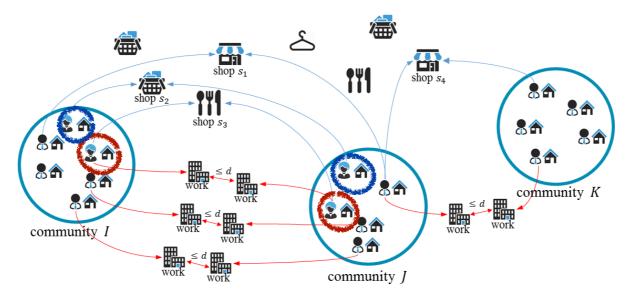
• Regression coefficients

(

(a) City A

Co-Visits Types	β Coefficient	Confidence Interval	Adj. \mathbf{R}^2		
Supermarkets	0.610 ***	[0.603, 0.618]	0.693		
Restaurants	0.812 ***	[0.805, 0.818]	0.776		
Clothing Stores	0.623 ***	[0.615, 0.631]	0.631		
*** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$					

(b) City B


Co-Visits Types	β Coefficient	Confidence Interval	Adj. \mathbf{R}^2
Supermarkets	0.291 ***	[0.274, 0.309]	0.537
Restaurants	0.445 ***	[0.426, 0.465]	0.399
Clothing Stores	0.330 ***	[0.312, 0.347]	0.539
****** < 0.001 ***** <	0.01 * - < 0.05		

***p < 0.001, **p < 0.01, *p < 0.05

Effect of social bridge is stronger for restaurants but weaker for supermarkets

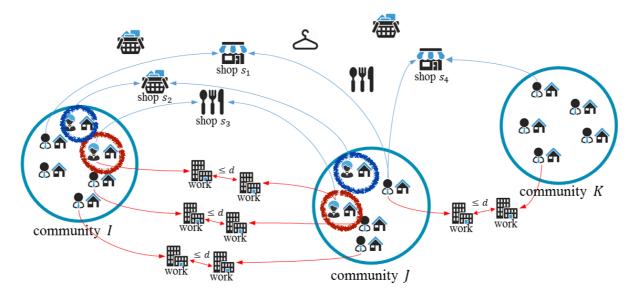
Gender difference in social bridge

• Regression coefficients

(a) City A

Bridge Types	Co-Visits Types	β Coefficient	Confidence Interval	Adj. \mathbf{R}^2
Female-Female	By Non-Bridge Female	0.527 ***	[0.520, 0.533]	0.625
Female-Female	By Non-Bridge Male	0.404 ***	[0.398, 0.411]	0.615
Male-Male	By Non-Bridge Female	0.360 ***	[0.352, 0.368]	0.543
Male-Male	By Non-Bridge Male	0.393 ***	[0.385, 0.400]	0.604

***p < 0.001, **p < 0.01, *p < 0.05


(b) City B

Bridge Types	Co-Visits Types	β Coefficient	Confidence Interval	Adj. \mathbf{R}^2
Female-Female	By Non-Bridge Female	0.327 ***	[0.311, 0.343]	0.340
Female-Female	By Non-Bridge Male	0.106 ***	[0.091, 0.120]	0.468
Male-Male	By Non-Bridge Female	-0.073 ***	[-0.092, -0.055]	0.261
Male-Male	By Non-Bridge Male	0.044 ***	[0.028, 0.060]	0.460

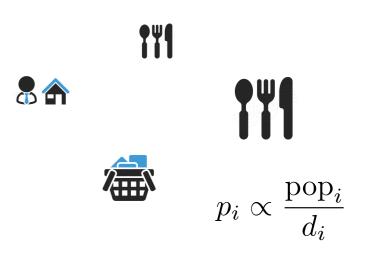
***p < 0.001, **p < 0.01, *p < 0.05

Gender difference in social bridge

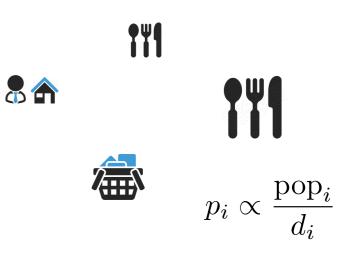
• Regression coefficients

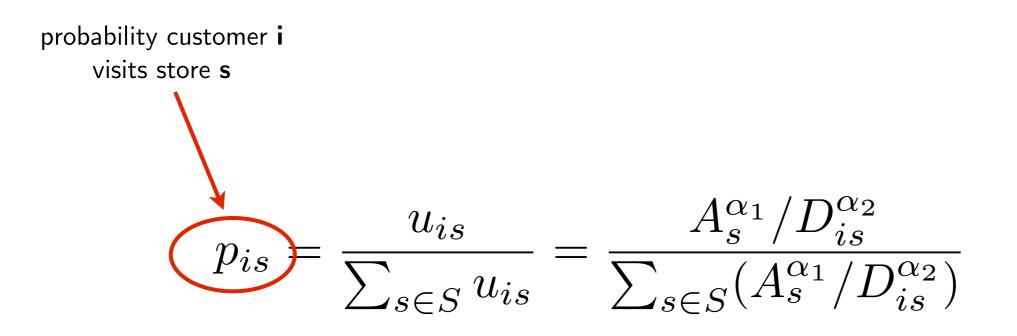
(a) City A

Bridge T	ypes	Co-Visits Types	β Coefficient	Confidence Interval	Adj. \mathbf{R}^2
Female-Fe	emale H	By Non-Bridge Female	0.527 ***	[0.520, 0.533]	0.625
Female-Fe	emale	By Non-Bridge Male	0.404 ***	[0.398, 0.411]	0.615
Male-M	ale H	By Non-Bridge Female	0.360 ***	[0.352, 0.368]	0.543
Male-M	ale	By Non-Bridge Male	0.393 ***	[0.385, 0.400]	0.604

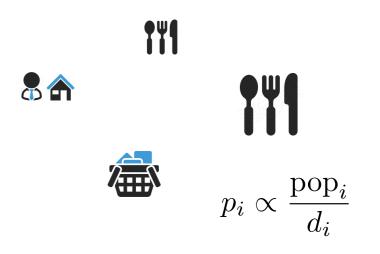

(b) City B

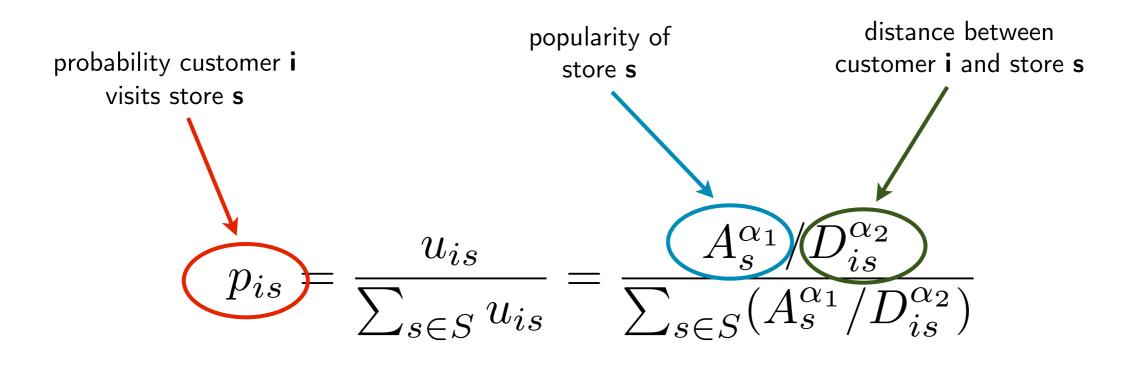
Bridge Types	Co-Visits Types	β Coefficient	Confidence Interval	Adj. \mathbf{R}^2	
Female-Female	By Non-Bridge Female	0.327 ***	[0.311, 0.343]	0.340	
Female-Female	By Non-Bridge Male	0.106 ***	[0.091, 0.120]	0.468	
Male-Male	By Non-Bridge Female	-0.073 ***	[-0.092, -0.055]	0.261	
Male-Male	By Non-Bridge Male	0.044 ***	[0.028, 0.060]	0.460	
*** < 0.001	$**_{m} < 0.01 *_{m} < 0.05$				

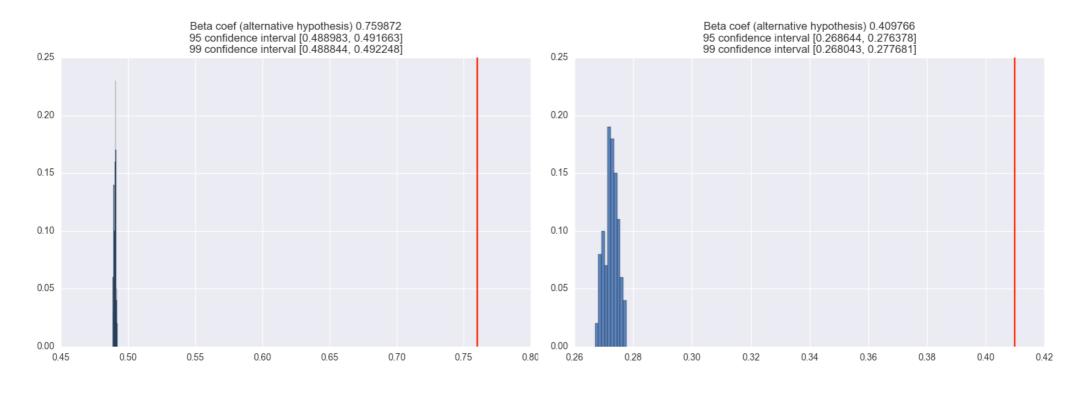

 $^{***}p < 0.001, \, ^{**}p < 0.01, \, ^{*}p < 0.05$


Female-female bridges show a stronger effect

• Purchase choices are influenced by merchant popularity and location (Huff, 1964)

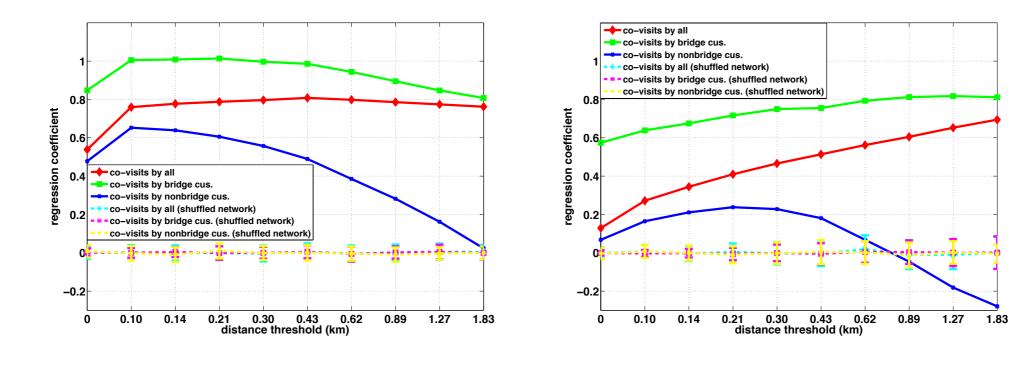



• Purchase choices are influenced by merchant popularity and location (Huff, 1964)


• Purchase choices are influenced by merchant popularity and location (Huff, 1964)

- Simulate individual purchases and co-visitation between communities
- Compare the regression coefficient with the empirical one

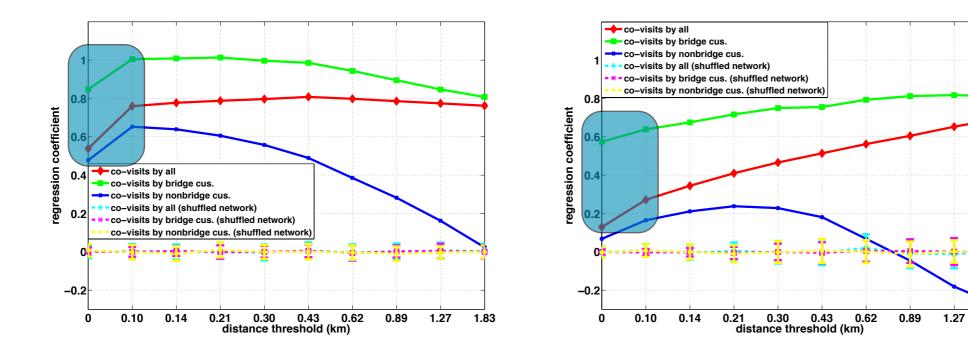
- Simulate individual purchases and co-visitation between communities
- Compare the regression coefficient with the empirical one


City A

City B

Effect of social bridge is not simply due to merchant popularity and location

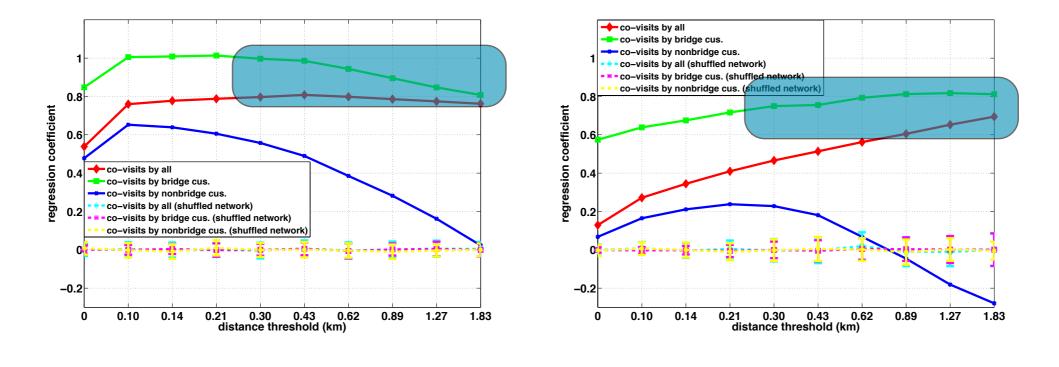
- Regression coefficient as a function of distance ${\bf d}$


• Regression coefficient as a function of distance **d**

City A

City B

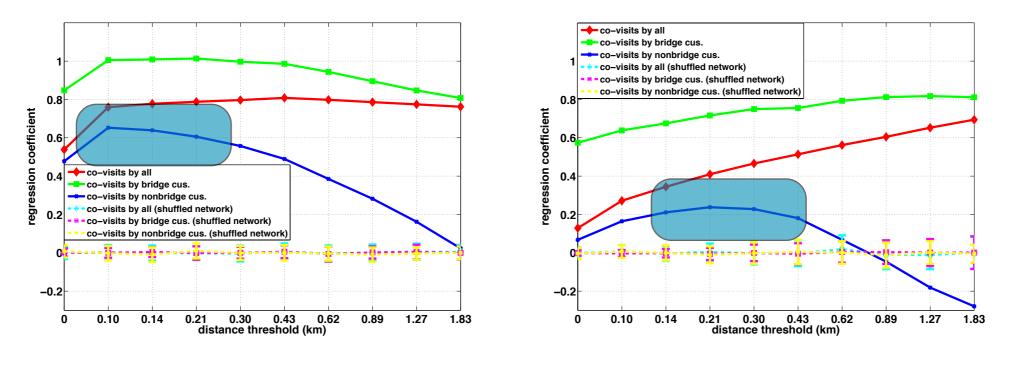
• Regression coefficient as a function of distance **d**



City A

City B

1.83


- Regression coefficient as a function of distance ${\bf d}$

City A

City B

- Regression coefficient as a function of distance ${\bf d}$

City A

City B

Peak region of blue curve (co-visits by non-bridge customers) suggests geographical constraint for social bridge effect

Application: Prediction of co-visits

- Three-class classification: small, medium, large amount of co-visitation
- For each IV (feature), train on 20% of communities and test on the rest 80%, using LIBSVM (Chang, 2011)

Application: Prediction of co-visits

- Three-class classification: small, medium, large amount of co-visitation
- For each IV (feature), train on 20% of communities and test on the rest 80%, using LIBSVM (Chang, 2011)

Indicator	City A	City B
# Social Bridge	72.5%	53.6%
Population	55.0%	50.4%
Distance	49.9%	45.4%
Age	40.0%	36.6%
Gender	35.1%	40.9%
Marital Status	35.3%	34.7%
Education	38.1%	39.0%
Working Style	38.3%	38.0%
Income	33.6%	36.1%

Social bridge is more efficient in predicting co-visitation than traditional factors

• Social bridge captures a form of social learning due to physical exposure: similar to "the familiar stranger" (Milgram, 1977)

- Social bridge captures a form of social learning due to physical exposure: similar to "the familiar stranger" (Milgram, 1977)
- Bridge customers are conceptually similar to "structural hole spanners" (Lou, 2013)

- Social bridge captures a form of social learning due to physical exposure: similar to "the familiar stranger" (Milgram, 1977)
- Bridge customers are conceptually similar to "structural hole spanners" (Lou, 2013)
- Easy to compute: as long as location information (social media, etc.) is available

- Social bridge captures a form of social learning due to physical exposure: similar to "the familiar stranger" (Milgram, 1977)
- Bridge customers are conceptually similar to "structural hole spanners" (Lou, 2013)
- Easy to compute: as long as location information (social media, etc.) is available
- No causal relation, but tested against demographics and null model based on popularity and distance (Huff, 1964)

- Social bridge captures a form of social learning due to physical exposure: similar to "the familiar stranger" (Milgram, 1977)
- Bridge customers are conceptually similar to "structural hole spanners" (Lou, 2013)
- Easy to compute: as long as location information (social media, etc.) is available
- No causal relation, but tested against demographics and null model based on popularity and distance (Huff, 1964)
- Strong correlation can lead to applications such as behavior prediction and stratification, campaign targeting, and resource allocation