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Practical impact

Current population
management:

- demographics
- individual records

- static information
The new way:
- behavioral traits

- collective behavior

- dynamics
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Introduction

e Classical purchase behavior models treat individual purchases separately (Huff, 1964)

e Study of purchase behavior influence is largely based on socio-demographics (Zeithaml,
1985)

e Word-of-mouth and physical exposure are powerful sources of behavioral propagation
(Arndt, 1967; Bikhchandani, 1998; Algesheimer, 2005), but their effectiveness in
modern city environment remains unknown
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e Hypothesis



Introduction

e Hypothesis

- Physical exposure at work environment promotes idea exchange

- Individuals living in different communities but sharing similar work locations act as
social bridges between communities
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Introduction

Hypothesis

Physical exposure at work environment promotes idea exchange

Individuals living in different communities but sharing similar work locations act as

social bridges between communities

e Test at city scale

JOTK
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Data set

e A large-scale credit card transaction data

country during 3 months
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set in two cities in an OECD

City A City B

# Customers 49K 9K

# Stores 110K 30K

# Transactions 2.3M  0.4M
% Female Customers 37.3% 31.9%
% Young (Below 30) Customers 20.5% 16.1%
% Single Customers 31.4% 22.7%
% College-Educated Customers 51.1% 47.5%
% Employed Customers 92.9% 92.1%
Median Income 2400 2100
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Methods

e Urban communities
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Urban communities

e Number of social bridges between

communities
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Methods

e Three behavioral indexes

- choice: number of co-visited stores
- temporal: similarity between temporal distributions of purchases

- spending: sum of differences in median spending amount of different categories
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Methods

e Three behavioral indexes

- choice: number of co-visited stores
- temporal: similarity between temporal distributions of purchases

- spending: sum of differences in median spending amount of different categories

e Remark

- exclude transactions during working hours

- exclude transactions at stores in home/work neighborhoods
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Social bridge and behavioral indexes
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Social bridge and purchase similarity (co-visits)

e Multiple OLS regression analysis

- dependent variable (DV): # co-visits (between community pair)
- independent variables (IV): # social bridges

- confounding variables: population, distance, demographics, income
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Social bridge and purchase similarity (co-visits)

e Multiple OLS regression analysis

- dependent variable (DV): # co-visits (between community pair)

- independent variables (IV): # social bridges

- confounding variables: population, distance, demographics, income

e Remark

- entries are not independent in DV and IV

- Quadratic Assignment Procedure (QAP) to test statistical significance
» random shuffling of communities in DV

» re-application of OLS
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Social bridge and purchase similarity (co-visits)

e Regression coefficients

(a) City A (b) City B
Indicator 3 Coefficient Confidence Interval Indicator 5 Coefficient Confidence Interval
# Social Bridge 0.760 *** [0.754, 0.766] # Social Bridge 0.410 *** [0.393, 0.426]
Population 0.102 *** [0.095, 0.108] Population 0.288 *** [0.272, 0.305]
Distance 0.094 *** [0.090, 0.097] Distance 0.167 #** [0.156, 0.179]
Age 0.038 *** [0.034, 0.042] Age 0.060 *** [0.048, 0.072]
Gender 0.015 *** [0.011, 0.019] Gender 0.155 *** [0.143, 0.167]
Marital Status 0.017 *#** [0.013, 0.021] Marital Status 0.023 #** [0.011, 0.035]
Education 0.046 *** [0.042, 0.051] Education -0.008 [-0.021, 0.005]
Working Style 0.015 *#** [0.011, 0.019] Working Style 0.031 #*** [0.019, 0.043]
Income 0.034 *** [0.030, 0.039] Income 0.085 *** [0.072, 0.099]
Num. Obs. 61776 Num. Obs. 12403
RMSE 0.465 RMSE 0.643
Adj. R? 0.784 Adj. R? 0.586

TFFE, <~ 0.001, ¥p < 0.01, ¥p < 0.05

TFFE, < 0,001, Fp < 0.01, *p < 0.05
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Social bridge and purchase similarity (co-visits)

e Regression coefficients

(a) City A (b) City B
Indicator 3 Coefficient __Confidence Interval Indicator 3 Coefficient __Confidence Interval
# Social Bridge 0.760 *** [0.754, 0.766] # Social Bridge 0.410 *** [0.393, 0.426]
Population 0.102 *** [0.095, 0.108] Population 0.288 s‘ﬂ—mm]—)
Distance 0.094 *#** [0.090, 0.097] Distance 0.167 #** [0.156, 0.179]
Age 0.038 *#* [0.034, 0.042] Age 0.060 *** [0.048, 0.072]
Gender 0.015 *#* [0.011, 0.019] Gender 0.155 #** [0.143, 0.167]
Marital Status 0.017 *#*=* [0.013, 0.021] Marital Status 0.023 #** [0.011, 0.035]
Education 0.046 *** [0.042, 0.051] Education -0.008 [-0.021, 0.005]
Working Style 0.015 *** [0.011, 0.019] Working Style 0.031 *** [0.019, 0.043]
Income 0.034 **%* [0.030, 0.039] Income 0.085 #** [0.072, 0.099]
Num. Obs. 61776 Num. Obs. 12403
RMSE 0.465 RMSE 0.643
Adj. R? 0.784 Adj. R? 0.586

TFFE, <~ 0.001, ¥p < 0.01, ¥p < 0.05 TFFE, < 0,001, Fp < 0.01, *p < 0.05

Social bridge is a stronger indicator of similar purchase behavior
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Social bridge and purchase similarity (co-visits)

e Histogram of distance between co-visited store and co-working location
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Co-visitation is not simply due to proximity between co-visited

store and co-working location

11/22



Co-visits by two types of customers

Bridge customers vs. Non-bridge customers
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Co-visits by two types of customers

e Bridge customers vs. Non-bridge customers

'4 a’;ﬁ\ Bridge customers

84 ) Non-bridge customers
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Co-visits by two types of customers

e Histogram of ratio of bridge customers

frequency count
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Ratio of bridge customers are relatively small
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Co-visits by two types of customers

e Percentage of co-visits by bridge customers

ratio of covisits by non-bdg cus.
ratio of covisits by non-bdg cus.
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A large portion of co-visits are by non-bridge customers

14/22



Co-visits by two types of customers

e Regression coefficients

(a) City A
Co-Visits Types 3 Coefficient Confidence Interval Adj. R’
By All 0.760 *** [0.754, 0.766] 0.784
By Bridge Cus. 1.005 ##* [0.999, 1.011] 0.766
By Non-Bridge Cus. 0.653 *#%* [0.646, 0.660] 0.705

FFE < 0.001, *p < 0.01, *p < 0.05

(b) City B
Co-Visits Types 3 Coefficient Confidence Interval Adj. R’
By All 0.410 *** [0.393, 0.426] 0.586
By Bridge Cus. 0.717 #*%* [0.700, 0.734] 0.558
By Non-Bridge Cus. 0.238 ##* [0.220, 0.256] 0.490

Rk < 0.001, #p < 0.01, *p < 0.05
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Co-visits by two types of customers

e Regression coefficients

(a) City A
Co-Visits Types 3 Coefficient Confidence Interval Adj. R’
By All 0.760 *** [0.754, 0.766] 0.784

Bi Bridie Cus. 1.005 #:** [0.999i 1.011] 0.766

wEp < 0.001, *#p < 0.01, *p < 0.05

(b) City B
Co-Visits Types 3 Coefficient Confidence Interval Adj. R”
By All 0.410 %= [0.393, 0.426] 0.586

Bi Bridie Cus. 0.717 [0.700, 0.734] 0.558

FE, < 0.001, Fp < 0.01, *p < 0.05

Social bridge is a indicator of similar purchase behavior even for
non-bridge customers
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Co-visits in three merchant categories

e Regression coefficients

(a) City A
Co-Visits Types 3 Coefficient Confidence Interval Adj. R”
Supermarkets 0.610 *** [0.603, 0.618] 0.693
Restaurants 0.812 #%** [0.805, 0.818] 0.776
Clothing Stores 0.623 *** [0.615, 0.631] 0.631

3 < 0.001, *¥p < 0.01, *p < 0.05

(b) City B
Co-Visits Types 3 Coefficient Confidence Interval Adj. R”
Supermarkets 0.291 #** [0.274, 0.309] 0.537
Restaurants 0.445 *%* [0.426, 0.465] 0.399
Clothing Stores 0.330 ##* [0.312, 0.347] 0.539

) < 0.001, #¥p < 0.01, *p < 0.05
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Co-visits in three merchant categories

e Regression coefficients

(a) City A
Co-Visits Types 3 Coefficient Confidence Interval Adj. R”
Supermarkets 0.610 *** [0.603, 0.618] 0.693
Clothing Stores 0.623 *** [0.615, 0.631] 0.631

FF) < 0.001, *p < 0.0, *p < 0.05

(b) City B

Co-Visits Types 3 Coefficient Confidence Interval Adj. R”

Suiermarkets 0.291 #*= [0.274, 0.309] 0.537

Clothing Stores  0.330 ##* [0.312, 0.347] 0.539
FF < 0.001, ©p < 0.01, *p < 0.05

Effect of social bridge is stronger for restaurants but weaker for
supermarkets

16/22



Gender difference in social bridge

e Regression coefficients
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(a) City A
Bridge Types Co-Visits Types 3 Coefficient Confidence Interval Adj. R”
Female-Female By Non-Bridge Female 0.527 *** [0.520, 0.533] 0.625
Female-Female By Non-Bridge Male 0.404 **%* [0.398, 0.411] 0.615
Male-Male By Non-Bridge Female 0.360 *** [0.352, 0.368] 0.543
Male-Male By Non-Bridge Male 0.393 **%* [0.385, 0.400] 0.604

FFp < 0.001, *p < 0.01, *p < 0.05

(b) City B

Bridge Types Co-Visits Types /3 Coefficient Confidence Interval Adj. R”
Female-Female By Non-Bridge Female 0.327 *** [0.311, 0.343] 0.340
Female-Female By Non-Bridge Male 0.106 *** [0.091, 0.120] 0.468
Male-Male By Non-Bridge Female -0.073 #** [-0.092, -0.055] 0.261
Male-Male By Non-Bridge Male 0.044 *** [0.028, 0.060] 0.460

==Ep < 0.001, #Fp < 0.01, *p < 0.05
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Gender difference in social bridge

e Regression coefficients

community J

(a) City A

Male-Male By Non-Bridge Female 0.360 *** [0.352, 0.368] 0.543
Male-Male By Non-Bridge Male 0.393 **%* [0.385, 0.400] 0.604

ik < 0.001, *#p < 0.01, *p < 0.05

(b) City B
2
Male-Male By Non-Bridge Female -0.073 #=* [-0.092, -0.055] 0.261
Male-Male By Non-Bridge Male 0.044 *%*%* [0.028, 0.060] 0.460

ik < 0.001, *#p < 0.01, *p < 0.05

Female-female bridges show a stronger effect
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Comparison with a null model

e Purchase choices are influenced by merchant i
popularity and location (Huff, 1964) 8 & "’1
7%‘ - bop;
pi > =
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e Purchase choices are influenced by merchant i
popularity and location (Huff, 1964) 8 & ’\"
7%‘ - bop;
pi X
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visits store s
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Comparison with a null model

e Purchase choices are influenced by merchant i
popularity and location (Huff, 1964) & & "’1
',_-“
& POp;
Di X
di
popularity of distance between
probability customer i store s customer i and store s

visits store s \ /

Pis = - 77
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Comparison with a null model

e Simulate individual purchases and co-visitation between communities

e Compare the regression coefficient with the empirical one
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Comparison with a null model

e Simulate individual purchases and co-visitation between communities

e Compare the regression coefficient with the empirical one

Beta coef (alternative hypothesis) 0.759872 Beta coef (alternative hypothesis) 0.409766
95 confidence interval [0.488983, 0.491663] 95 confidence interval [0.268644, 0.276378]
0.25 99 confidence interval [0.488844, 0.492248] 025 99 confidence interval [0.268043, 0.277681]
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05
0.00 0.00
045 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.26 0.28 0.30 0.32 0.34 0.36 0.38 040 042
City A City B

Effect of social bridge is not simply due to merchant popularity
and location
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Influence of distance threshold

e Regression coefficient as a function of distance d
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Influence of distance threshold

e Regression coefficient as a function of distance d

regression coefficient
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Influence of distance threshold

e Regression coefficient as a function of distance d

regression coefficient
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Influence of distance threshold

e Regression coefficient as a function of distance d

regression coefficient
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Influence of distance threshold

e Regression coefficient as a function of distance d

regression coefficient
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Peak region of blue curve (co-visits by non-bridge customers)

suggests geographical constraint for social bridge effect
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Application: Prediction of co-visits

e Three-class classification: small, medium, large amount of co-visitation

o For each IV (feature), train on 20% of communities and test on the rest
80%, using LIBSVM (Chang, 2011)
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Application: Prediction of co-visits

e Three-class classification: small, medium, large amount of co-visitation

o For each IV (feature), train on 20% of communities and test on the rest
80%, using LIBSVM (Chang, 2011)

Indicator City A City B
# Social Bridge 72.5% 53.6%

Population 55.0% 50.4%

Distance 49.9% 45.4%
Age 40.0% 36.6%
Gender 35.1% 40.9%

Marital Status 35.3% 34.7%
Education 38.1% 39.0%
Working Style 38.3% 38.0%
Income 33.6% 36.1%

Social bridge is more efficient in predicting co-visitation than
traditional factors
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Discussion

e Social bridge captures a form of social learning due to physical exposure:
similar to “the familiar stranger” (Milgram, 1977)
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Discussion

e Social bridge captures a form of social learning due to physical exposure:
similar to “the familiar stranger” (Milgram, 1977)

e Bridge customers are conceptually similar to “structural hole
spanners” (Lou, 2013)

o Easy to compute: as long as location information (social media, etc.) is
available

e No causal relation, but tested against demographics and null model based
on popularity and distance (Huff, 1964)

e Strong correlation can lead to applications such as behavior prediction
and stratification, campaign targeting, and resource allocation
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