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How communication affects human decision-making?
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• Study of purchase behavior influence is largely based on socio-demographics (Zeithaml, 
1985)
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• Word-of-mouth and physical exposure are powerful sources of behavioral propagation 
(Arndt, 1967; Bikhchandani, 1998; Algesheimer, 2005), but their effectiveness in 
modern city environment remains unknown

• Classical purchase behavior models treat individual purchases separately (Huff, 1964)
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Introduction
• Hypothesis

4

- Physical exposure at work environment promotes idea exchange
- Individuals living in different communities but sharing similar work locations act as 

social bridges between communities

• Test at city scale
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• Number of social bridges between 
communities

# bridges = 4 # bridges = 4

bdg(I, J) = |{i, j}|

s.t. i 2 I, j 2 J, D(Li, Lj)  d
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• Three behavioral indexes

- choice: number of co-visited stores
- temporal: similarity between temporal distributions of purchases
- spending: sum of differences in median spending amount of different categories
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• Remark
- exclude transactions during working hours
- exclude transactions at stores in home/work neighborhoods
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• Multiple OLS regression analysis

- dependent variable (DV): # co-visits (between community pair)
- independent variables (IV): # social bridges
- confounding variables: population, distance, demographics, income
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• Remark
- entries are not independent in DV and IV
- Quadratic Assignment Procedure (QAP) to test statistical significance

‣ random shuffling of communities in DV

‣ re-application of OLS
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Social bridge is a stronger indicator of similar purchase behavior
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Social bridge and purchase similarity (co-visits)
• Histogram of distance between co-visited store and co-working location

11

0 20 40 60 80 1000

1

2

3

4

5 x 104

distance (km)

fr
eq

ue
nc

y 
co

un
t

0 20 40 60 80 1000

1

2

3

4

5

6

7

8 x 105

distance (km)

fr
eq

ue
nc

y 
co

un
t

City A (62% > 2km) City B (74% > 2km)

Co-visitation is not simply due to proximity between co-visited 
store and co-working location
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Co-visits by two types of customers
• Histogram of ratio of bridge customers
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Co-visits by two types of customers
• Percentage of co-visits by bridge customers

14

City A City B

A large portion of co-visits are by non-bridge customers
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Co-visits by two types of customers
• Regression coefficients

15

Social bridge is a indicator of similar purchase behavior even for 
non-bridge customers
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• Regression coefficients
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Effect of social bridge is stronger for restaurants but weaker for 
supermarkets
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• Regression coefficients

17

Female-female bridges show a stronger effect
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• Simulate individual purchases and co-visitation between communities
• Compare the regression coefficient with the empirical one
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City A City B

Effect of social bridge is not simply due to merchant popularity 
and location
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Peak region of blue curve (co-visits by non-bridge customers) 
suggests geographical constraint for social bridge effect



/22

Application: Prediction of co-visits
• Three-class classification: small, medium, large amount of co-visitation
• For each IV (feature), train on 20% of communities and test on the rest 

80%, using LIBSVM (Chang, 2011)

21



/22

Application: Prediction of co-visits
• Three-class classification: small, medium, large amount of co-visitation
• For each IV (feature), train on 20% of communities and test on the rest 

80%, using LIBSVM (Chang, 2011)

21

Social bridge is more efficient in predicting co-visitation than 
traditional factors
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• Bridge customers are conceptually similar to “structural hole 
spanners” (Lou, 2013)

• Easy to compute: as long as location information (social media, etc.) is 
available

• No causal relation, but tested against demographics and null model based 
on popularity and distance (Huff, 1964)

• Strong correlation can lead to applications such as behavior prediction 
and stratification, campaign targeting, and resource allocation


