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Main Problems for GSP-Based ML
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Document Analysis: Node Classification

The Emerging Field
of Signal Processing
on Graphs

http://networkrepository.com/cora.php
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Graph
Nodes — papers
Edge — paper citation

Nodes Label
' Signal Processing

Drug Discovery

Computer Vision

Node Signal

content-based features
0: word not present in the paper
1: word present in the paper

Dataset #Nodes #Edges  Train/Dev/Test
Cora 2,708 5,429 140/500/1,000
CiteSeer 3,327 4,723 120/500/1,000
Pubmed 19,717 44,338 60/500/1,000




Document Analysis: Node Classification

oo A Dataset  #Nodes #Edges  Train/Dev/Test
W | Cora 2,708 5,429 140,/500/1,000
CiteSeer 3,327 4,723 120/500/1,000

Y : Pubmed 19,717 44,338 60,/500/1,000
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Guoji Fu et al. “Understanding Graph Neural Networks from Graph Signal Denoising Perspectives”, arXiv, 2020



Neuroscience: Graph Classification

slofolslelo

L=D-W
01— 0.08
008 i ! 0.05
5 || %004

gooer | - H%
§ I § 0.03

8 004l | | 2
2 H() or fll E 0.02
1 1 001

ol

o WD Vol 4 0
5 10 15 20 25 30 35 40

eigenvector index

WP

10 15 20 25 30 35 40
eigenvector index

Two graphs are build based on AD
(Alzheimer’s disease) and NC
(normal control)

PET/ftMRI data as graph-signals

Edge weights describing the affinity
between each pair of brain regions

Graph classification as hypothesis
testing

Ho: signal smooth on graph Go

H1: signal smooth on graph G+

C. Hu et al., “Matched signal detection on graphs: Theory and application to brain imaging data classification”, Neurolmage, 2016.
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Community detection
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N. Tremblay and Pierre Borgnat, “Graph wavelets for multiscale community mining”, IEEE TSP 2014.



Price Experiments in Consumers’ Game

Products

Consumption

g
)
1), ‘2 Topological
influence
Consumers

- Consumers as vertices on graph
+ (Unknown) topological influence as graph weigh

« Topology inference / users consumption

prediction / community detection ...
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Blind Community Detection

llll ’ L

P'S Step 1: |
structure Step 2:
inference community

detection
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Blind community detection

Observations are graph signals modeled as the outputs of an
unknown network process represented by a low-rank graph filter

H.-T. Wai, et al., “Blind community detection from low-rank excitations of a graph filter”, IEEE TSP, 2020.
R. Ramakrishna et al., "A User Guide to Low-Pass Graph Signal Processing and Its Applications”, IEEE SPM, 2020.
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Blind Community Detection: low-rank filtering

@D < - Consumers as vertices on graph

+ (Unknown) topological influence as graph weigh A

« Topology inference / users consumption
prediction / community detection

gt = (b — A)~1p’

observed graph signal ¥° = 1 Sk Ly — v
\ excitation signal -p* /

Observations are graph signals modeled as the outputs of
an unknown network process represented by a graph filter

H.-T. Wai, et al., “Blind community detection from low-rank excitations of a graph filter”, IEEE TSP, 2020.
R. Ramakrishna et al., "A User Guide to Low-Pass Graph Signal Processing and Its Applications”, IEEE SPM, 2020.
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Blind Community Detection

 The covariance matrix of observed graph signals is a sketch of the Laplacian
matrix that retains coarse topological features of the graph, like communities

- Blind CD approaches the performance of spectral clustering (under given
conditions and assuming graph filter being low-pass)

Rollcall data may be modeled as the equilibrium of an opinion dynamics
process with stubborn agents

H.-T. Wai, et al., “Blind community detection from low-rank excitations of a graph filter”, IEEE TSP, 2020.
R. Ramakrishna et al., "A User Guide to Low-Pass Graph Signal Processing and Its Applications”, IEEE SPM, 2020.
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Mobility inference

X. Dong et al.
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"Inference of mobility patterns via spectral graph wavelets”, ICASSP, 2013.
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Transportation Network: mobility inference

Real World Traffic Graph Representatlon Undirected Adjacency Matrix
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Transportation Network: mobility inference
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Pang

© OpenStreetMap contributors /
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Algorithm 2 Prediction of traffic features (h-steps ahead)

Set p = x¢

for i € [0,h — 1] do
Set p = Hi4ip
end for
Xt+hlt — P
return X; s
end function

function PREDICTION(xY, h, H,, -

’ Ht+h—1)

Heat diffusion kernels embedded into dynamic linear model to exploit
topological information of the transportation network

Dynamic linear model

x¢ = Hx¢ +nf,Vt € [0,T — 1]

Demand matrix (exogenous)

Internal diffusion matrix (endogenous) HY (1) = ¢~ "%(9)

S. Kwak, “Predicting traffic signals on transportation networks using spatio-temporal correlations on graphs”, arXiv 2021.
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Recommender systems: Online Learning

watched by both users
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watched /ecommended

by her , to him a Uber

[ Graphs model items and users similarities )

20

https://www.xpertup.com/downloads/movie-recommender-system/



Recommender systems: User graph

= User preferences mapped into a graph of similarities
®=1[60,0,,...,0,y]T € RV*%:signal on graph

» Exploitation of smoothness prior

n

Laplacian-regularised estimator within
online learning framework

/ Step 1:Act and Observe
a;

max [r(gr.+(a)) + UCBL (Ey)]
Step 3: Selection

K. Yang, “Laplacian-regularized graph bandits: Algorithms and theoretical analysis”,

AISTATS 2020
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Recommender systems: Item graph
p

* Items as nodes on graph
y = [leyZJ""yN]T € ]RNXd

: reward (unknown)

 Signal (reward) is unknown and needs to be inferred

1

» Mean reward as smooth signal on graph E{y,} = (x,, @)

.

 Recommendation problem as selection of best (with largest reward) graph node
n, = arg max [(qn, &)] +cllq,l |Vr1 with V;' =00/ + (A +7I)
n

| q- | Ao 0 1[— Xo — ]
L=Xo - Xvi .
_‘ ‘ _ _O )‘N—l_ L — Xy —
X A x'

M Valko et al. "Spectral bandits for smooth graph functions”, ICML 2014.



Recommender systems: Matrix Completion

HED — HO 4+ qH®

Y (1)
Y H® 1510 dH
; H' GCNN RNN
N~
) column filtering
=
ﬁ % o Wt = W@ L gw®
J t
W W) dw®
» GCNN (— > RNN

row filtering

Matrix completion: diffusion process as RNN casted on top of muilti-
graph convolutional layers

Multi-graph convolution (spatial features), followed by LSTM (diffusion
process)

F. Monti et al., "Deep geometric matrix completion: A new way for recommender systems”, ICASSP 2018
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Take Home Message

GSP Tools ... ... for ML

Graph Knowledge exploitation - Node/graph classification
Implicit / Explicit » Community detection
Given / Constructed - Time series (system dynamics)

» smooth- multi-resolution graph inference
signal representation * Online learning

- graph denoising

* graph sampling

- graph filter and kernel




GSP/ GNN
In

Healthcare and Neuroscience

Brain atlas Tractography Brain graph
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Brain Analysis: GSP for Interpretability

Aligned Liberal
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J.D. Medaglia et al., “Functional alignment with anatomical networks is associated with cognitive flexibility”, Nat Hum Behav, 2018
W. Huang, et al., "A Graph Signal Processing Perspective on Functional Brain Imaging”, Proceedings of the IEEE, 2018.
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Gene Expression: Topology inference

To identifying gene-regulatory topologies, where nodes represent individual genes
and directed edges encode causal regulatory relationships between gene pairs

exogenous inputs: genotypes of the
expression quantitative trait loci (eQTLS)

HLA-DQB1

F Y\\IJ -DRB5 ! . .
=N \\\?& : endogenous variables: gene-expression levels

[ Xt =*Hut Graph filtering modelling for auto-regressing SEM )

Kernel-based topology inference

T
A = argmin Z H x: —AXx; + Qu; Hz + aHA

S, (=1

s.t. Q=diag(w), S:i=0,i=1,...,N,

12

A. G. Marques, et al. "Signal processing on directed graphs”, IEEE SPM, 2020. 27



Brain imaging: Class activation mapping

A Input graph B Convolutions Convolutions Convolutions
/\ /N7 /'\/\/\ /\/\/\
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+
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S. Arslan et al., "Graph saliency maps through spectral convolutional networks: Application to sex classification with brain connectivity." Graphs in

Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities, 2018.
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Disease prediction

N subjects

Imaging data

Phenotypic data

KERON-CI )

Population graph

Feature vector

M labelled samples
N-M samples to classify

Graph Convolutional
Neural Network

* populations modelled as a sparse graph
 phenotypic information integrated as edge weights
* imaging-based feature vectors as node signal

Fully labelled graph

Subject classification as a graph labelling problem, integrating imaging
and non imaging data.

S. Parisot, “Disease prediction using graph convolutional networks”, Medical image analysis, 2018.



Protein-protein interactions

Protein molecular surface
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MaSIF-geometric deep learning

Interaction fingerprint

N filters C

Convolutional layers Fingerprint

|
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Application-
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P. Gainza et al. “Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning”, Nature Methods, 2020.

-
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GSP for COVID-19

Cumulative number of confirmed
COVID-19 cases per 100k residents
for each county by Aug 31

A o L\
~ e { \1,
D e \} > Ses i oepn
\ T Y a
N g b -
0

Low-pass signals of each county High-pass signals of each county

31
Y. Li and G. Mateos, "Graph Frequency Analysis of COVID-19 Incidence to Identify County-Level Contagion Patterns in the United States”, ICASSP 2021



GNN for COVID-19

T=0,8=0.9, y=0.13 T=5,8=0.9, y=0.13 T=10,8=0.9, y=0.13

Exploit GNNSs to locate the source of the epidemics.
« GNNs are model-agnostic
- GNNs identify PO close to theoretical bounds accuracy

Shah, Chintan, et al. "Finding Patient Zero: Learning Contagion Source with Graph Neural Networks." arXiv, 2020
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Take Home Message

GSP Tools ... ... for ML

Graph Knowledge exploitation - Node/graph classification
Implicit / Explicit » Community detection
Given / Constructed - Time series (system dynamics)

» smooth- multi-resolution graph inference

signal representation * Online learning
+ graph denoising o
 graph sampling
- graph filter and kernel

- graph convolution / graph Interpretability
clustering -} 7 Complex dependencies

Local (high-frequency)
activation mapping

Unknown graph knowledge Model-agnostic
Implicit

» topological inference




GSP-based ML
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GSP for Geometric Data

Continuous Functions
on Riemannian Manifolds

Discrete
Geometric Data

(a) 2D Depth Map

(b) 3D Point Cloud

Sample

(c) 4D Dynamic Point Cloud

Continuous Functional on
Riemannian Manifolds

l Discrete Counterpart

Graph Operator

X Graph
./\‘<./E\ N . (E\ Inference

-------------------------------------------------------------------------------------------
. .

Spectral-domain | Nodal-domain
Methods Methods

.
............................................................................................

Hu, Wei, et al. "Graph Signal Processing for Geometric Data and Beyond: Theory and Applications”, arXiv 2020
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Analysis and Synthesis Tasks via GNNs

Human?
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(b) Point cloud segmentation (ShapeNet) [43]
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IQ
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(e) RGB+Depth segmentation (NYUD2) [94] :
o |
la |
o |
s R |
g, _ Airplane RN Chair y :
(/p) : (g) Single image to 3D mesh (ShapeNet) [43]

(f) Point cloud generation (ShapeNet) [43]

Hu, Wei, et al. "Graph Signal Processing for Geometric Data and Beyond: Theory and Applications”, arXiv 2020
Y. Guo, et al.”"Deep learning for 3d point clouds: A survey”, IEEE TPAMI, 2020.
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Moving Object Segmentation

Ground Truth

GSP-Based

Each mask of the segmented
image as graph node

| .° ,.: s* gpe o :- (e) .Graph
. - NS Signal
By T e e .'.."0 '.:.
S ity Leda

e (c) Features

o — > _

t (b) Background Initialization

Extraction

ﬁ

Construction

Graph Signal

@ Uniabelled object

Moving object ‘ Static object

Graph weights w; ; = exp||x; — xj||%/0
Mask featurex;. concatenation of optical, flow,
intensity, texture, and deep features

J. Giraldo et al. “Graph Moving Object Segmentation”, IEEE TPAMI, 2020

Descriptive
Statistics

<, I T

| Histograms | \

LBP Deep
Features Features

37



Moving Object Segmentation

(a) Segmentation

Nodes in distinct colors

l represent the instances Ground-truth
}' " o s S (c) Features * ot gag e ® (¢) Graph
) Extracti et s Signal
(b) Background Initialization pagon LA TR N &
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Construction ‘*\% ‘ [l A i
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i q ! y 4
(c) Features o arg Hzlm 1Zgl[t,e st. Mazg =yy(S)
q

Extraction

Unseen Scene

/Graph sampling: for band limited signals,

at least p (bandwidth) labeled nodes are
needed to achieve perfect classification

= /

J. Giraldo et al. “Graph Moving Object Segmentation”, IEEE TPAMI, 2020

a,rgn;in||zq||TV s.t. Mz, = y4(S)

q

Semi-supervised learning
(classification) as graph signal
learning with smooth regularizer

\l

)
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3D Point Cloud Segmentation

of
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™ feature concat.
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«© multi-layer perceptron

|

EdgeConv _—

point cloud A__
L)

o
. EdgeConv — § — EdgeConv =
=

segmentation
output

points, in the spirit of graph neural networks

9 Feature space structure in deeper layers captures semantically similar structures

Graph convolution-like operators on the edges connecting neighboring pairs of A

Y. Wang, et al. “Dynamic Graph CNN for Learning on Point Clouds”, ACM Trans. Graph, 2019.
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3D Point Cloud Segmentation

3 S
3 - o~ ™ feature concat. 5
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- Dynamic graph constructed at each
layer based on features similarity

» Aggregation of edge features

 Translation-invariance and non-
locality properties

Ground truth

Y. Wang, et al. “Dynamic Graph CNN for Learning on Point Clouds”, ACM Trans. Graph, 2019.



Cosmology: DeepSphere

First convolutional layer Second convolutional layer Further convolutional layer Fully connected layer
(Convolution with N1 filters, activation, Output, statistical layer

pooling, batch normalization)

I

Data input

Classification /
regression output

-

e Sphere modelled with a graph and convolutions are performed on the graph

e Down-sampling operation (based on hierarchical pixelization of the sphere) to achieve
S multiple scales data analysis while preserving the spatial localization of features Y,

~

Mode 0: /=0, |m|=0

PHIROCN RORMNL L 1y,

Rremassss

Mode 2: [=1, [m|=1  Mode 3: =1, [m|=0 Mode 14: /=3, [m|=1 Mode 15: {=3, |m|=1

:.--‘:A'

et

Perraudin et al., “DeepSphere”, Astronomy and Computing, 2019




Take Home Message

GSP Tools ... ... for ML

Graph Knowledge exploitation - Node/graph classification
Implicit / Explicit » Community detection
Given / Constructed - Time series (system dynamics)

» smooth- multi-resolution graph inference
signal representation * Online learning

- graph denoising

* graph sampling

- graph filter and kernel

- graph convolution / graph Interpretability
clustering -} 7 Complex dependencies

Local (high-frequency)
activation mapping
Model-agnostic

Unknown graph knowledge
Implicit
Translation invariance
- topological inference Non-locality properties
Robustness to noise
- Sampling for computation
efficiency
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Open Challenge

-----------

----------------

a
GSP Tools

GSP-based
ML

) y,

This tutorial .-

----------------------------

O)+fptan) . M G
@ ‘Qf?i %ﬂ Gi Ne

GSP and probabilistic models

rak

GSP and model interpretability

GSP-based decision
making strategies

4 GSP Tools ol Q Q

GSP and higher-order structure
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GSP and Probabilistic Models

p(G|Ao)| -
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GSP and Probabilistic Models

Input Data
H E E Output Task
OE O E X Graph-based ML
O
2 g,x [ N
O
..................... T e |

6l

---------------------

Most works assume graph is known a priori or fixed (deterministic setting)

Real world networks are noisy and/or evolving over time

graph-based machine learning tasks

[ Challenge I: To take into account the topology uncertainty in j

46



Topological uncertainty in GSP: Modelling

Challenge I: To take into account topological uncertainty in
graph-based SP and ML tasks

- How do we model topological noise?

* Random graph model for topological noise [1]

ground truth adjacency matrix
?

y=x+nn~NWo?) — W=+E

> What is the impact of the topological noise on filtering [1,2,3]7

[1] J. Miettinen, “Modelling Graph Errors: Towards Robust Graph Signal Processing”, arXiv, 2020.
[2] E. Isufi, et al., “Filtering random graph processes over random time-varying graphs”, IEEE TSP, 2017.

[3] E. Ceci, S. Barbarossa, “Graph Signal Processing in the Presence of Topology Uncertainties”, IEEE TSP, 2020.
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Topological uncertainty in GSP: Robustness

Challenge I: To take into account topological uncertainty in
graph-based SP and ML tasks

- How do we build algorithms resilient to noisy topologies?

> [3] proposes a robust signal recovery algorithm, under assumption of small
perturbation, that incorporates statistical knowledge about topology
uncertainty

> [4] robustifies LMS with respect to mismatches in the presumed graph
topology

> [5] presents a robust formulation for graph-filter identification from input-
output observations

[3] E. Ceci, S. Barbarossa, “Graph Signal Processing in the Presence of Topology Uncertainties”, IEEE TSP, 2020.
[4] J. Miettinen et al. "Robust Least Mean Squares Estimation of Graph Signals” ICASSP, 2019.
[5] S. Rey and A. G. Marques, “Robust graph-filter identification with graph denoising regularization,” ICASSP, 2021. 48



Topological uncertainty in graph ML

Challenge I: To take into account topological uncertainty in
graph-based SP and ML tasks

* How do we incorporating uncertainty into learning algorithms?
> [6] proposes a GNN architecture where the distributed graph convolution

module accounts for the random network changes

. I .
. P TN
. . . .
. . .
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. . .
. 1
® :
- '
. s
- 1
.
.t
®

1

S s
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+) {(+) {(+)

49
[6] Gao et al. “Stochastic Graph Neural Networks”, ICASSP and arXiv 2020.



Topological uncertainty in graph ML

Challenge I: To take into account topological uncertainty in
graph-based SP and ML tasks

* How do we incorporating uncertainty into learning algorithms?
> Bayesian approach: compute posterior associated with graph generative

model so that new graph instances can be resampled [7,8]

GCNN
&)— e 2 Wi |~ PLEIWaiior Gin, X)

P(Z|Y £, X, Gobs) = /P(Z|W, G, X)p(W|Y¥ ., X, G)p(G|N)p(A|Gobs) dW dG d A,

1 V 1 N(; S
SV 2 oS 2 2 P Weis i, X).
v=1 i=1 s=1

v

figure from https://github.com/huawei-noah/BGCN

[71 Y. Zhang, et al. "Bayesian graph convolutional neural networks for semi-supervised classification”, AAAI, 2019.

50

[8] Elinas et al. “Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings”, NeurlPS 2020.


https://github.com/huawei-noah/BGCN

Topological uncertainty in graph ML

Challenge I: To take into account topological uncertainty in
graph-based SP and ML tasks

- How do we understand topological noise and its impact?

« How do we build algorithms resilient to noisy topologies?

* How do we incorporating uncertainty into learning algorithms?

51



GSP-Based Decision Making Strategies

a
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GSP-Based Decision Making Strategies

Supervised learning {x,y} 4( f(x) )

X (x,y,=fla,s)}
Decision Making Strategies (DMSs) V p Ve =(ap 5)}

x VaN
- : 1| <
» Reinforcement learning J(x, s)

» Multi-arm bandit problems Action Model update

Optimize sequential actions in a way that maximizes the expected reward, when
the environment’s model is uncertain a priori

53



GSP for Multi-Arm Bandit

MAB problem
ol || [Bg] st
o
Yy =S 8) arm selection

e x;: selected action
® 1. additive noise
e y,: mean payoff

® St context / user

e f: unknown model

https://blogs.mathworks.com/images/loren/2016/multiarmedbandit.jpg

High-dimensional search space ?

Optimize sequential actions in a way that maximizes the expected reward, when
the environment’s model is uncertain a priori
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GSP for Multi-Arm Bandit

xt%:
. Ve = f(X¢, St)
arm selection

Payoff as signal on G [1]

Context Features as signal on G [2]

$ 5.

$ % |
=) T 3 2 0 x -] y,(x,0) +n
| é | ﬁ X, ﬁ. EL’E Yix,) + % I ! ! I 0 L. —LLE | o :
<
g
t T—
2 2 T
= (xc(x), &) argeggxdg ZG:’ (x!0, - y,)* + a tr(©' Z0)
System Dynamics on G [3]
L. Ve = gr(x) +ny,

gr(+) graph dictionary

[1] M Valko et al. "Spectral bandits for smooth graph functions”, ICML 2014.

[2] K. Yang, “Laplacian-regularized graph bandits: Algorithms and theoretical analysis”, AISTATS 2020

[B]L. Toni, "Spectral MAB for unknown graph processes”, EUSIPCO, 2018
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GSP for RL

Entry a

{xt, Yt = f(ata St)}z

Jx, 5)

Model update

BHE BB HUD

High-dimensional state-action space

® O O

?

)

Learning model /
value function

Learning graph edge
weights / signal on graph

C. M. Machado et al. "Eigenoption discovery through the deep successor representation”, ICLR, 2018
S. Madjiheurem, "Representation learning on graphs: A reinforcement learning application”, AISTATS, 2019. 56
S. Rozada et al., “Low-rank State-action Value-function Approximation”, arXiv 2104.08805v1, 2021



GSP-Based Decision Making Strategies

Challenge II: how can GSP tools be applied to DMSs to
improve efficiency, complexity, and robustness?

- GSP to improve data efficiency by learning in the spectral domain or by
regularising on G — bandit and RL

- Graph is not usually inferred (Topological inference)
- Graph uncertainty is not considered (Topological uncertainty)

- GSP-based analysis for further guarantees (Graph-based Regret bounds)
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GSP-Based Decision Making Strategies

[

Challenge II: how can GSP tools be applied to DMSs to
improve efficiency, complexity, and robustness?

- GSP to improve data efficiency by learning in the spectral domain or by

regularising on G — bandit and RL

- GSP to improve accuracy/robustness

- GSP to improve computational efficiency

« GSP to model system dynamics

4 )
7 Nl vl e e — ()
( sl j \ Sﬁs L6 Bemm SS\) ‘ i \/~ g /
N s / \55/ s1 $2 s
\_ U '7 Graph of States / e States of Graprﬂ
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GSP and Model Interpretability
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GSP and Model Interpretability

Challenge Ill: how can GSP tools help enhance
iInterpretability of machine learning models?

« Modelling the structure of the data with a graph could be a way of introducing
domain knowledge (e.g., physical interactions)

ch .~ ‘,:'\}

- Graph filters may be designed (via e.g., anisotropic filters or adapting
attention mechanisms) to enhance model interpretability

P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph networks,” 2018, arXiv:1806.01261.
F. Monti et al., “Geometric deep learning on graphs and manifolds using mixture model CNNs,” CVPR, 2017. 60



GSP and Higher-Order Structure
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GSP and High-order Structure

- Graphs capture pairwise (lower-order) relationship O o —
between nodes 1st- level 2nd-level motif

- Higher-order structures play a key role in
understanding the fundamental structures that control ‘ N '{ N

the behaviour of many complex systems
3rd-level motif

- Motifs have been used to design GNN models that are capable of handling directed
graphs

~

Challenge IV: to extend GSP tools to higher-order structures, such as
motifs, simplicial complexes, and hypergraphs

R. Benson et al., “Higher- order organization of complex networks” Science, 2016.
F. Monti, et al., “MotifNet: A motif-based Graph Convolutional Network for directed graphs,” IEEE DSW, 2018.
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GSP and Higher-order Structure

Challenge IV: to extend GSP tools to higher-order structures, such as
motifs, simplicial complexes, and hypergraphs

C

® > I
>Q 4 2 ( .

J
-0
2

-4
® ©® o) &

Signals on simplicial complexes of different order

Barbarossa and Sardellitti, “Topological Signal Processing over Simplicial Complexes,” TSP, 2020.
Schaub et al., “Signal Processing on Higher-Order Networks: Livin' on the Edge ... and Beyond,” arXiv, 2021.
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Conclusions

/
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GSP Tools

S «
\_ J

EQ

Graph-based ML
4 )

f(G,%)
XA |
Y %

o

Machine Learning

(y=rw)

enable convolution & hierarchical modelling on graphs

improve efficiency & robustness of (graph-based) ML models

interpret data structure & learning models on graphs




Conclusions

4 . )
GSP Tools Graph-based Graph filters GSP-related
Benefits regularisation & transforms learning models
Exploiting Data GP & kernels multiscale CNNs on
Structure on graphs clustering graphs
Improve efficiency & multi-task spectral few-shot
robustness on graphs learning clustering learning
;?rter?rft o‘!(a;ca rnin interpreting topology attention
ucture < fearning DNNs inference models
models on graphs
. /
" Tasks h /Applications A KOpen Challenges and
« Node / graph classification Rl Perspectives
* Community Detection a & 0 Probabilistic models
* Topology inference 5. Decision Making Strategies
) Dyn.amlc Infgrence ~ L Model interpretability
* Online learning & Higher-order structures
\ NG \. /
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Dong et al., “Graph signal processing for machine learning,” IEEE SPM, 2020.
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