Graph Signal Processing for Machine Learning

A Review and New Perspectives

Xiaowen Dong, Dorina Thanou, Laura Toni, Michael Bronstein, Pascal Frossard

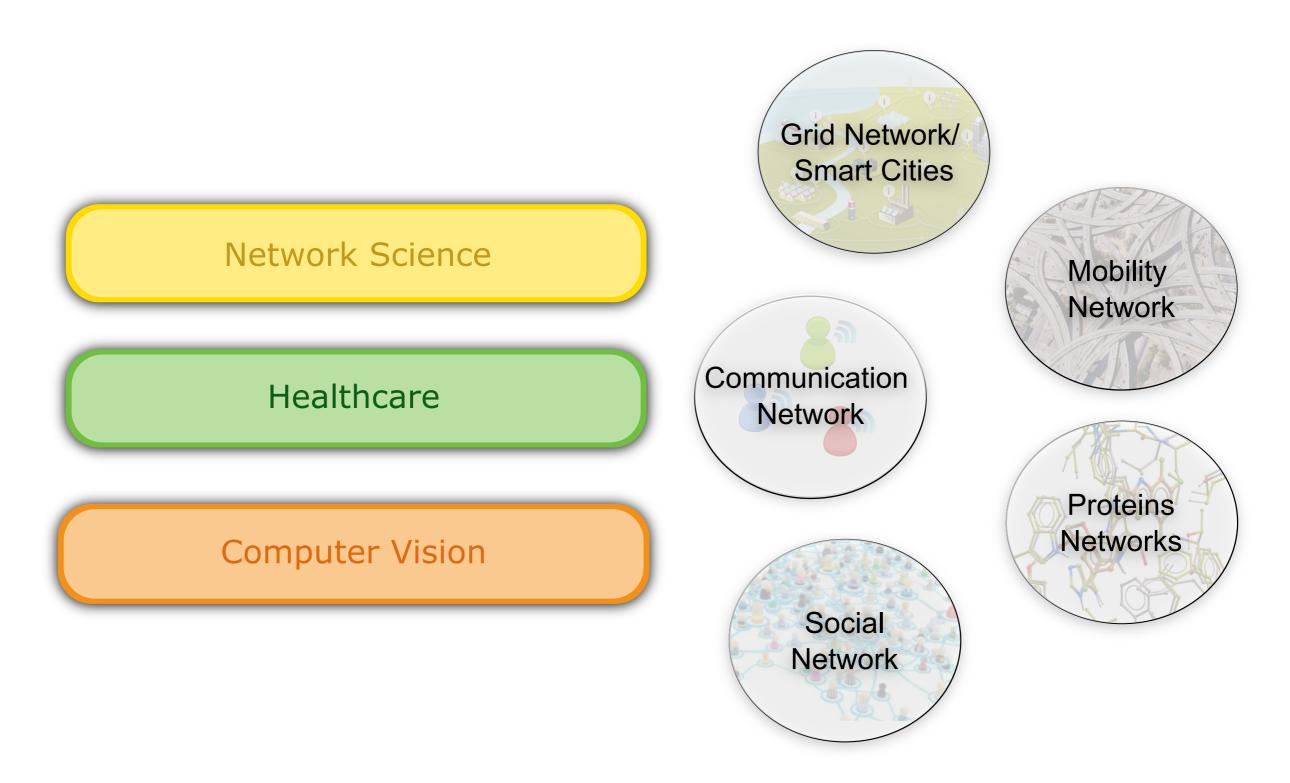
ICASSP Tutorial, June 2021

Part III Applications, Open Challenges and New Perspectives

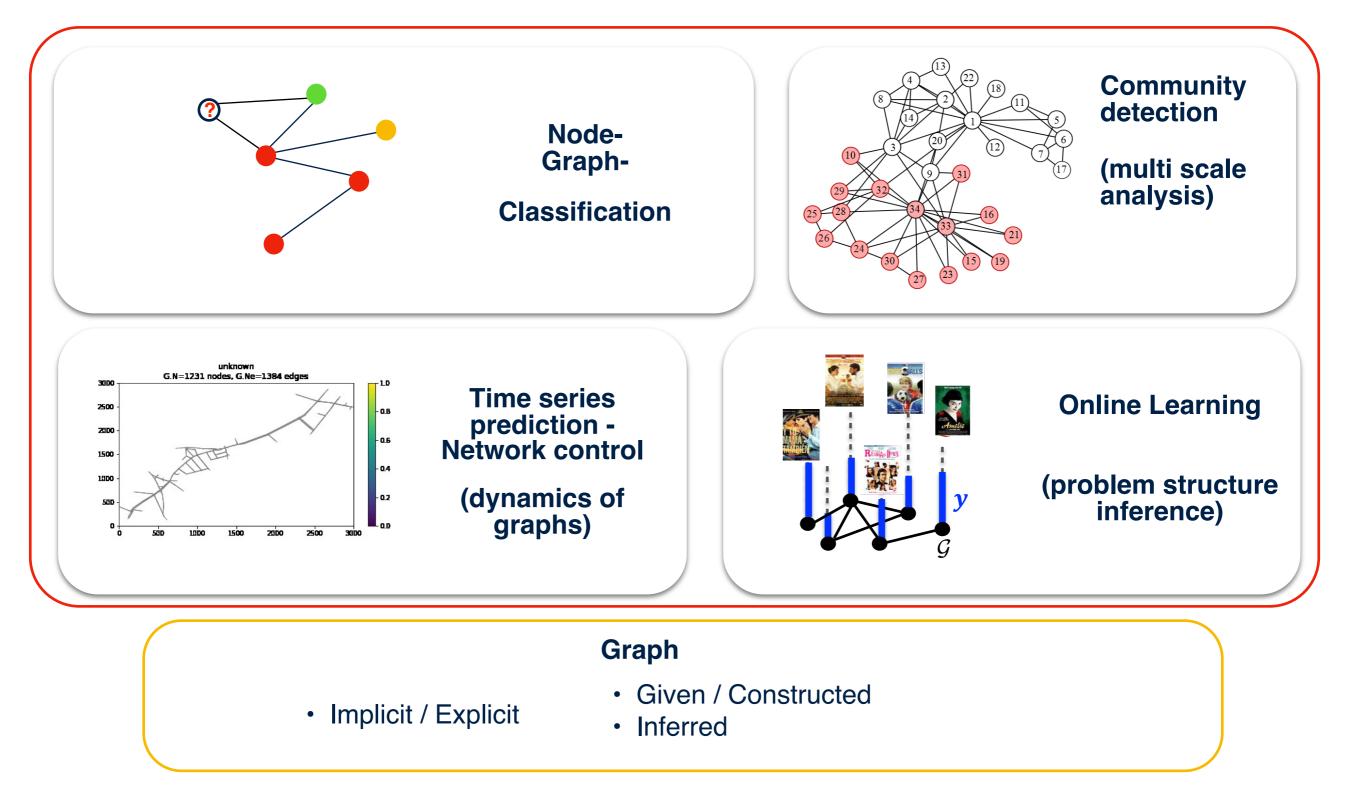
Outline

- Brief introduction to graph signal processing (GSP)
- Challenge I: GSP for exploiting data structure
- Challenge II: GSP for improving efficiency and robustness
- Challenge III: GSP for enhancing model interpretability
- Applications
- Summary, open challenges, and new perspectives

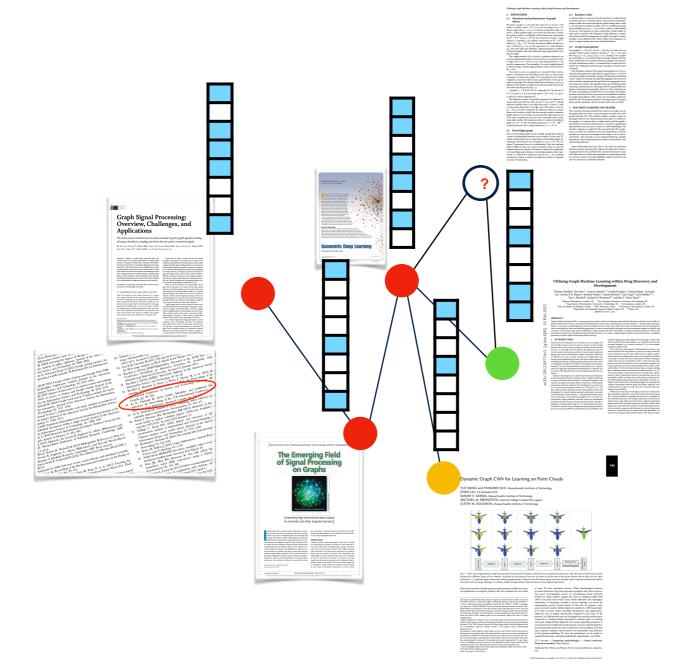
Networks are pervasive

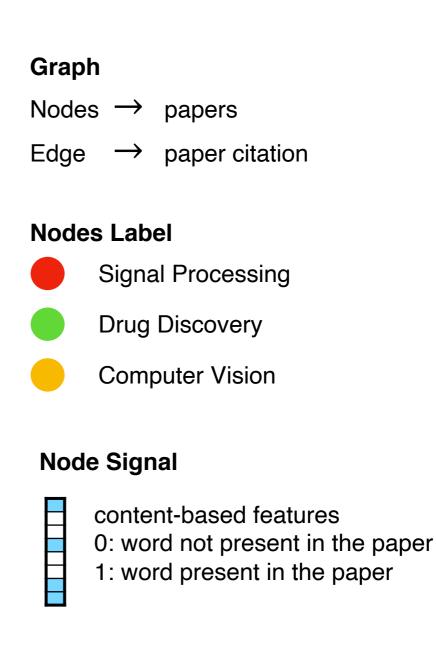


Main Problems for GSP-Based ML



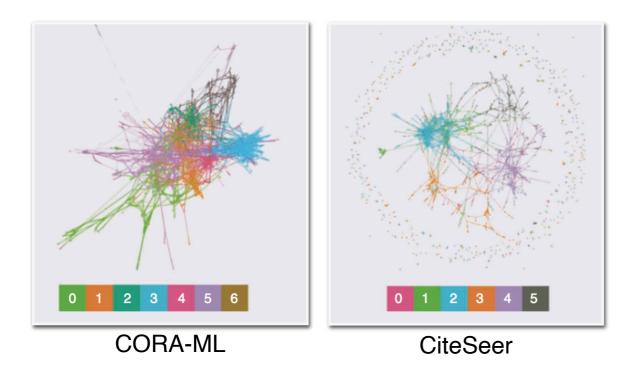
Document Analysis: Node Classification





Dataset	#Nodes	#Edges	Train/Dev/Test
Cora	2,708	$5,\!429$	140/500/1,000
CiteSeer	$3,\!327$	4,723	120/500/1,000
Pubmed	19,717	$44,\!338$	$60/500/1,\!000$

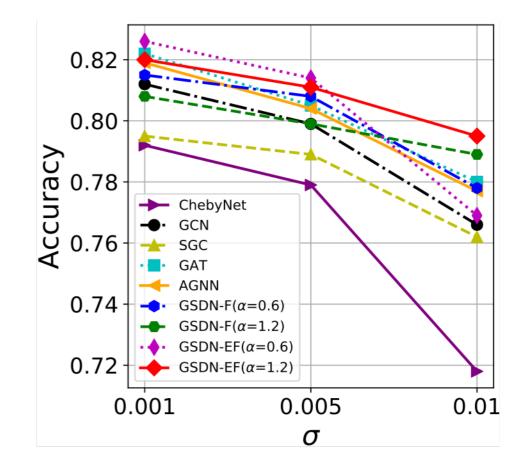
Document Analysis: Node Classification



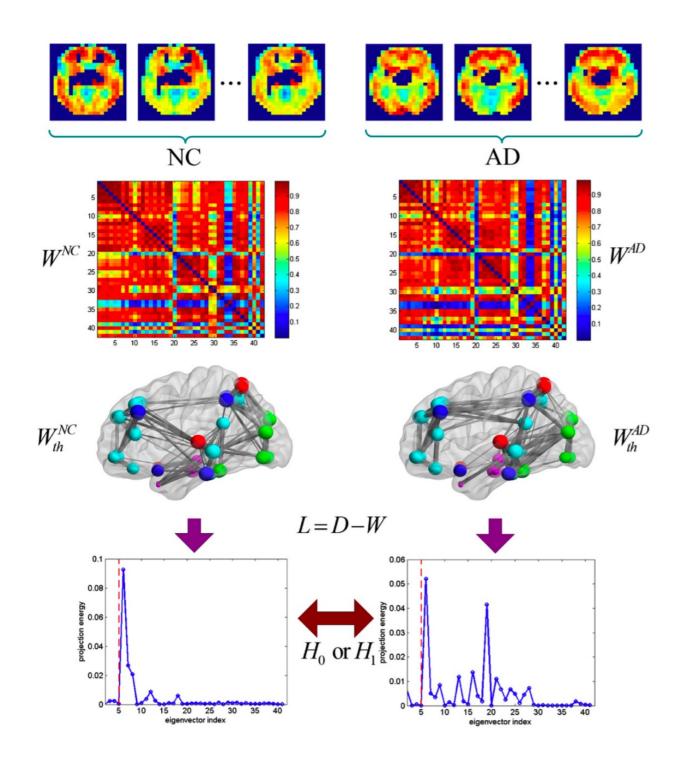
Dataset	#Nodes	#Edges	$\mathrm{Train}/\mathrm{Dev}/\mathrm{Test}$
Cora	2,708	$5,\!429$	140/500/1,000
CiteSeer	$3,\!327$	4,723	120/500/1,000
Pubmed	19,717	$44,\!338$	60/500/1,000

GNNs interpreted as implementing denoising and/or smoothing of graph signals.

Validation with semi-supervised node classification on noisy citation networks



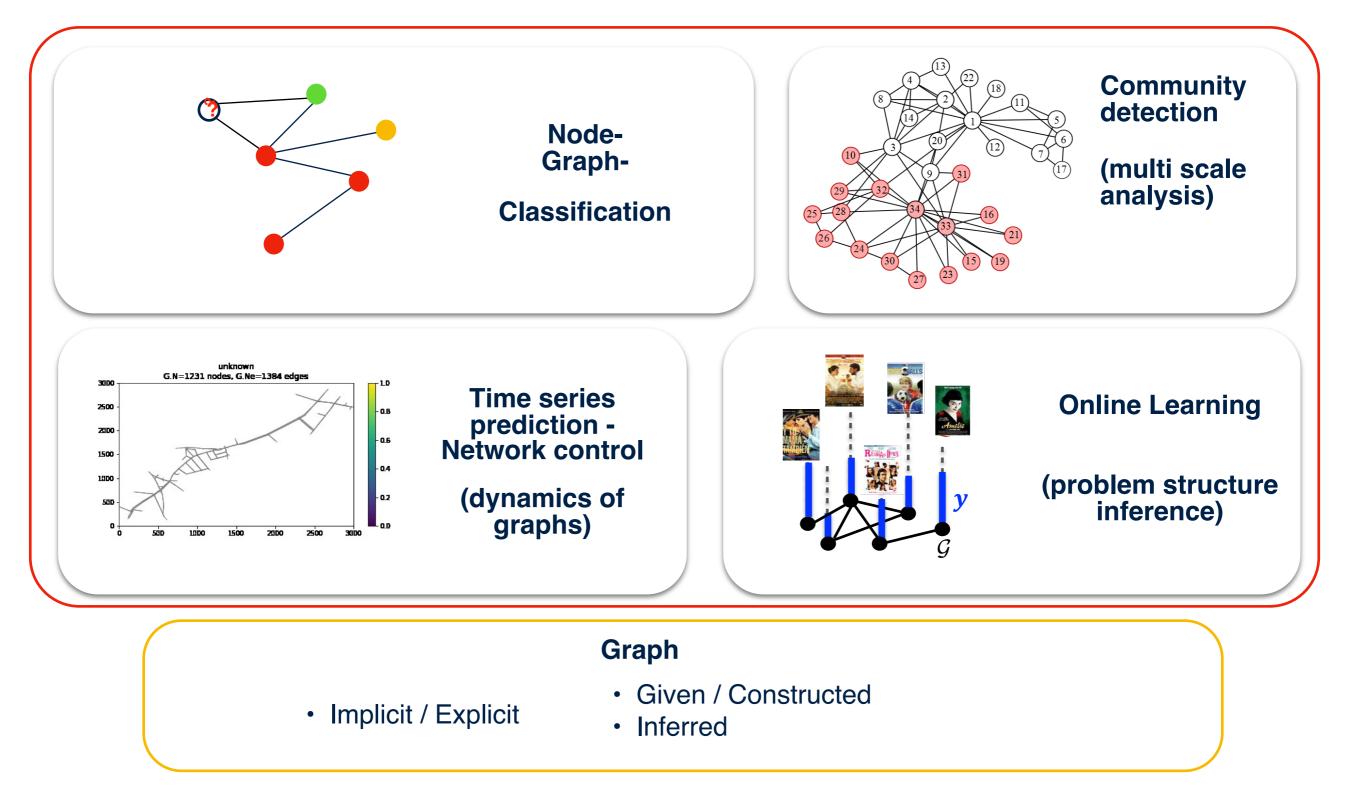
Neuroscience: Graph Classification



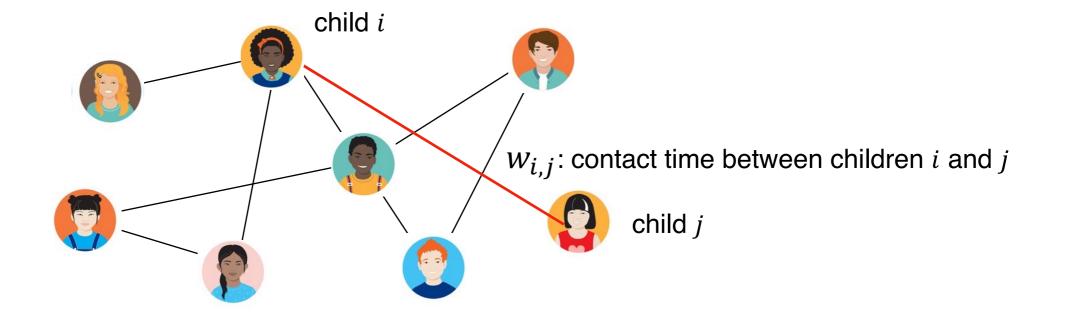
- Two graphs are build based on AD (Alzheimer's disease) and NC (normal control)
- PET/fMRI data as graph-signals
- Edge weights describing the affinity between each pair of brain regions
- Graph classification as hypothesis testing
 Ho: signal smooth on graph Go

H1: signal smooth on graph G1

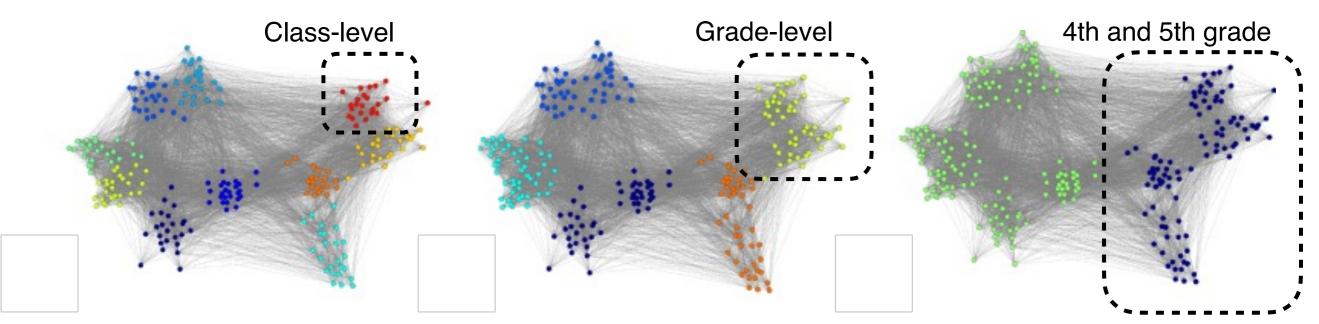
Main Problems for GSP-Based ML



Community detection

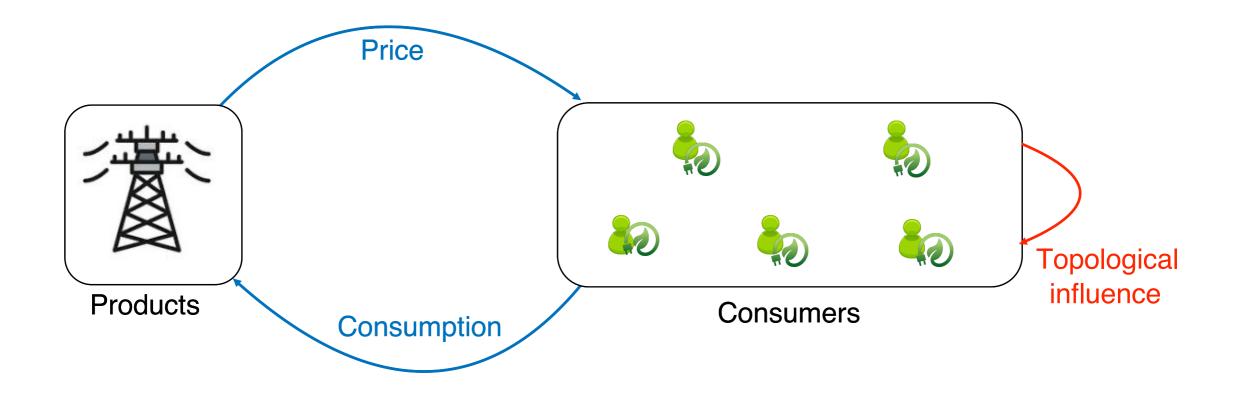


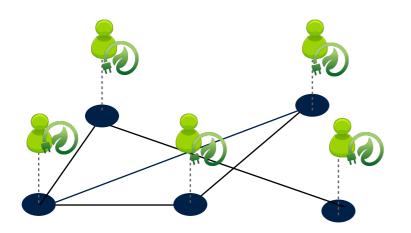
Stratification based on social interactions: multi-scale community detection based on spectral graph wavelets at different scales



N. Tremblay and Pierre Borgnat, "Graph wavelets for multiscale community mining", IEEE TSP 2014.

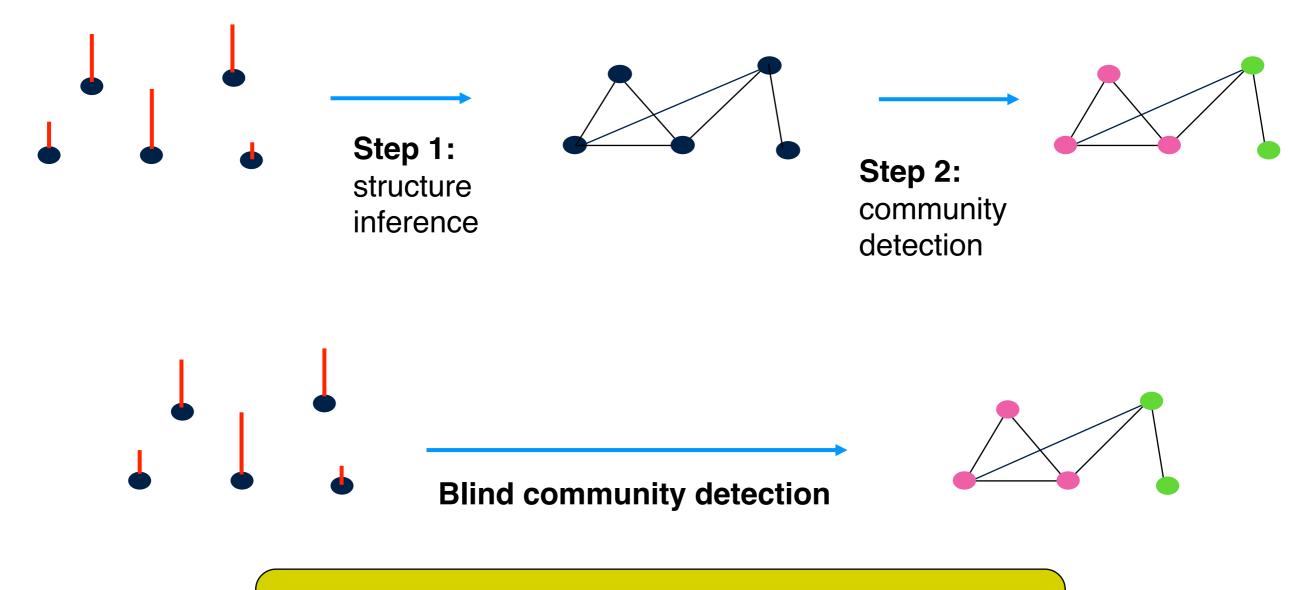
Price Experiments in Consumers' Game





- Consumers as vertices on graph
- (Unknown) topological influence as graph weigh
- Topology inference / users consumption prediction / community detection ...

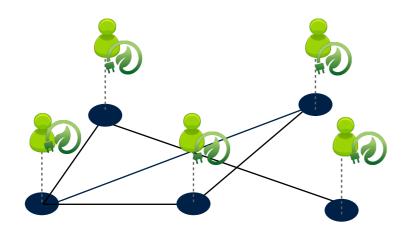
Blind Community Detection



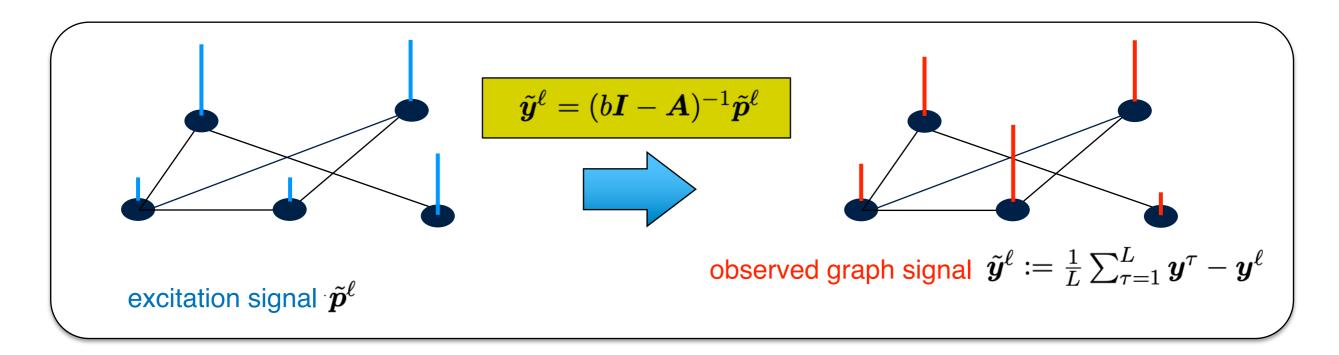
Observations are graph signals modeled as the outputs of an unknown network process represented by a low-rank graph filter

H.-T. Wai, et al., "Blind community detection from low-rank excitations of a graph filter", IEEE TSP, 2020. R. Ramakrishna et al., "A User Guide to Low-Pass Graph Signal Processing and Its Applications", IEEE SPM, 2020.

Blind Community Detection: low-rank filtering



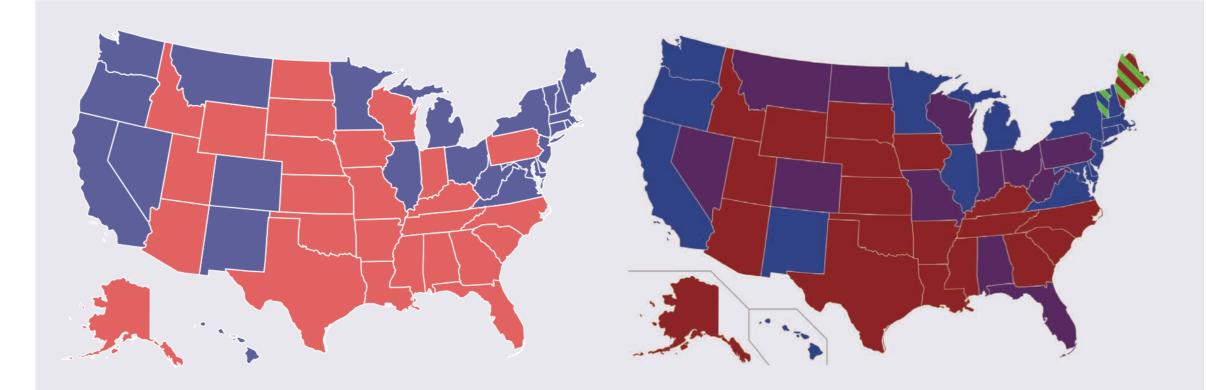
- · Consumers as vertices on graph
- (Unknown) topological influence as graph weigh $oldsymbol{A}$
- Topology inference / users consumption prediction / community detection



Observations are graph signals modeled as the outputs of an unknown network process represented by a graph filter

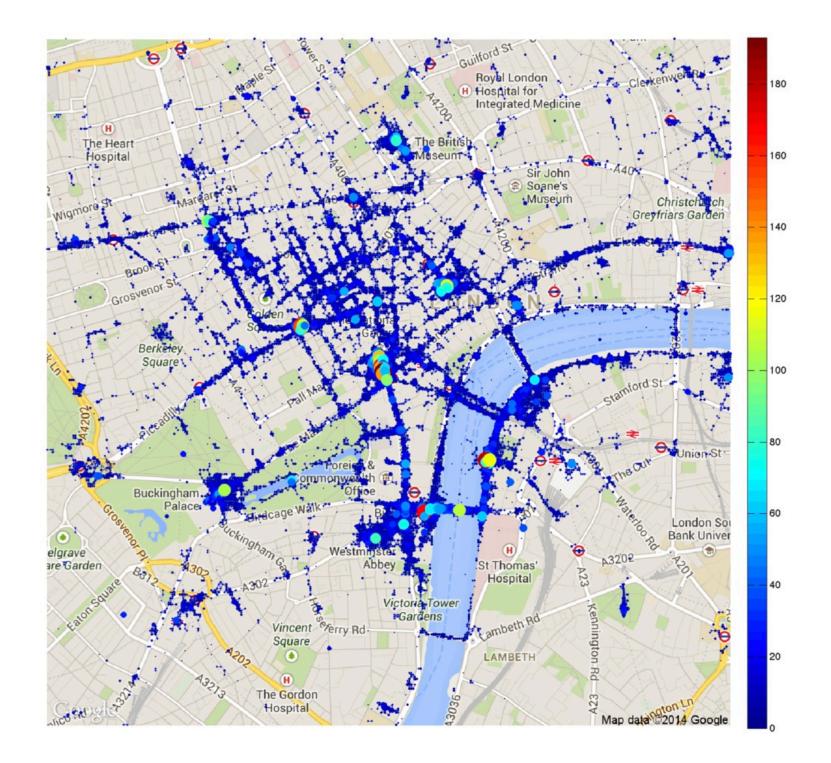
Blind Community Detection

- The covariance matrix of **observed graph signals** is a **sketch of the Laplacian matrix** that retains coarse topological features of the graph, like communities
- Blind CD approaches the performance of spectral clustering (under given conditions and assuming graph filter being low-pass)

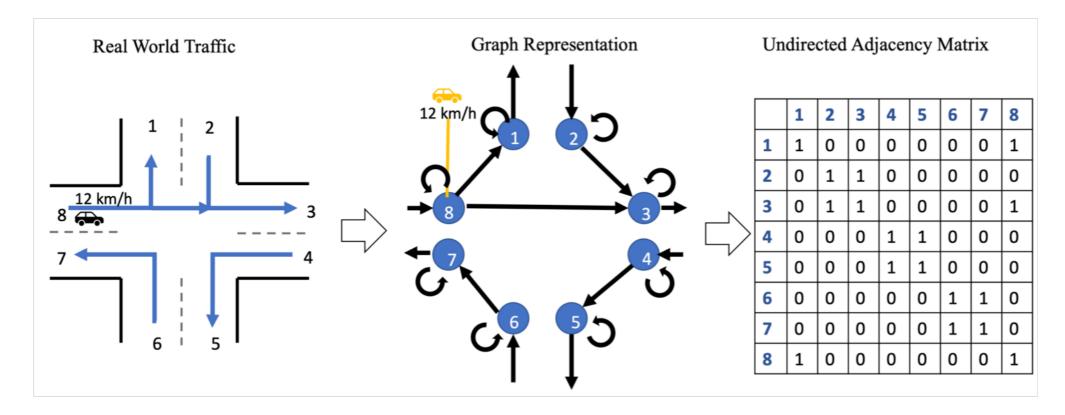


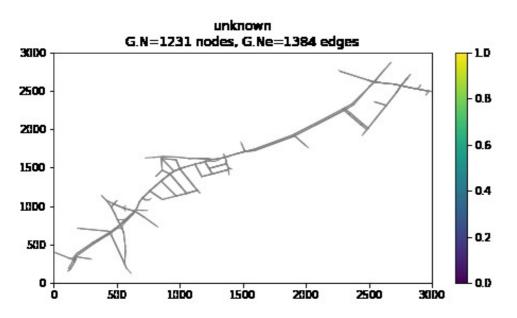
Rollcall data may be modeled as the equilibrium of an opinion dynamics process with stubborn agents

Mobility inference



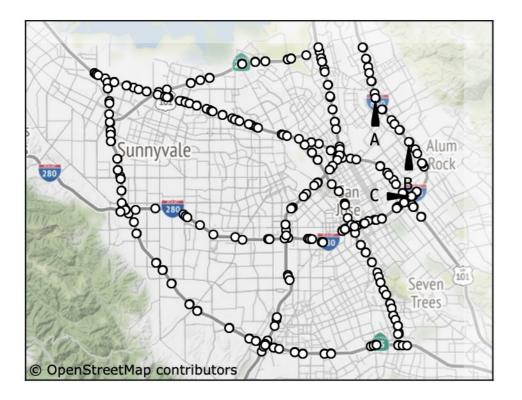
Transportation Network: mobility inference





Traffic propagation modelled as heat diffusion on graph signal

Transportation Network: mobility inference



 Algorithm 2 Prediction of traffic features (h-steps ahead)

 function PREDICTION($\mathbf{x}_t^d, h, \hat{\mathbf{H}}_t, \cdots, \hat{\mathbf{H}}_{t+h-1}$)

 Set $\mathbf{p} = \mathbf{x}_t^d$

 for $i \in [0, h - 1]$ do

 Set $\mathbf{p} = \hat{\mathbf{H}}_{t+i}\mathbf{p}$

 end for

 $\mathbf{x}_{t+h|t} = \mathbf{p}$

 return $\mathbf{x}_{t+h|t}$

 end function

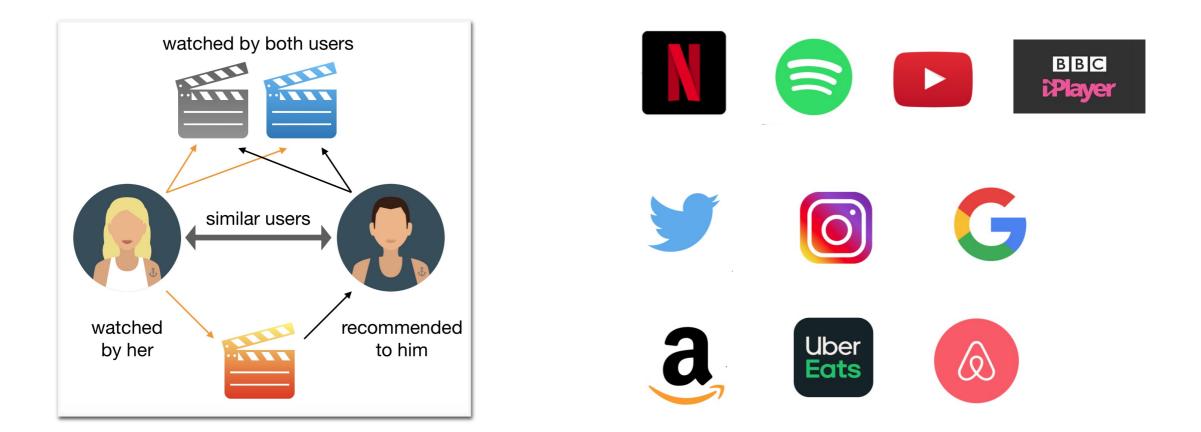
Heat diffusion kernels embedded into dynamic linear model to exploit topological information of the transportation network

Dynamic linear model

$$\mathbf{x}_{t+1}^d = \mathbf{H}_t \mathbf{x}_t^d + \mathbf{n}_t^d, \forall t \in [0, T-1]$$

 $\mathbf{H}_{t} = \left[\mathbf{H}_{t}^{\mathcal{G}}(\mathcal{T}) + \left[\mathbf{\check{H}}_{t} \right] \right]$ Demand matrix (exogenous) Internal diffusion matrix (endogenous) $\mathbf{H}^{\mathcal{G}}(\tau) = e^{-\tau \mathbf{L}(\mathcal{G})}$

Recommender systems: Online Learning



Graphs model items and users similarities

Recommender systems: User graph

• User preferences mapped into a graph of similarities

 $\boldsymbol{\Theta} = [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_N]^T \in \mathbb{R}^{N \times d}$: signal on graph

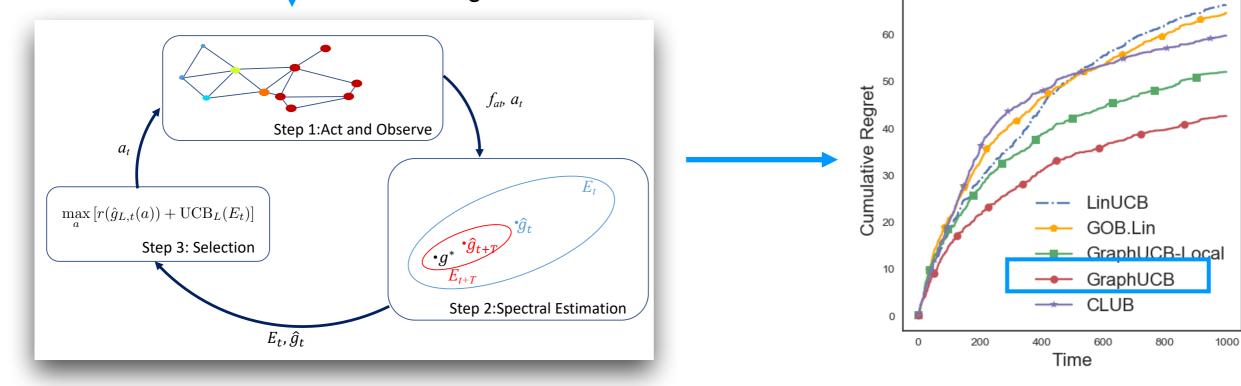
Exploitation of smoothness prior

$$\hat{\boldsymbol{\Theta}}_{t} = \arg\min_{\boldsymbol{\Theta}\in\mathbb{R}^{n\times d}} \sum_{i=1}^{n} \sum_{\boldsymbol{\tau}\in t_{i}} (\mathbf{x}_{\boldsymbol{\tau}}^{T}\boldsymbol{\theta}_{i} - y_{i,\boldsymbol{\tau}})^{2} + \alpha tr(\boldsymbol{\Theta}^{T}\boldsymbol{\mathscr{L}}\boldsymbol{\Theta})$$

fidelity term

smoothness regularizer

Laplacian-regularised estimator within online learning framework

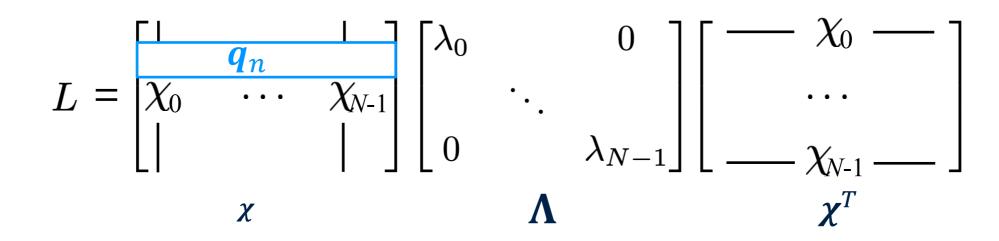


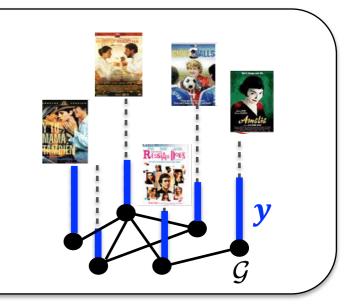
K. Yang, "Laplacian-regularized graph bandits: Algorithms and theoretical analysis", AISTATS 2020

Recommender systems: Item graph

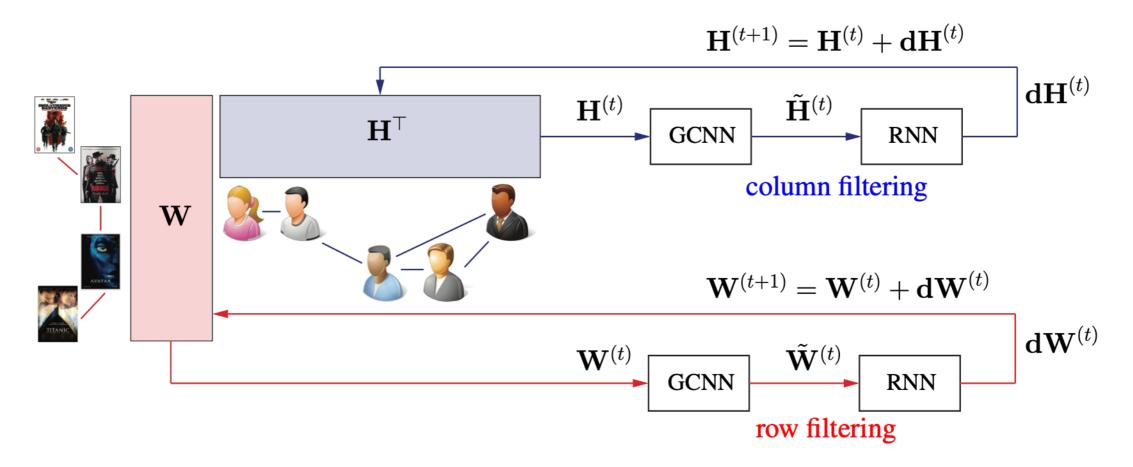
- Items as nodes on graph $\boldsymbol{y} = [\boldsymbol{y}_1, \boldsymbol{y}_2, \dots, \boldsymbol{y}_N]^T \in \mathbb{R}^{N \times d}$: reward (unknown)
- Signal (reward) is unknown and needs to be inferred

- Mean reward as smooth signal on graph $\mathbb{E}\{y_n\} = \langle \chi_n, \alpha \rangle$
- Recommendation problem as selection of best (with largest reward) graph node $n_t = \arg \max_n \left[\langle \boldsymbol{q}_n, \hat{\boldsymbol{\alpha}} \rangle \right] + c_t ||\boldsymbol{q}_n||_{V_t^{-1}} \quad \text{with} \quad V_t^{-1} = \boldsymbol{Q}_t \boldsymbol{Q}_t^T + (\boldsymbol{\Lambda} + \boldsymbol{\gamma} \boldsymbol{I})$





Recommender systems: Matrix Completion



- Matrix completion: diffusion process as RNN casted on top of multigraph convolutional layers
- Multi-graph convolution (spatial features), followed by LSTM (diffusion process)

Take Home Message

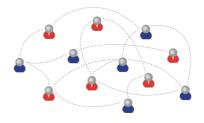
GSP Tools ...

Graph Knowledge exploitation Implicit / Explicit Given / Constructed

- smooth- multi-resolution graph signal representation
- graph denoising
- graph sampling
- graph filter and kernel

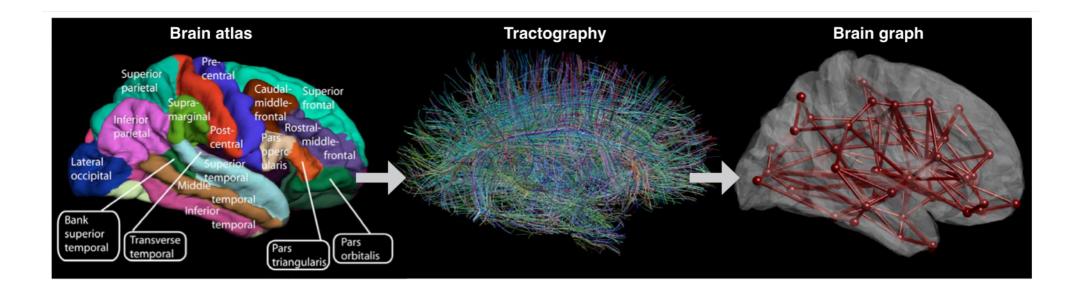
... for ML

- Node/graph classification
- Community detection
- Time series (system dynamics)
 inference
- Online learning

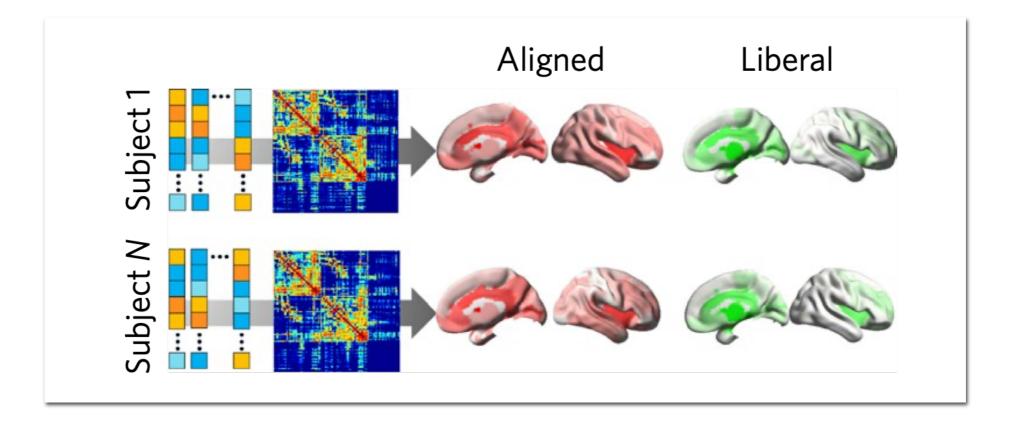


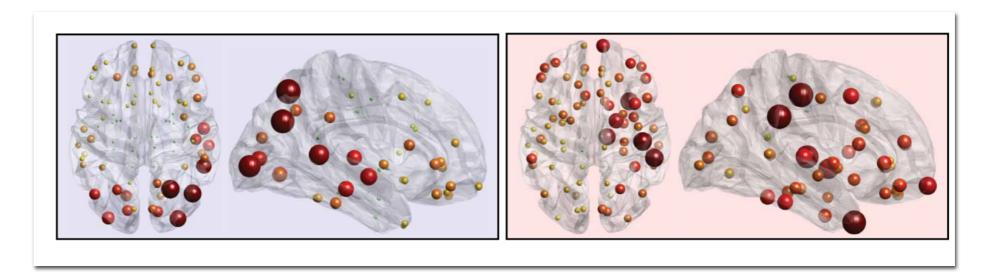
GSP/ GNN In

Healthcare and Neuroscience



Brain Analysis: GSP for Interpretability

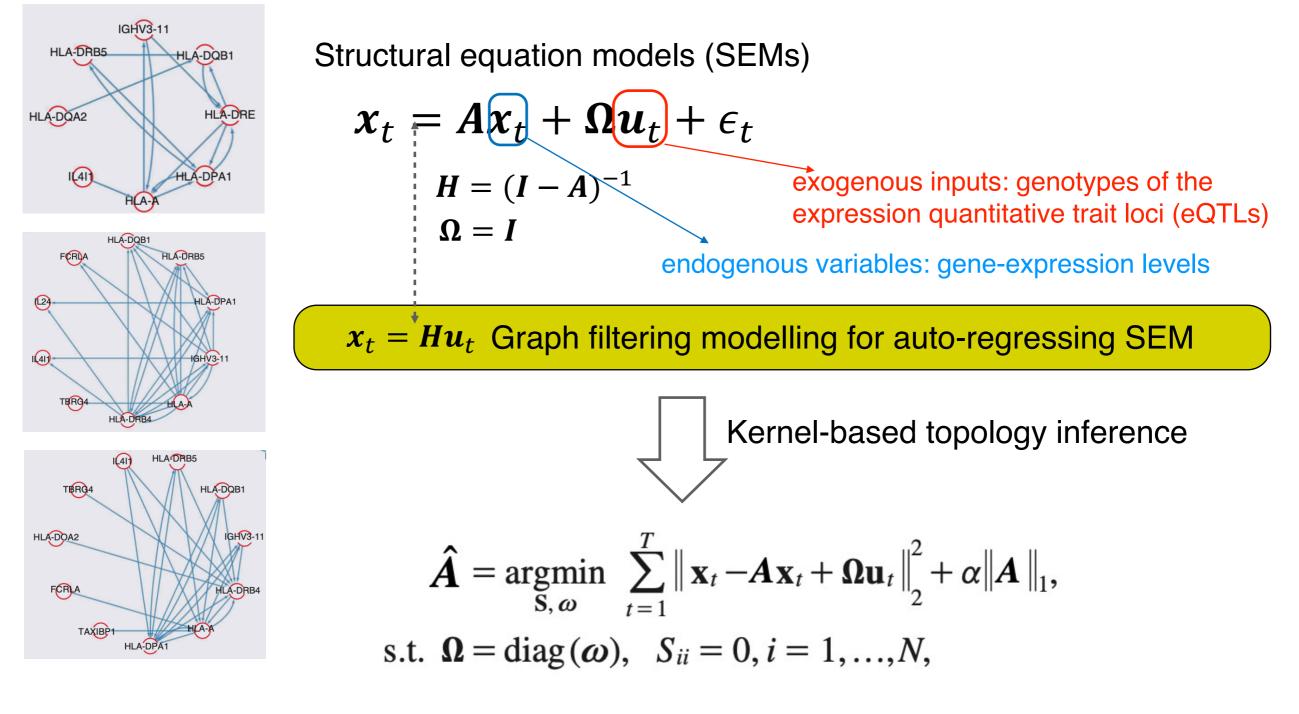




J.D. Medaglia et al., "Functional alignment with anatomical networks is associated with cognitive flexibility", *Nat Hum Behav, 2018* W. Huang, et al., "A Graph Signal Processing Perspective on Functional Brain Imaging", Proceedings of the IEEE, 2018.

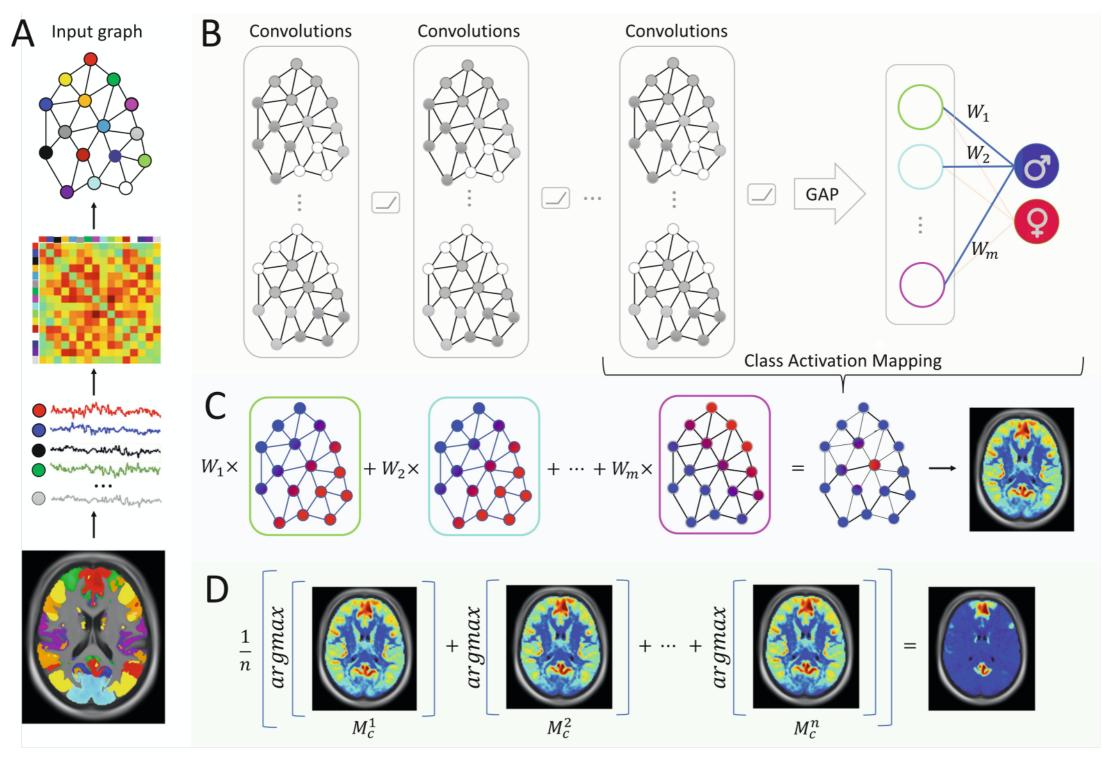
Gene Expression: Topology inference

To identifying gene-regulatory topologies, where nodes represent individual genes and directed edges encode causal regulatory relationships between gene pairs



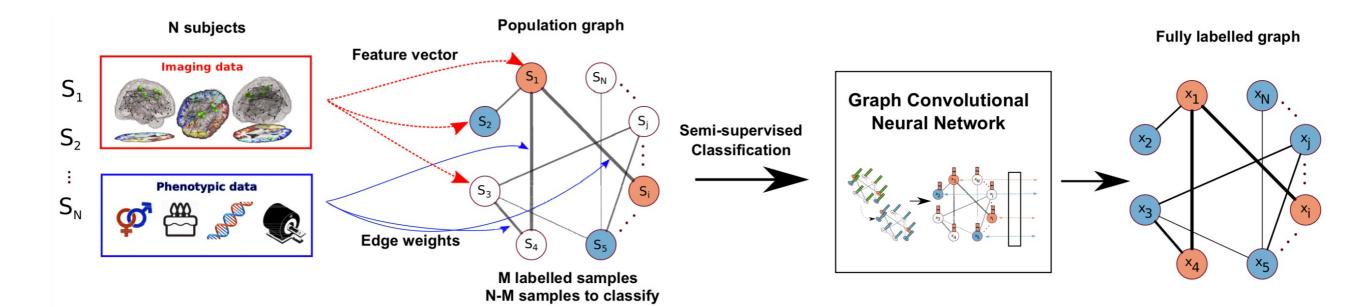
A. G. Marques, et al. "Signal processing on directed graphs", IEEE SPM, 2020.

Brain imaging: Class activation mapping



S. Arslan et al., "Graph saliency maps through spectral convolutional networks: Application to sex classification with brain connectivity." *Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities, 2018.*

Disease prediction

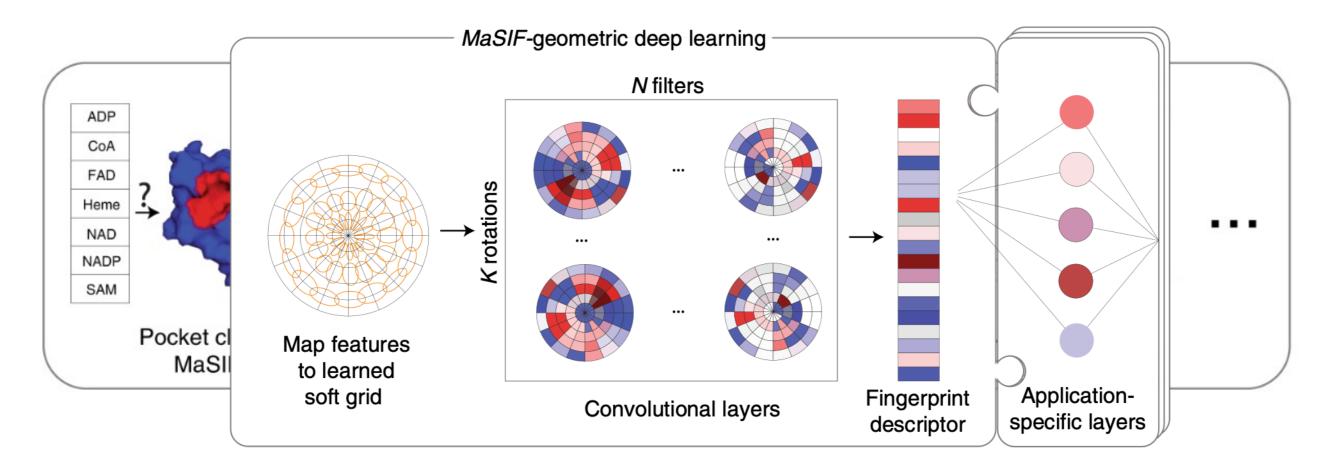


- populations modelled as a sparse graph
- phenotypic information integrated as edge weights
- imaging-based feature vectors as node signal

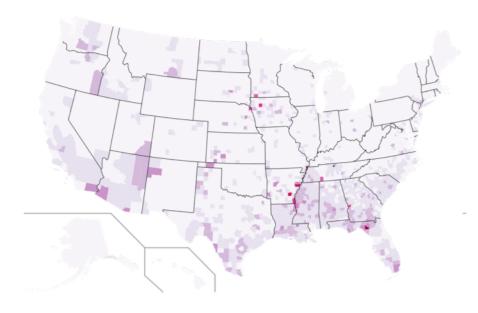
Subject classification as a graph labelling problem, integrating imaging and non imaging data.

Protein-protein interactions

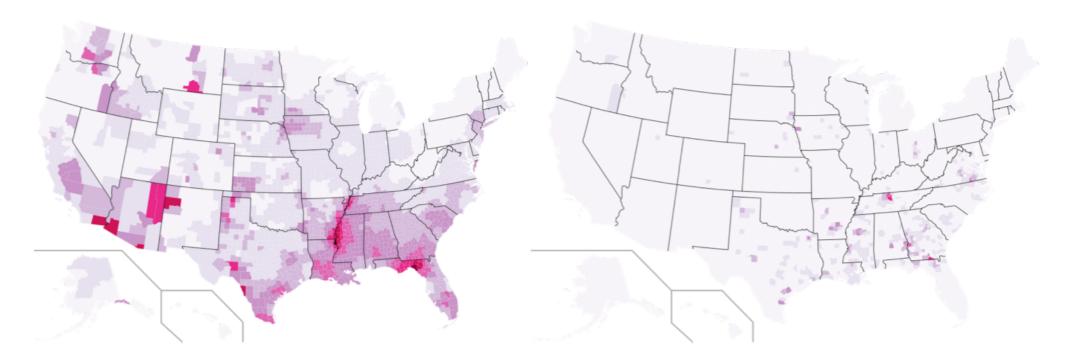
Protein molecular surface Interaction fingerprint



GSP for COVID-19



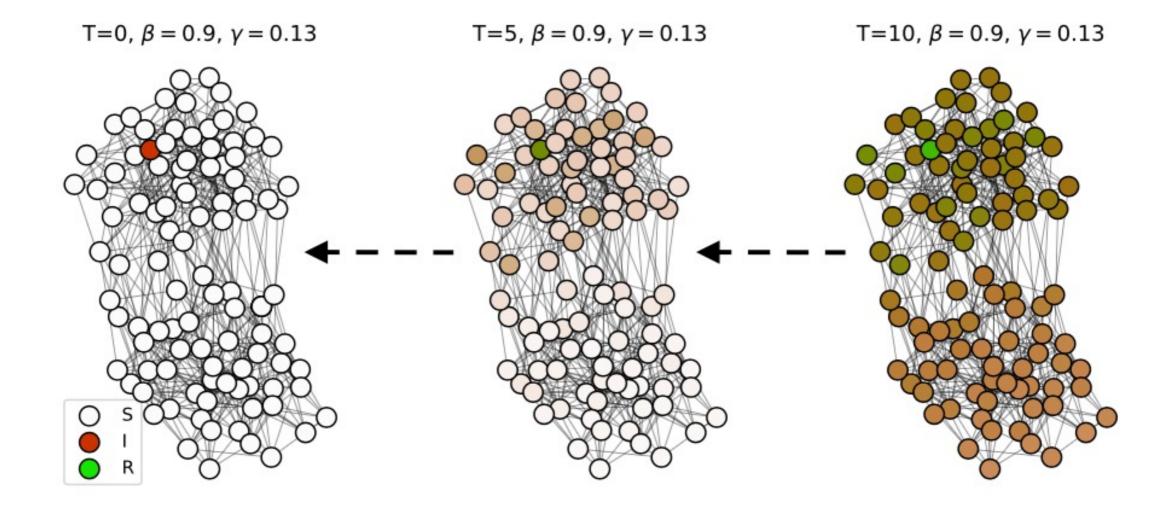
Cumulative number of confirmed COVID-19 cases per 100k residents for each county by Aug 31



High-pass signals of each county

Low-pass signals of each county

GNN for COVID-19



Exploit GNNs to locate the source of the epidemics.

- GNNs are model-agnostic
- GNNs identify P0 close to theoretical bounds accuracy

Take Home Message

GSP Tools ...

Graph Knowledge exploitation Implicit / Explicit Given / Constructed

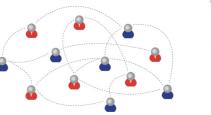
- smooth- multi-resolution graph signal representation
- graph denoising
- graph sampling
- graph filter and kernel
- graph convolution / graph clustering

Unknown graph knowledge Implicit

topological inference

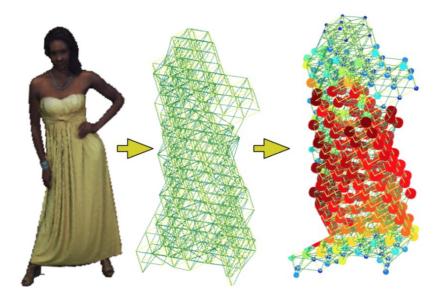
... for ML

- Node/graph classification
- Community detection
- Time series (system dynamics)
 inference
- Online learning

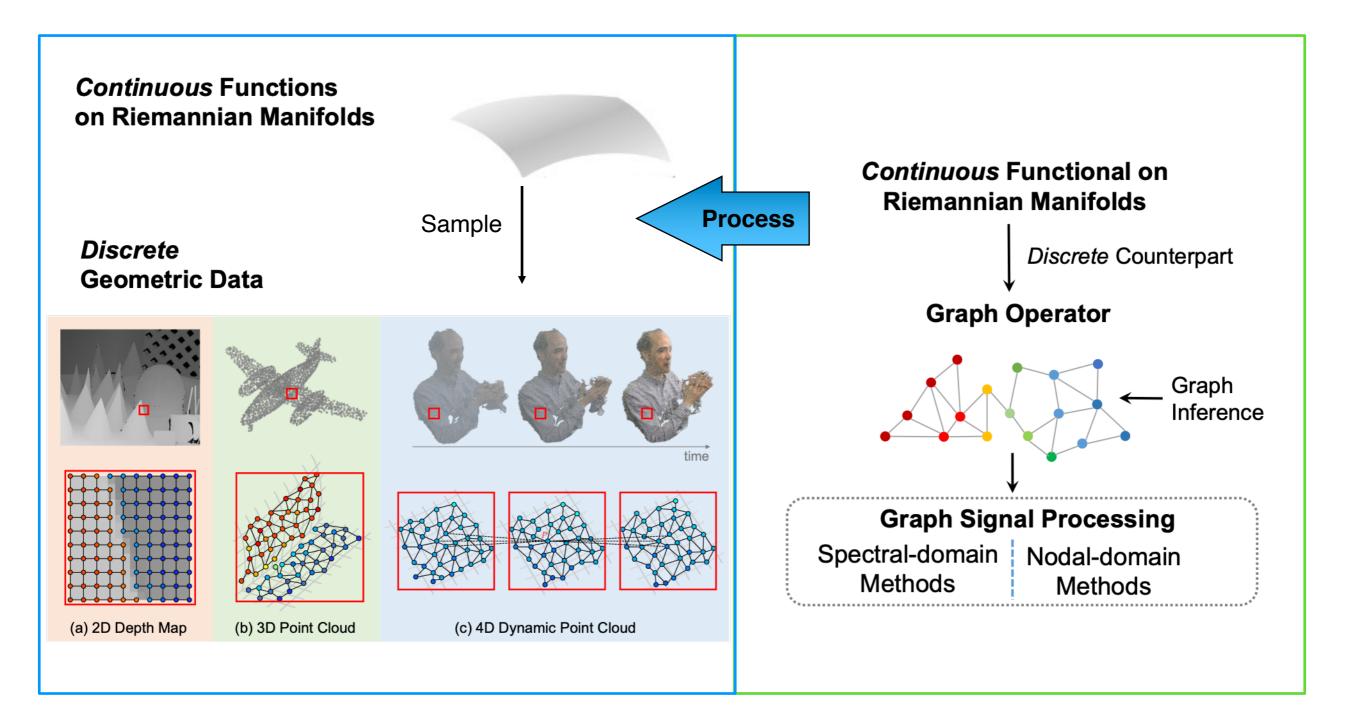


- Interpretability
- Complex dependencies
- Local (high-frequency) activation mapping
- Model-agnostic

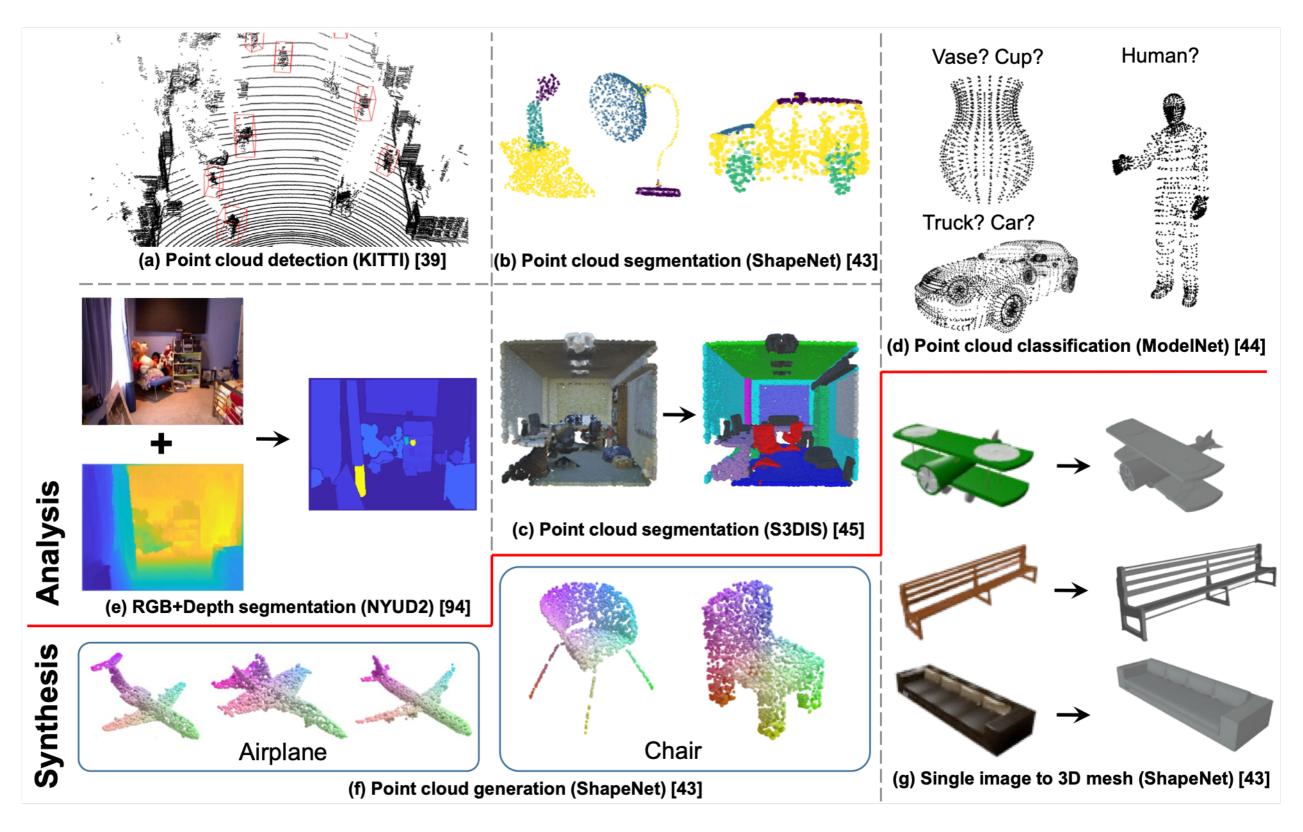
GSP-based ML in Computer Vision



GSP for Geometric Data

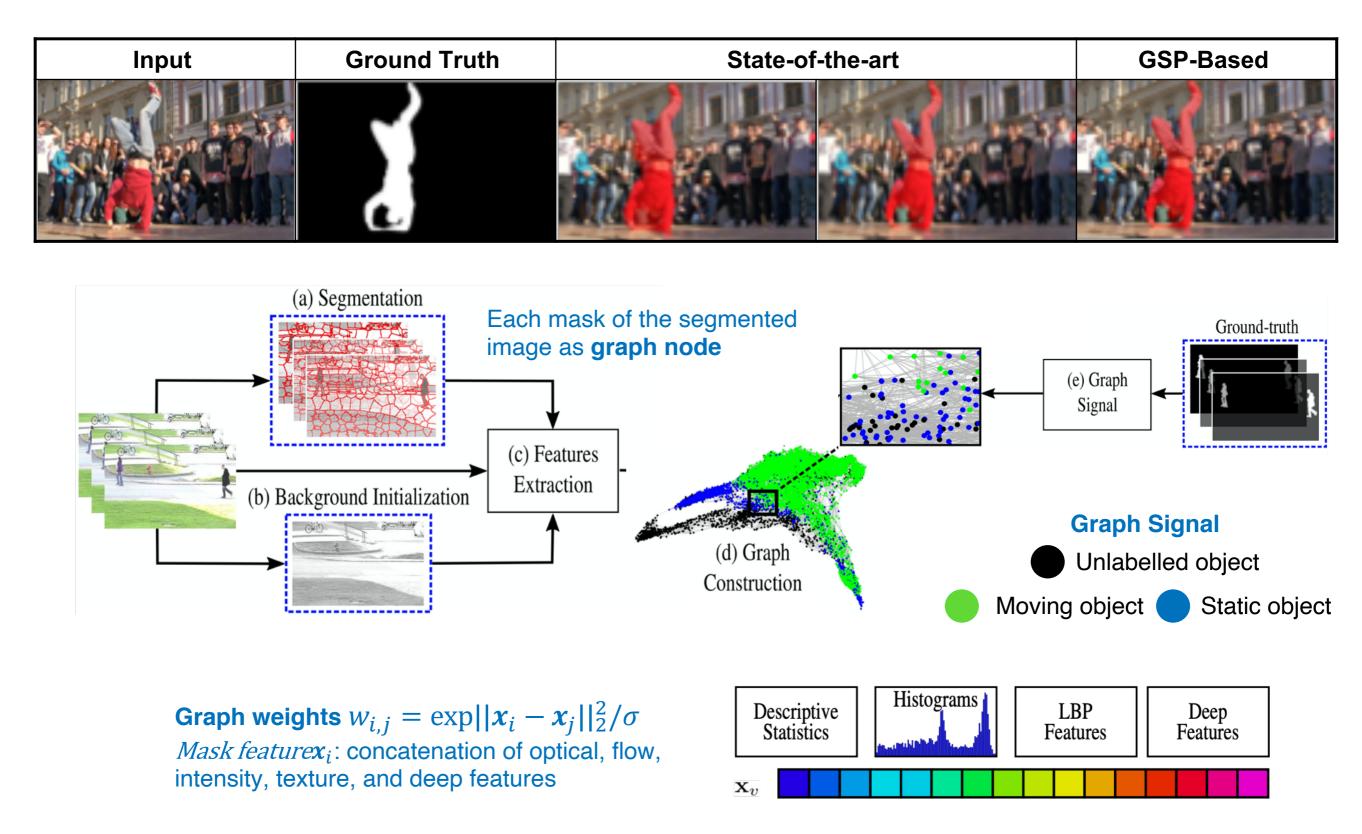


Analysis and Synthesis Tasks via GNNs

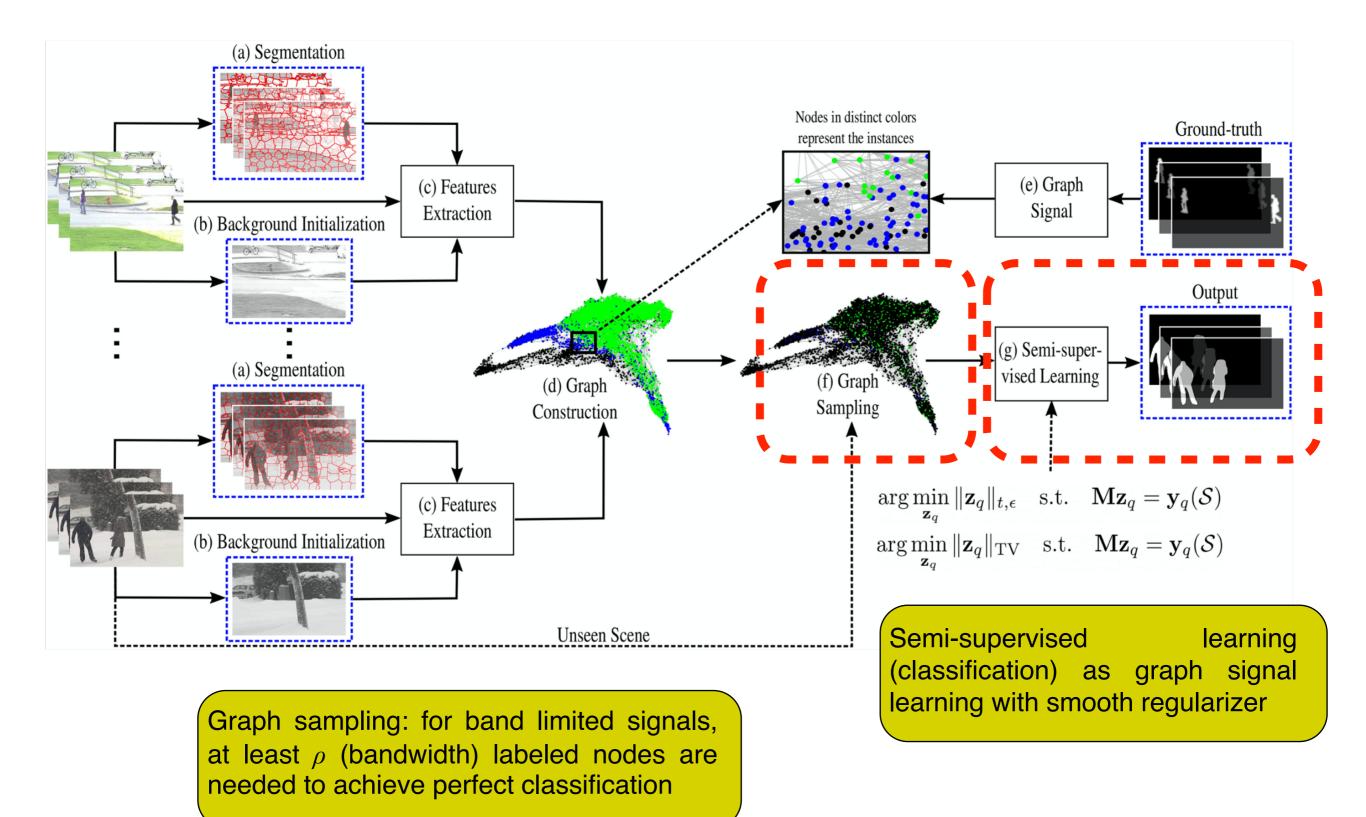


Hu, Wei, et al. "Graph Signal Processing for Geometric Data and Beyond: Theory and Applications", arXiv 2020 Y. Guo, et al."Deep learning for 3d point clouds: A survey", IEEE TPAMI, 2020.

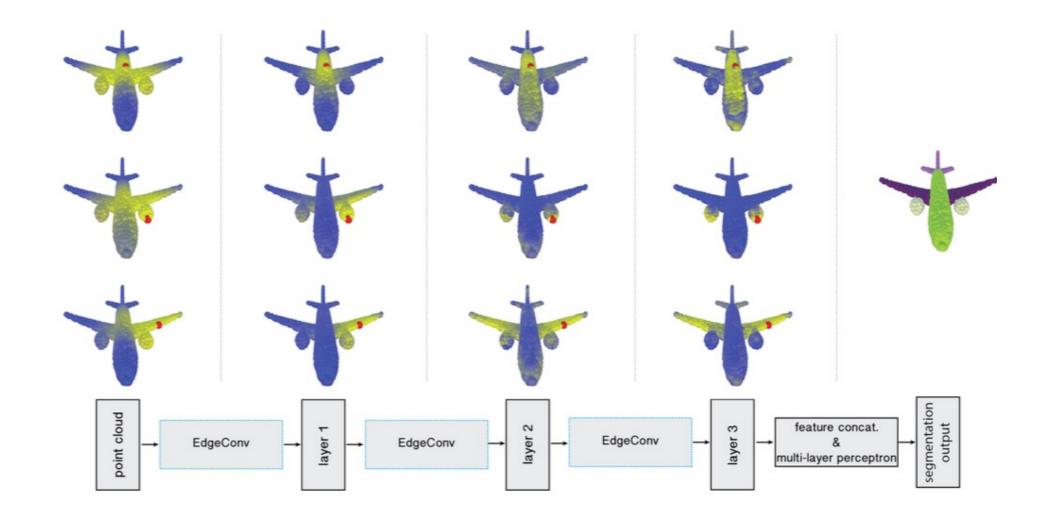
Moving Object Segmentation



Moving Object Segmentation



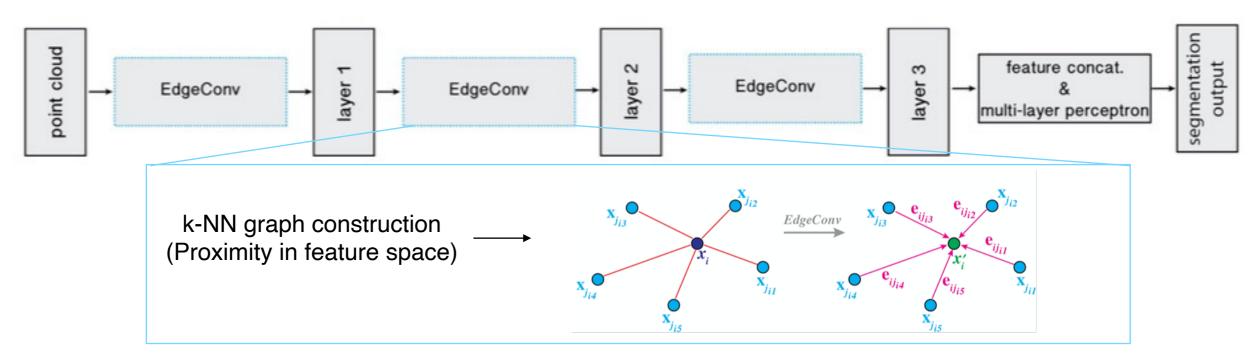
3D Point Cloud Segmentation



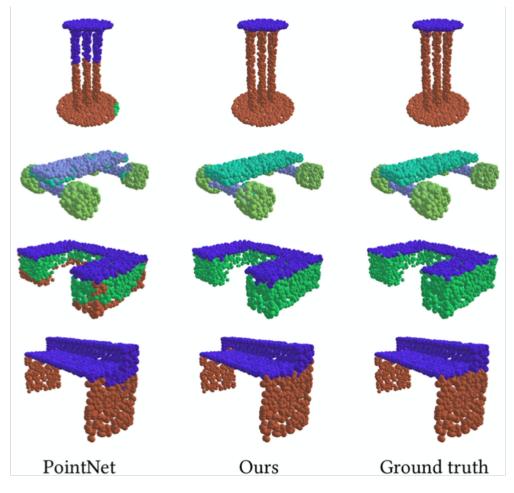
Graph convolution-like operators on the edges connecting neighboring pairs of points, in the spirit of graph neural networks

Feature space structure in deeper layers captures semantically similar structures

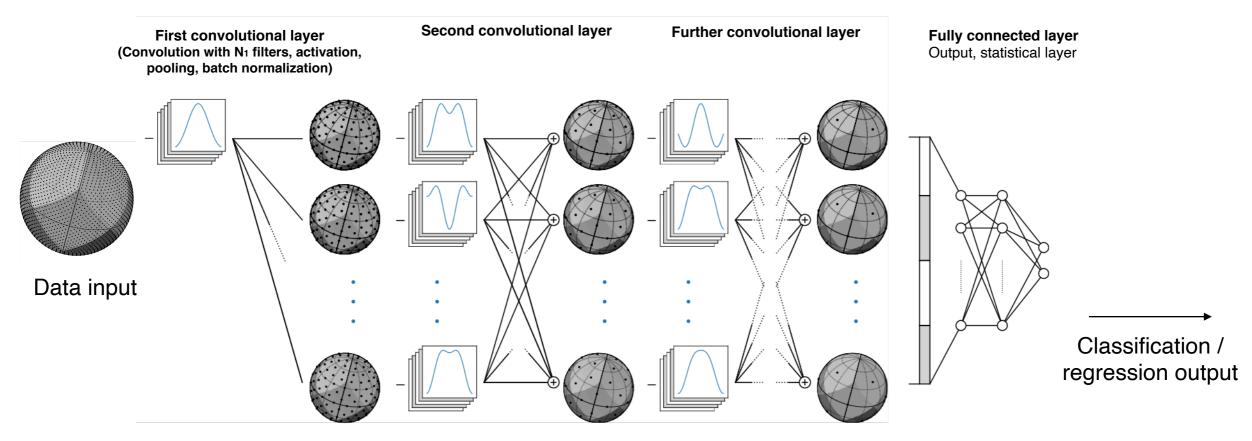
3D Point Cloud Segmentation



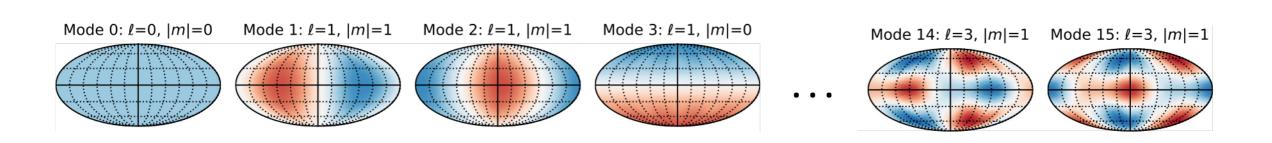
- Dynamic graph constructed at each layer based on features similarity
- Aggregation of edge features
- Translation-invariance and nonlocality properties



Cosmology: DeepSphere



- Sphere modelled with a graph and convolutions are performed on the graph
- Down-sampling operation (based on hierarchical pixelization of the sphere) to achieve multiple scales data analysis while preserving the spatial localization of features



Take Home Message

GSP Tools ...

Graph Knowledge exploitation Implicit / Explicit Given / Constructed

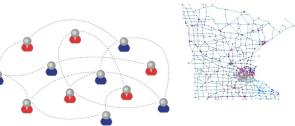
- smooth- multi-resolution graph signal representation
- graph denoising
- graph sampling
- graph filter and kernel
- graph convolution / graph clustering

Unknown graph knowledge Implicit

topological inference

... for ML

- Node/graph classification
- Community detection
- Time series (system dynamics)
 inference
- Online learning

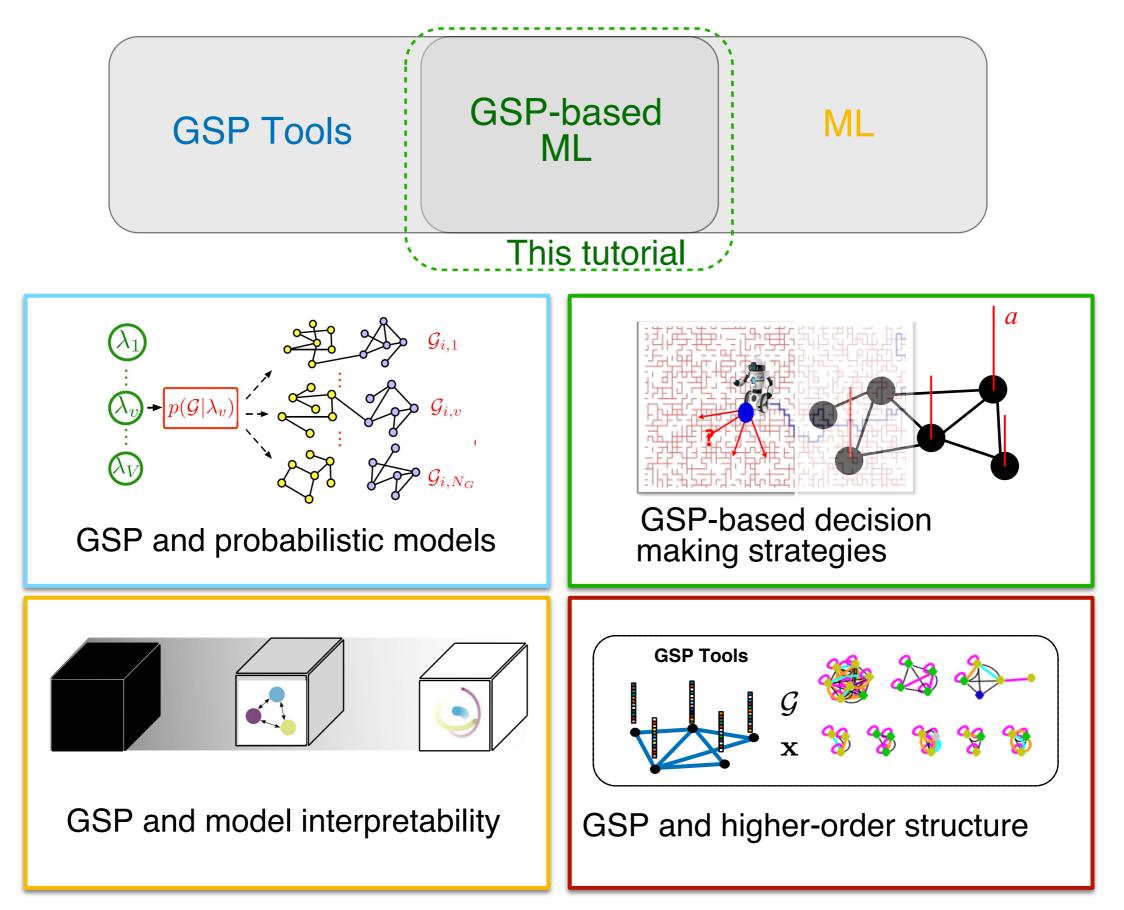


- Interpretability
- Complex dependencies
- Local (high-frequency) activation mapping
- Model-agnostic
- Translation invariance
- Non-locality properties
- Robustness to noise
- Sampling for computation efficiency

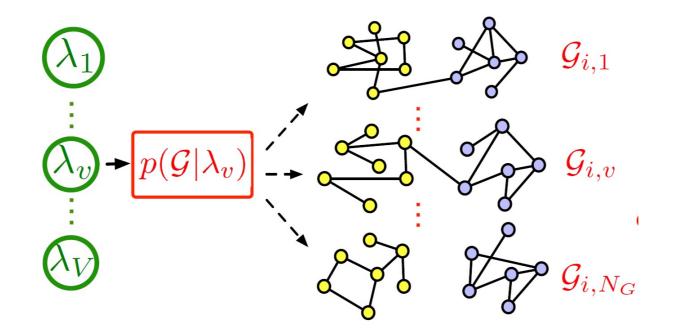
Outline

- Brief introduction to graph signal processing (GSP)
- Challenge I: GSP for exploiting data structure
- Challenge II: GSP for improving efficiency and robustness
- Challenge III: GSP for enhancing model interpretability
- Applications
- Summary, open challenges, and new perspectives

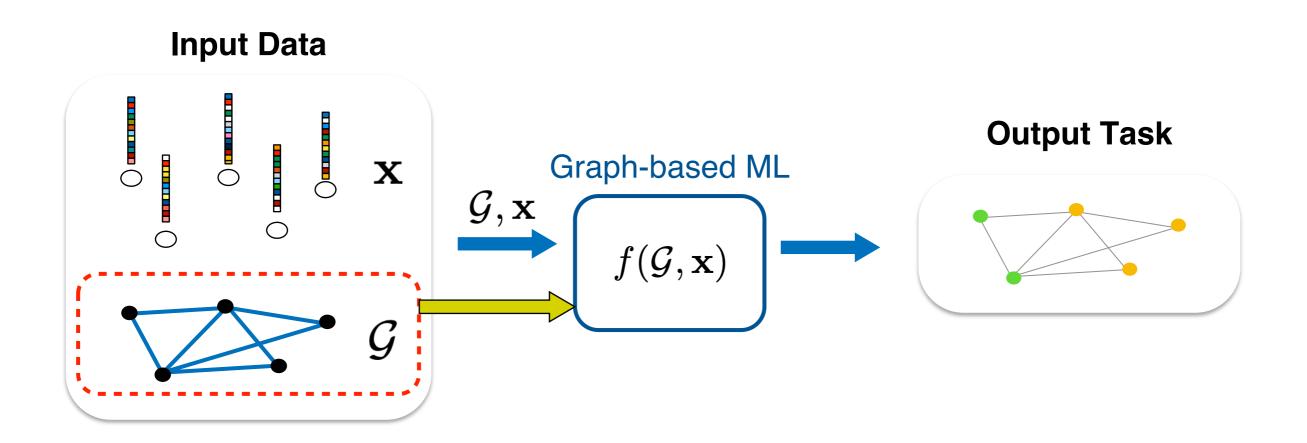
Open Challenges



GSP and **Probabilistic** Models



GSP and Probabilistic Models



- Most works assume graph is known a priori or fixed (deterministic setting)
- Real world networks are noisy and/or evolving over time

Challenge I: To take into account the topology uncertainty in graph-based machine learning tasks

Topological uncertainty in GSP: Modelling

Challenge I: To take into account topological uncertainty in graph-based SP and ML tasks

- How do we model topological noise?
 - Random graph model for topological noise [1]

$$y = x + n, n \sim \mathcal{N}(\mu, \sigma^2) \xrightarrow{?} W = A + E_{error matrix}$$

ground truth adjacency matrix

What is the impact of the topological noise on filtering [1,2,3]?

^[1] J. Miettinen, "Modelling Graph Errors: Towards Robust Graph Signal Processing", arXiv, 2020.

^[2] E. Isufi, et al., "Filtering random graph processes over random time-varying graphs", IEEE TSP, 2017.

^[3] E. Ceci, S. Barbarossa, "Graph Signal Processing in the Presence of Topology Uncertainties", IEEE TSP, 2020.

Topological uncertainty in GSP: Robustness

Challenge I: To take into account topological uncertainty in graph-based SP and ML tasks

- How do we build algorithms resilient to noisy topologies?
 - [3] proposes a robust signal recovery algorithm, under assumption of small perturbation, that incorporates statistical knowledge about topology uncertainty
 - [4] robustifies LMS with respect to mismatches in the presumed graph topology
 - [5] presents a robust formulation for graph-filter identification from inputoutput observations

^[3] E. Ceci, S. Barbarossa, "Graph Signal Processing in the Presence of Topology Uncertainties", IEEE TSP, 2020.

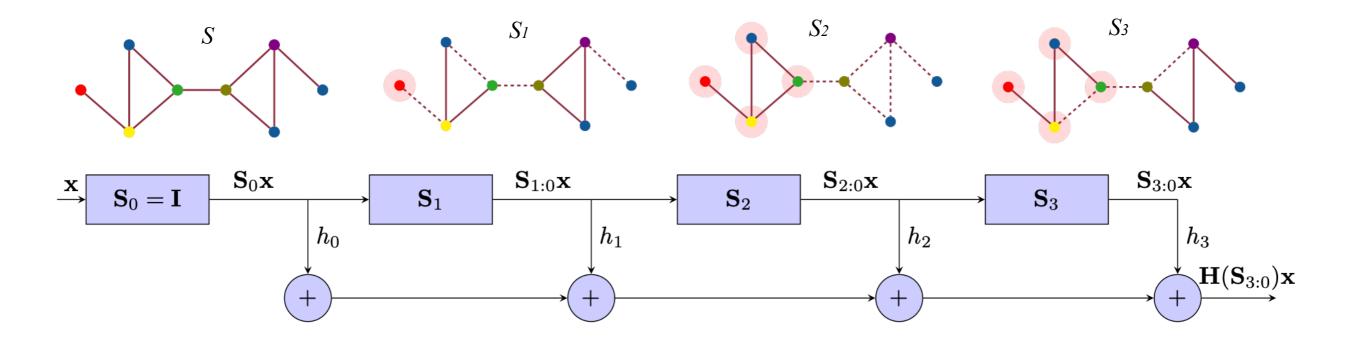
^[4] J. Miettinen et al. "Robust Least Mean Squares Estimation of Graph Signals" ICASSP, 2019.

^[5] S. Rey and A. G. Marques, "Robust graph-filter identification with graph denoising regularization," ICASSP, 2021.

Topological uncertainty in graph ML

Challenge I: To take into account topological uncertainty in graph-based SP and ML tasks

- How do we incorporating uncertainty into learning algorithms?
 - [6] proposes a GNN architecture where the distributed graph convolution module accounts for the random network changes



Topological uncertainty in graph ML

Challenge I: To take into account topological uncertainty in graph-based SP and ML tasks

- How do we incorporating uncertainty into learning algorithms?
 - Bayesian approach: compute posterior associated with graph generative model so that new graph instances can be resampled [7,8]

$$(\lambda_{v}) \rightarrow p(\mathcal{G}|\lambda_{v}) \rightarrow \mathcal{G}_{i,v} \rightarrow \mathcal{G}_{i,v} \rightarrow p(Z|W_{s,i,v},\mathcal{G}_{i,v},X)$$

$$p(\mathbf{Z}|\mathbf{Y}_{\mathcal{L}},\mathbf{X},\mathcal{G}_{obs}) = \int p(\mathbf{Z}|W,\mathcal{G},\mathbf{X})p(W|\mathbf{Y}_{\mathcal{L}},\mathbf{X},\mathcal{G})p(\mathcal{G}|\lambda)p(\lambda|\mathcal{G}_{obs}) \, dW \, d\mathcal{G} \, d\lambda,$$

$$\approx \frac{1}{V} \sum_{\nu=1}^{V} \frac{1}{N_G S} \sum_{i=1}^{N_G} \sum_{s=1}^{S} p(\mathbf{Z}|W_{s,i,\nu}, \mathcal{G}_{i,\nu}, \mathbf{X}).$$

figure from https://github.com/huawei-noah/BGCN

[7] Y. Zhang, et al. "Bayesian graph convolutional neural networks for semi-supervised classification", AAAI, 2019.

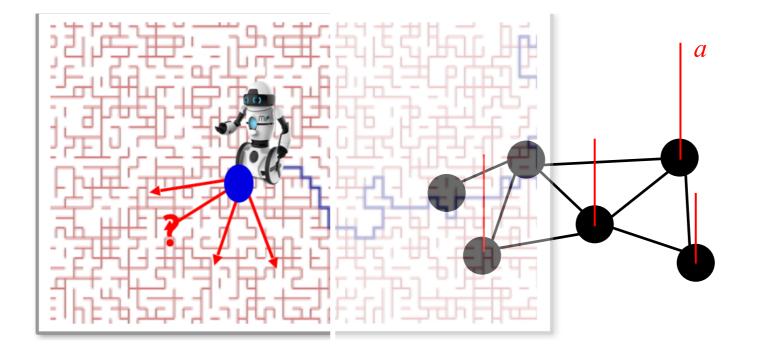
[8] Elinas et al. "Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings", NeurIPS 2020.

Topological uncertainty in graph ML

Challenge I: To take into account topological uncertainty in graph-based SP and ML tasks

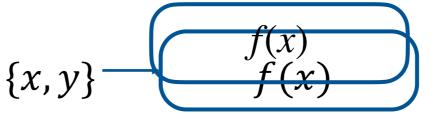
- How do we understand topological noise and its impact?
- How do we build algorithms resilient to noisy topologies?
- How do we incorporating uncertainty into learning algorithms?

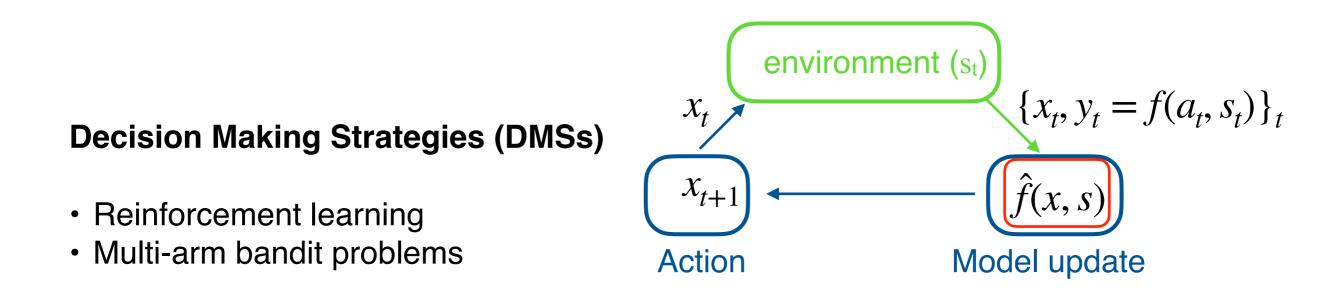
GSP-Based Decision Making Strategies



GSP-Based Decision Making Strategies

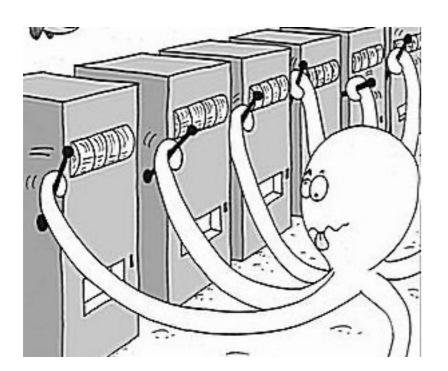
Supervised learning



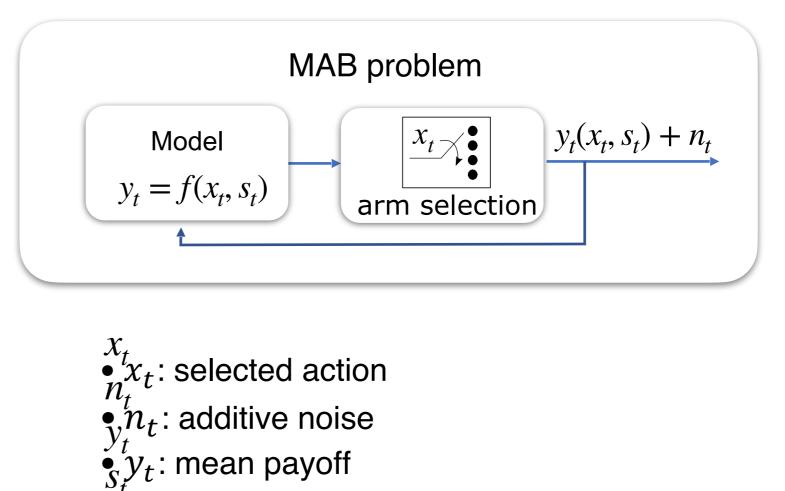


Optimize sequential actions in a way that maximizes the expected reward, when Optimize sequential actions in a way that maximizes the expected reward, when the environment's model is **uncertain a priori**

GSP for Multi-Arm Bandit



https://blogs.mathworks.com/images/loren/2016/multiarmedbandit.jpg



High-dimensional search space ?

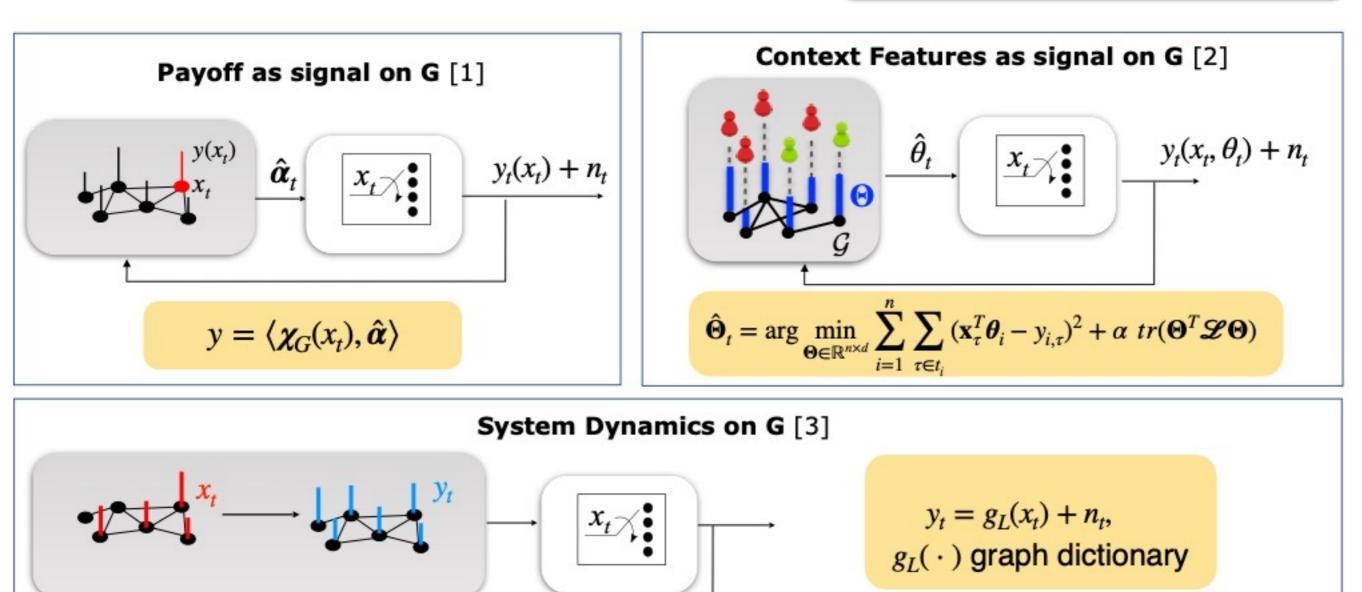
Optimize sequential actions in a way that maximizes the expected reward, when Optimize sequential actions in a way that maximizes the expected reward, when the environment's model is uncertain a priori the environment's model is uncertain a priori

 $\P s_t$: context / user

• f: unknown model

GSP for Multi-Arm Bandit

$$\begin{array}{c} x_t \\ \hline \\ \bullet \\ \bullet \\ \end{array} \end{array} \quad y_t = f(x_t, s_t) \\ \text{arm selection} \end{array}$$

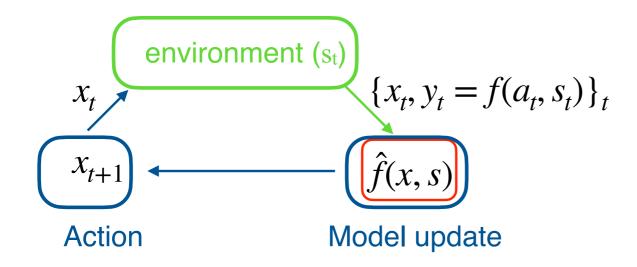


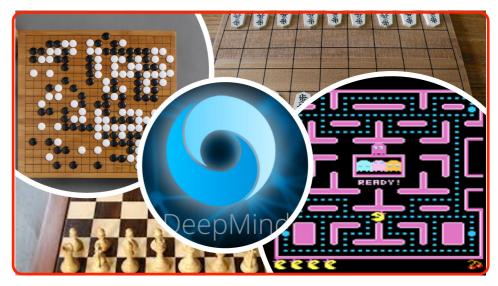
[1] M Valko et al. "Spectral bandits for smooth graph functions", ICML 2014.

[2] K. Yang, "Laplacian-regularized graph bandits: Algorithms and theoretical analysis", AISTATS 2020

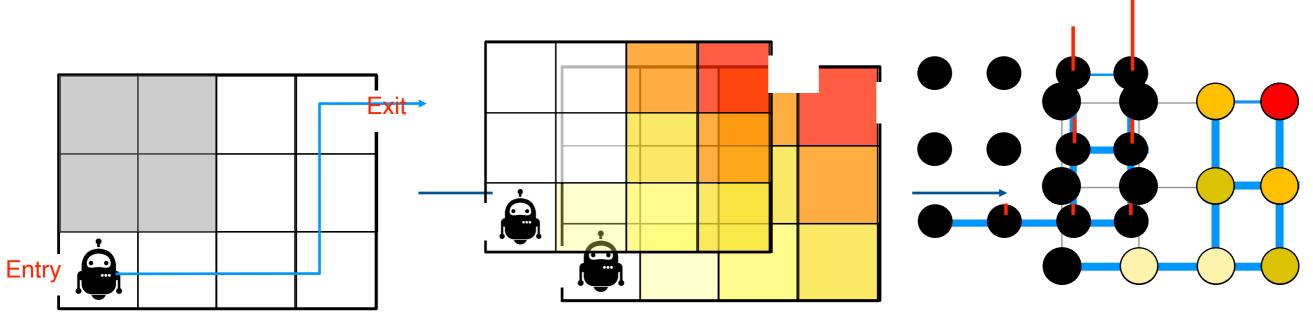
[3]L. Toni, "Spectral MAB for unknown graph processes", EUSIPCO, 2018

GSP for RL





High-dimensional state-action space



Learning model / value function

Learning graph edge weights / signal on graph

- C. M. Machado et al. "Eigenoption discovery through the deep successor representation", ICLR, 2018
- S. Madjiheurem, "Representation learning on graphs: A reinforcement learning application", AISTATS, 2019.
- S. Rozada et al., "Low-rank State-action Value-function Approximation", arXiv 2104.08805v1, 2021

GSP-Based Decision Making Strategies

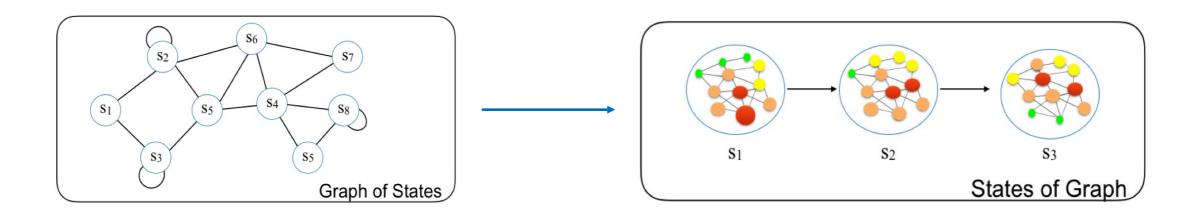
Challenge II: how can GSP tools be applied to DMSs to improve efficiency, complexity, and robustness?

- GSP to improve data efficiency by learning in the spectral domain or by regularising on G — bandit and RL
 - Graph is not usually inferred (Topological inference)
 - Graph uncertainty is not considered (Topological uncertainty)
 - GSP-based analysis for further guarantees (Graph-based Regret bounds)

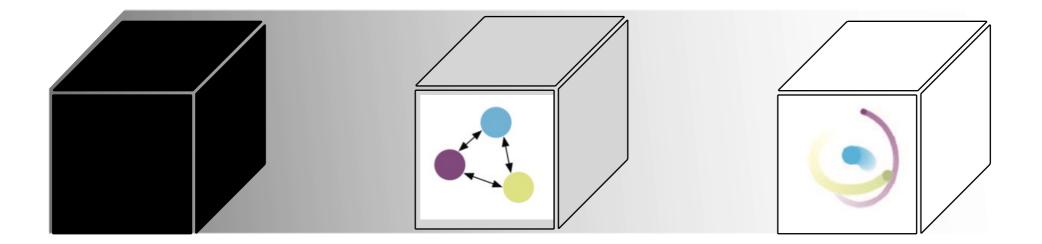
GSP-Based Decision Making Strategies

Challenge II: how can GSP tools be applied to DMSs to improve efficiency, complexity, and robustness?

- GSP to improve data efficiency by learning in the spectral domain or by regularising on G — bandit and RL
- GSP to improve accuracy/robustness
- GSP to improve computational efficiency
- GSP to model system dynamics



GSP and Model Interpretability



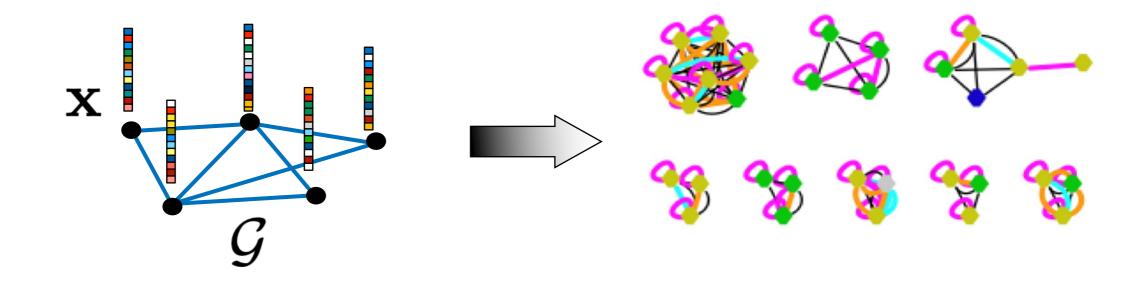
GSP and Model Interpretability

Challenge III: how can GSP tools help enhance interpretability of machine learning models?

 Modelling the structure of the data with a graph could be a way of introducing domain knowledge (e.g., physical interactions)

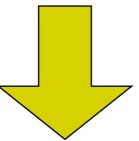
 Graph filters may be designed (via e.g., anisotropic filters or adapting attention mechanisms) to enhance model interpretability

GSP and Higher-Order Structure



GSP and High-order Structure

- Graphs capture pairwise (lower-order) relationship between nodes
- Higher-order structures play a key role in understanding the fundamental structures that control the behaviour of many complex systems
- Motifs have been used to design GNN models that are capable of handling directed graphs



Challenge IV: to extend GSP tools to higher-order structures, such as motifs, simplicial complexes, and hypergraphs

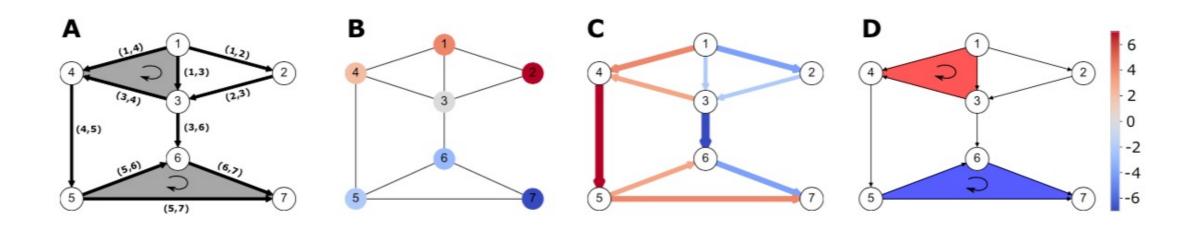
2nd-level motif

3rd-level motif

1st-level

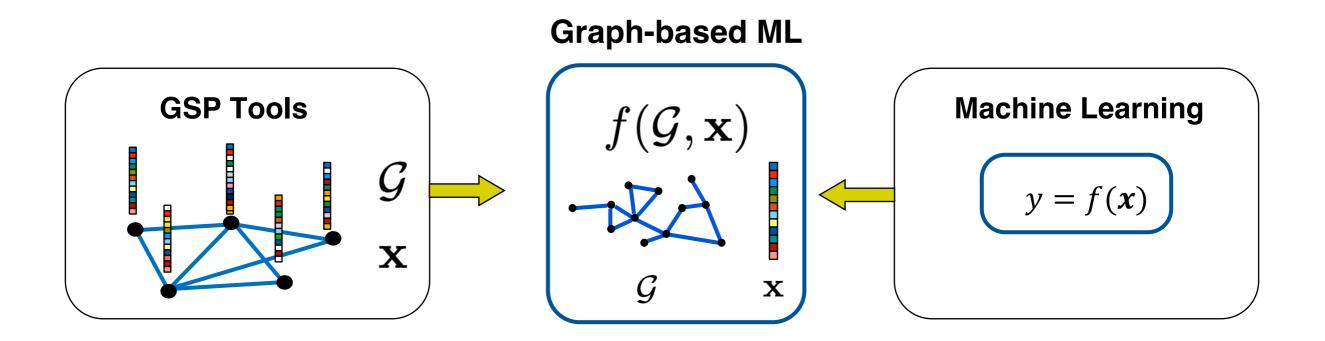
GSP and Higher-order Structure

Challenge IV: to extend GSP tools to higher-order structures, such as motifs, simplicial complexes, and hypergraphs



Signals on simplicial complexes of different order

Conclusions



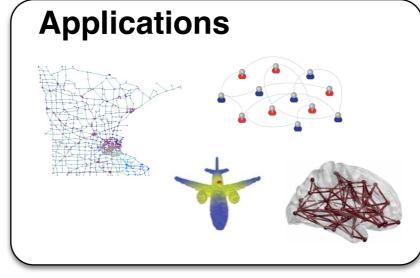
- enable convolution & hierarchical modelling on graphs
- improve efficiency & robustness of (graph-based) ML models
- interpret data structure & learning models on graphs

Conclusions

GSP Tools Benefits	Graph-based regularisation	Graph filters & transforms	GSP-related learning models
Exploiting Data Structure	GP & kernels on graphs	multiscale clustering	CNNs on graphs
Improve efficiency & robustness on graphs	multi-task learning	spectral clustering	few-shot learning
Interpret data structure & learning models on graphs	interpreting DNNs	topology inference	attention models

Tasks

- Node / graph classification
- Community Detection
- Topology inference
- Dynamic Inference
- Online learning



Open Challenges and Perspectives

- Probabilistic models
- Decision Making Strategies
- Model interpretability
- Higher-order structures

Dong et al., "Graph signal processing for machine learning," IEEE SPM, 2020.

•

- M. Vargas-Vieyra, et al, "Joint Learning of the Graph and the Data Representation for Graph-Based Semi-Supervised Learning", TextGraphs 2020.
- Chenhui Hu et al., "Matched signal detection on graphs: Theory and application to brain imaging data classification", NeuroImage, vol.125, pp. 587-600, 2016
- N. Tremblay and P. Borgnat, "Graph wavelets for multiscale community mining", IEEE TSP, vol. 62, no. 20, pp. 5227-5239, 2014.
- H.-T. Wai, et al., "Blind community detection from low-rank excitations of a graph filter", IEEE TSP, vol. 68, pp. 436–451, Dec. 2020.
- R. Ramakrishna, H.-T. Wai and A. Scaglione, "A User Guide to Low-Pass Graph Signal Processing and Its Applications: Tools and Applications" IEEE Signal Processing Magazine, vol. 37, no. 6, pp. 74-85, 2020.
- W. Huang, et al., "A graph signal processing perspective on functional brain imaging", IEEE Proceeding, vol. 105, no. 5, pp. 868-885, 2018.
- F. Monti et al., "Deep geometric matrix completion: A new way for recommender systems", ICASSP 2018.
- K. Yang, "Laplacian-regularized graph bandits: Algorithms and theoretical analysis", AISTATS 2020.
- L. Toni, "Spectral MAB for unknown graph processes", EUSIPCO, 2018
- M Valko et al. "Spectral bandits for smooth graph functions", ICML 2014.
- S. Arslan et al., "Graph saliency maps through spectral convolutional networks: Application to sex classification with brain connectivity", Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities, 2018.
- L. Stanković, et al. "Data Analytics on Graphs Part I: Graphs and Spectra on Graphs", Foundations and Trends in Machine Learning: Vol. 13, No. 1, pp 1–157, 2020.
- X. Dong et al. "Inference of mobility patterns via spectral graph wavelets", ICASSP, 2013.

- S. Kwak, N. Geroliminis, and P. Frossard, "Predicting traffic signals on transportation networks using spatiotemporal correlations on graphs", arXiv:2104.13414, 2021.
- Guoji Fu et al. "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives", <u>arXiv:2006.04386</u>, 2020.
- A. G. Marques, et al. "Signal processing on directed graphs: The role of edge directionality when processing and learning from network data", IEEE SPM, vol. 37, no. 6, pp. 99-116, 2020.
- M. Cheung, et al. "Graph signal processing and deep learning: Convolution, pooling, and topology", IEEE SPM, vol. 37, no. 6, pp. 139-149, Nov. 2020.
- J. H. Giraldo, et al., "Graph Moving Object Segmentation", IEEE TPAMI, doi: 10.1109/TPAMI.2020.3042093, 2020.
- Yue Wang, et al. "Dynamic Graph CNN for Learning on Point Clouds", ACM Trans. Graph. vol. 38, no. 146, Nov. 2019.
- N. Perraudin et al., "DeepSphere: Efficient spherical convolutional neural network with HEALPix sampling for cosmological applications", Astronomy and Computing, vol. 27, pp. 130-146, 2019.
- Hu, Wei, et al. "Graph Signal Processing for Geometric Data and Beyond: Theory and Applications", arXiv:2008.01918, 2020.
- Z. Fu and W. Hu, "Dynamic Point Cloud Inpainting via Spatial-Temporal Graph Learning," IEEE TMM, 2020.
- S. Parisot, "Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer's disease", Medical image analysis, vol. 48, pp. 117-130, 2018.
- Shah, Chintan, et al. "Finding Patient Zero: Learning Contagion Source with Graph Neural Networks", arXiv:2006.11913, 2020

- P. Gainza et al. "Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning", Nature Methods 2020 Feb;17(2):184-192, Dec. 2019.
- Y. Zhang, et al. "Bayesian graph convolutional neural networks for semi-supervised classification", AAAI 2019.
- E. Isufi, A. Loukas, A. Simonetto, and G. Leus, "Filtering random graph processes over random time-varying graphs," IEEE TSP, vol. 65, no. 16, pp. 4406–4421, Aug. 2017.
- J. Miettinen, S. A. Vorobyov and E. Ollila, "Robust Least Mean Squares Estimation of Graph Signals," ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 5416-5420, doi: 10.1109/ICASSP.2019.8683193.
- S. Madjiheurem and L. Toni, "Representation learning on graphs: A reinforcement learning application", AISTATS, 2019.
- S. Rozada et al., "Low-rank State-action Value-function Approximation", arXiv 2104.08805v1, 2021.
- C. M. Machado et al. "Eigenoption discovery through the deep successor representation", ICLR, 2018.
- P. W. Battaglia et al., "Relational inductive biases, deep learning, and graph networks," 2018, arXiv:1806.01261.
- F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein, "Geometric deep learning on graphs and manifolds using mixture model CNNs," in *Proc. IEEE Conf. Computer Vision and Pattern Recognition*, 2017, pp. 5115–5124.
- Fu, Dongqi et al.,"Local motif clustering on time-evolving graphs", ACM SIGKDD, 2020.
- A. R. Benson, D. F. Gleich, and J. Leskovec, "Higher- order organization of complex networks," *Science*, vol. 353, no. 6295, pp. 163–166, 2016.
- S. Rey and A. G. Marques, "Robust graph-filter identification with graph denoising regularization," ICASSP, 2021.

- J.D. Medaglia, J.D. et al., "Functional alignment with anatomical networks is associated with cognitive flexibility", *Nat Hum Behav* 2, pp. 156–164, 2018.
- W. Huang, et al., "A Graph Signal Processing Perspective on Functional Brain Imaging" IEEE Proc., vol. 106, no. 5, pp. 868-885, May 2018.
- Y. Guo, et al."Deep learning for 3d point clouds: A survey", IEEE TPAMI, 2020.
- Y. Zhang and M. Rabbat, "A Graph-CNN for 3D Point Cloud Classification", ICASSP 2018.
- Y. Li and G. Mateos, "Graph Frequency Analysis of COVID-19 Incidence to Identify County-Level Contagion Patterns in the United States", ICASSP 2021.
- https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks.

Image Credits

- <u>https://upload.wikimedia.org/wikipedia/commons/7/7e/Scientific_citations.png</u>
- <u>https://www.xpertup.com/downloads/movie-recommender-system/</u>
- <u>https://image.slidesharecdn.com/copyofspotifydiscoverweekly-170701234254/95/spotify-discover-weekly-the-machine-learning-behind-your-music-recommendations-1-638.jpg?cb=1498952892</u>
- <u>https://images.immediate.co.uk/production/volatile/sites/3/2019/11/bbc-iplayer-862f585.jpg?quality=90&resize=620,413</u>
- <u>https://miro.medium.com/max/3200/1*dMR3xmufnmKiw4crlisQUA.png</u>
- <u>https://lh3.googleusercontent.com/hRtL9HSoj2dthO5BLoS_7GsyDwrc_eGyvL19ZnabdvcKP4Q9F8oNRyby5</u> <u>kKiB4A7xh4GEhIS4tqtqymZApZV3LCwzCSn5E0IT4674Q=w1440</u>
- <u>https://image.shutterstock.com/image-vector/set-happy-smiling-schoolkids-vector-260nw-1798071838.jpg</u>
- <u>https://i.pinimg.com/originals/5f/05/b0/5f05b07d049661573f223de6635e3f6e.jpg</u>
- <u>https://github.com/huawei-noah/BGCN</u>
- <u>https://miro.medium.com/max/2000/1*QjQc4nRUWYt79UUSBPof4w.png</u>
- <u>https://journals.plos.org/plosone/article/figure/image?download&size=large&id=info:doi/10.1371/journal.pone</u> .0031437.g006

Thank you!

