
Graph Signal Processing for Machine 
Learning

A Review and New Perspectives

ICASSP Tutorial, June 2021

Xiaowen Dong, Dorina Thanou, Laura Toni,
Michael Bronstein, Pascal Frossard



Part III
Applications, Open Challenges and New 

Perspectives 
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• Brief introduction to graph signal processing (GSP)

• Challenge I: GSP for exploiting data structure

• Challenge II: GSP for improving efficiency and robustness

• Challenge III: GSP for enhancing model interpretability

• Applications

• Summary, open challenges, and new perspectives



Networks are pervasive
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Main Problems for GSP-Based ML
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Node-
Graph-

Classification

Community 
detection

(multi scale 
analysis)

(dynamics of 
graphs) 

Time series 
prediction -

Network control
Online Learning 

(problem structure 
inference)𝒚

• Implicit / Explicit
• Given / Constructed 
• Inferred 

Graph

?



Document Analysis: Node Classification
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Signal Processing

Drug Discovery

Computer Vision

Nodes Label 

Graph
Nodes  → papers

Edge    → paper citation

Node Signal

content-based features 
0: word not present in the paper
1: word present in the paper

?

http://networkrepository.com/cora.php



Document Analysis: Node Classification
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CORA-ML CiteSeer

GNNs interpreted as implementing
denoising and/or smoothing of
graph signals.

Validation with semi-supervised
node classification on noisy
citation networks

Guoji Fu et al. “Understanding Graph Neural Networks from Graph Signal Denoising Perspectives”, arXiv, 2020 



Neuroscience: Graph Classification

8C. Hu et al., “Matched signal detection on graphs: Theory and application to brain imaging data classification”, NeuroImage, 2016.

• Two graphs are build based on AD 
(Alzheimer’s disease) and NC 
(normal control) 

• PET/fMRI data as graph-signals

• Edge weights describing the affinity 
between each pair of brain regions 

• Graph classification as hypothesis 
testing

H0: signal smooth on graph G0
H1: signal smooth on graph G1



Main Problems for GSP-Based ML
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Community detection 

10N. Tremblay and Pierre Borgnat, “Graph wavelets for multiscale community mining”, IEEE TSP 2014.

𝑤!,#: contact time between children 𝑖 and 𝑗

child 𝑖

child 𝑗

Class-level Grade-level 4th and 5th grade

Stratification based on social interactions: 
multi-scale community detection  based on spectral graph wavelets at different scales 



Price Experiments in Consumers’ Game 
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time

Consumption

Products  Consumers

Price

Consumption

Price

Topological 
influenceProducts  ConsumersConsumption

• Consumers as vertices on graph
• (Unknown) topological influence as graph weigh 

• Topology inference / users consumption 
prediction / community detection … 



Blind Community Detection

12H.-T. Wai, et al., “Blind community detection from low-rank excitations of a graph filter”, IEEE TSP, 2020. 
R. Ramakrishna et al., "A User Guide to Low-Pass Graph Signal Processing and Its Applications”, IEEE SPM, 2020.

Observations are graph signals modeled as the outputs of an 
unknown network process represented by a low-rank graph filter 

Step 1: 
structure 
inference

Step 2: 
community 
detection

Blind community detection



Blind Community Detection: low-rank filtering

13H.-T. Wai, et al., “Blind community detection from low-rank excitations of a graph filter”, IEEE TSP, 2020. 
R. Ramakrishna et al., "A User Guide to Low-Pass Graph Signal Processing and Its Applications”, IEEE SPM, 2020.

excitation signal 
observed graph signal 

• Consumers as vertices on graph
• (Unknown) topological influence as graph weigh 

• Topology inference / users consumption 
prediction / community detection

Observations are graph signals modeled as the outputs of 
an unknown network process represented by a graph filter 



Blind Community Detection

14H.-T. Wai, et al., “Blind community detection from low-rank excitations of a graph filter”, IEEE TSP, 2020. 
R. Ramakrishna et al., "A User Guide to Low-Pass Graph Signal Processing and Its Applications”, IEEE SPM, 2020.

• The covariance matrix of observed graph signals is a sketch of the Laplacian 
matrix that retains coarse topological features of the graph, like communities

• Blind CD approaches the performance of spectral clustering (under given 
conditions and assuming graph filter being low-pass)

Rollcall data may be modeled as the equilibrium of an opinion dynamics 
process with stubborn agents



Mobility inference

15X. Dong et al. "Inference of mobility patterns via spectral graph wavelets”, ICASSP, 2013.



Transportation Network: mobility inference

16

Traffic propagation modelled as heat
diffusion on graph signal



Transportation Network: mobility inference
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Heat diffusion kernels embedded into dynamic linear model to exploit 
topological information of the transportation network

Internal diffusion matrix (endogenous) 

Demand matrix (exogenous)

Dynamic linear model

S. Kwak, “Predicting traffic signals on transportation networks using spatio-temporal correlations on graphs”, arXiv 2021.



Recommender systems: Online Learning

20https://www.xpertup.com/downloads/movie-recommender-system/

Graphs model items and users similarities 



Manuscript under review by AISTATS 2019

(a) RBF (b) RBF-Sparse (0.5)

(c) ER (p=0.2) (d) BA (m=1)

Figure 3: Performance on graph types: ER (a), BA
(b), WS (c) and RBF (d).

ter of the kernel set as 0.5. In addition, We generate
another RBF kernel graph the same as the previous
one except that edge with weight less than 0.5 are re-
moved. This graph is used to test the e↵ect of sparsity
on algorithms.

The results are shown in Figure 2. Under all graph
models, GraphUCB outperforms its competitors
consistently with a large margin. GraphUCB-Local
shows a slight worse performance than GraphUCB.
This is due to the approximation introduced by Eq.
7. This is a tight approximation when T is large, so
at the initial phase when T is small, GraphUCB-
Local experiences more regret. However, it is a worth
price since GraphUCB-Local reduces the computa-
tion complexity from Õ(n2

d
2) to Õ(nd2). At early

phase, CLUB performs better than LinUCB due to
clustering users into group. However, its regret does
not converge fast. This is becauseCLUB approximate
each user feature by that of clustering which eventually
limits its ability to model individual users accurately.

7.2 Performance on Graph Structure

Graphs used in our experiments have properties af-
fecting the performance of proposed algorithms. We
examine these graph properties.

Sparsity of RBF-graph: We test the e↵ect of spar-
sity on performance of algorithms. We first generate a
fully connected graph and generated the edge weights

(a) Smoothness: � in Eq. 21 (b) RBF (Sparsity)

(c) ER (p) (d) BA (m)

Figure 4: Performance on smoothness (a) and graph
structure: sparsity (b), p in ER graph (c), m in BA
graph (d).

randomly. Then, ⇥ is generated following Eq. 21
with � = 4. To control the sparsity, we set a threshold
⇢ 2 [0, 1) on edge weights such that edges with weights
less than ⇢ are removed.

7.3 Experiments on Real-World Data

We then carry out experiments on two real-world
datasets that are commonly used in bandit prob-
lems: Movielens [Lam and Herlocker, 2006] and
Netflix[Bennett et al., 2007]. We follow the data pre-
processing steps in [Valko et al., 2014]. we sample 50
users and test algorithms over T = 1000.

(a) MovieLens (b) Netflix

Figure 5: Performance on MovieLens (a) and Netflix
(b).

In Figure 3, we see that the proposedGraphUCB and

Recommender systems: User graph
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• User preferences mapped into a graph of similarities

• Exploitation of smoothness prior

𝚯 = [𝜽#, 𝜽$, . . . , 𝜽%]& ∈ ℝ%×(: signal on graph

𝜽

fidelity term

Laplacian-regularised estimator within 
online learning framework

K. Yang, “Laplacian-regularized graph bandits: Algorithms and theoretical analysis”, AISTATS 2020
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Step 1:Act and Observe

Step 3: Selection

max
a

[r(ĝL,t(a)) + UCBL(Et)]

Figure 1. Figurative example of the online graph processing (or online DMS on graphs).

denote by fff : V ! RN the signal defined on the graph with fff = [f1, . . . , fN ]T . We are interested

in the setting in which an agent (or decision maker) takes sequential decisions on the graph with

an impact on the signal evolution fff . Specifically at 2 A is the action taken at time time t that

will impact the resultant graph signal fffat . MABs algorithm strikes the exploration-exploitation

tradeoff by selecting at each decision opportunity the action that maximizes the reward or reduce

the model uncertainty (optimism in face of uncertainty). The optimism principle means using the

data observed so far to assign to each action a value called the upper confidence bound (UCB) that

with high probability is an overestimate of the unknown mean. This leads to a loop of three steps:

1) act and observe the reward, 2) refine the model and evaluate the uncertainty, 3) select next

action - Figure 1. In classical MAB problems all three steps happen in the vertex domain, having

the agent taking action and observing the experienced reward, learning from these observation

the best reward that on average leads to the highest reward. Clearly this does not scale properly

with the search space A. The key intuition underpinning this work is to consider these three steps

between the vertex and the spectral domain. An agent takes sequential decision strategies in the

high-dimensional domain based on the uncertainty of the model estimated in the low-dimensional

domain. More specifically, this work optimizes the system in the vertex domain (Figure 1 - Step

1), while modelling the uncertainty of the it in the spectral domain via graph signal processing

tools (Figure 1 - Step 2), in which the process evolving over time can be seen as signal lying

on a graph and it can be sparsely represented in the graph spectral domain. This means that the

well known exploration-exploitation tradeoff typical of online learning strategies is addressed

across the two domains. In other words, the agent exploits (act maximizing the reward) in the

September 23, 2019 DRAFT
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Recommender systems: Item graph

• Items as nodes on graph
𝒚 = [𝒚", 𝒚#, . . . , 𝒚$]% ∈ ℝ$×' : reward (unknown) 

• Signal (reward) is unknown and needs to be inferred

M Valko et al. "Spectral bandits for smooth graph functions”, ICML 2014.

𝒚

0 N-1

0

N-1

𝒒)

𝚲𝝌 𝝌"



Recommender systems: Matrix Completion

23F. Monti et al., "Deep geometric matrix completion: A new way for recommender systems”, ICASSP 2018

• Matrix completion: diffusion process as RNN casted on top of multi-
graph convolutional layers 

• Multi-graph convolution (spatial features), followed by LSTM (diffusion 
process)



Take Home Message
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• Node/graph classification
• Community detection
• Time series (system dynamics) 

inference
• Online learning

• smooth- multi-resolution graph 
signal representation 

• graph denoising 
• graph sampling 
• graph filter and kernel 

… for ML

Graph Knowledge exploitation 
Implicit / Explicit
Given / Constructed 

GSP Tools …



GSP/ GNN

In

Healthcare and Neuroscience



Brain Analysis: GSP for Interpretability

26J.D. Medaglia et al., “Functional alignment with anatomical networks is associated with cognitive flexibility”, Nat Hum Behav, 2018
W. Huang, et al., "A Graph Signal Processing Perspective on Functional Brain Imaging”, Proceedings of the IEEE, 2018.



Gene Expression: Topology inference

27A. G. Marques, et al. "Signal processing on directed graphs”, IEEE SPM, 2020.

To identifying gene-regulatory topologies, where nodes represent individual genes 
and directed edges encode causal regulatory relationships between gene pairs 

Graph filtering modelling for auto-regressing SEM

𝒙" = 𝑨𝒙" +𝛀𝒖" + 𝜖"

𝛀 = 𝑰
𝑯 = (𝑰 − 𝑨)$%

𝒙& = 𝑯𝒖&

Structural equation models (SEMs)

endogenous variables: gene-expression levels 

exogenous inputs: genotypes of the 
expression quantitative trait loci (eQTLs)

Kernel-based topology inference 



Brain imaging: Class activation mapping

28S. Arslan et al., "Graph saliency maps through spectral convolutional networks: Application to sex classification with brain connectivity." Graphs in 
Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities, 2018.  



Disease prediction

29
S. Parisot, “Disease prediction using graph convolutional networks”, Medical image analysis, 2018.

• populations modelled as a sparse graph
• phenotypic information integrated as edge weights 
• imaging-based feature vectors as node signal 

Subject classification as a graph labelling problem, integrating imaging 
and non imaging data.



Protein-protein interactions

30
P. Gainza et al. “Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning”, Nature Methods, 2020.



GSP for COVID-19

31
Y. Li and G. Mateos, "Graph Frequency Analysis of COVID-19 Incidence to Identify County-Level Contagion Patterns in the United States”, ICASSP 2021 

Cumulative number of confirmed 
COVID-19 cases per 100k residents 
for each county by Aug 31

Low-pass signals of each county High-pass signals of each county



GNN for COVID-19

32
Shah, Chintan, et al. "Finding Patient Zero: Learning Contagion Source with Graph Neural Networks." arXiv, 2020

Exploit GNNs to locate the source of the epidemics. 
• GNNs are model-agnostic
• GNNs identify P0 close to theoretical bounds accuracy



Take Home Message
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• Node/graph classification
• Community detection
• Time series (system dynamics) 

inference
• Online learning

• smooth- multi-resolution graph 
signal representation 

• graph denoising 
• graph sampling 
• graph filter and kernel 
• graph convolution / graph 

clustering 

… for ML

Graph Knowledge exploitation 
Implicit / Explicit
Given / Constructed 

Unknown graph knowledge
Implicit 

GSP Tools …

• topological inference

• Interpretability
• Complex dependencies 
• Local (high-frequency) 

activation mapping 
• Model-agnostic



GSP-based ML 

in 

Computer Vision



GSP for Geometric Data
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Sample

Hu, Wei, et al. "Graph Signal Processing for Geometric Data and Beyond: Theory and Applications”, arXiv 2020

Process
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Analysis and Synthesis Tasks via GNNs

Hu, Wei, et al. "Graph Signal Processing for Geometric Data and Beyond: Theory and Applications”, arXiv 2020
Y. Guo, et al.”Deep learning for 3d point clouds: A survey”, IEEE TPAMI, 2020.



Moving Object Segmentation

37J. Giraldo et al. “Graph Moving Object Segmentation”, IEEE TPAMI, 2020 

Input Ground Truth State-of-the-art GSP-Based

Graph weights 𝑤!,# = exp||𝒙! −𝒙#||$$/𝜎
Mask feature𝒙!: concatenation of optical, flow, 
intensity, texture, and deep features 

Moving object Static object

Unlabelled object

Each mask of the segmented 
image as graph node

Graph Signal 
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Graph sampling: for band limited signals,
at least ρ (bandwidth) labeled nodes are
needed to achieve perfect classification

Semi-supervised learning
(classification) as graph signal
learning with smooth regularizer

J. Giraldo et al. “Graph Moving Object Segmentation”, IEEE TPAMI, 2020 

Moving Object Segmentation



3D Point Cloud Segmentation

39Y. Wang, et al. “Dynamic Graph CNN for Learning on Point Clouds”, ACM Trans. Graph, 2019.

Graph convolution-like operators on the edges connecting neighboring pairs of
points, in the spirit of graph neural networks

Feature space structure in deeper layers captures semantically similar structures
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k-NN graph construction 
(Proximity in feature space)

• Dynamic graph constructed at each
layer based on features similarity

• Aggregation of edge features

• Translation-invariance and non-
locality properties

Y. Wang, et al. “Dynamic Graph CNN for Learning on Point Clouds”, ACM Trans. Graph, 2019.

3D Point Cloud Segmentation



Cosmology: DeepSphere
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Classification / 
regression output

Data input

. . .

Perraudin et al., “DeepSphere”, Astronomy and Computing, 2019

• Sphere modelled with a graph and convolutions are performed on the graph
• Down-sampling operation (based on hierarchical pixelization of the sphere) to achieve
multiple scales data analysis while preserving the spatial localization of features

Fully connected layer
Output, statistical layer

Further convolutional layerSecond convolutional layerFirst convolutional layer
(Convolution with N1 filters, activation, 

pooling, batch normalization)



Take Home Message
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• Node/graph classification
• Community detection
• Time series (system dynamics) 

inference
• Online learning

• smooth- multi-resolution graph 
signal representation 

• graph denoising 
• graph sampling 
• graph filter and kernel 
• graph convolution / graph 

clustering 

… for ML

Graph Knowledge exploitation 
Implicit / Explicit
Given / Constructed 

Unknown graph knowledge
Implicit 

GSP Tools …

• Interpretability
• Complex dependencies 
• Local (high-frequency) 

activation mapping 
• Model-agnostic

• topological inference
• Translation invariance 
• Non-locality properties
• Robustness to noise
• Sampling for computation 

efficiency



Outline
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• Brief introduction to graph signal processing (GSP)

• Challenge I: GSP for exploiting data structure

• Challenge II: GSP for improving efficiency and robustness

• Challenge III: GSP for enhancing model interpretability

• Applications

• Summary, open challenges, and new perspectives



Open Challenges
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GSP Tools MLGSP-based 
ML

This tutorial

GSP-based decision 
making strategies

a

GSP and model interpretability GSP and higher-order structure

GSP Tools 

GSP and probabilistic models 
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GSP and Probabilistic Models 



GSP and Probabilistic Models 
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Graph-based ML

Input Data

Output Task

• Most works assume graph is known a priori or fixed (deterministic setting)

• Real world networks are noisy and/or evolving over time

Challenge I: To take into account the topology uncertainty in 
graph-based machine learning tasks



Topological uncertainty in GSP: Modelling
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• How do we model topological noise?   
‣ Random graph model for topological noise [1]

Challenge I: To take into account topological uncertainty in 
graph-based SP and ML tasks

[1] J. Miettinen, “Modelling Graph Errors: Towards Robust Graph Signal Processing”, arXiv, 2020.

[2] E. Isufi, et al., “Filtering random graph processes over random time-varying graphs”, IEEE TSP, 2017. 
[3] E. Ceci, S. Barbarossa, “Graph Signal Processing in the Presence of Topology Uncertainties”, IEEE TSP, 2020.   

𝑾 = 𝑨+ 𝑬

ground truth adjacency matrix

error matrix
𝑦 = 𝑥 + 𝑛, 𝑛 ∼ 𝒩(𝜇, 𝜎!) ?

• How do we model topological noise?   

‣ What is the impact of the topological noise on filtering [1,2,3]?



Topological uncertainty in GSP: Robustness
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Challenge I: To take into account topological uncertainty in 
graph-based SP and ML tasks

• How do we build algorithms resilient to noisy topologies? 

‣ [3] proposes a robust signal recovery algorithm, under assumption of small 
perturbation, that incorporates statistical knowledge about topology 
uncertainty

‣ [4] robustifies LMS with respect to mismatches in the presumed graph 
topology

‣ [5] presents a robust formulation for graph-filter identification from input-
output observations 

[3] E. Ceci, S. Barbarossa, “Graph Signal Processing in the Presence of Topology Uncertainties”, IEEE TSP, 2020.   
[4] J. Miettinen et al. "Robust Least Mean Squares Estimation of Graph Signals” ICASSP, 2019.
[5] S. Rey and A. G. Marques, “Robust graph-filter identification with graph denoising regularization,” ICASSP, 2021.



Topological uncertainty in graph ML
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Challenge I: To take into account topological uncertainty in 
graph-based SP and ML tasks

• How do we incorporating uncertainty into learning algorithms?
‣ [6] proposes a GNN architecture where the distributed graph convolution 

module accounts for the random network changes

[6] Gao et al. “Stochastic Graph Neural Networks”, ICASSP and arXiv 2020.

S S1 S2 S3



Topological uncertainty in graph ML
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Challenge I: To take into account topological uncertainty in 
graph-based SP and ML tasks

• How do we incorporating uncertainty into learning algorithms?
‣ Bayesian approach: compute posterior associated with graph generative 

model so that new graph instances can be resampled [7,8]

figure from https://github.com/huawei-noah/BGCN

[7] Y. Zhang, et al. "Bayesian graph convolutional neural networks for semi-supervised classification”, AAAI, 2019.
[8] Elinas et al. “Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings”, NeurIPS 2020.

https://github.com/huawei-noah/BGCN


Topological uncertainty in graph ML
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Challenge I: To take into account topological uncertainty in 
graph-based SP and ML tasks

• How do we understand topological noise and its impact?   

• How do we build algorithms resilient to noisy topologies? 

• How do we incorporating uncertainty into learning algorithms?
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a

GSP-Based Decision Making Strategies



GSP-Based Decision Making Strategies
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Optimize sequential actions in a way that maximizes the expected reward, when 
the environment’s model is uncertain a priori

𝑓(𝑥){𝑥, 𝑦}Supervised learning

Decision Making Strategies (DMSs) 

• Reinforcement learning 
• Multi-arm bandit problems

GSP-Based Decision Making Strategies

55

Optimize sequential actions in a way that maximizes the expected reward, when 
the environment’s model is uncertain a priori

f(x){x, y}Supervised learning

Decision Making Strategies (DMSs) 

• Reinforcement learning 
• Multi-arm bandit problems

environment (st)
xt

xt+1

Model update Action

{xt, yt = f(at, st)}t

̂f(x, s)



GSP for Multi-Arm Bandit
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Optimize sequential actions in a way that maximizes the expected reward, when 
the environment’s model is uncertain a priori

https://blogs.mathworks.com/images/loren/2016/multiarmedbandit.jpg

• 𝑥+: selected action
• 𝑛": additive noise
• 𝑦+: mean payoff 
• 𝑠": context / user 
• 𝑓: unknown model

High-dimensional search space ? 

GSP for Multi-Arm Bandit

56

Optimize sequential actions in a way that maximizes the expected reward, when 
the environment’s model is uncertain a priori

https://blogs.mathworks.com/images/loren/2016/multiarmedbandit.jpg

arm selection

xtModel yt(xt, st) + nt

yt = f(xt, st)

MAB problem

• : selected action
• : additive noise
• : mean payoff 
• : context / user 
• : unknown model

xt
nt
yt
st
f

High-dimensional search space ? 



GSP for Multi-Arm Bandit

55

arm selection

xt
𝑦& = 𝑓(𝑥& , 𝑠&)

[1] M Valko et al. "Spectral bandits for smooth graph functions”, ICML 2014.
[2] K. Yang, “Laplacian-regularized graph bandits: Algorithms and theoretical analysis”, AISTATS 2020
[3]L. Toni, "Spectral MAB for unknown graph processes”,  EUSIPCO, 2018



GSP for RL
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Entry

Exit

Learning model / 
value function

Learning graph edge 
weights / signal on graph

High-dimensional state-action space

C. M. Machado et al. "Eigenoption discovery through the deep successor representation”, ICLR, 2018
S. Madjiheurem, "Representation learning on graphs: A reinforcement learning application”, AISTATS, 2019.
S. Rozada et al., “Low-rank State-action Value-function Approximation”, arXiv 2104.08805v1, 2021

GSP for RL

58

environment (st)
xt {xt, yt = f(at, st)}t

̂f(x, s)xt+1

Model update Action

Entry

Exit

Learning model / 
value function

Learning graph edge 
weights / signal on 
graph

High-dimensional state-action space

C. M. Machado et al. "Eigenoption discovery through the deep successor representation”, ICLR, 2018
S. Rozada et al., “Low-rank State-action Value-function Approximation”, arXiv 2104.08805v1, 2021



GSP-Based Decision Making Strategies
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• GSP to improve data efficiency by learning in the spectral domain or by 
regularising on G — bandit and RL 

• Graph is not usually inferred  (Topological inference)

• Graph uncertainty is not considered (Topological uncertainty) 

• GSP-based analysis for further guarantees (Graph-based Regret bounds) 

Challenge II: how can GSP tools be applied to DMSs to 
improve efficiency, complexity, and robustness?  



GSP-Based Decision Making Strategies
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• GSP to improve data efficiency by learning in the spectral domain or by 
regularising on G — bandit and RL 

• GSP to improve accuracy/robustness 

• GSP to model system dynamics 

• GSP to improve computational efficiency 

Challenge II: how can GSP tools be applied to DMSs to 
improve efficiency, complexity, and robustness?  
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GSP and Model Interpretability 



GSP and Model Interpretability 
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Challenge III: how can GSP tools help enhance 
interpretability of machine learning models?

• Modelling the structure of the data with a graph could be a way of introducing 
domain knowledge (e.g., physical interactions) 

• Graph filters may be designed (via e.g., anisotropic filters or adapting 
attention mechanisms) to enhance model interpretability

P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph networks,” 2018, arXiv:1806.01261. 
F. Monti et al., “Geometric deep learning on graphs and manifolds using mixture model CNNs,” CVPR, 2017.
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GSP and Higher-Order Structure



GSP and High-order Structure

62R. Benson et al., “Higher- order organization of complex networks” Science, 2016. 
F. Monti, et al., “MotifNet: A motif-based Graph Convolutional Network for directed graphs,” IEEE DSW, 2018.

• Graphs capture pairwise (lower-order) relationship 
between nodes 1st- level            2nd-level motif 

• Higher-order structures play a key role in 
understanding the fundamental structures that control 
the behaviour of many complex systems 

• Motifs have been used to design GNN models that are capable of handling directed 
graphs 

Challenge IV: to extend GSP tools to higher-order structures, such as 
motifs, simplicial complexes, and hypergraphs 

3rd-level motif 



GSP and Higher-order Structure

63

Challenge IV: to extend GSP tools to higher-order structures, such as 
motifs, simplicial complexes, and hypergraphs 

Barbarossa and Sardellitti, “Topological Signal Processing over Simplicial Complexes,” TSP, 2020.
Schaub et al., “Signal Processing on Higher-Order Networks: Livin' on the Edge ... and Beyond,” arXiv, 2021. 

Signals on simplicial complexes of different order



Conclusions
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GSP Tools 

𝑦 = 𝑓(𝒙)

Machine Learning

Graph-based ML

• enable convolution & hierarchical modelling on graphs

• interpret data structure & learning models on graphs

• improve efficiency & robustness of (graph-based) ML models



Conclusions

65Dong et al., “Graph signal processing for machine learning,” IEEE SPM, 2020.

Graph-based 
regularisation

Graph filters 
& transforms

GP & kernels 
on graphs

interpreting 
DNNs

multiscale 
clustering

spectral 
clustering

topology 
inference

CNNs on 
graphs

few-shot 
learning

attention 
models

multi-task 
learning

GSP-related 
learning models

Exploiting Data 
Structure

Improve efficiency & 
robustness on graphs

Interpret data 
structure & learning 
models on graphs

GSP Tools
Benefits

• Node / graph classification
• Community Detection
• Topology inference
• Dynamic Inference
• Online learning

Tasks Applications Open Challenges and 
Perspectives

• Probabilistic models 
• Decision Making Strategies
• Model interpretability 
• Higher-order structures
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