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Networks are pervasive
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Networks are pervasive

social network brain network

graphs provide mathematical representation of networks
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The field of network science

network
centrality

community
detection

Regular Small-world

random graph
models

Increasing randomness

Newman, “An introduction,” Oxford University Press, 2010. 3/56



The field of network science

community
detection

network
centrality

Regular Small-world

random graph
models

Increasing randomness

from edge attributes to node attributes
from graphs to graph-structured data

Newman, “An introduction,” Oxford University Press, 2010. 3/56



Graph-structured data are pervasive

e vertices
- geographical regions
e edges
- geographical proximity between
regions
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Graph-structured data are pervasive

e vertices
- geographical regions

Mean Yearly Temperature (degC) 1981-2010

: e edges
- geographical proximity between
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regions

e signal
- temperature records in these
regions
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Graph-structured data are pervasive

e nodes
- road junctions

e edges
- road connections
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Graph-structured data are pervasive

| e nodes

e edges
- road connections

..... _' e signal
N\ POy - traffic congestion at junctions
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Graph-structured data are pervasive

° e nodes
c'o\g “ - individuals
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Graph-structured data
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are pervasive

e nodes

- individuals
e edges

- friendship between individuals
e signal

- political view
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Graph-structured data are pervasive

e nodes
- brain regions

e edges
- structural connectivity between
brain regions
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Graph-structured data are pervasive

e nodes
- brain regions

e edges
- structural connectivity between
brain regions
e signal
- blood-oxygen-level-dependent
(BOLD) time series

Richiardi et al., “Machine learning with brain graphs,” IEEE Signal Processing Magazine, 2013. 7/56



Graph-structured data are pervasive

e nodes
- pixels

e edges

- spatial proximity between pixels
e signal

- pixel values
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Learning with graph-structured data

Y4
ZA 2N

B TNCT
ZaNZNZN

N
ZaN

condition?

no condition?

./
AN

L

SN
ZaN N %

(supervised) graph-wise classification
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Learning with graph-structured data
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(semi-supervised) node-wise classification
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Learning with graph-structured data
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(semi-supervised) node-wise classification
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Learning with graph-structured data

(semi-supervised) node-wise classification
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Learning with graph-structured data
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learning graph structure from data
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Learning with graph-structured data
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learning graph structure from data
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How to incorporate graph into learning?

e Embedding of graph structure leads to information loss
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How to incorporate graph into learning?

e Embedding of graph structure leads to information loss
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e Need for new models that directly incorporate structure in data analysis
- graph signal processing (GSP)
- graph neural networks (GNN)
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Outline

Graph signal processing (GSP): Basic concepts
Graph spectral filtering: Basic tools of GSP
Graph neural networks (GNNs)

Applications
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Outline

e Graph signal processing (GSP): Basic concepts
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Graph signal processing (GSP)

e Graph-structured data can be represented by signals defined on graphs
or graph signals
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Graph signal processing (GSP)

e Graph-structured data can be represented by signals defined on graphs
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Graph signal processing (GSP)

e Graph-structured data can be represented by signals defined on graphs
or graph signals
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Graph signal processing (GSP)

e Graph-structured data can be represented by signals defined on graphs
or graph signals
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Graph signal processing (GSP)

e Graph-structured data can be represented by signals defined on graphs
or graph signals

takes into account both structure (edges) and
data (values at vertices)
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Graph signal processing (GSP)

sin(mx)

how to generalise classical signal processing tools
on irregular domains such as graphs?

15/56



Graph signal processing (GSP)

e« Main GSP approaches can be categorised into two families:
- vertex (spatial) domain designs

- frequency (graph spectral) domain designs
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Graph signal processing (GSP)

e Main GSP approaches can be categorised into two families:

vertex (spatial) domain designs

i [frequency (graph spectral) domain designs)

important for analysis of signal properties
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Graph signal processing (GSP)

e C(lassical Fourier transform provides frequency domain representation of
signals
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Graph signal processing (GSP)

e C(lassical Fourier transform provides frequency domain representation of
signals

R /\/\/\/ - "“building blocks" of signal
’XVAVAVAV% 4/ - different frequency (oscillation)

f:V—-R

e What about a notion of frequency for graph
signals?

we need the graph Laplacian matrix

17/56



Graph Laplacian
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Graph Laplacian

weighted and undirected graph:

G

W, €}
D = diag(d(vy), - -

yd(vn))
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Graph Laplacian

weighted and undirected graph:

G

W, €}
D = diag(d(vy), - -

L=D-W

,d(vn))
equivalent to G!

Q
2
+
(0p)]
@)
O
|
C
@)
-0
g o
._m N
c QO
(D)
_ o
(g =
L <
5 O -
O o0 =S
c O v
O 2
E J =
> Y= @)
n @) r
o o o
— ~
0000001_.1
—{ i —{
oMo T<To
00042400
00424000
ol <+ToTTo
—{ —{ —{
—{
-~ Toococooo
~— -

SO O OO o - O
SO - OO - O
O 4 O+ O O
OO O - OO
OO O - O OO
O -1 O~ O - - O
O - OO - OO0

O O OO O oo
— __

S OO OO oo H

S oo o oo Mmoo

S OO OO OO

S o oo AN O OO

S OO NO o oo

SO F OO o oo

S N OO oo oo

—\ O O OO o oo

18/56



O DD DD OO o O
OO DD OO O WwWwOo

Graph Laplacian

weighted and undirected graph:

g = {V75}
D = diag(d(v1), -+ ,d(vn))

L=D—-—W equivalent to G!
Lyorm = D~ 2(D — W)D™ 2

000000 01000000 1 -1 0 0 0 0 0 0 :
00000 0 /10100100\ (—1 3 -1 0 0 -1 0 0\ e symmetriC

400000 010101710 0 -1 4 -1 0 -1 -1 0

020000 00101000[__]o0o 0o -1 2 -1 0 0 0 o i : _ i
R g B B g I I A off-diagonal entries non-positive
000400 011010710 0 -1 -1 0 -1 4 -1 0

000030 00100101 0 0 -1 0 0 -1 3 -1 e rows sum up to zero
0000001 \0 0 0000 1 0/ \o 0 0 0 0 0 -1 1)
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Graph Laplacian

Why graph Laplacian?
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Graph Laplacian

Why graph Laplacian?

- approximation of the Laplace operator

(Lf)() =4f (@) = [f(r) + f(d2) + f(s) + f(Ja)]

standard 5-point stencil for approximating —V?f
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Graph Laplacian

Why graph Laplacian?

- approximation of the Laplace operator

(Lf)() =4f (@) = [f(r) + f(d2) + f(s) + f(Ja)]

standard 5-point stencil for approximating —V?f

- converges to the Laplace-Beltrami operator (given certain conditions)

- provides a notion of “frequency” on graphs

19/56



Graph Laplacian

graph signal f:V — RY
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Graph Laplacian

20/56
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Graph Laplacian

graph signal f:) — RY

1 -1 0 0 0 0 0 0 £(1) £(1) T/1 10 0 0 0 0 o0 £(1)
(—1 3 -1 0 0 -1 0 o\ (f(Q)\ /f(Q)\ (—1 3 -1 0 0 -1 0 0\ (f(2)\
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0 0 0 -1 2 -1 0 0 f(5) £(5) 0 0 0 -1 2 -1 0 O F(5)
0 -1 -1 0 -1 4 -1 0 £(6) £(6) 0 -1 -1 0 -1 4 -1 0 7(6)
o 0 -1 0 o -1 3 —1|/{re £(7) 0o 0 -1 0 0 -1 3 —1|/|7£®
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Lf(i) = E Wi () — f(5)) foLf = § Wii (f () = F(J))
7=1 1,7=1

a measure of “smoothness”

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 20/56



Graph Laplacian
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx’
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx’

- Xg__

T
L — Xy —

XT

Eigenvalues are usually sorted increasingly: 0 = A\g < A1 < ... < Any_1
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Graph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.



Graph Fourier transform
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low frequency high frequency S
ngxO =X =0 XgoLX5o = As0

o Eigenvectors associated with smaller eigenvalues have values that vary less rapidly
along the edges

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 23/56



raph Fourier transform
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low frequency high frequency S
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graph Fourier transform:
[Hammond11] - T

f(€)=<X£,f>3 Xo o Xyl /f

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 23/56



raph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 23/56



Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Ly, = A¢Xxe
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Ly, = A¢Xxe

one-dimensional Laplace operator: —V/?

$

eigenfunctions: e7%%

'

Classical FT: f(w) = / (e79%)* f(z)dz

fla)= o / F(w)e™= duw
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Ly, = A¢Xxe

one-dimensional Laplace operator: —V/? . graph Laplacian: L

$

$

eigenfunctions: e/%* ' eigenvectors: X/

$ $oF
A N

Classical FT:  f(w) = / (e7“7)" f(x)dw Graph FT: f(¢) = (xo, [) = ZXZ(i)f(i)

fo) = 5 [ Fper o F6) = 3 F0xli
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Ly, = A¢Xxe

one-dimensional Laplace operator: —V/? . graph Laplacian: L

$

$

eigenfunctions: e/%* ' eigenvectors: X/

$ $oF

Classical FT:  f(w) = Ilteij)*uf(x)‘dx Graph FT: f(0) = (x¢. f) =|) XZ(Z')“f(i)

1=1

N—-1

fo) = 5 [ Fper o fiy =Y o

=

24/56



Two special cases

S

m (Unordered) Laplacian eigenvalues: Ay =2 — 2 cos (2‘%)

m One possible choice of orthogonal Laplacian eigenvectors:

— 2mj
Xe = [l,we,w%, - ,w(N 1)6] , Where w = e N
| |
B | xo --- xn_1 | isthe Discrete Fourier Transform (DFT) matrix

Vandergheynst and Shuman, “Wavelets on graphs, an introduction,” Université de Provence, 2011.
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Two special cases

wil )\g:2—2cos(%) 0 xo(/) = ﬁ Xg(i):\/%cos(“e(';o's)), (=1,2,...,N—1

Eigenvector 0

. n n . . n n n

03 2 3 4 5 6 7 8
0 Eigenvector 1

05 1 1 I t ‘.%—!

1 2 3 4

Eigenvector 2

X — —— 3

H— —r—-.f |
035 2 3 - ! 7 8

Eigenvector 3

B
O.Q\!‘\_! —a — m .
035 2 : : 5 7 =

Eigenvector 4

Eigenvector 5

?\ ,/'\-:gemecm:./_'\,
Eigenvector 7

-o:§\~ /_!\1/’\! 4/!—'—\!

2 3 5 7 8

is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),
which is used in JPEG image compression

Vandergheynst and Shuman, “Wavelets on graphs, an introduction,” Université de Provence, 2011. 26/56



Graph Fourier transform

Example on a simple graph

eigenvector u;

eigenvector u,
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0.0
-0.2
-0.4
-0.6

0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6

>

(£) = (xe, f) -
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Graph Fourier transform

Example on a simple graph

eigenvector u;

eigenvector u,
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Graph Fourier transform

e Example on a simple graph | ‘ -

eigenvector u, eigenvector u; ey
1.0 20
0.6
15
0.8 2.0 1
0.4 10
0.2 0.6 0.5 1.5
0.0
0.0 04 Lo
-0.5
-0.2 '
0.2 1 -1.0 0.5
-0.4 s
-0.6 0.0 A —2.0 0.0
OIO 0.2 0.4 0.6 0.8 1.l0 0 2 4 6 8 10 12
sensor
1.0
0.6 0.1 0.6
0.4 8 00 05
0.2 0.6 1 -1 044
0.0 -0.2 0.3 -
0.4
-0.2 -0.3 0.2
0.2
-0.4 -0.4 0.1
_0.6 0.0 1 —0.5 0.0 1 MW—M
0'0 0.2 0.4 0.6 0.8 1.’0 (') é ‘:i é 8' ll() 1'2
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Outline

e Graph signal processing (GSP): Basic concepts

e Graph spectral filtering: Basic tool of GSP
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Classical frequency filtering

Classical FT:  f(w) :/(ej“"’)*f(x)dx f(z) = %/f’(w)ejmdw
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Classical frequency filtering

Classical FT:

fw)

FT

=)

[y t@de f@) =5 [ fued

]ﬁ

(W)

g(w)

=)

(@) f(w)

IFT

=)

f*g
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Classical frequency filtering

Classical FT:

fw)

FT

[y t@de f@) =5 [ fued

=)

Jﬁ

(W)

=)

(@) f(w)

[ [T

IFT

=)

f*g
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Graph spectral filtering

GFT: f(0) = {xe, f) = ZXE FG) =" FO)xe(i)
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Graph spectral filtering

GFT: f(€)=<x£,f>=ZxZ(i)f(i) FG@) = f(O)xe(i)

1.0

1.0
0.8 05
0.6 0.0
WK 7 -0.5

-1.0
0.2 1

-15
0.0 1 -2.0
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Graph spectral filtering

N N-—-1

GFT: f() = {xes £) =D _xi (@ (@) f(i) = DY f(O)xe(d)

GFT

fo o= | f)

1.0 2.00
1.0
, 1.75 1
0.8 1 )
0-5 1'50_
0.6 1 0.0 1.2541
0.5 1.00 -
7/ —VU.
41 W4
04 {i_ 0.75 1
-1.0
0.50 -
0.2 1
-15 0.25 1
0.0 -2.0 0.00
0.0 0.2 0.4 0.6 0.8 0 2 4 6 8 10 12 14
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Graph spectral filtering

N

GFT: f(0) = (xe. f) =) _x: (i) f(i)

GFT

1=1

0.0

(€)xe(2)
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Graph spectral filtering

N N-—-1
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Graph spectral filtering

N

GFT: f(0) = (xe. f) =) _x: (i) f(i)

GFT

1=1
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Graph Laplacian revisited

GFT: f(0) = (xe, f) = xi(i)f(i)

N

1=1

N-—-1

=

The Laplacian L is a difference operator: Lf = xAx" f

GFT

A

X' f

Ax' f

IGFT

=)

f(@) =Y FOxe(i)

YAXTf
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Graph Laplacian revisited

GFT: f(0) = (v f) = i) )= 3 FOxl)
1=1 £=0

The Laplacian L is a difference operator: Lf = xAx" f

GFT GFT

foomp T om | ANTr | om AT

- 0 AN_]'_

The Laplacian operator filters the signal in the spectral domain by its eigenvalues!

The Laplacian quadratic form: f1Lf = HL%fHQ = HXA%XT]CHQ
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Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral
filtering: Functions of graph Laplacian!

GFT

T

X' f

g(A)
=)

gA)X" f

IGFT

(M)x" f
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Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral
filtering: Functions of graph Laplacian!

GFT

T

X' f

g(A)
=)

gA)X" f

IGFT

Xg(A)x" f

SR IS R AR

G(L): function of L!
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Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral
filtering: Functions of graph Laplacian!

GFT

T

X' f

g(A)
=)

gA)X" f

IGFT

=)

Xg(A)x

SR IS R AR

G(L): function of L!

e Important properties can be achieved by properly defining g(L) , such
as localisation of atoms

e (Closely related to kernels and regularisation on graphs

Smola and Kondor, “Kernels and regularization on graphs”, COLT, 2003.
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A practical example

GFT

T

X' f

S\i
§=

gA)X" f
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A practical example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

problem: we observe a noisy graph signal f = yo +7 and wish to recover g

[ Y = argm;n{||y — fll3 +vy" Ly} J
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A practical example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

problem: we observe a noisy graph signal f = yo +7 and wish to recover g

— data fitting term

“smoothness’ assumption
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A practical example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

problem: we observe a noisy graph signal f = yo +7 and wish to recover g

— data fitting term

y = +yL)"'f
g(L)

“smoothness’ assumption
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A practical example

GFT g(A) IGFT

f| = ' f = | gAY f| = Wf

problem: we observe a noisy graph signal f = yo +7 and wish to recover g

— data fitting term

y =T +yL) 7 f = x(1+yA) X f remove noise by low-pass filtering

“smoothness’ assumption

~ in graph spectral domain!
g(L)

33/56



A practical example

e noisy image as observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 34/56



A practical example

e noisy image as observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Gaussian Filtered Gaussian Filtered
(Std. Dev. = 1.5) (Std. Dev. = 3.5)

Original Image Noisy Image Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 34/56



More filtering operations

GFT g(A) IGFT

ol I\ o AT =

low-pass filters:  G(L) = (I +~yL)™ ' = x(I +~vA) " 'x?
window kernel: windowed graph Fourier transform
shifted and dilated band-pass filters: spectral graph wavelets §(sL)

adapted kernels: learn values of §(L) directly from data

K K
parametric polynomials: §s(L) = > o L? = x(D_ aseA")x"
k=0 k=0
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Outline

e Graph signal processing (GSP): Basic concepts
e Graph spectral filtering: Basic tool of GSP

e Graph neural networks (GNNs)
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CNNs exploit structure within data

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

https://en.wikipedia.org/wiki/File:Typical cnn.png

e checklist
- convolution: translation equivariance
- localisation: compact filters (independent of sample dimension)
- multi-scale: compositionality

- efficiency: O(N) computational complexity

37/56


https://en.wikipedia.org/wiki/File:Typical_cnn.png

CNNs on graphs?

e checklist

convolution: how to do it on graphs?

localisation: what's the notion of locality?

multi-scale: how to down-sample on graphs?

efficiency: how to keep the computational complexity low?
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Convolution on graphs

classical convolution convolution on graphs

time domain

Fro0= [ T f(t = r)g(r)dr

frequency domain
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Convolution on graphs

classical convolution convolution on graphs

time domain

Fro0= [ T f(t = r)g(r)dr

frequency domain i graph spectral domain
. -
(fxg)w) = f(w) - §(w) L (FrN) = (X Heg))
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Convolution on graphs

classical convolution convolution on graphs
time domain E node domain
e = [ fe-ngmdr F o frg= g =g(D)f
frequency domain : graph spectral domain

(fxg)w) = f(w) - §(w) L (FrN) = (X Heg))

39/56



Convolution on graphs

Frg=xgN)x"f=9(L)f

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 40/56



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of eigenvalues

K
go(N) =D _0;X, 0 € RFH! =) Go(L) =3 6,17

7=0 =0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 40/56



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of eigenvalues

K K
Go(A) =) 60;X, 6 e RFH —> do(L) = Zej@
3=0

j=0

what do powers of graph Laplacian capture?

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 40/56



Powers of graph Laplacian

L* defines the k-neighborhood

LO Lt L2 L3 L4
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0 -i. I I I I 0 1:. =l I I I 0 I I I 0 EEEEEEER i:l =. I
51 ™. 5. EE 5 5 =, .
10 - 10 - "-_‘“:;_ 10 4, “"mat® 10 =
15 i ... 15 i ... -.==. -.. 15 15 . me®
20 - ., 20 - LT 20 20 =2, SaE. suze
.. | | l=.=
IL%66| >0 IL166| >0 IL%66| > 0
® 6 06 0 O ?— ——0—0—
‘ |
® ®© 6 0O NG Sz
WY P AANSAYAY
® 6 06 0 O ¥ Gt O D
X ;'i-a'r’»’a
® 6 6 0 O ) ";Er;;
EEEX IXNPSRIX
[|W°||o = 0 edges ||W?||o =40 edges [|W?2||o = 62 edges [|W3]|o = 108 edges [|W*||o = 122 edges

Localization: dg(v;, Vj) > K implies (LK),'J' =0 (slides by Michaél Deferrard)
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Convolution on graphs

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of eigenvalues

K K
go(N) =D _0;X, 0 € RFH! ) Go(L) =3 6,17
J=0

j=0

(localisation within K-hop neighbourhood)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 42/56



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of eigenvalues

K K
Go(N) =) _0;M, 0 € RFH! ) Go(L) = 0,1
7=0

i=0

(localisation within K-hop neighbourhood)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 42/56



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of eigenvalues

K K
go(N) =D _0;X, 0 € RFH! ) Go(L) =3 6,17
j:O jZO
checklist

Defferrard et al.,

- convolution: expressed in the graph spectral domain

- localisation: within K-hop neighbourhood

- learning complexity: O(K)

), no need for GFT

- computational complexity: O(K|E

Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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Convolution on graphs

Frg=xgN)x"f=9(L)f

4

fast and stable implementation by Chebyshev approximation

2

L—1
AN—1

K
go(L) = ZﬁjTj(i) with a scaled Laplacian L =
j=0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 43/56



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

fast and stable implementation by Chebyshev approximation

K
~ . ] - 2
go(L) = ZHjTj(L) with a scaled Laplacian L = X L —1T
' N—1
7=0
TO (x) — 1 - To(x) ' 'T1(X)' ' Tzl(X)‘_' T3(x) '_ TA(X) o

1.0F

Tk(x) = Zka_l(a:) — Tk_z(l') N

- recursively defined

-0.5}

- orthogonal basis for

L2 ([~1,1], dy/v/T— ) T N e

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 43/56



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

fast and stable implementation by Chebyshev approximation
K

go(L) = ZﬁjTj(i) with a scaled Laplacian L = ;) 2 L —1T
=0 N-1
To(x) =1 To(L) =1
Ti(x)==x - Tl(i):f)
Ti(z) = 2aTh—1(x) — Th—2(z) Tw(L) = 2L Ty_1(L) — Tj_o(L)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.

43/56



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

simplified Chebyshev approximation

Go(L) = p_ 6;T;(L)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 44 /56



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

simplified Chebyshev approximation
K=1

go(L) = _6;T;(L) ) 00! +01(L— 1)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 44 /56



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

simplified Chebyshev approximation

K ) K=1 3
go(L) = Z 0;1;(L) ‘ 0ol + 6, (L — 1)
7=0 )\N—l ~ 2

) -,/ — 6,(D WD ?)

(localisation within 1-hop neighbourhood)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 44 /56



Convolution on graphs
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Convolution on graphs

Frg=xgN)x"f=9(L)f

4

simplified Chebyshev approximation

K 3 K=1 5
go(L) = _6;T;(L) mm) 0ol + 0, (L)
=0 )\N—l ~ 2

) -,/ — 6,(D WD ?)

(localisation within 1-hop neighbourhood)
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Convolution on graphs

Frg=xgN)x"f=9(L)f

4

simplified Chebyshev approximation

K 3 K=1 5
go(L) = _6;T;(L) mm) 0ol + 0, (L)
=0 )\N—l ~ 2

) -,/ — 6,(D WD ?)

(localisation within 1-hop neighbourhood)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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Convolution on graphs

Frg=xgN)x"f=9(L)f

4

simplified Chebyshev approximation

K 3 K=1 5
go(L) = _6;T;(L) mm) 0ol + 0, (L)
=0 )\N—l ~ 2

) -,/ — 6,(D WD ?)

(localisation within 1-hop neighbourhood)

renormalisation

) - (D :WD?)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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Convolution on graphs

Frg=xgN)x"f=9(L)f

4

simplified Chebyshev approximation: too simple?

ja(L) =a(I+ D 2WD"2)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 45/56



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

simplified Chebyshev approximation: too simple?
ja(L) =a(I+D WD 3)

#

Yi = of; \/— Z) 1

J

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 45/56



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

simplified Chebyshev approximation: too simple?
Go(L) = a(I + D"ZWD"?)

1 1
yz‘ZOémeOé\/dfi Z wz‘jﬁfj

7:(4,)€E

‘ unitary edge weights

1
yi:@fi+104 Z fi

j:(4,5)€E

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 45/56



Convolution on graphs - Summary

e Convolution is defined via the graph spectral domain...

frg=x9N)x" f=9(L)f
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Convolution on graphs - Summary

e Convolution is defined via the graph spectral domain...

fxg=x(M)x" f=g(L)f
e ...but can be implemented in the spatial (vertex) domain

K
y=go(L)f =) 0;T;(L)f
=0
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Convolution on graphs - Summary

e Convolution is defined via the graph spectral domain...

fxg=x(M)x" f=g(L)f
e ...but can be implemented in the spatial (vertex) domain

K
) ~ imple averaging in Kipf
— (L) f — T.(L >HmP oS TP
Y 99( )f Z%HJ J( )f - and Welling 2017
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Convolution on graphs - Summary

e Convolution is defined via the graph spectral domain...

fxg=x(M)x" f=g(L)f
e ...but can be implemented in the spatial (vertex) domain

K
) ~ imple averaging in Kipf
— (L) f — T.(L >HmP oS TP
Y 99( )f Z%HJ 3( )f - and Welling 2017
J:

e Forward pass in spectral graph CNNs

doow+1) (L) (ReLU (g (D))
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Convolution on graphs - Summary

e Convolution is defined via the graph spectral domain...

fxg=xgM)x" f=9(L)f
e ...but can be implemented in the spatial (vertex) domain

K
R ~ imple averaging in Kipf
_ T, ZE : T (] simp ging P
y=90(L)f ; 09”7 J( )f - and Welling 2017
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e Forward pass in spectral graph CNNs
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Convolution on graphs - Summary

e Convolution is defined via the graph spectral domain...
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Convolution on graphs - Summary

e Convolution is defined via the graph spectral domain...

fxg=x9(0)x" f=g(L)f
e ...but can be implemented in the spatial (vertex) domain

K
) ~ imple averaging in Kipf
— (L) f — T.(L >mP ons AP
y=9o(L)f Z%QJ (LS =y and Welling 2017
J:

e Forward pass in spectral graph CNNs
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Graph convolutional networks (GCN)

e Forward pass: §9<k+1>(L)(RGLU(§9<k>(L)f))

X =H

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 47/56



Graph convolutional networks (GCN)

e Forward pass: §9<k+1>(L)(ReLU-))

X =H

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 47/56



Graph convolutional networks (GCN)

e Forward pass: §9<k+1>(L)(-)

Hidden layer

o

by

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 47/56



Graph convolutional networks (GCN)

e Forward pass:

Hidden layer Hidden layer

r a r 2

2

A
A

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 47/56



Graph convolutional networks (GCN)

e Forward pass:

Hidden layer Hidden layer
f R e N
Input ® o ® o Output
. » RelLU RelLU : »
N o ® " e : ° : - T . ®
¢ ® o ¢ 0() ¢ 0() ¢ * o
X =HO . . 7 = HWN
- ‘ \ / - ‘ \ J

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 47/56



Graph neural networks (GNNs)

GNN Spectral CNN PATCHY-SAN ChebNet TIGraNet MoNet SGN GIN
Gori et al. Bruna et al. Niepert et al. Defferrard et al. Khasanove et al. Monti et al. Wu et al. Xu at al.
2005 2009 2015 2016 2016 2016 2017 2017 2017 2017 2018 2019 2019 2019 2020
GNN Gated-GNN GCN GraphSAGE GAT CapsGNN DGM
Scarselli et al. Li et al. Kipf et al. Hamilton at al. Velickovic at al. Xinyi at al. Kazi et al.

spatial-based methods (message-passing, attention)
spectral-based methods (spectral filtering)

Balcilar et al., “Bridging the gap between spectral and spatial domains in graph neural networks,” arXiv, 2020. 48/56



Outline

Graph signal processing (GSP): Basic concepts
Graph spectral filtering: Basic tool of GSP
Graph neural networks (GNNs)

Applications

49/56



Application |: Community detection

spectral graph wavelets Dy(a.b)=1_ Ysa¥sh
at different scales: 1%s.allz [%s bl

L‘ﬂ‘%
NODE /
A: @
NODE ‘?v%
> %

CORR.
COEF.: -0.50 0.97

small scale large scale

Hammond et al., “Wavelets on graphs via spectral graph theory,” Applied and Computational Harmonic Analysis, 2011.
Tremblay and Borgnat, “Graph wavelets for multiscale community mining,” IEEE TSP, 2014. 50/56



Application |: Community detection

spectral graph wavelets Dyab)—i_  Psa¥sb
| | sl ool
at different scales:

4’3‘%
NODE /
%
NODE 5?
: %

CORR.
COEF.: -0.50 0.97

small scale large scale

multi-scale community
detection:

Hammond et al., “Wavelets on graphs via spectral graph theory,” Applied and Computational Harmonic Analysis, 2011.
Tremblay and Borgnat, “Graph wavelets for multiscale community mining,” IEEE TSP, 2014. 50/56



Application |I: Recommender systems

5 1
sl 5 5 2
o
a0
2
3
ol 4 5 4

4 1 5

‘ \’% ﬂ user graph z

o

Monti et al., “Geometric matrix completion with recurrent multi-graph neural networks,” NIPS, 2017. 51/56



Application |I: Recommender systems

Xt — x @) L qx®)

» MGCNN

X ()

L

Monti et al., “Geometric matrix completion with recurrent multi-graph neural networks,” NIPS, 2017.

RNN

row+column filtering

dx®
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Application Ill: Functional brain imaging
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Huang et al., “A graph signal processing perspective on functional brain imaging,” Proceedings of the IEEE, 2018. 52/56



Application Ill: Functional brain imaging
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Application IV: Disease classification

N subjects Population graph

Feature vector

Phenotypic data

T EE S Q

M labelled samples
N-M samples to classify

Parisot et al., “Disease prediction using graph convolutional networks,” Medical Image Analysis, 2018. 53/56



Application IV: Disease classification

features extracted from brain analysis

]

N subjects Population graph

Feature vector

Phenotypic data

T EE S Q

M labelled samples
N-M samples to classify

Parisot et al., “Disease prediction using graph convolutional networks,” Medical Image Analysis, 2018. 53/56



Application IV: Disease classification

features extracted from brain analysis

]

N subjects Population graph

Feature vector

Phenotypic data

T EE S Q

M labelled samples

‘ N-M samples to classify

similarity in phenotypic data

Parisot et al., “Disease prediction using graph convolutional networks,” Medical Image Analysis, 2018. 53/56



Application IV: Disease classification

features extracted from brain analysis

]

N subjects Population graph Fully labelled graph

Feature vector

Imaging data

Graph Convolutional
Neural Network

Phenotypic data

T EE S Q

M labelled samples

‘ N-M samples to classify

similarity in phenotypic data

Parisot et al., “Disease prediction using graph convolutional networks,” Medical Image Analysis, 2018. 53/56



Application V: Protein-protein interaction

Approach, systematic
Protein molecular surface Interaction fingerprint extraction of patches

Hydrophobic
Electron donor
Pocket

Knob

Positive charge
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* Patch center points
== Patch radius

S Geometric features ~ Chemical features ~N
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» ‘ - »
_— ( F. » .
Shape Distance-dependent Hydropathy Continuum Free electrons/
index curvature electrostatics protons
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Gainza et al., “Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning,” Nature Methods, 2020. 54/56



Application V: Protein-protein interaction

Polar
/7~ coordinates

/ -_

Angular coordinates| __,

Radial dinat
 Radial coordinates )

MaSIF-geometric deep learning

N filters

K rotations

Map features
to learned
soft grid

Convolutional layers Fingerprint | Application-
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Heme
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Applications

Interface

i specific layers
descriptor A P y )

)
SAM Noninterface _,g;’
Pocket classification Interface site prediction Ultra-fast PPl search
\_ MaSIF-ligand MaSIF-site MaSIF-search )

Gainza et al., “Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning,” Nature Methods, 2020.
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What's next?

e Mathematical models for graph-structured data
- global and local smoothness & regularity
- underlying physical processes

e Robustness & generalisation analysis
- how robust is the model to topological change
- how can the trained model be generalised to unseen graph

e Probabilistic interpretation
- connection to Bayesian inference
- Gaussian processes on graphs

e Learning graphs form data
- dynamic graph construction
- graph generative models

e Fast implementation
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David | Shuman, Sunil K. Narang, Pascal Frossard, Antonlo Ortega, and Plerre Vandergheynst

The Emerging Field
of Signal Processing
on Graphs

Adaptation and Leaming ¢

OBTCCHVITDLOMI MAEFASINT

Extending high-dimensional data analysis
to networks and other irregular domains

n applications such as social, energy, transportation, sensor,
and neuronal networks, high-dimensional data naturally
reside on the vertices of weighted graphs. The emerging field
of signal processing on graphs merges algebraic and spectral
graph theoretic concepts with computational harmonic anal-
ysis to process such signals on graphs. In this tutorial overview,
we outline the main challenges of the area, discuss different ways
to define graph spectral domains, which are the analogs to the
classical frequency domain, and highlight the importance of
incorporating the irregular structures of graph data domains
when processing signals on graphs. We then review methods to
generalize fundamental cperations such as filtering, translation,
modulation, dilation, and downsampling to the graph setting
and survey the localized, multiscale transforms that have

Digite Object Kentier 1 LTESNSP 3502 2155193
Date ol publicetion: 5 Apeid 3602

been proposed to efficiently extract information from high-
dimensional data on graphs. We conclude with a brief discussion
of open issues and possible extensions.

INTRODUCTION

Graphs are generic data representation forms that are useful
for describing the geometric structures of data domains in
numerous applications, including social, energy, transporta-
tion, sensor, and neuronal networks. The weight associated
with each edge in the graph often represents the similarity
betwezn the two vertices it connects. The connectivities and
edge weights are either dictated by the physics of the problem
at hand or inferred from the data. For instance, the edge
weight may be inversely proportional to the physical distance
between nodes in the network. The data on these graphs can
be visualized as a finite collkection of samples, with one sample
at each vertex in the graph. Collectively, we refer to these
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any scientific fields study data with an underlying
structure that is non-Euclidean. Some examples
include social metworks in computational social sci-
ences, seasor networks in communications, fanc- o
tional petworks in beain imaging. regulatory petworks in
genetics, and meshed surfaces in computer graphics. In
‘many applications, such geometric data are large and com- [
plex (in the case of social networks, oa the scale of billions)
and are natural targets for machine-leaming techniques.
In pasticular, we would like to use deep neural networks, B
which have recently proven to be powerful tools foe a broad
range of problems from computer vision, natural-language
processing. and audio analysis. However, these tools have
been most successful on data with an underlying Euclidean or
grid-like structure and in cases where the invaniances of these
structures are built into networks used to model them.
Geometric deep learning is an umbrella term for emerging
techaiques attempting to generalize (structured) deep neural mod-
els to non-Euclidean domains, such as graphs and manifolds. The
purpose of this article is to overview different examples of geometric
doep-learning problems and present available solutions, key difficul-
ties, applications, and future research directions in this nascent field.

Overview of deep learning °

Deep learning refers to leaming complicated concepts by building them from

simpler ones in a hierarchical or multilayer manner. Artificial nevral networks are

popular realizations of such deep multilayer hierarchies. In the past few years, the growing

computational power of modem graphics processing unit (GPU)-based computers and the avail-

ability of large training data sets have allowed successfully training neural networks with many layers

and degrees of freedom (DoF) [1]. This has led to qualitative breakthroughs on a wide variety of tasks, from
speech recogaition [2], [3] and machine translation [4] to image analysis and computer visioa [S}-[11] (see [12]

Geometric Deep Learning

Going beyond Euclidean data
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A review and new perspectives

ization of large-scale structurcd data, cspecially those related

to complex domains, such as networks and graphs, arc onc
of the key questions in modemn machine leaming. Graph signal
processing (GSP), a vibrant branch of signal processing modcls
and algorithms that aims at handling data supported on graphs,
opens new paths of rescarch to address this challenge. In this ar-
ticke, we review a few important contributions madc by GSP con-
copts and tools, such as graph filtcrs and transforms, to the devel-
opment of novel machine learning algorithms. In particular, our
discussion focuses on the following three aspects: exploiting data
structure and relational priors, improving data and computation-

e " : "

lI-hc effective represcntation, processing, analysis, and visual-

model
we provide new perspectives on the future development of GSP
tochniques that may serve as a bridge between applicd mathe-
matics and signal processing on onc side and machine learning
and network scicnce on the other. Cross-fertilization across these
differcnt disciplincs may help unlock th hall
complex data analysis in the modern age.

Introduction
‘We live in a connected socicty. Data collected from large-scale
interactive systems, such as biological, social, and financial
Dotworks, booone largely available, In paralld, the past fow
decades have scen a significant amount of interest in the ma-
chinc lcarning community for network data processing and
analysis. Networks have an intrinsic structure that conveys
very specific propertics to data, eg, interdependencics be-
tween data catitics in the form of pairwise relationships. These
propertics arc traditionally capturcd by mathematical repre-
sentations such as graphs

In this context, new trends and challenges have been devel-
oping fast. Let us consider, for cxample, a network of protcin—
protein interactions and the expression level of individual genes
at every point in time. Some typical tasks in network biology
related to this type of data are 1) discovery of key genes (via
protein grouping) affected by the infection and 2) prediction
of how the host organism reacts (in terms of gene cxpression)
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