Learning Quadratic Games on Networks

Xiaowen Dong

Department of Engineering Science University of Oxford

(joint work with Yan Leng, Junfeng Wu, and Alex Pentland)

University of Bath, July 2020

- Consider a group of students making choices on educational effort
 - making effort is costly
 - I will benefit from my own effort
 - I will also benefit from my friends' effort

- Consider a group of students making choices on educational effort
 - making effort is costly
 - I will benefit from my own effort
 - I will also benefit from my friends' effort

tend to make effort if friends do

- Consider a group of students making choices on buying a book
 - buying a book is costly
 - if a friend of mine will buy, then I will not buy
 - but if none of my friends will buy, then I will buy

- Consider a group of students making choices on buying a book
 - buying a book is costly
 - if a friend of mine will buy, then I will not buy
 - but if none of my friends will buy, then I will buy

tend not to make effort if friends do

- Such strategic interactions can be modelled as games on networks
 - players, actions, payoffs, interaction network

- Such strategic interactions can be modelled as games on networks
 - players, actions, payoffs, interaction network
 - payoff of an individual depends on her action as well as her neighbours' actions

- Such strategic interactions can be modelled as games on networks
 - players, actions, payoffs, interaction network
 - payoff of an individual depends on her action as well as her neighbours' actions
 - strategic complements or strategic substitutes

- Such strategic interactions can be modelled as games on networks
 - players, actions, payoffs, interaction network
 - payoff of an individual depends on her action as well as her neighbours' actions
 - strategic complements or strategic substitutes

Economics

- existence of equilibrium or how action/payoff depends on network structure
- on a **given or predefined** network

- Economics
 - existence of equilibrium or how action/payoff depends on network structure
 - on a **given or predefined** network
- Computer science (graphical games)
 - algorithms for computing equilibrium
 - binary or finite discrete action space

- Economics
 - existence of equilibrium or how action/payoff depends on network structure
 - on a given or predefined network
- Computer science (graphical games)
 - algorithms for computing equilibrium
 - binary or finite discrete action space
- This work
 - learning network given continuous actions

Economics

- existence of equilibrium or how action/payoff depends on network structure
- on a **given or predefined** network
- Computer science (graphical games)
 - algorithms for computing equilibrium
 - binary or finite discrete action space

This work

- learning network given continuous actions

Many examples

- observe individual decisions (e.g., adoptions), but not social relationship
- observe R&D activities of firms, but not collaboration networks
- observe international policies of countries, but not political alliance

Outline

- Background
 - learning network structure from data
 - network games with linear-quadratic payoffs
- Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits
- Experimental results
- Discussion

Outline

- Background
 - learning network structure from data
 - network games with linear-quadratic payoffs
- Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits
- Experimental results
- Discussion

Learning network structure from data

- Different perspectives in the literature
 - statistical: graph captures data distribution (e.g., probabilistic graphical model)
 - physics: data correspond to physical process on graph (e.g., network cascade)
 - signal processing: graph enforces **signal property** (e.g., smoothness)

Learning network structure from data

- Different perspectives in the literature
 - statistical: graph captures data distribution (e.g., probabilistic graphical model)
 - physics: data correspond to physical process on graph (e.g., network cascade)
 - signal processing: graph enforces **signal property** (e.g., smoothness)
- No game-theoretic aspect of strategic interactions

• Consider a graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ with edge weights G_{ij}

- Consider a graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ with edge weights G_{ij}
- Payoff of player i: $u_i(a_i, \{a_j\}_{j \in \mathcal{N}(i)}, G_{ij})$

- Consider a graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ with edge weights G_{ij}
- Payoff of player i: $u_i(a_i, \{a_j\}_{j \in \mathcal{N}(i)}, G_{ij})$
- Games with linear-quadratic payoffs

$$u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{N}(i)} G_{ij} a_j$$

- Consider a graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ with edge weights G_{ij}
- Payoff of player i: $u_i(a_i, \{a_j\}_{j \in \mathcal{N}(i)}, G_{ij})$
- Games with linear-quadratic payoffs

individual action

$$u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{N}(i)} G_{ij} a_j$$

- Consider a graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ with edge weights G_{ij}
- Payoff of player i: $u_i(a_i, \{a_j\}_{j \in \mathcal{N}(i)}, G_{ij})$
- Games with linear-quadratic payoffs

- Consider a graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ with edge weights G_{ij}
- Payoff of player i: $u_i(a_i, \{a_j\}_{j \in \mathcal{N}(i)}, G_{ij})$
- Games with linear-quadratic payoffs

- Consider a graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ with edge weights G_{ij}
- Payoff of player i: $u_i(a_i, \{a_j\}_{j \in \mathcal{N}(i)}, G_{ij})$
- Games with linear-quadratic payoffs

remarks

- continuous actions
- for strategic complements ($\beta>0$) and substitutes ($\beta<0$)
- can be used to approximate complex non-linear payoffs
- widely adopted in literature [Jackson15, Bramoullé16]

remarks

- continuous actions
- for strategic complements ($\beta > 0$) and substitutes ($\beta < 0$)
- can be used to approximate complex non-linear payoffs
- widely adopted in literature [Jackson15, Bramoullé16]

examples

- education: action is educational effort, utility is achievement
- collaboration: action is joint R&D activities, utility is firm profit
- urban dynamics: action is mobility behaviour, utility is convenience/satisfaction

Pure-strategy Nash equilibrium (PSNE)

$$u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{V}} G_{ij} a_j$$

Pure-strategy Nash equilibrium (PSNE)

$$u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{V}} G_{ij} a_j \qquad \longrightarrow \qquad \frac{\partial u_i}{\partial a_i} = b_i - a_i + \beta (\mathbf{Ga})_i$$

$$\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b}$$

Pure-strategy Nash equilibrium (PSNE)

$$u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{i \in \mathcal{V}} G_{ij} a_j \qquad \longrightarrow \qquad \frac{\partial u_i}{\partial a_i} = b_i - a_i + \beta (\mathbf{Ga})_i$$

$$\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b}$$

assumption: spectral radius $\rho(\beta \mathbf{G})$ is smaller than 1

- guarantees matrix inversion
- ensures uniqueness and stability of equilibrium action [Ballester06]

Pure-strategy Nash equilibrium (PSNE)

$$u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{i \in \mathcal{V}} G_{ij} a_j \qquad \longrightarrow \qquad \frac{\partial u_i}{\partial a_i} = b_i - a_i + \beta (\mathbf{Ga})_i$$

$$\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b} = \sum_{p=0}^{+\infty} \beta^p \mathbf{G}^p \mathbf{b}$$

assumption: spectral radius $\rho(\beta \mathbf{G})$ is smaller than 1

- guarantees matrix inversion
- ensures uniqueness and stability of equilibrium action [Ballester06]

properties

- equilibrium related to Katz-Bonacich centrality
- payoff interdependency spreads indirectly through network

Pure-strategy Nash equilibrium (PSNE)

$$u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{V}} G_{ij} a_j \qquad \longrightarrow \qquad \frac{\partial u_i}{\partial a_i} = b_i - a_i + \beta (\mathbf{Ga})_i$$

$$\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b} \xrightarrow{\mathbf{G} = \chi \Lambda \chi^{T}} \chi (\mathbf{I} - \beta \Lambda)^{-1} \chi^{T} \mathbf{b}$$

assumption: spectral radius $\rho(\beta \mathbf{G})$ is smaller than 1

- guarantees matrix inversion
- ensures uniqueness and stability of equilibrium action [Ballester06]

properties

- equilibrium related to Katz-Bonacich centrality
- payoff interdependency spreads indirectly through network
- action is filtered version of marginal benefit on graph

Outline

- Background
 - learning network structure from data
 - network games with linear-quadratic payoffs
- Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits
- Experimental results
- Discussion

Nash equilibrium
$$\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b}$$
 $(\mathbf{I} - \beta \mathbf{G}) \mathbf{a} = \mathbf{b}$

$$(\mathbf{I} - \beta \mathbf{G}) \mathbf{a} = \mathbf{b}$$

$$\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b}$$
 $(\mathbf{I} - \beta \mathbf{G}) \mathbf{a} = \mathbf{b}$

$$(\mathbf{I} - \beta \mathbf{G}) \mathbf{a} = \mathbf{b}$$

$$\mathbf{B} = [\mathbf{b}^{(1)}, \mathbf{b}^{(2)}, \cdots, \mathbf{b}^{(k)}] \in \mathbb{R}^{N \times K}$$

marginal

$$\mathbf{A} = [\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \cdots, \mathbf{a}^{(K)}] \in \mathbb{R}^{N \times K}$$

action

Nash equilibrium
$$\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b}$$
 $(\mathbf{I} - \beta \mathbf{G}) \mathbf{a} = \mathbf{b}$ consider K games $\mathbf{B} = [\mathbf{b}^{(1)}, \mathbf{b}^{(2)}, \cdots, \mathbf{b}^{(k)}] \in \mathbb{R}^{N \times K}$ marginal $\mathbf{A} = [\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \cdots, \mathbf{a}^{(K)}] \in \mathbb{R}^{N \times K}$ action

joint learning

minimize
$$f(\mathbf{G}, \mathbf{B}) = ||(\mathbf{I} - \beta \mathbf{G})\mathbf{A} - \mathbf{B}||_F^2 + \theta_1 ||\mathbf{G}||_F^2 + \theta_2 ||\mathbf{B}||_F^2$$
, subject to $G_{ij} = G_{ji}, \ G_{ij} \geq 0, \ G_{ii} = 0 \text{ for } \forall i, j \in \mathcal{V},$
$$||\mathbf{G}||_1 = N,$$

Nash equilibrium
$$\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b}$$
 $(\mathbf{I} - \beta \mathbf{G}) \mathbf{a} = \mathbf{b}$ consider K games $\mathbf{B} = [\mathbf{b}^{(1)}, \mathbf{b}^{(2)}, \cdots, \mathbf{b}^{(k)}] \in \mathbb{R}^{N \times K}$ marginal $\mathbf{A} = [\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \cdots, \mathbf{a}^{(K)}] \in \mathbb{R}^{N \times K}$ action

joint learning

minimize
$$f(\mathbf{G}, \mathbf{B}) = ||(\mathbf{I} - \beta \mathbf{G})\mathbf{A} - \mathbf{B}||_F^2 + \theta_1 ||\mathbf{G}||_F^2 + \theta_2 ||\mathbf{B}||_F^2,$$
 subject to $G_{ij} = G_{ji}, \ G_{ij} \geq 0, \ G_{ii} = 0 \text{ for } \forall i, j \in \mathcal{V},$ $||\mathbf{G}||_1 = N,$

Nash equilibrium
$$\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b}$$
 $(\mathbf{I} - \beta \mathbf{G}) \mathbf{a} = \mathbf{b}$ consider K games $\mathbf{B} = [\mathbf{b}^{(1)}, \mathbf{b}^{(2)}, \cdots, \mathbf{b}^{(k)}] \in \mathbb{R}^{N \times K}$ marginal $\mathbf{A} = [\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \cdots, \mathbf{a}^{(K)}] \in \mathbb{R}^{N \times K}$ action

minimize
$$f(\mathbf{G}, \mathbf{B}) = \frac{||(\mathbf{I} - \beta \mathbf{G})\mathbf{A} - \mathbf{B}||_F^2}{||\mathbf{G}||_F} + \frac{\theta_1||\mathbf{G}||_F^2}{||\mathbf{G}||_1} + \theta_2||\mathbf{B}||_F^2,$$
 subject to $G_{ij} = G_{ji}, \ G_{ij} \geq 0, \ G_{ii} = 0 \ \text{ for } \forall i, j \in \mathcal{V},$ $||\mathbf{G}||_1 = N,$

Nash equilibrium
$$\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b}$$
 $(\mathbf{I} - \beta \mathbf{G}) \mathbf{a} = \mathbf{b}$ consider K games $\mathbf{B} = [\mathbf{b}^{(1)}, \mathbf{b}^{(2)}, \cdots, \mathbf{b}^{(k)}] \in \mathbb{R}^{N \times K}$ marginal $\mathbf{A} = [\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \cdots, \mathbf{a}^{(K)}] \in \mathbb{R}^{N \times K}$ action

minimize
$$f(\mathbf{G}, \mathbf{B}) = \frac{||(\mathbf{I} - \beta \mathbf{G})\mathbf{A} - \mathbf{B}||_F^2}{||\mathbf{G}||_F} + \frac{\theta_1 ||\mathbf{G}||_F^2}{||\mathbf{G}||_1} + \frac{\theta_2 ||\mathbf{B}||_F^2}{||\mathbf{G}||_1} + \frac{\theta_2 ||\mathbf{G}||_F^2}{||\mathbf{G}||_1} + \frac{\theta_2 ||\mathbf{G}||_F^2}{||\mathbf{G}||_F^2} + \frac{\theta_2 ||\mathbf{G}||_F^2}{||\mathbf{G}||_$$

minimize
$$f(\mathbf{G}, \mathbf{B}) = \frac{||(\mathbf{I} - \beta \mathbf{G})\mathbf{A} - \mathbf{B}||_F^2}{|\theta_1||\mathbf{G}||_F^2} + \frac{|\theta_2||\mathbf{B}||_F^2}{|\theta_2||\mathbf{B}||_F}$$
 subject to $G_{ij} = G_{ji}, G_{ij} \ge 0, G_{ii} = 0 \text{ for } \forall i, j \in \mathcal{V}, \\ ||\mathbf{G}||_1 = N,$

joint learning

minimize
$$f(\mathbf{G}, \mathbf{B}) = \frac{\|(\mathbf{I} - \beta \mathbf{G})\mathbf{A} - \mathbf{B}\|_F^2}{\|\mathbf{G}\|_F^2} + \frac{\theta_1 \|\mathbf{G}\|_F^2}{\|\mathbf{G}\|_F} + \frac{\theta_2 \|\mathbf{B}\|_F^2}{\|\mathbf{G}\|_F}$$
 subject to $G_{ij} = G_{ji}, G_{ij} \geq 0, G_{ii} = 0 \text{ for } \forall i, j \in \mathcal{V}, \|\mathbf{G}\|_1 = N,$

remarks

- quadratic programming jointly convex in **G** and **B**

joint learning

minimize
$$f(\mathbf{G}, \mathbf{B}) = \frac{||(\mathbf{I} - \beta \mathbf{G})\mathbf{A} - \mathbf{B}||_F^2}{\theta_1 ||\mathbf{G}||_F^2} + \frac{\theta_2 ||\mathbf{B}||_F^2}{\theta_2 ||\mathbf{B}||_F^2}$$
 subject to $G_{ij} = G_{ji}, G_{ij} \geq 0, G_{ii} = 0 \text{ for } \forall i, j \in \mathcal{V}, \\ ||\mathbf{G}||_1 = N,$

remarks

- quadratic programming jointly convex in **G** and **B**
- spectral radius $\rho(\beta \mathbf{G})$ impact learning performance
 - approaching 0: action independent from graph structure
 - approaching 1: action related to eigenvector centrality

joint learning

minimize
$$f(\mathbf{G}, \mathbf{B}) = \frac{\|(\mathbf{I} - \beta \mathbf{G})\mathbf{A} - \mathbf{B}\|_F^2}{\|\mathbf{G}\|_F} + \frac{\theta_1 \|\mathbf{G}\|_F^2}{\|\mathbf{G}\|_F} + \frac{\theta_2 \|\mathbf{B}\|_F^2}{\|\mathbf{G}\|_1}$$
 subject to $G_{ij} = G_{ji}, G_{ij} \geq 0, G_{ii} = 0 \text{ for } \forall i, j \in \mathcal{V}, \|\mathbf{G}\|_1 = N,$

remarks

- quadratic programming jointly convex in **G** and **B**
- spectral radius $\rho(\beta \mathbf{G})$ impact learning performance
 - approaching 0: action independent from graph structure
 - approaching 1: action related to eigenvector centrality
- other factors: number of games, noise level, network density

Algorithm 1 Learning Games with Independent Marginal Benefits

Input: Actions $\mathbf{A} \in \mathbb{R}^{N \times K}$ for K games, β , θ_1 , θ_2

Output: Network $\mathbf{G} \in \mathbb{R}^{N \times N}$, marginal benefits $\mathbf{B} \in$

 $\mathbb{R}^{N \times K}$ for K games

Solve for **G** and **B** in Eq. (5)

return: G, B

Phenomenon of homophily in social networks [McPherson01]

- Phenomenon of homophily in social networks [McPherson01]
- Given homophily marginal benefits are smooth functions on graph

- Phenomenon of homophily in social networks [McPherson01]
- Given homophily marginal benefits are smooth functions on graph

$$\mathbf{b}^T \mathbf{L} \mathbf{b} = \frac{1}{2} \sum_{i,j=1}^N G_{ij} (b_i - b_j)^2$$

measure of "smoothness" [Zhou04]

minimize
$$h(\mathbf{G}, \mathbf{B}) = \| (\mathbf{I} - \beta \mathbf{G}) \mathbf{A} - \mathbf{B} \|_F^2 + \theta_1 \| \mathbf{G} \|_F^2 + \theta_2 \operatorname{tr}(\mathbf{B}^T \mathbf{L} \mathbf{B}),$$
 subject to $G_{ij} = G_{ji}, \ G_{ij} \geq 0, \ G_{ii} = 0 \ \text{ for } \forall i, j \in \mathcal{V},$ $\| \mathbf{G} \|_1 = N,$
$$\mathbf{L} = \operatorname{diag}(\sum_{j \in \mathcal{V}} G_{ij}) - \mathbf{G}$$

joint learning

minimize
$$h(\mathbf{G}, \mathbf{B}) = \| (\mathbf{I} - \beta \mathbf{G}) \mathbf{A} - \mathbf{B} \|_F^2 + \theta_1 \| \mathbf{G} \|_F^2 + \theta_2 \operatorname{tr}(\mathbf{B}^T \mathbf{L} \mathbf{B}),$$
 subject to $G_{ij} = G_{ji}, \ G_{ij} \geq 0, \ G_{ii} = 0 \ \text{ for } \forall i, j \in \mathcal{V}, \| \mathbf{G} \|_1 = N,$

$$\mathbf{L} = \operatorname{diag}(\sum_{j \in \mathcal{V}} G_{ij}) - \mathbf{G}$$

remarks

- not jointly convex in G and B
- convex in subproblems of solving for one while fixing other

Algorithm 2 Learning Games with Homophilous Marginal Benefits

```
Input: Actions \mathbf{A} \in \mathbb{R}^{N \times K} for K games, \beta, \theta_1, \theta_2
Output: Network \mathbf{G} \in \mathbb{R}^{N \times N}, marginal benefits \mathbf{B} \in \mathbb{R}^{N \times K} for K games
Initialize: \mathbf{B}_0(:,k) \sim \mathcal{N}(\mathbf{0},\mathbf{I}) for k=1,\cdots,K,t=1, \Delta=1
if \Delta \geq 10^{-4} and t \leq \# iterations then
Solve for \mathbf{G}_t in Eq. (7) given \mathbf{B}_{t-1}
Compute \mathbf{L}_t using \mathbf{G}_t
\mathbf{B}_t = (\mathbf{I} + \theta_2 \mathbf{L}_t)^{-1} (\mathbf{I} - \beta \mathbf{G}_t) \mathbf{A}
\Delta = |h(\mathbf{G}_t, \mathbf{B}_t) - h(\mathbf{G}_{t-1}, \mathbf{B}_{t-1})| (for t > 1)
t = t + 1
end if
return: \mathbf{G} = \mathbf{G}_t, \mathbf{B} = \mathbf{B}_t.
```

Outline

- Background
 - learning network structure from data
 - network games with linear-quadratic payoffs
- Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits
- Experimental results
- Discussion

Experiments on synthetic data

- Random graphs with 20 nodes
 - Erdős-Rényi (ER): edges created independently with certain probability
 - Watts-Strogatz (WS): regular graph followed by random rewiring
 - Barabási-Albert (BA): graph generated using preferential attachment

Experiments on synthetic data

- Random graphs with 20 nodes
 - Erdős-Rényi (ER): edges created independently with certain probability
 - Watts-Strogatz (WS): regular graph followed by random rewiring
 - Barabási-Albert (BA): graph generated using preferential attachment
- Compute β so that $\rho(\beta \mathbf{G}) \in (0,1)$
- Initialise marginal benefits for 50 games
 - homophilous: $\mathbf{b} \sim \mathcal{N}(\mathbf{0}, \mathbf{L}^{\dagger} + \frac{1}{10}\mathbf{I})$
- Generate equilibrium actions: $\mathbf{a} = (\mathbf{I} \beta \mathbf{G})^{-1} \mathbf{b}$

Setting

- Evaluate on area under the curve (AUC)
- Baselines
 - sample correlation as edge weights
 - graph learned by regularised graphical Lasso [Lake10]

$$\begin{aligned} & \underset{\boldsymbol{\Theta}, \ \sigma^2}{\text{maximize}} & & \log \det \! \boldsymbol{\Theta} - \operatorname{tr}(\frac{1}{M} \mathbf{X} \mathbf{X}^T \boldsymbol{\Theta}) - \rho ||\boldsymbol{\Theta}||_1, \\ & \text{subject to} & & \boldsymbol{\Theta} = \mathbf{L} + \frac{1}{\sigma^2} \mathbf{I}, \ \mathbf{L} \in \mathcal{L}, \end{aligned}$$

Learning interaction network

independent marginal benefits

homophilous marginal benefits

Performance vs. # games & noise

• Homophilous marginal benefits with $\rho(\beta \mathbf{G}) = 0.6$

Performance vs. network structure

- Homophilous marginal benefits with $\rho(\beta \mathbf{G}) = 0.6$
- Parameters in random graph models
 - ER: each node pair connected with probability p
 - WS: k-regular graph with rewiring probability p
 - BA: m nodes added at each graph generation step

Performance vs. strength of homophily

- Homophilous marginal benefits with $\rho(\beta \mathbf{G}) = 0.6$
- Marginal benefits B as linear combinations of 1st-5th (strong homophily),
 6th-10th (medium), 11th-15th (weak) eigenvectors of graph Laplacian

Learning marginal benefits

• Compare groundtruth and learned marginal benefits using coefficients of determination (\mathbb{R}^2)

Table 1: Performance (in terms of \mathbb{R}^2) of learning marginal benefits.

	Algorithm 1		Algorithm 2	
	mean	std	mean	std
ER graph	0.959	0.005	0.982	0.002
WS graph	0.955	0.007	0.921	0.010
BA graph	0.937	0.008	0.909	0.010

Experiments on real world data

- Learning social network
 - players: 182 households in a village in rural India [Banerjee13]
 - actions in 31 games: number of facilities adopted by each household
 - strategic complements: conformity to social norms (decisions made by neighbours)
 - compare with groundtruth: self-reported friendship

Experiments on real world data

- Learning trade network
 - players: 235 countries
 - actions in 192 games: import/export of 96 products of countries in 2008
 - strategic substitutes: complementary demand/supply leads to nonsmooth signals on trade network
 - compare with groundtruth: trade network of countries in 2002

Outline

- Background
 - learning network structure from data
 - network games with linear-quadratic payoffs
- Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits
- Experimental results
- Discussion

Discussion

- Applications in practical scenarios
 - detect communities of players (for stratification)
 - compute centrality measures (for efficient targeting strategies)
 - design intervention mechanisms to achieve planning objective
 - maximise total utilities of players (via adjusting marginal benefits) [Galeotti17]
 - reduce inequality between players (via adjusting interaction network)

Discussion

- Applications in practical scenarios
 - detect communities of players (for stratification)
 - compute centrality measures (for efficient targeting strategies)
 - design intervention mechanisms to achieve planning objective
 - maximise total utilities of players (via adjusting marginal benefits) [Galeotti17]
 - reduce inequality between players (via adjusting interaction network)
- Open issues & future directions
 - determination of β (strength of strategic interaction)
 - probabilistic interpretation of learning framework
 - theoretical understanding, e.g., recovery guarantee
 - more general payoff functions
 - real-world intervention