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Motivation

o Consider a group of students making choices on educational effort

- making effort is costly
- | will benefit from my own effort

- | will also benefit from my friends’ effort
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Motivation

e Consider a group of students making choices on buying a book

- buying a book is costly
- if a friend of mine will buy, then | will not buy

- but if none of my friends will buy, then | will buy
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Motivation

e Consider a group of students making choices on buying a book

- buying a book is costly
- if a friend of mine will buy, then | will not buy

- but if none of my friends will buy, then | will buy
- tend not to make effort if friends do

@ buy a book

do not buy

. a book
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Motivation

e Such strategic interactions can be modelled as games on networks

- players, actions, payoffs, interaction network
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Motivation

e Such strategic interactions can be modelled as games on networks

players, actions, payoffs, interaction network

payoff of an individual depends on her action as well as her neighbours’ actions

strategic complements or strategic substitutes

more effort

less effort

buy a book

do not buy a
book
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Motivation

e Economics
- existence of equilibrium or how action/payoff depends on network structure

- on a given or predefined network
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Motivation

e Economics
- existence of equilibrium or how action/payoff depends on network structure

- on a given or predefined network

e Computer science (graphical games)
- algorithms for computing equilibrium

- binary or finite discrete action space

e This work

- learning network given continuous actions

e Many examples

- observe individual decisions (e.g., adoptions), but not social relationship

- observe R&D activities of firms, but not collaboration networks

- observe international policies of countries, but not political alliance
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Outline

e Background
- learning network structure from data

- network games with linear-quadratic payoffs

e |earning games with linear-quadratic payoffs
- independent marginal benefits

- homophilous marginal benefits
e Experimental results

e Discussion
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Learning network structure from data

e Different perspectives in the literature
- statistical: graph captures data distribution (e.g., probabilistic graphical model)
- physics: data correspond to physical process on graph (e.g., network cascade)

- signal processing: graph enforces signal property (e.g., smoothness)

Dong et al., “Learning graphs from data: A signal representation perspective,” IEEE Signal Processing Magazine, 20109.
Mateos et al., “Connecting the dots: Identifying network structure via graph signal processing,” IEEE Signal Processing Magazine, 2019.  7/29



Learning network structure from data

e Different perspectives in the literature
- statistical: graph captures data distribution (e.g., probabilistic graphical model)
- physics: data correspond to physical process on graph (e.g., network cascade)

- signal processing: graph enforces signal property (e.g., smoothness)

e No game-theoretic aspect of strategic interactions

Dong et al., “Learning graphs from data: A signal representation perspective,” IEEE Signal Processing Magazine, 20109.
Mateos et al., “Connecting the dots: Identifying network structure via graph signal processing,” IEEE Signal Processing Magazine, 2019.  7/29
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e Consider a graph G = {V,&} with edge weights G,
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e Consider a graph G = {V,&} with edge weights G,
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e Games with linear-quadratic payoffs
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Network games with linear-quadratic payoffs

e Consider a graph G = {V,&} with edge weights G,
o Payoff of player i: u; (@i, {a;};eny: Gij)

e Games with linear-quadratic payoffs

marginal benefit individual action network factor

individual effect network effect
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Network games with linear-quadratic payoffs

marginal benefit individual action network factor

remarks

individual effect network effect

continuous actions

for strategic complements ( 3 > 0) and substitutes ( 3 < 0)

can be used to approximate complex non-linear payoffs

widely adopted in literature [Jackson15,Bramoullél6]

Jackson and Zezou, “Games on networks,” Handbook of Game Theory with Economic Applications, 2015.
Bramoullé and Kranton, “Games played on networks,” The Oxford Handbook of the Economics of Networks, 2016. 9/29



Network games with linear-quadratic payoffs

marginal benefit individual action network factor

remarks

individual effect network effect

- continuous actions

for strategic complements ( 3 > 0) and substitutes ( 3 < 0)

can be used to approximate complex non-linear payoffs

widely adopted in literature [Jackson15,Bramoullé16]
examples

- education: action is educational effort, utility is achievement

- collaboration: action is joint R&D activities, utility is firm profit

- urban dynamics: action is mobility behaviour, utility is convenience/satisfaction

Jackson and Zezou, “Games on networks,” Handbook of Game Theory with Economic Applications, 2015.
Bramoullé and Kranton, “Games played on networks,” The Oxford Handbook of the Economics of Networks, 2016. 9/29
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Network games with linear-quadratic payoffs

e Pure-strategy Nash equilibrium (PSNE)
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- ensures uniqueness and stability of equilibrium action [Ballester06]

Ballester et al., “Who's who in networks. Wanted: The key player,” Econometrica, 2006. 10/29
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Network games with linear-quadratic payoffs

e Pure-strategy Nash equilibrium (PSNE)

1 ou;
u; = biai — 5&3 + 5&@ Z Gq;jaj - 80@ — bz — Q; + 5(Ga)z

JjeEV
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assumption: spectral radius p(8G) is smaller than 1

- guarantees matrix inversion

- ensures uniqueness and stability of equilibrium action [Ballester06]
properties

- equilibrium related to Katz-Bonacich centrality

- payoff interdependency spreads indirectly through network

- action is filtered version of marginal benefit on graph

Ballester et al., “Who's who in networks. Wanted: The key player,” Econometrica, 2006. 10/29



Outline

e Background
- learning network structure from data

- network games with linear-quadratic payoffs

e |earning games with linear-quadratic payoffs
- independent marginal benefits

- homophilous marginal benefits
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Learning with independent marginal benefits

Nash equilibrium a=I-3G)"'b P (I-G)a=b
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Learning with independent marginal benefits

Nash equilibrium a=I-3G)"'b P (I-G)a=b

consider K games B = [b(l), b2 ... ,b(k)] c RNVXKE marginal

A = [a(1)7 a(2)7 c .. 7a(K)] - RNXK action

joint learning

-
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e approaching 1: action related to eigenvector centrality

13/29



Learning with independent marginal benefits

joint learning

p
minimize f(G,B) @(I—ﬁG)A B||7 91!GH%+92||BII%J
.

subject tO(Gij = GJ Gij >0, Gy =0 for Vi,jeV,
|

Gl = v

remarks

- quadratic programming jointly convex in G and B

- spectral radius p(8G) impact learning performance
e approaching 0: action independent from graph structure
e approaching 1: action related to eigenvector centrality

- other factors: number of games, noise level, network density
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Learning with independent marginal benefits

Algorithm 1 Learning Games with Independent Marginal
Benefits

Input: Actions A € RV*X for K games, £3, 01, 0
Output: Network G € RV XY 'marginal benefits B €
RV*E for K games

Solve for G and B in Eq. (5)

return: G, B
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Learning with homophilous marginal benefits

e Phenomenon of homophily in social networks [McPherson01]

McPherson et al., “Birds of a feather: Homophily in social networks,” Annual Review of Sociology, 2001.
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Learning with homophilous marginal benefits

e Phenomenon of homophily in social networks [McPherson01]

e Given homophily marginal benefits are smooth functions on graph

b:V—>R

measure of “smoothness” [Zhou(04]

McPherson et al., “Birds of a feather: Homophily in social networks,” Annual Review of Sociology, 2001.
Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004.
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Learning with homophilous marginal benefits

joint learning

16/29



Learning with homophilous marginal benefits

joint learning

remarks

- not jointly convex in G and B

- convex in subproblems of solving for one while fixing other
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Learning with homophilous marginal benefits

Algorithm 2 Learning Games with Homophilous Marginal
Benefits

Input: Actions A € RVX® for K games, 3, 01, 05
Output: Network G € RNXN marginal benefits B €
RNV*E for K games
Initialize: Bo(:, k) ~ N (0, D) fork=1,--- K, t =1,
A =1
if A > 10~% and ¢t < # iterations then
Solve for G; in Eq. (7) given B;_1
Compute L; using G+
B; = (I+6,L;)"Y(I—-BGy)A
A = ‘]’L(Gt,Bt) — h(Gt—laBt—l)‘ (fOI' t > 1)
t=t+1
end if
return: G = G;, B = B;.
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Outline

e Background
- learning network structure from data

- network games with linear-quadratic payoffs

e |earning games with linear-quadratic payoffs
- independent marginal benefits

- homophilous marginal benefits

e Experimental results
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Experiments on synthetic data

e Random graphs with 20 nodes
- Erd&s-Rényi (ER): edges created independently with certain probability
- Watts-Strogatz (WS): regular graph followed by random rewiring
- Barabasi-Albert (BA): graph generated using preferential attachment
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Experiments on synthetic data

Random graphs with 20 nodes

- Erd&s-Rényi (ER): edges created independently with certain probability
- Watts-Strogatz (WS): regular graph followed by random rewiring

- Barabasi-Albert (BA): graph generated using preferential attachment

Compute 3 so that p(B8G) € (0,1)

Initialise marginal benefits for 50 games
1

- homophilous: bNN(O,L“rEI)

Generate equilibrium actions: a = (I— 8G) ' b
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Setting

e Evaluate on area under the curve (AUC)

e Baselines
- sample correlation as edge weights

- graph learned by regularised graphical Lasso [Lakel0]

1
imj log det® — tr(—XX1 @) — »||®
maximize log de r(7 ) — pl|O]l1,

1
subject to ©@ =L+ I, L€ L,
o

Lake and Tenenbaum, “Discovering structure by learning sparse graph,” Annual Cognitive Science Conference, 2010. 20/29



Learning interaction network
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Performance vs. # games & noise

e Homophilous marginal benefits with p(8G) = 0.6

Erdos-Renyi Watts-Strogatz Barabasi-Albert
1.0 1.0 1.0
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Performance vs. network structure

Homophilous marginal benefits with p(5G) = 0.6

Parameters in random graph models

- ER: each node pair connected with probability p

- WS: k-regular graph with rewiring probability p

- BA: m nodes added at each graph generation step

(a) Erdos-Renyi (b) Watts-Strogatz (c) Barabasi-Albert
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Performance vs. strength of homophily

e Homophilous marginal benefits with p(6G) = 0.6

e Marginal benefits B as linear combinations of 1st-5th (strong homophily),
6th-10th (medium), 11th-15th (weak) eigenvectors of graph Laplacian

* o

B weak
Em medium
m strong

1.0

0.8

0.6

AUC

0.4

0.2

-

Watts-Strogatz Barabasi-Albert
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Learning marginal benefits

e Compare groundtruth and learned marginal benefits using coefficients of

determination ( R*)

Table 1: Performance (in terms of R?) of learning marginal benefits.

Algorithm|1

Algorithm|2

mean

std

mean

std

ER graph

0.959

0.005

0.982

0.002

WS graph

0.955

0.007

0.921

0.010

BA graph

0.937

0.008

0.909

0.010
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Experiments on real world data

e Learning social network
- players: 182 households in a village in rural India [Banerjeel3]
- actions in 31 games: number of facilities adopted by each household
- strategic complements: conformity to social norms (decisions made by neighbours)

- compare with groundtruth: self-reported friendship

0.60
0.58

0.56

AUC

0.54

- -
0.50

Sample correlation  Regularized graphical lasso The proposed algorithm

Banerjee et al., “The diffusion of microfinance,” Science, 2013. 26/29



Experiments on real world data

e Learning trade network
- players: 235 countries
- actions in 192 games: import/export of 96 products of countries in 2008

- strategic substitutes: complementary demand/supply leads to nonsmooth signals on
trade network

- compare with groundtruth: trade network of countries in 2002

0.700
0.675
0.650
0.625
0.600

AUC

0.575
0.550

0.500

Sample correlation  Regularized graphical lasso The proposed algorithm
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Outline

e Background
- learning network structure from data

- network games with linear-quadratic payoffs

e |earning games with linear-quadratic payoffs
- independent marginal benefits

- homophilous marginal benefits
e Experimental results

e Discussion
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Discussion

e Applications in practical scenarios
- detect communities of players (for stratification)
- compute centrality measures (for efficient targeting strategies)

- design intervention mechanisms to achieve planning objective

+ maximise total utilities of players (via adjusting marginal benefits) [Galeottil7]

+ reduce inequality between players (via adjusting interaction network)

29/29

Galeotti et al., “Targeting interventions in networks,”, arXiv, 2017.



Discussion

e Applications in practical scenarios
- detect communities of players (for stratification)
- compute centrality measures (for efficient targeting strategies)

- design intervention mechanisms to achieve planning objective
+ maximise total utilities of players (via adjusting marginal benefits) [Galeottil7]

+ reduce inequality between players (via adjusting interaction network)

e Open issues & future directions
- determination of [ (strength of strategic interaction)
- probabilistic interpretation of learning framework
- theoretical understanding, e.g., recovery guarantee
- more general payoff functions

- real-world intervention

Galeotti et al., “Targeting interventions in networks,”, arXiv, 2017. 29/29



