Learning Quadratic Games on Networks

Xiaowen Dong
Department of Engineering Science
University of Oxford
(joint work with Yan Leng and Alex ‘Sandy’ Pentland)

Alan Turing Institute, London, January 2019
Motivation

Consider a group of students making choices on educational effort
- making effort is costly
- I will benefit from my own effort
- I will also benefit from my friends’ effort
Motivation

• Consider a group of students making choices on buying a book
 - buying a book is costly
 - if a friend of mine will buy, then I won’t buy
 - but if none of my friend will buy, then I will buy
Motivation

- Such strategic interactions can be modelled as games on networks
 - players, actions, payoffs, interaction network
Motivation

• Such strategic interactions can be modelled as games on networks
 - players, actions, payoffs, interaction network
 - payoff of an individual depends on her action as well as her neighbours’ actions
Motivation

• Such strategic interactions can be modelled as games on networks
 - players, actions, payoffs, interaction network
 - payoff of an individual depends on her action as well as her neighbours’ actions
 - strategic interactions: complement games or substitute games
Motivation

- Such strategic interactions can be modelled as games on networks
 - players, actions, payoffs, interaction network
 - payoff of an individual depends on her action as well as her neighbours’ actions
 - strategic interactions: complement games or substitute games
Motivation

- Economics
 - existence of equilibrium
 - how action/payoff depends on network
 - incentivisation scheme or intervention
 - on a given or predefined network
Motivation

- **Economics**
 - existence of equilibrium
 - how action/payoff depends on network
 - incentivisation scheme or intervention
 - on a *given or predefined* network

- **Computer science (graphical games)**
 - algorithms for computing equilibrium
 - *binary* or *finite discrete* action space
Motivation

• Economics
 - existence of equilibrium
 - how action/payoff depends on network
 - incentivisation scheme or intervention
 - on a given or predefined network

• Computer science (graphical games)
 - algorithms for computing equilibrium
 - binary or finite discrete action space

• This work
 - learning interaction network given continuous actions in a broad class of games
 - learning marginal benefits
Motivation

• Many examples
 - observe individual decisions (e.g., adoptions), but not social relationship
 - observe R&D activities of firms, but not collaboration networks
 - observe international policies of countries, but not political alliance
Outline

• Background
 - learning network structure from data
 - network games of strategic interactions

• Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits

• Experimental results

• Discussion
Outline

• Background
 - learning network structure from data
 - network games of strategic interactions

• Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits

• Experimental results

• Discussion
Learning network structure from data

- Given observations on a number of variables and some prior knowledge (distribution, model, etc)
Learning network structure from data

- Given observations on a number of variables and some prior knowledge (distribution, model, etc)

- Build/learn a measure of relationship between variables (correlation/covariance, graph topology, or similar)
Learning network structure from data

- Different perspectives in the literature
 - statistical: graph captures **data distribution** (e.g., probabilistic graphical model)

Learning network structure from data

- Different perspectives in the literature
 - Statistical: graph captures **data distribution** (e.g., probabilistic graphical model)

 Conditional independence

 \[(v_i, v_j) \notin \mathcal{E} \iff x_i \perp x_j \mid x \setminus \{x_i, x_j\}\]

Learning network structure from data

- Different perspectives in the literature
 - statistical: graph captures data distribution (e.g., probabilistic graphical model)

conditional independence

\[(v_i, v_j) \notin \mathcal{E} \iff x_i \perp x_j \mid \mathbf{x} \setminus \{x_i, x_j\}\]

probability parameterised by \(\Theta\)

\[
P(x|\Theta) = \frac{1}{Z(\Theta)} \exp\left(\sum_{v_i \in \mathcal{V}} \theta_i x_i^2 + \sum_{(v_i, v_j) \in \mathcal{E}} \theta_{i,j} x_i x_j\right)
\]

Learning network structure from data

- Different perspectives in the literature
 - statistical: graph captures data distribution (e.g., probabilistic graphical model)

\[
(v_i, v_j) \notin \mathcal{E} \iff x_i \perp x_j \mid \mathbf{x} \setminus \{x_i, x_j\}
\]

probability parameterised by \(\Theta \)

\[
P(\mathbf{x} | \Theta) = \frac{1}{Z(\Theta)} \exp \left(\sum_{v_i \in \mathcal{V}} \theta_{i,i} x_i^2 + \sum_{(v_i, v_j) \in \mathcal{E}} \theta_{i,j} x_i x_j \right)
\]

Gaussian Markov random field with precision \(\Theta \)

\[
P(\mathbf{x} | \Theta) = \frac{|\Theta|^{1/2}}{(2\pi)^{N/2}} \exp \left(-\frac{1}{2} \mathbf{x}^T \Theta \mathbf{x} \right)
\]

Learning network structure from data

- Different perspectives in the literature
 - statistical: graph captures data distribution (e.g., probabilistic graphical model)
 - physics: data correspond to physical process on graph (e.g., network cascade)

Learning network structure from data

- Different perspectives in the literature
 - statistical: graph captures **data distribution** (e.g., probabilistic graphical model)
 - physics: data correspond to **physical process** on graph (e.g., network cascade)

Learning network structure from data

• Different perspectives in the literature
 - statistical: graph captures data distribution (e.g., probabilistic graphical model)
 - physics: data correspond to physical process on graph (e.g., network cascade)

Learning network structure from data

- Different perspectives in the literature
 - statistical: graph captures **data distribution** (e.g., probabilistic graphical model)
 - physics: data correspond to **physical process** on graph (e.g., network cascade)
 - signal processing: graph enforces **signal property** (e.g., smoothness)

Learning network structure from data

- Different perspectives in the literature
 - statistical: graph captures **data distribution** (e.g., probabilistic graphical model)
 - physics: data correspond to **physical process** on graph (e.g., network cascade)
 - signal processing: graph enforces **signal property** (e.g., smoothness)

Learning network structure from data

• Different perspectives in the literature
 - statistical: graph captures data distribution (e.g., probabilistic graphical model)
 - physics: data correspond to physical process on graph (e.g., network cascade)
 - signal processing: graph enforces signal property (e.g., smoothness)

Learning network structure from data

- Different perspectives in the literature
 - statistical: graph captures *data distribution* (e.g., probabilistic graphical model)
 - physics: data correspond to *physical process* on graph (e.g., network cascade)
 - signal processing: graph enforces *signal property* (e.g., smoothness)

Learning network structure from data

- Different perspectives in the literature
 - statistical: graph captures data distribution (e.g., probabilistic graphical model)
 - physics: data correspond to physical process on graph (e.g., network cascade)
 - signal processing: graph enforces signal property (e.g., smoothness)

- No game-theoretic aspect of strategic interactions (and no modelling of individual marginal benefits)
Outline

• Background
 - learning network structure from data
 - network games of strategic interactions

• Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits

• Experimental results

• Discussion
Network games of strategic interactions

- Given a graph $G(V, E)$ with unitary edge weights G_{ij}
Network games of strategic interactions

- Given a graph $G(V, E)$ with unitary edge weights G_{ij}
- Games with linear-quadratic payoffs

\[
u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in V} G_{ij} a_j
\]
Network games of strategic interactions

- Given a graph $G(\mathcal{V}, \mathcal{E})$ with unitary edge weights G_{ij}
- Games with linear-quadratic payoffs

\[u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{V}} G_{ij} a_j \]
Network games of strategic interactions

• Given a graph $G(V, E)$ with unitary edge weights G_{ij}

• Games with linear-quadratic payoffs

\[u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in V} G_{ij} a_j \]
Network games of strategic interactions

- Given a graph $G(V, E)$ with unitary edge weights G_{ij}
- Games with linear-quadratic payoffs

\[
 u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in V} G_{ij} a_j
\]
Network games of strategic interactions

- Given a graph $G(\mathcal{V}, \mathcal{E})$ with unitary edge weights G_{ij}
- Games with linear-quadratic payoffs

$$u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{V}} G_{ij} a_j$$
Games with linear-quadratic payoffs

\[u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in V} G_{ij} a_j \]

Remarks
- continuous actions
- for strategic complements (\(\beta > 0\)) and substitutes (\(\beta < 0\))
- can be used to approximate complex non-linear payoffs
- widely adopted in literature [Jackson15,Bramoullé16]

Games with linear-quadratic payoffs

\[u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{V}} G_{ij} a_j \]

examples
- education: action is educational effort, utility is achievement
- collaboration: action is joint R&D activities, utility is firm profit
- urban dynamics: action is mobility behaviour, utility is social benefit

Games with linear-quadratic payoffs

- Pure-strategy Nash equilibrium (PSNE)

\[u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{V}} G_{ij} a_j \]
Games with linear-quadratic payoffs

- Pure-strategy Nash equilibrium (PSNE)

\[u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{N}} G_{ij} a_j \quad \Rightarrow \quad \frac{\partial u_i}{\partial a_i} = b_i - a_i + \beta (G a)_i \]

\[a = (I - \beta G)^{-1} b \]
Games with linear-quadratic payoffs

- Pure-strategy Nash equilibrium (PSNE)

\[u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{V}} G_{ij} a_j \]

\[\frac{\partial u_i}{\partial a_i} = b_i - a_i + \beta (G a)_i \]

\[\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b} \]

Assumption: spectral radius of \(\beta \mathbf{G} \) is smaller than 1

- guarantees matrix inversion
- ensures uniqueness and stability of equilibrium action [Ballester06]
Games with linear-quadratic payoffs

- **Pure-strategy Nash equilibrium (PSNE)**

\[u_i = b_i a_i - \frac{1}{2} a_i^2 + \beta a_i \sum_{j \in \mathcal{V}} G_{ij} a_j \]

\[\frac{\partial u_i}{\partial a_i} = b_i - a_i + \beta (Ga)_i \]

\[a = (I - \beta G)^{-1} b = \sum_{p=0}^{+\infty} \beta^p G^p b \]

- **Assumption:** spectral radius of \(\beta G \) is smaller than 1
 - guarantees matrix inversion
 - ensures uniqueness and stability of equilibrium action [Ballester06]
 - equilibrium related to Katz-Bonacich centrality
 - payoff dependency spreads indirectly through network

Outline

• Background
 - learning network structure from data
 - network games of strategic interactions

• Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits

• Experimental results

• Discussion
Learning with independent marginal benefits

Nash equilibrium

\[a = (I - \beta G)^{-1} b \]

\[(I - \beta G) a = b \]
Learning with independent marginal benefits

Nash equilibrium

\[a = (I - \beta G)^{-1} b \quad \Rightarrow \quad (I - \beta G) a = b \]

consider \(K \) games

\[B = [b^{(1)}, b^{(2)}, \ldots, b^{(k)}] \in \mathbb{R}^{N \times K} \quad \text{marginal} \]

\[A = [a^{(1)}, a^{(2)}, \ldots, a^{(K)}] \in \mathbb{R}^{N \times K} \quad \text{action} \]
Learning with independent marginal benefits

Nash equilibrium
\[a = (I - \beta G)^{-1} b \quad \Rightarrow \quad (I - \beta G) a = b \]

Consider K games
\[B = [b^{(1)}, b^{(2)}, \ldots, b^{(K)}] \in \mathbb{R}^{N \times K} \quad \text{marginal} \]
\[A = [a^{(1)}, a^{(2)}, \ldots, a^{(K)}] \in \mathbb{R}^{N \times K} \quad \text{action} \]

Joint learning

Minimize
\[f(G, B) = \| (I - \beta G) A - B \|^2_F + \theta_1 \| G \|^2_F + \theta_2 \| B \|^2_F, \]
subject to
\[G_{ij} = G_{ji}, \; G_{ii} \geq 0, \; G_{ii} = 0 \quad \text{for} \; \forall i, j \in \mathcal{V}, \]
\[\| G \|_1 = N, \]
Learning with independent marginal benefits

Nash equilibrium

\[a = (I - \beta G)^{-1} b \quad \Rightarrow \quad (I - \beta G) a = b \]

consider K games

\[B = [b^{(1)}, b^{(2)}, \ldots, b^{(K)}] \in \mathbb{R}^{N \times K} \quad \text{marginal} \]

\[A = [a^{(1)}, a^{(2)}, \ldots, a^{(K)}] \in \mathbb{R}^{N \times K} \quad \text{action} \]

joint learning

Minimize

\[f(G, B) = \|(I - \beta G)A - B\|_F^2 + \theta_1\|G\|_F^2 + \theta_2\|B\|_F^2, \]

subject to

\[G_{ij} = G_{ji}, \quad G_{ij} \geq 0, \quad G_{ii} = 0 \quad \text{for} \quad \forall i, j \in \mathcal{V}, \]

\[\|G\|_1 = N, \]
Learning with independent marginal benefits

Nash equilibrium

\[\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b} \quad \Rightarrow \quad (\mathbf{I} - \beta \mathbf{G}) \mathbf{a} = \mathbf{b} \]

consider \(K \) games

\[\mathbf{B} = [\mathbf{b}^{(1)}, \mathbf{b}^{(2)}, \ldots, \mathbf{b}^{(K)}] \in \mathbb{R}^{N \times K} \quad \text{marginal} \]

\[\mathbf{A} = [\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \ldots, \mathbf{a}^{(K)}] \in \mathbb{R}^{N \times K} \quad \text{action} \]

joint learning

\[
\text{minimize}_{G, B} \quad f(G, B) = \left\| (I - \beta G)A - B \right\|^2_F + \theta_1 \left\| G \right\|^2_F + \theta_2 \left\| B \right\|^2_F, \\
\text{subject to} \quad G_{ij} = G_{ji}, \quad G_{ij} \geq 0, \quad G_{ii} = 0 \quad \text{for } \forall i, j \in \mathcal{V}, \\
\left\| G \right\|_1 = N,
\]

\[G_{ij} \geq 0, \quad G_{ii} = 0 \quad \text{for } \forall i, j \in \mathcal{V}, \]

\[\left\| G \right\|_1 = N, \]
Learning with independent marginal benefits

Nash equilibrium

\[\mathbf{a} = (\mathbf{I} - \beta \mathbf{G})^{-1} \mathbf{b} \quad \Rightarrow \quad (\mathbf{I} - \beta \mathbf{G}) \mathbf{a} = \mathbf{b} \]

consider \(K \) games

\[\mathbf{B} = [\mathbf{b}^{(1)}, \mathbf{b}^{(2)}, \ldots, \mathbf{b}^{(K)}] \in \mathbb{R}^{N \times K} \]

\[\mathbf{A} = [\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \ldots, \mathbf{a}^{(K)}] \in \mathbb{R}^{N \times K} \]

joint learning

\[
\begin{align*}
\text{minimize}_{\mathbf{G}, \mathbf{B}} & \quad f(\mathbf{G}, \mathbf{B}) = \| (\mathbf{I} - \beta \mathbf{G}) \mathbf{A} - \mathbf{B} \|^2_F + \theta_1 \| \mathbf{G} \|^2_F + \theta_2 \| \mathbf{B} \|^2_F, \\
\text{subject to} & \quad G_{ij} = G_{ji}, \ G_{ij} \geq 0, \ G_{ii} = 0 \ \text{for} \ \forall i, j \in \mathcal{V}, \\
& \quad \| \mathbf{G} \|_1 = N,
\end{align*}
\]
Learning with independent marginal benefits

Nash equilibrium

\[a = (I - \beta G)^{-1} b \quad \Rightarrow \quad (I - \beta G) a = b \]

consider K games

\[B = [b^{(1)}, b^{(2)}, \ldots, b^{(k)}] \in \mathbb{R}^{N \times K} \quad \text{marginal} \]

\[A = [a^{(1)}, a^{(2)}, \ldots, a^{(K)}] \in \mathbb{R}^{N \times K} \quad \text{action} \]

joint learning

\[
\begin{align*}
\text{minimize}_{G,B} \quad & f(G, B) = \| (I - \beta G) A - B \|_F^2 + \theta_1 \| G \|_F^2 + \theta_2 \| B \|_F^2, \\
\text{subject to} \quad & G_{ij} = G_{ji}, \ G_{ij} \geq 0, \ G_{ii} = 0 \ \text{for} \ \forall i, j \in \mathcal{V}, \\
& \| G \|_1 = N,
\end{align*}
\]

\[19/39 \]
Learning with independent marginal benefits

Nash equilibrium

$$a = (I - \beta G)^{-1} b \quad \Rightarrow \quad (I - \beta G) a = b$$

consider K games

$$B = [b^{(1)}, b^{(2)}, \ldots, b^{(k)}] \in \mathbb{R}^{N \times K} \quad \text{marginal}$$

$$A = [a^{(1)}, a^{(2)}, \ldots, a^{(K)}] \in \mathbb{R}^{N \times K} \quad \text{action}$$

joint learning

$$\text{minimize}_{G, B} \quad f(G, B) = ||(I - \beta G)A - B||_F^2 + \theta_1 ||G||_F^2 + \theta_2 ||B||_F^2,$$

subject to

$$G_{ij} = G_{ji}, \quad G_{ii} \geq 0, \quad G_{ii} = 0 \quad \text{for} \quad \forall i, j \in \mathcal{V},$$

$$||G||_1 = N,$$

quadratic programme jointly convex in G and B
Learning with independent marginal benefits

Algorithm 1 Learning games with independent marginal benefits

1: **Input** Observed actions $A \in \mathbb{R}^{N \times K}$ for K games, $\beta, \theta_1, \theta_2$
2: **Output** Network $G \in \mathbb{R}^{N \times N}$, marginal benefits $B \in \mathbb{R}^{N \times K}$ for K games
3: Solve for G and B in Eq. (6)
4: **return** G, B
Outline

• Background
 - learning network structure from data
 - network games of strategic interactions

• Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits

• Experimental results

• Discussion
Learning with homophilous marginal benefits

- Phenomenon of homophily in social networks [McPherson01]

Learning with homophilous marginal benefits

- Phenomenon of homophily in social networks [McPherson01]
- Given homophily, marginal benefits are smooth functions on the graph

Learning with homophilous marginal benefits

- Phenomenon of homophily in social networks [McPherson01]
- Given homophily, marginal benefits are **smooth** functions on the graph

\[
b : \mathcal{V} \rightarrow \mathbb{R}^N
\]

\[
b^T L b = \frac{1}{2} \sum_{i,j=1}^{N} G_{ij} (b_i - b_j)^2
\]

Learning with homophilous marginal benefits

joint learning

\[
\text{minimize}_{G,B} \quad h(G, B) = \|(I - \beta G)A - B\|_F^2 + \theta_1\|G\|_F^2 + \theta_2\text{tr}(B^T LB),
\]

subject to \quad G_{ij} = G_{ji}, \; G_{ij} \geq 0, \; G_{ii} = 0 \; \forall i, j \in \mathcal{V},

\quad \|G\|_1 = N,

\quad L = \text{diag}(\sum_{j \in \mathcal{V}} G_{ij}) - G
Learning with homophilous marginal benefits

\[h(G, B) = \|(I - \beta G)A - B\|_F^2 + \theta_1\|G\|_F^2 + \theta_2\text{tr}(B^T LB), \]

subject to
\[G_{ij} = G_{ji}, \ G_{ij} \geq 0, \ G_{ii} = 0 \text{ for } \forall i, j \in \mathcal{V}, \]
\[\|G\|_1 = N, \]
\[L = \text{diag}(\sum_{j \in \mathcal{V}} G_{ij}) - G \]
Learning with homophilous marginal benefits

Joint learning

Minimize \(h(G, B) = \| (I - \beta G) A - B \|_F^2 + \theta_1 \| G \|_F^2 + \theta_2 \text{tr}(B^T L B), \)

subject to

\[
\begin{align*}
G_{ij} &= G_{ji}, \
G_{ii} &\geq 0, \quad G_{ii} = 0 \text{ for } \forall i, j \in \mathcal{V}, \
\| G \|_1 &= N, \
L &= \text{diag}(\sum_{j \in \mathcal{V}} G_{ij}) - G
\end{align*}
\]
Learning with homophilous marginal benefits

Joint learning

\[
\begin{align*}
\text{minimize} \quad & h(G, B) = \| (I - \beta G) \Lambda - B \|_F^2 + \theta_1 \| G \|_F^2 + \theta_2 \text{tr}(B^T L B), \\
\text{subject to} \quad & G_{ij} = G_{ji}, \; G_{ij} \geq 0, \; G_{ii} = 0 \; \text{for} \; \forall i, j \in \mathcal{V}, \\
& \| G \|_1 = N, \\
& L = \text{diag} \left(\sum_{j \in \mathcal{V}} G_{ij} \right) - G
\end{align*}
\]

Not jointly convex in G and B, but convex in subproblems of solving for one while fixing the other.
Learning with homophilous marginal benefits

Algorithm 2 Learning games with homophilous marginal benefits

1: **Input** Observed actions $\mathbf{A} \in \mathbb{R}^{N \times K}$ for K games, $\beta, \theta_1, \theta_2$
2: **Output** Network $\mathbf{G} \in \mathbb{R}^{N \times N}$, marginal benefits $\mathbf{B} \in \mathbb{R}^{N \times K}$ for K games
3: **Initialize** $\mathbf{B}(:, k) \sim \mathcal{N}(0, \mathbf{L}^\dagger)$, $t = 1$, $\Delta = 1$
4: **while** $\Delta \geq 10^{-4}$ and $t \leq \#$ iterations **do**
5: Solve for \mathbf{G}_t in Eq. (9) given \mathbf{B}_{t-1}
6: Compute \mathbf{L}_t using \mathbf{G}_t
7: $\mathbf{B}_t = (\mathbf{I} + \theta_2 \mathbf{L}_t)^{-1} (\mathbf{I} - \beta \mathbf{G}_t) \mathbf{A}$
8: $\Delta = |h(\mathbf{G}_t, \mathbf{B}_t) - h(\mathbf{G}_{t-1}, \mathbf{B}_{t-1})|$ (for $t > 1$)
9: $t = t + 1$
10: **return** $\mathbf{G} = \mathbf{G}_{\text{iter}}, \mathbf{B} = \mathbf{B}_{\text{iter}}$.
Outline

• Background
 - learning network structure from data
 - network games of strategic interactions

• Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits

• Experimental results

• Discussion
Experiments on synthetic data

- Random graphs with 20 nodes
 - Erdős-Rényi (ER): edges created independently with certain probability
 - Watts-Strogatz (WS): regular graph followed by random rewiring
 - Barabási-Albert (BA): graph generated using preferential attachment

- Compute β so that $\rho(\beta G) \in (0, 1)$

- Initialise marginal benefits for 50 games
 - independent: $b \sim \mathcal{N}(0, I + \frac{1}{10}I)$
 - homophilous: $b \sim \mathcal{N}(0, L^\dagger + \frac{1}{10}I)$

- Generate equilibrium actions $a = (I - \beta G)^{-1} b$
Setting

- Evaluate on area under the curve (AUC)

- Baselines
 - sample correlation as edge weights
 - graph learned by regularised graphical Lasso [Lake10]

\[
\begin{align*}
\text{maximize} \quad & \log \det \Theta - \text{tr} \left(\frac{1}{M} XX^T \Theta \right) - \rho \| \Theta \|_1, \\
\text{subject to} \quad & \Theta = L + \frac{1}{\sigma^2} I, \quad L \in \mathcal{L},
\end{align*}
\]

Learning interaction network

independent marginal benefits
Learning interaction network

independent marginal benefits

homophilous marginal benefits
Performance vs. regularisation parameters

- Homophilous marginal benefits

\[
\begin{align*}
\text{minimize} \quad & h(G, B) = \| (I - \beta G) A - B \|_F^2 + \theta_1 \| G \|_F^2 + \theta_2 \text{tr}(B^T L B)
\end{align*}
\]
Performance vs. number of games

- Homophilous marginal benefits with $\rho(\beta G) = 0.6$
Performance vs. noise intensity

- Homophilous marginal benefits with $\rho(\beta G) = 0.6$
Performance vs. network structure

- Homophilous marginal benefits with $\rho(\beta G) = 0.6$

- Parameters in random graph models
 - ER: each node pair connected with probability p
 - WS: k-regular graph with rewiring probability p
 - BA: m nodes added at each graph generation step
Performance vs. strength of homophily

- Homophilous marginal benefits with $\rho(\beta G) = 0.6$
- Marginal benefits B as linear combinations of 1st-5th (strong homophily), 6th-10th (medium), 11th-15th (weak) eigenvectors of graph Laplacian
Learning marginal benefits

- Compare groundtruth and learned marginal benefits using coefficients of determination (R^2)

Table 1: Performance (in terms of R^2) of learning marginal benefits.

<table>
<thead>
<tr>
<th></th>
<th>Algorithm 1</th>
<th>Algorithm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>std</td>
</tr>
<tr>
<td>ER graph</td>
<td>0.959</td>
<td>0.005</td>
</tr>
<tr>
<td>WS graph</td>
<td>0.955</td>
<td>0.007</td>
</tr>
<tr>
<td>BA graph</td>
<td>0.937</td>
<td>0.008</td>
</tr>
</tbody>
</table>
Experiments on real world data

• Learning social network
 - 182 households in a village in rural India [Banerjee13]
 - actions in 31 games: number of facilities adopted by each household
 - strategic complements: conformity to social norms (decisions made by neighbours)
 - compare with ground truth self-reported friendship

Experiments on real world data

• Learning social network
 - 182 households in a village in rural India [Banerjee13]
 - actions in 31 games: number of facilities adopted by each household
 - strategic complements: conformity to social norms (decisions made by neighbours)
 - compare with groundtruth self-reported friendship

• Learning trade relationship
 - 235 countries
 - actions in 192 games: import/export of 96 products of countries in 2008
 - strategic substitutes: more demand leads to less utility trading with high-demand countries (same applies to supply)
 - compare with groundtruth: total trades between each pair of countries in 2002

Experiments on real world data

- Performance in learning interaction networks

Table 2: Performance (in terms of AUC) of learning the structure of the social network and the trade network.

<table>
<thead>
<tr>
<th></th>
<th>Social network</th>
<th>Trade network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample correlation</td>
<td>0.525</td>
<td>0.523</td>
</tr>
<tr>
<td>Regularized graphical Lasso</td>
<td>0.564</td>
<td>0.570</td>
</tr>
<tr>
<td>Algorithm 1</td>
<td>0.575</td>
<td>0.622</td>
</tr>
<tr>
<td>Algorithm 2</td>
<td>0.576</td>
<td>0.677</td>
</tr>
</tbody>
</table>
Experiments on real world data

- Learning political network
 - 26 cantons in Switzerland
 - actions in 37 games: percentage of supportive votes in referendums in 2008-2012
 - strategic complements: political alliance
Experiments on real world data

- Learning political network
 - 26 cantons in Switzerland
 - actions in 37 games: percentage of supportive votes in referendums in 2008-2012
 - strategic complements: political alliance
 - apply the spectral clustering algorithm [Ng02] to the inferred network

Outline

• Background
 - learning network structure from data
 - network games of strategic interactions

• Learning games with linear-quadratic payoffs
 - independent marginal benefits
 - homophilous marginal benefits

• Experimental results

• Discussion
Discussion

- Applications in practical scenarios
 - detect communities of players (for stratification)
 - compute centrality measures (for efficient targeting strategies)
 - design intervention mechanisms to achieve planning objective
 - maximise total utilities of players (via adjusting marginal benefits) [Galeotti17]
 - reduce inequality between players (via adjusting interaction network)
Discussion

• Applications in practical scenarios
 - detect communities of players (for stratification)
 - compute centrality measures (for efficient targeting strategies)
 - design intervention mechanisms to achieve planning objective
 - maximise total utilities of players (via adjusting marginal benefits) [Galeotti17]
 - reduce inequality between players (via adjusting interaction network)

• Open issues & future directions
 - determination of β (strength of strategic interaction)
 - probabilistic interpretation of learning framework
 - more general payoff functions
 - partial/incomplete observations
 - dynamic interaction networks