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Learning Laplacian Matrix in Smooth Graph
Signal Representations

Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst

Abstract—The construction of a meaningful graph plays a cru-
cial role in the success of many graph-based representations and
algorithms for handling structured data, especially in the emerging
field of graph signal processing. However, a meaningful graph is not
always readily available from the data, nor easy to define depend-
ing on the application domain. In particular, it is often desirable
in graph signal processing applications that a graph is chosen such
that the data admit certain regularity or smoothness on the graph.
In this paper, we address the problem of learning graph Lapla-
cians, which is equivalent to learning graph topologies, such that
the input data form graph signals with smooth variations on the
resulting topology. To this end, we adopt a factor analysis model
for the graph signals and impose a Gaussian probabilistic prior
on the latent variables that control these signals. We show that
the Gaussian prior leads to an efficient representation that favors
the smoothness property of the graph signals. We then propose an
algorithm for learning graphs that enforces such property and is
based on minimizing the variations of the signals on the learned
graph. Experiments on both synthetic and real world data demon-
strate that the proposed graph learning framework can efficiently
infer meaningful graph topologies from signal observations under
the smoothness prior.

Index Terms—Laplacian matrix learning, graph signal process-
ing, representation theory, factor analysis, Gaussian prior.

I. INTRODUCTION

MODERN data processing tasks often manipulate struc-
tured data, where signal values are defined on the vertex

set of a weighted and undirected graph. We refer to such data
as graph signals, where the vertices of the graph represent the
entities and the edge weights reflect the pairwise relationships
between these entities. The signal values associated with the ver-
tices carry the information of interest in observations or phys-
ical measurements. Numerous examples can be found in real
world applications, such as temperatures within a geographi-
cal area, transportation capacities at hubs in a transportation
network, or human behaviors in a social network. Such data
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representations have led to the emerging field of graph signal
processing [1], [2], which studies the representation, approx-
imation and processing of such structured signals. Currently,
most of the research effort in this field has been devoted to the
analysis and processing of the signals, which are defined on a
graph that is a priori known or naturally chosen from the ap-
plication domain, e.g., geographical or social friendship graphs.
However, these natural choices of graphs may not necessarily
describe well the intrinsic relationships between the entities in
the data. Furthermore, a natural graph might not be easy to de-
fine at all in some applications. When a good graph is not readily
available, it is desirable to learn the graph topology from the ob-
served data such that it captures well the intrinsic relationships
between the entities, and permits effective data processing and
analysis. This is exactly the main objective of the present paper.

Generally speaking, learning graphs from data samples is
an ill-posed problem, and there might be many solutions to
associate a structure to the data. We therefore need to define
meaningful models for computing the topology such that the
relationships between the signals and the graph topology satisfy
these pre-defined models. This allows us to define meaningful
criteria to describe or estimate structures between the data sam-
ples. In this work, we consider the large class of signals that
are smooth on a graph structure. A graph signal is smooth if
the signal values associated with the two end vertices of edges
with large weights in the graph tend to be similar. Such prop-
erty is often observed in real world graph signals. For instance,
consider a geographical graph where the vertices represent dif-
ferent locations and the edges capture their physical proximities.
If we define the signal values as temperature records observed
in these locations, then the values at close-by vertices tend to be
similar in regions without significant terrain variations. Another
example would be a social network graph where the vertices and
edges respectively represent people and the friendships between
them, and signals defined as personal interests. It is often the
case that friends, represented by connected vertices, share com-
mon interests. In both examples, data have smooth graph signal
representations as long as the graphs are appropriately chosen.
Smooth signal models on graphs have been used in many prob-
lems involving regularization on graphs [3], with applications to
signal denoising [1], classification [4] or multi-view clustering
[5] to name a few.

To further illustrate the interplay between the graph and the
data, we consider a signal given by a set of unordered scalar val-
ues, which can potentially be defined on three different graphs
G1 , G2 and G3 , leading to three graph signals shown in Fig. 1.
Without any assumption on the properties of the graph signal,
the three candidate graphs are all valid choices. However, if we
assume that the signal is smooth on the underlying graph, then

1053-587X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html


DONG et al.: LEARNING LAPLACIAN MATRIX IN SMOOTH GRAPH SIGNAL REPRESENTATIONS 6161

Fig. 1. A given signal can potentially live on different graphs but only one
leads to a smooth graph signal (figure inspired by [1]). The red bars pointing
upwards and the blue bars pointing downwards represent positive and negative
signal values, respectively. The length of the bars reflects the magnitude of the
values. In this illustration, while all the graphs are valid a priori, only choosing
graph G1 would favor the smoothness property of the resulting graph signal.

G1 is obviously a more reasonable choice than G2 and G3 . Our
objective is exactly to learn a graph similar to G1 when the signal
is expected to be smooth on an “unknown” graph topology. For-
mally speaking, we consider in this paper the following problem:
Given a set of potentially noisy data X = {xi}p

i=1 (xi ∈ Rn ),
we would like to infer an optimal weighted and undirected graph
G of n vertices, namely, its edges and the associated weights,
such that the elements of X form smooth signals on G.

In this paper, we build on our previous work in [6] and pro-
pose to define the relationships between signals and graphs by
revisiting the representation learning theory [7] studied in the
traditional signal processing setting. Specifically, we consider
a factor analysis model used in the theory of representation
learning, where we assume that the observed signals are con-
trolled by a set of unobserved latent variables with some given
probabilistic prior. We generalize this model to graph signals,
where we assume that the observed graph signals can be repre-
sented in terms of a set of latent variables. The difference from
the traditional analysis model is that the transformation from
the latent variables to the observed signals involves informa-
tion about the topology of the graph. As a result, we can define
joint properties (or a joint model) between the signals and the
graph, such that the signal representations are consistent with
given statistical priors on the latent variables. Specifically, by
imposing a Gaussian prior on the latent variables in our gener-
alized factor analysis model, we obtain a Principal Component
Analysis (PCA)-like representation for the graph signals, which
turns out to be a smooth signal representation on graphs. The
relationship between the Gaussian latent variables and the sig-
nal observations is based on the graph Laplacian matrix, which
uniquely characterizes the graph topology and has been widely
connected in the graph signal processing literature with the
notion of smoothness on the graph. Hence, learning a graph
from data becomes equivalent to learning its graph Laplacian
matrix, which is central to many key concepts in graph signal
processing.

Building on the above model, we design a new algorithm for
learning a valid graph Laplacian operator from data samples,
such that the graph signal representation is smooth and consis-
tent with the Gaussian prior on the latent variables. Specifically,
given potentially noisy signal observations, our algorithm iter-
ates between the learning of a smoothed version of the original
signal measurements and the learning of a graph topology such
that the variations of the smooth signals on the learned graph
are minimized upon convergence. We test our graph learning

algorithm on several synthetic and real world experiments,
where we show that it is able to efficiently infer the topology
of the groundtruth graphs. It further achieves competitive per-
formance with a state-of-the-art structural learning algorithm,
which is closely related to the idea of sparse inverse covariance
estimation for Gaussian graphical models [8]. More importantly,
our results demonstrate the meaningfulness and efficiency of
a new learning framework from the graph signal processing
perspective.

Our novel approach is one of the first rigorous frameworks in
graph signal processing that connects the learning of the graph
topology to the representation model of the graph signals and
their properties. By extending the classical and generic factor
analysis model to graph settings, our framework provides new
insights into the understanding of the interactions between sig-
nals and graphs. We believe that our new framework can benefit
numerous emerging real world applications, such as the analysis
of transportation, biomedical, and social networks, where it is
critical to infer hidden relationships between data entities.

II. RELATED WORK

Graph signal processing, as an emerging research field, has
been attracting an increasing amount of interest from the sig-
nal processing community. Most of the research effort so far
has been devoted to the efficient representation and processing
of signals defined on a given graph. Representative works in-
clude studies on the generalizations of the Fourier transform [9],
[10], the wavelet transform [11]–[16], dictionary learning meth-
ods [17], [18], and time-frequency analysis [19], [20] on graphs,
with applications to image processing [21], brain network classi-
fication [22], mobility inference [23], and community detection
[24] to name a few.

In most of these works, the irregular domain of the graph
is captured through the graph Laplacian operator, whose im-
portance can be summarized as follows. First, from a graph
signal processing perspective, a Laplacian matrix represents a
valid graph topology G (i.e., with non-negative edge weights
and without self-loops as usually considered in the literature),
and supports the definition of graph signals. Furthermore, the
Laplacian matrix enables the generalization of the notion of fre-
quency and Fourier transform for graph signals [13], which
is the building block of many techniques that have been
recently developed in the field of graph signal processing.
Therefore, the Laplacian matrix is directly related to the pro-
cessing of graph signals. Second, the graph Laplacian is an
operator central to the definition of various kernels on graphs
via its spectral decomposition. More specifically, Smola and
Kondor. has shown in [3] that graph Laplacian can be used
to define various kernels related to regularization, diffusion,
and random walk processes associated with graphs. As a re-
sult, the Laplacian matrix permits to process real world graph
signals that represent complex behaviors associated with ker-
nels on graphs. Third, the graph Laplacian, under some con-
ditions, converges to the intrinsic Laplace-Beltrami operator
on a Riemannian manifold [25]–[27], therefore it may well
capture the underlying manifold structure of the observed
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signals hence benefit the processing tasks. Finally, from an appli-
cation point of view, Zhang and Florencio has shown that, when
a signal follows a Gaussian Markov Random Field (GMRF)
model with the precision matrix (inverse covariance matrix) de-
fined as the graph Laplacian, the eigenvectors of the Laplacian
optimally decorrelate the signal and can thus be used for effi-
cient compression [28]. These results show that the knowledge
of a valid Laplacian matrix is indeed beneficial to graph-based
signal and image processing in real world applications.

While many algorithms are built on the graph Laplacian, they
mainly assume that the later is either given a priori, or chosen
naturally from the application domain. Relatively less research
effort has been devoted to the construction or learning of the
graph topologies. A regression framework is proposed in [29]
to learn a graph Laplacian matrix based on a fitness metric be-
tween the signals and the graph that essentially evaluates the
smoothness of the signals on the graph. A similar fitness metric
has also been used in [30] to learn a valid graph topology (the ad-
jacency matrix). The main difference between these two works
and the method proposed in this paper is that, instead of using a
fitness metric, our work relates the graph learning process and
the properties of the graph signals in a statistical manner that
helps in understanding the data properties. Moreover, the factor
analysis model adopted in our new framework implies that the
graph signals are generated by a simple linear statistical model,
which can be revealed through the learning process.

Two other graph learning works have been described in [31]
and [32], where the authors have proposed to use, respectively,
correlations between wavelet coefficients of the time series of
brain signals, and Principal Component Analysis applied to cor-
relation matrices, to estimate functional connectivities of dis-
tinct brain regions. Although these can be considered as meth-
ods that learn an activity graph between the brain regions, they
are essentially similar to traditional approaches that are based on
pairwise correlation analysis rather than considering the global
behavior of the signals on the graph.

The problem of constructing a meaningful graph has also
been studied implicitly in [33]–[35] in the context of multiple
kernel learning. The first two works aim at finding an optimal
convex combination of Laplacians of some initial graphs that
are constructed a priori using some known features. One main
difference with our approach is that, in these two papers the ba-
sic graphs are constructed using distance metrics and additional
features, and a label function is learned by enforcing its smooth-
ness over all the basic graphs through a convex combination. On
the other hand, in our work, we do not assume any prior knowl-
edge or additional information to construct such basic graphs
and the optimal graph is learned by only using a set of signal ob-
servations. The authors in [35] learn an optimal transformation
of the spectrum of a predefined graph Laplacian while fixing its
eigenvector space (such a graph is again computed using addi-
tional features). In comparison, our work aims at learning both
the spectrum and eigenspace (hence the Laplacian matrix) from
the mere signal measurements.

In the meantime, there is a large amount of work from
the machine learning community that aims at solving similar
learning problems. In particular, one topic in the research of

learning graphical models is to estimate from the observed data
an inverse covariance matrix (precision matrix) for Gaussian
graphical models [36]–[42], especially in the case when the
number of observations is smaller than the sample dimension
and the sample covariance becomes singular. Another problem
consists in inferring the graph structure for discrete Markov
Random Fields [43]. It is known that in case of a Gaussian
graphical model, there is an exact correspondence between the
location of the non-zero entries in the precision matrix and the
existence of partial correlations between the random variables
[44]. In this case, a maximum-likelihood estimator turns out
to be the solution to a log-determinant program. The estimated
precision matrix is therefore considered to carry information
about the partial correlations between the random variables.

We would however like to emphasize the difference between
this type of approaches and our framework by making the fol-
lowing points. First, it is important to notice that in our frame-
work we aim at learning a valid graph Laplacian, which is not
the case in the above mentioned works. Indeed, in those cases
the learned precision matrix is a full-rank matrix that usually
(i) has both positive and negative off-diagonal entries reflecting
both positive and negative correlations, and (ii) does not have
rows summed up to zero. Non-positive off-diagonal entries and
zero row-sum are however necessary constraints to define a
graph Laplacian. As a result, the learning of the precision ma-
trix in those methods is not directly linked to the interpretation
of global properties of the input graph signals but rather reflects
the partial correlations between the random variables that con-
trol the observations. Second, it is not straightforward to project
the learned precision matrix in those approaches onto the con-
vex set of the constraints that are needed in order to transform
it into a valid Laplacian matrix. Therefore, we rather propose in
this work to learn a Laplacian matrix directly through the opti-
mization problem. Finally, the work in [8] learns a valid graph
topology (the adjacency matrix) with an optimization problem
that is very similar to the classical problem of sparse inverse co-
variance estimation, but with a regularized full-rank Laplacian
matrix. In the specific case of an infinite a priori feature vari-
ance in the problem formulation, this approach is similar to ours
but with an explicit sparsity-promoting term for the adjacency
matrix.

To summarize, an essential difference between our method
and the above-mentioned machine learning approaches is that,
most of these methods do not learn a valid graph Laplacian
matrix; they mainly focus on the pairwise correlation between
random variables (including the work in [8]), but do not explore
the link between the signal model (i.e., global smoothness) and
the graph topology. This is exactly the central focus of this
paper, whose objective is to learn a representation that permits
effective analysis of the graph signals.

III. GRAPH SIGNAL REPRESENTATION VIA FACTOR ANALYSIS

A. Smooth Graph Signals

We cast the problem of learning graph topology as a problem
of learning the so-called graph Laplacian matrix as it uniquely
characterizes the graph. Consider a weighted and undirected
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graph G = {V,E, ω} of n vertices, where V and E represent the
vertex and edge sets, respectively, and ω gives a positive weight
for each edge in E. A graph signal can then be represented by a
function f : V → Rn that assigns a scalar value to each vertex.
The unnormalized (or combinatorial) graph Laplacian matrix L,
which is an n by n matrix, is defined as:

L = D − W, (1)

where W is the possibly weighted adjacency matrix of the graph
and D is the degree matrix that contains the degrees of the
vertices along the diagonal. Since L is a real and symmetric
matrix, it has a complete set of orthonormal eigenvectors and
associated eigenvalues. In particular, it can be written as:

L = χΛχT , (2)

where χ is the eigenvector matrix that contains the eigenvectors
as columns, and Λ is the diagonal eigenvalue matrix where
the associated eigenvalues are sorted in increasing order. The
smallest eigenvalue is 0 with a multiplicity equal to the number
of connected components of the graph G [45]. Therefore, if G
has c connected components, then the rank of Λ is n − c. The
Laplacian matrix L enables, via its spectral decomposition in
Eq. (2), the generalization of the notion of frequency and Fourier
transform for graph signals [13]. This leads to the extension of
classical signal processing tools on graphs (see [1] for a detailed
survey of these tools).

Recall that we consider in this paper the class of smooth sig-
nals on graphs. Equipped with the Laplacian matrix, the smooth-
ness of a graph signal f on G can be measured in terms of a
quadratic form of the graph Laplacian [4]:

fT Lf =
1
2

∑

i∼j

wij

(
f(i) − f(j)

)2
, (3)

where wij represents the weight on the edge connecting two
adjacent vertices i and j, and f(i) and f(j) are the signal values
associated with these two vertices. Intuitively, given that the
weights are non-negative, Eq. (3) shows that a graph signal f is
considered to be smooth if strongly connected vertices (with a
large weight on the edge between them) have similar values. In
particular, the smaller the quadratic form in Eq. (3), the smoother
the signal on the graph. Smooth graph signal models have been
widely used in various learning problems such as regularization
and semi-supervised learning on graphs [3], [4].

B. Representation via Factor Analysis Model

We now propose a new representation model for smooth graph
signals based on an extension of the traditional factor analysis
model. The factor analysis model [46], [47] is a generic linear
statistical model that tries to explain observations of a given di-
mension with a potentially smaller number of unobserved latent
variables. Specifically, we consider the following representation
model for the input graph signal:

x = χh + ux + ε, (4)

where x ∈ Rn represents the observed graph signal, h ∈ Rn

represents the latent variable that controls the graph signal x

through the eigenvector matrix χ, and ux ∈ Rn is the mean of x.
As discussed in [48], we adopt an isotropic noise model, namely,
we assume that ε follows a multivariate Gaussian distribution
with mean zero and covariance σ2

ε In . The probability density
function of ε is thus given by:

ε ∼ N (0, σ2
ε In ). (5)

The model in Eq. (4) can be considered as a generalization of
the classical factor analysis model to graph signals, where the
key is the choice of the representation matrix as the eigenvector
matrix χ of the graph Laplacian L. This relates the graph sig-
nals to the latent variable. The motivation of this definition is
twofolds. First, we seek a representation matrix that reflects the
topology of the graph, such that the construction of the graph
can be directly linked to the representation and properties of the
graph signals. The eigenvector matrix of the graph Laplacian is
a good candidate, since it provides a spectral embedding of the
graph vertices that can subsequently be used for many graph-
based analysis tasks such as graph partitioning [49]. Second,
it can be interpreted as the graph Fourier basis for represent-
ing graph signals [13], which makes it a natural choice as the
representation matrix in Eq. (4).

As in the classical factor analysis model, we impose a
Gaussian prior on the latent variable h in Eq. (4). Specifically, we
assume that the latent variable h follows a degenerate zero-mean
multivariate Gaussian distribution with the precision matrix de-
fined as the eigenvalue matrix Λ of the graph Laplacian L, i.e.,

h ∼ N (0,Λ†), (6)

where Λ† is the Moore-Penrose pseudoinverse of Λ. Together
with the definition of χ as the representation matrix and its
Fourier interpretation, the above assumption on h implies that
the energy of the signal tends to lie mainly in the low frequency
components1, hence it promotes the smoothness of the graph
signal. Based on Eqs. (4)–(6), the conditional probability of x
given h, and the probability of x, are respectively given as:

x|h ∼ N (χh + ux, σ2
ε In ), (7)

x ∼ N (ux, L† + σ2
ε In ), (8)

where we have used in Eq. (8) the fact that the pseudoinverse
of L, L†, admits the following eigendecomposition:

L† = χΛ†χT . (9)

It can be seen from Eq. (8) that, in a noise-free scenario where
σε = 0, x also follows a degenerate multivariate Gaussian dis-
tribution. Moreover, x can be seen as a GMRF with respect to
the graph G, where the precision matrix is chosen to be the
graph Laplacian L. Notice that the GMRF is a very generic
model such that the precision matrix can be defined with much
freedom, as long as its non-zero entries encode the partial cor-
relations between the random variables, and as long as their
locations correspond exactly to the edges in the graph [44]. In
particular, the graph Laplacian L is commonly adopted as the

1We note that the effect of the first (constant) eigenvector of the graph Lapla-
cian is ignored as the corresponding entry in the diagonal of Λ† is zero.



6164 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, 2016

precision matrix of the GMRFs that model images with Gaus-
sian probabilistic priors2 [28]. By defining the representation
matrix in the factor analysis model as the eigenvector matrix χ
and assuming that the latent variable follows a degenerate Gaus-
sian distribution with the precision matrix Λ, we can therefore
recover a GMRF model with a precision matrix equal to L in a
noise-free scenario.

In the presence of noise, we see from Eq. (8) that, under a
Gaussian prior on the latent variable h that follows Eq. (6), the
representation matrix χ is the eigenvector matrix of the covari-
ance of x. Indeed, the covariance matrix L† + σ2

ε In admits the
following eigendecomposition:

L† + σ2
ε In = χ(Λ† + σ2

ε In )χT . (10)

This is analogous to the classical factor analysis model where the
representation matrix spans the same subspace as the k leading
principal components of the covariance of x under a Gaussian
prior on h. It has been pointed out in [7] that signal representation
with the classical factor analysis model provides a probabilistic
interpretation of the highly successful representation learned by
the PCA, which was originally presented in [48], [50]. Because
of the analogy mentioned above, the representation in Eq. (4) can
thus be considered as a PCA-like representation for the graph
signal x. More importantly, we show in the next section that this
promotes the smoothness properties for the signal on the graph,
based on which we propose our novel learning framework.

IV. GRAPH LAPLACIAN LEARNING ALGORITHM

A. Learning Framework

Given the observation x and the multivariate Gaussian prior
distribution of h in Eq. (6), we are now interested in a MAP es-
timate of h. Specifically, by applying Bayes’ rule and assuming
without loss of generality that ux = 0, the MAP estimate of the
latent variables h can be written as follows [51]:

hMAP(x) := arg max
h

p(h|x)

= arg max
h

p(x|h)p(h)

= arg min
h

(−log pE (x − χh) − log pH (h)) , (11)

where pE (ε) = pE (x − χh) and pH (h) represent the probabil-
ity density function (p.d.f.) of the noise and the latent variable,
respectively, and p(h|x) is the conditional p.d.f. of h given a
realization of x. Now, from the Gaussian probability distribu-
tions shown in Eq. (5) and Eq. (6), the above MAP estimate of
Eq. (11) can be expressed as:

hMAP(x) := arg min
h

(−log pE (x − χh) − log pH (h))

= arg min
h

(
−log e−(x−χh)T (x−χh) − α log e−hT Λh

)

= arg min
h

||x − χh||22 + α hT Λh, (12)

2Notice that this is not the case in most of the state-of-the-art approaches for
inverse covariance estimation, where the inverse covariance or precision matrix
needs to be a nonsingular and full-rank matrix that cannot be interpreted as a
graph Laplacian.

where α is some constant parameter proportional to the variance
of the noise σ2

ε in Eq. (5). In a noise-free scenario where x = χh,
Eq. (12) corresponds to minimizing the following quantity:

hT Λh = (χT x)T ΛχT x = xT χΛχT x = xT Lx. (13)

The Laplacian quadratic term in Eq. (13) is the same as the one
in Eq. (3). Therefore, it confirms that in a factor analysis model
in Eq. (4), a Gaussian prior in Eq. (6) imposed on the latent
variable h leads to smoothness properties for the graph signal
x. Similar observations can be made in a noisy scenario, where
the main component of the signal x, namely, χh, is smooth on
the graph.

We are now ready to introduce the proposed learning frame-
work. Notice that in Eq. (12) both the representation matrix χ
and the precision matrix Λ of the Gaussian prior distribution im-
posed on h come from the graph Laplacian L. They respectively
represent the eigenvector and eigenvalue matrices of L. When
the graph is unknown, we can therefore have the following joint
optimization problem of χ, Λ and h in order to infer the graph
Laplacian:

min
χ,Λ ,h

||x − χh||22 + α hT Λh. (14)

The objective in Eq. (14) can be interpreted as the probability
of the latent variable h conditioned on the observations x and
the graph Laplacian L, which we consider as another variable.
Using a change of variable y = χh, we thus have:

min
L,y

||x − y||22 + α yT Ly. (15)

According to the factor analysis model in Eq. (4), y can be
considered as a “noiseless” version of the zero-mean observation
x. Recall that the Laplacian quadratic form yT Ly in Eq. (15) is
usually considered as a measure of smoothness of the signal y
on the graph. Solving the problem of Eq. (15) is thus equivalent
to finding jointly the graph Laplacian L and y, such that y is
close to the observation x, and at the same time y is smooth
on the learned graph. As a result, it enforces the smoothness
property of the observed signals on the learned graph.

B. Learning Algorithm

We propose to solve the problem in Eq. (15) with the follow-
ing objective function given in a matrix form:

min
L∈Rn ×n ,Y ∈Rn ×p

||X − Y ||2F + α tr(Y T LY ) + β||L||2F ,

s.t. tr(L) = n,

Lij = Lji ≤ 0, i �= j,

L · 1 = 0, (16)

where X ∈ Rn×p contains the p input data samples {xi}p
i=1 as

columns, α and β are two positive regularization parameters,
and 1 and 0 denote the constant one and zero vectors. In addi-
tion, tr(·) and || · ||F denote the trace and Frobenius norm of
a matrix, respectively. The first constraint (the trace constraint)
in Eq. (16) acts as a normalization factor and permits to avoid
trivial solutions, and the second and third constraints guarantee
that the learned L is a valid Laplacian matrix that is positive
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semidefinite. Furthermore, the trace constraint essentially fixes
the L1-norm of L, while the Frobenius norm is added as a
penalty term in the objective function to control the distribution
of the off-diagonal entries in L, namely, the edge weights of the
learned graph. When Y is fixed, the optimization problem bears
similarity to the linear combination of L1 and L2 penalties in an
elastic net regularization [52] in the sense that the sparsity term
is imposed by the trace constraint.

The optimization problem of Eq. (16) is not jointly convex
in L and Y . Therefore, we adopt an alternating minimization
scheme where, at each step, we fix one variable and solve for
the other variable. The solution therefore corresponds to a local
minimum rather than a global minimum. Specifically, we first
initialize Y as the signal observations X . Then, at the first step,
for a given Y , we solve the following optimization problem with
respect to L:

min
L

α tr(Y T LY ) + β||L||2F ,

s.t. tr(L) = n,

Lij = Lji ≤ 0, i �= j,

L · 1 = 0. (17)

At the second step, L is fixed and we solve the following opti-
mization problem with respect to Y :

min
Y

||X − Y ||2F + α tr(Y T LY ). (18)

Both problems of Eq. (17) and Eq. (18) can be cast as con-
vex optimization problems with unique minimizers. First, the
problem of Eq. (17) can be written as a quadratic program (QP).
In more details, notice that the matrix L ∈ Rn×n in the prob-
lem of Eq. (17) is symmetric, which means that we only need
to solve for the lower triangular part of L, that is, the n(n+1)

2
entries on and below the main diagonal. Therefore, instead of
the square matrix form, we solve for the half-vectorization of
L that is obtained by vectorizing the lower triangular part of
L. We denote the half-vectorization and vectorization of L as
vech(L) ∈ R

n (n + 1 )
2 and vec(L) ∈ Rn2

, respectively, and the
former can be converted into the latter using the duplication
matrix Mdup [53]:

Mdup vech(L) = vec(L). (19)

Now, by using Eq. (19) together with the fact that:

tr(Y T LY ) = vec(Y Y T )T vec(L), (20)

and

||L||2F = vec(L)T vec(L), (21)

we can rewrite the problem of Eq. (17) as:

arg min
vech(L)

α vec(Y Y T )T Mdup vech(L)

+β vech(L)T MT
dup Mdup vech(L),

s.t. A vech(L) = 0,

B vech(L) ≤ 0, (22)

Algorithm 1: Graph Learning for Smooth Signal Represen-
tation (GL-SigRep).

1: Input: Input signal X , number of iterations iter, α, β
2: Output: Output signal Y , graph Laplacian L
3: Initialization: Y = X
4: for t = 1, 2, ..., iter do:
5: Step to update Graph Laplacian L:
6: Solve the optimization problem of Eq. (17) to

update L.
7: Step to update Y :
8: Solve the optimization problem of Eq. (18) to

update Y .
9: end for

10: L = Liter , Y = Y iter .

where A and B are the matrices that handle the equality and
inequality constraints in Eq. (17). The problem of Eq. (22) is a
quadratic program with respect to the variable vech(L) subject
to linear constraints, and can be solved efficiently via interior
point methods [54]. As we can see, the computational com-
plexity scales quadratically with the number of vertices in the
graph. With graphs of very large number of vertices, we can in-
stead use operator splitting methods (e.g., alternating direction
method of multipliers (ADMM) [55]) to find a solution. Finally,
once we solve the problem of Eq. (22), we convert vech(L) into
the square matrix form in order to solve the problem of Eq. (18).
Second, the problem of Eq. (18) has the following closed form
solution:

Y = (In + αL)−1X. (23)

In practice, since the matrix In + αL is Hermitian and positive-
definite, we can use the Cholesky factorization to compute Y
efficiently in Eq. (23) [54]. We then alternate between these
two steps of Eq. (17) and Eq. (18) to get the final solution to
the problem of Eq. (16), and we generally observe convergence
within a few iterations. The complete algorithm is summarized
in Algorithm 1.

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed
graph learning algorithm. We first describe the general experi-
mental setting, and then we present experimental results on both
synthetic and real world data.

A. Experimental Settings

We test the performance of our framework by comparing the
graphs learned from sets of synthetic or real world observations
to the groundtruth graphs. We provide both visual and quanti-
tative comparisons, where we compare the existence of edges
in the learned graph to the ones of the groundtruth graph. We
use four evaluation criteria commonly used in information re-
trieval, namely, Precision, Recall, F-measure and Normalized
Mutual Information (NMI) [56], to test the performance of our
algorithm. For computing the NMI, we first compute a 2-cluster
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partition of all the vertex pairs using the learned graph, based on
whether or not there exists an edge between the two vertices. We
then compare this partition with the 2-class partition obtained
in the same way using the groundtruth graph.

In our experiments, we solve the optimization problem of
Eq. (17) using the convex optimization package CVX [57], [58].
Our algorithm GL-SigRep stops when the maximum number
of iterations is reached or the absolute change in the objective
is smaller than 10−4 . In most of the cases, we observed that the
algorithm converges within a few iterations. The experiments are
carried out on different sets of parameters, namely, for different
values of α and β in Eq. (16). Finally, we prune insignificant
edges that have a weight smaller than 10−4 in the learned graph.

We compare the proposed graph learning framework to a
state-of-the-art machine learning approach for estimating graph
structure, which is closely related to the idea of sparse inverse
covariance estimation for GMRF. Specifically, Lake and Tenen-
baum propose in [8] to solve the following optimization prob-
lem:

min
Lpre�0,W,σ 2

tr

(
Lpre

1
p
XXT

)
− log|Lpre| +

λ

p
||W ||1 ,

s.t. Lpre = diag

⎛

⎝
∑

j

wij

⎞

⎠ − W + I/σ2 ,

wii = 0, i = 1, . . . , n,

wij ≥ 0, i = 1, . . . , n; j = 1, . . . , n,

σ2 > 0, (24)

where W is the adjacency matrix of the target graph with edge
weight wij between vertices i and j, Lpre is a precision matrix
for the multivariate Gaussian distribution that generates the ob-
servations X , λ is a regularization parameter, and | · | and || · ||1
denote the determinant and the L1-norm, respectively. It can be
seen that the objective function in Eq. (24) is very similar to
the L1 regularized log-determinant program proposed in [38],
[39]; however, by adding the constraints in Eq. (24), Lake et al.
essentially defines the precision matrix as a regularized graph
Laplacian with positive diagonal loading, where the parame-
ter σ2 is interpreted as the a priori feature variance [59]. As a
consequence, by solving the problem of Eq. (24), they are able
to obtain a valid Laplacian matrix, which is not the case for
the methods in [38], [39]. Therefore, we choose this method
instead of the ones in [38], [39] for a more fair comparison. In
our experiments we solve the problem of Eq. (24) using CVX,
similarly to what is indicated in [8]. We denote this algorithm
as GL-LogDet. We test GL-LogDet based on different choices
of the parameter λ in Eq. (24). After obtaining the Laplacian
matrix, we prune insignificant connections that have a weight
smaller than 10−4 , similarly to the post-processing done with
GL-SigRep.

B. Results on Synthetic Data

We first carry out experiments on three different synthetic
graphs of 20 vertices, namely, a graph whose edges are de-
termined based on Euclidean distances between vertices, and

two graphs that follow the Erdős-Rényi model [60] and the
Barabási-Albert model [61], respectively. For the first graph,
we generate the coordinates of the vertices uniformly at ran-
dom in the unit square, and compute the edge weights with a
Gaussian radial basis function (RBF), i.e., exp

(
−d(i, j)2/2σ2

)

where d(i, j) is the distance between vertices and σ = 0.5 is a
kernel width parameter. We then remove all the edges whose
weights are smaller than 0.75. Next, we use the Erdős-Rényi
(ER) model with edge probability 0.2 to generate a random
graph, that is, each possible edge is included in the graph with
probability 0.2 independently of other edges. Finally, we use
the Barabási-Albert (BA) model to generate a scale-free ran-
dom graph. Specifically, the BA graph in our experiments is
generated by adding one new vertex to the graph at each time,
connecting to one existing vertex in the graph. The probability
of the new vertex to be linked to a given existing vertex in the
graph is proportional to the ratio of the degree of that existing
vertex to the sum of degrees of all the existing vertices. The
ER and BA graphs are important random graph models studied
in network science. Specifically, the former has power-law (or
scale-free) degree distributions similarly to many networks ob-
served in real world, while the latter does not. The ER and BA
graphs in our experiments have unitary edge weights.

Given a groundtruth synthetic graph, we compute the graph
Laplacian L and normalize the trace according to Eq. (16).
Then, for each graph, we generate 100 signals X = {xi}100

i=1
that follow the distribution shown in Eq. (8) with ux = 0 and
σε = 0.5. We then apply GL-SigRep and GL-LogDet to learn
the graph Laplacian matrices, given only the signals X . Finally,
we also compute as a baseline the sample correlation matrix S
where Sij represents the Pearson product-moment correlation
coefficient between signal observations at vertices i and j.

We first provide visual comparisons in Fig. 2, where we
show from the left to the right columns the Laplacian matri-
ces of the groundtruth graph, the graph Laplacians learned by
GL-SigRep, the graph Laplacians learned by GL-LogDet, the
sample correlation matrices, and the thresholded sample corre-
lation matrices, for one random instance of each of the three
graph models3. In each row, the values in the Laplacian and
correlation matrices are scaled to be within the same range. First,
we see that the sample correlation matrix simply computes pair-
wise correlations and therefore may lead to undesirable noisy
correlation values as shown in Fig. 2(d), (i), and (n). The thresh-
olded sample correlation matrices show that the positions of the
large positive entries in the sample correlation matrices gener-
ally correspond to the positions of the edges in the groundtruth
graph; however, the intensities of these “edges” are less consis-
tent with the groundtruth than those in the Laplacian matrices
learned by our method, as we see later. One possible reason for
this is that the sample correlation matrix computes pairwise cor-
relations between (possibly noisy) observations; in comparison,
with a global smoothness constraint in our model, we rather

3These results are obtained based on the parameters, namely, α and β in GL-
SigRep, λ in GL-LogDet, and threshold for the thresholded sample correlation
matrix, that lead to the best F-measure scores (see quantitative results in the
next paragraph). More discussion about the choices of these parameters are
presented later.
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Fig. 2. The learned graph Laplacian matrices as well as sample correlation matrices (original and thresholded). The columns from the left to the right are the
groundtruth Laplacians, the Laplacians learned by GL-SigRep, the Laplacians learned by GL-LogDet, the sample correlation matrices, and the thresholded sample
correlation matrices. The rows from the top to the bottom are for the Gaussian RBF graph, the ER graph, and the BA graph.

learn a graph topology such that the signals are regularized to
be globally smooth. Second, we see that for all three types of
graphs, the graph Laplacian matrices learned by GL-SigRep are
visually more consistent with the groundtruth data than the ones
learned by GL-LogDet, especially in the case of a BA graph.

Next, we quantitatively evaluate the performance of GL-
SigRep, GL-LogDet, and sample correlations, in terms of re-
covering the position of the edges in the groundtruth graph. For
sample correlation matrices, we consider off-diagonal correla-
tions with values greater than a chosen threshold (see Footnote 4
for the exact values) as the “recovered edges”. The evaluation
metrics we choose are the F-measure, Precision, Recall and Nor-
malized Mutual Information (NMI) [56]. Specifically, the Pre-
cision evaluates the percentage of correct edges in the learned
graph, that is, the edges that are present in the groundtruth
graph. The Recall evaluates the percentage of the edges in the
groundtruth graph that are present in the learned graph. The
F-measure thus takes into account both Precision and Recall to
measure the overall accuracy of the obtained edge set. Finally,
the NMI measures the mutual dependence between the obtained
edge set and that of the groundtruth graph from an information
theoretic viewpoint. Testing on different parameter values in the
three methods4, we show in Table I the best F-measure, Pre-
cision, Recall and NMI scores achieved by the three methods

4We choose parameters through a grid search. The optimal values for α, β ,
λ, and threshold for the sample correlation matrix, are 0.012, 0.79, 19.95 and
0.06, respectively, for the Gaussian RBF graph; 0.0032, 0.10, 12.59 and 0.10,
respectively, for the ER graph; and 0.0025, 0.050, 125.89 and 0.46, respectively,
for the BA graph.

TABLE I
GRAPH LEARNING PERFORMANCE FOR GL-SIGREP, GL-LOGDET AND SAMPLE

CORRELATION MATRICES

averaged over ten random instances of the three graphs with
the associated signals X . Our algorithm GL-SigRep provides
competitive or superior performance compared to the other two
in terms of all the evaluation criteria. Especially, for the Gaus-
sian RBF and BA graphs, the high average F-measure scores
achieved by GL-SigRep suggest that the learned graphs have
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Fig. 3. (a–c) The number of edges in the learned graph, and (d-f) the F-measure score, under 441 different combinations of the parameters α and β , for a random
instance of the Gaussian RBF graph (left column), ER graph (middle column), and BA graph (right column).

topologies that are very similar to the groundtruth ones. The
advantage of GL-SigRep for the non-manifold structured ER
graphs is less obvious, possibly due to the fact that the edges are
generated independently in this random graph model. This may
lead to a weaker global relationship in the data and therefore
affects the efficiency of a global relationship model like ours.
Finally, we have also computed the mean squared error (MSE)
between the groundtruth and the learned Laplacian matrices in
order to study the accuracy of the edge weights. For the sample
correlation method, we construct an adjacency matrix where the
edges correspond to the correlations above the chosen thresh-
old (the ones in Footnote 4), and then compute accordingly the
Laplacian matrix. The MSE is 1.4345 for GL-SigRep compared
to 2.8443 for GL-LogDet and 2.0508 for sample correlation in
case of the Gaussian RBF graph, 2.1737 compared to 3.4350
and 3.0117 in case of the ER graph, and 3.0412 compared to
6.1491 and 5.2262 in case of the BA graph. This shows that,
in addition to edge positions, the edge weights learned by GL-
SigRep are more consistent with the grountruth than those of
the other methods.

To better understand the behavior of GL-SigRep under differ-
ent sets of parameters, we plot in Fig. 3(a) the numbers of edges
in the learned graph, and in Fig. 3(d) the F-measure scores,
under 21 × 21 = 441 different combinations of the parameters
α and β in Eq. (16), for a random instance of the Gaussian RBF
graph. First, we see that the number of edges in the learned
graph decreases as β decreases and α increases. The intuitions
behind this behavior are as follows. When β increases, the
Frobenius norm of L in the objective function in Eq. (16) tends
to be small. Given a fixed L1-norm of L (which is enforced by
the trace constraint), this leads to a more uniform distribution

of the off-diagonal entries (with similar but smaller values),
so that the number of edges tends to increase. Decreasing
β leads to the opposite effect. On the other hand, when α
increases, the trace of the quadratic term tends to be small.
The algorithm thus favors a smaller number of non-zero entries
in L, and the number of edges decreases. Therefore, both
parameters α and β implicitly affect the sparsity of the learned
graph Laplacian. It is interesting to notice in Fig. 3(a) and (b)
that, both the number of edges and the F-measure scores are
similar for the values of α and β that lead to the same ratio β

α .
The same patterns are also observed for the ER graph model
(Fig. 3(b) and (e)) and the BA graph model (Fig. 3(c) and (f)).
This suggests that, when the initial observations are relatively
smooth, the trace of the quadratic term and the Frobenius norm
are the dominating factors in the optimization of Eq. (16), rather
than the data fidelity term. This implies that, in practice, we
may only need to search for an appropriate ratio β

α to maximize
the learning performance of the algorithm.

Next, we show in Fig. 4(a) and (b) the number of edges in the
graphs learned by GL-SigRep, and the learning performance
evaluated based on the four criteria, respectively, for the same
Gaussian RBF graph as before but under different ratios of β to
α. As expected, the number of edges decreases as the ratio of β
to α decreases. Looking at Fig. 4(a) and (b) together, we see that,
as the number of edges approaches the number of edges in the
groundtruth graph (in this case, 70 edges), the Recall stays high
and the Precision increases rapidly, which makes the F-measure
increase. When the number of edges in the learned graph is close
to the one in the groundtruth graph, the curves for the Precision
and the Recall intersect and the F-measure reaches its peak.
After that, although the Precision keeps increasing towards 1,
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Fig. 4. (a) Number of edges in the graphs learned by GL-SigRep, and (b) performance of GL-SigRep, for different ratios β
α for a random instance of the

Gaussian RBF graph.

Fig. 5. Performance of GL-SigRep for (a) different numbers of signals p and (b) different SNR (dB), for two random instances of the Gaussian RBF graph,
respectively.

the Recall drops rapidly as fewer and fewer edges are detected,
leading to a decreasing trend in the F-measure. A similar trend
can be observed in the curve for the NMI score. The patterns
in Fig. 4 are also observed for the ER and BA graph models.
These results show that GL-SigRep is able to learn a graph that
is very close to the groundtruth graph when the number of edges
matches the number of edges in the groundtruth graph.

Finally, we investigate the influence of the number of signals
available for learning, and the level of noise present in the data,
for two random instances of the Gaussian RBF graph, respec-
tively. In Fig. 5(a), we show the performance of GL-SigRep for
different numbers of signals. As we can see, the performance
initially increases as more signals are available to learn the graph
Laplacian, but remains quite stable when more than 60 signals
are available. In Fig. 5(b), we show the performance of our al-
gorithm for different values of the signal-to-noise-ratio (SNR)
given the Gaussian noise σε . We see that the performance of
GL-SigRep again remains stable until the SNR becomes very
low.

C. Learning Meteorological Graph From Temperature Data

We now test the proposed graph learning framework on real
world data. We first consider monthly temperature data collected

at 89 measuring stations in Switzerland (shown in Fig. 6(a))
during the period between 1981 and 2010 [62]. Specifically,
for each station, we compute the average temperature for each
month over the 30 years. This leads to 12 signals that measure
the average temperatures at the 89 measuring stations in the
12 months. By applying the proposed graph learning algorithm,
we would like to infer a graph where stations with similar
temperature evolutions across the year are connected. In other
words, we aim at learning a graph on which the observed tem-
perature signals are smooth. In this case, the natural choice of a
geographical graph based on physical distances between the sta-
tions does not seem appropriate for representing the similarity of
temperature values between these stations. Indeed, Fig. 6(b)–(d)
show the average temperatures in Switzerland in February, June
and October, and we can see that the evolution of temperatures
at most of the stations follows very similar trends, which im-
plies that the stations’ values are highly correlated, regardless of
the geographical distances between them. On the other hand, it
turns out that altitude is a more reliable source of information to
determine temperature evolutions. For instance, as we observed
from the data, the temperatures at two stations, Jungfraujoch
and Piz Corvatsch, follow similar trends that are clearly differ-
ent from other stations, possibly due to their similar altitudes
(both are more than 3000 metres above sea level). Therefore,
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Fig. 6. (a) The locations of 89 measuring stations in Switzerland. (b)-(d) Average monthly temperature in February, June and October, respectively, in Switzerland
during the period from 1981 to 2010. The color code in (b)-(d) represents the temperature in Celsius scale.

Fig. 7. Visual comparisons between (a) the groundtruth graph Laplacian, (b) the graph Laplacian learned by GL-SigRep, and (c) the graph Laplacian learned
by GL-LogDet. The results for GL-SigRep and GL-LogDet are obtained based on the parameters α, β and λ that lead to the best F-measure scores. The values
in the graph Laplacian learned by GL-LogDet is scaled so that it has the same trace as the other two matrices.

TABLE II
PERFORMANCE FOR GL-SIGREP AND GL-LOGDET IN LEARNING THE

METEOROLOGICAL GRAPH

the goal of our learning experiments is to recover a graph that
reflects the altitude relationships between the stations given the
observed temperature signals.

We apply the two graph learning algorithms GL-SigRep and
GL-LogDet on the temperature signals to learn two graph
Laplacian matrices. For quantitative evaluation, we build a
groundtruth graph that reflects the similarity between stations in
terms of their altitudes. More specifically, we connect two sta-
tions with a unitary weight if and only if their altitude difference
is smaller than 300 metres. We then compare the groundtruth
and learned graph Laplacians using the same evaluation metrics
as in the synthetic experiments.

We first show visual comparisons between the Laplacian of
the groundtruth altitude-based graph and the graph Laplacians
learned by GL-SigRep and GL-LogDet. For a more clear vi-
sualization, we focus on the top left part of the three matrices
and plot them in Fig. 7. The comparisons between GL-SigRep
and GL-LogDet show that the edges in the graph learned by
our algorithm are again more consistent with the groundtruth
data. This is confirmed by the results shown in Table II where
the best F-measure, Precision, Recall and NMI scores achieved
by the two algorithms are presented. Overall, both visual and

quantitative comparisons show that GL-SigRep achieves better
performance than GL-LogDet in inferring the graph topology
from the signal observations in this example.

To further verify our results, we separate the measuring
stations into disjoint clusters based on the graph learned by
GL-SigRep, such that different clusters correspond to different
characteristics of the measure stations. In particular, since we
obtain a valid Laplacian matrix, we can apply spectral cluster-
ing [63] to the learned graph to partition the vertex set into two
disjoint clusters. The results are shown in Fig. 8(a), where the
red and blue dots represent two different clusters of stations.
As we can see, the stations in the red cluster are mainly those
located on the mountains, such as those in the Jura Mountains
and Alps, while the ones in the blue cluster are mainly stations
in flat regions. It is especially interesting to notice that, the blue
stations in the Alps region (from centre to the bottom middle
of the map) mainly lie in the valleys along main roads (such as
those in the canton of Valais) or in the Lugano region. For com-
parison, we show in Fig. 8(b) a 2-cluster partition of the stations
by applying k-means clustering algorithm using directly the ob-
served temperature records. We see that the clusters obtained in
this way are less consistent with the altitude information of the
stations. For instance, some of the stations in mountain regions
in Jura, Valais and eastern Switzerland (highlighted by the cyan
ellipse) have been clustered together with low-altitude stations.
One possible explanation could be that the k-means algorithm
treats the observations at each vertex of the graph indepen-
dently and does not emphasize a global relationship during the
clustering process, therefore it may not be able to capture a
global similarity pattern as required in our graph learning task.
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Fig. 8. Two clusterings of the measuring stations obtained by (a) applying spectral clustering to the learned graph, and (b) applying k-means to the raw
temperature records. The red cluster includes stations at higher altitudes and the blue cluster includes stations at lower altitudes. Some of the stations with high
altitudes, highlighted by the cyan ellipses, are clustered together with low-altitude stations by k-means.

Fig. 9. Locations of the 56 measuring stations in California. The colors indi-
cate 4 groundtruth clusters that correspond to 4 ETo zones.

These results show that the clusters obtained by GL-SigRep
capture the altitude information of the measuring stations hence
confirms the quality of the learned graph topology.

D. Learning Climate Graph From Evapotranspiration Data

In this application, we consider average monthly evapo-
transpiration (ETo) data recorded at 56 measuring stations in
California between January 2012 and December 2014 [64]. Sim-
ilarly to the previous example, for each station, we compute the
average evapotranspiration for each month over the three years.
This leads to 12 signals that measure the average evapotran-
spiration at the 56 measuring stations in the 12 months. By
applying our graph learning framework, we would like to infer
a graph that captures the similarities between these measuring
stations in terms of the monthly variations of evapotranspiration
at their locations. In this example, we do not have a readily avail-
able groundtruth graph; however, we have a reference ETo Zone
Map [65], which classifies each of the 56 stations into one of
the 4 ETo zones according to the terrain and climate conditions
at its location5. This can thus be considered as a groundtruth
clustering of the 56 stations, as shown in Fig. 9. Therefore,
for performance evaluation, we apply spectral clustering to the
learned graphs using GL-SigRep and GL-LogDet, respectively,

5In our experiment, we consider stations from the four largest zones that
contain at least 10 stations, namely, zone 6, 12, 14 and 18.

TABLE III
PERFORMANCE FOR GL-SIGREP AND GL-LOGDET IN TERMS OF RECOVERING

GROUDTRUTH CLUSTERS OF MEASURING STATIONS

and we partition the stations into 4 clusters. We then compare
the resulting clusters with the groundtruth information.

In Table III, we show the overall best scores achieved by the
two algorithms in terms of three evaluation metrics for cluster-
ing, namely, NMI, Purity and Rand Index (RI) [56]. Even though
this clustering task is challenging — indeed, according to the
descriptions of the ETo Zone Map, there exists only slight dif-
ference between zone 12 in green and zone 14 in orange — we
nevertheless see from Table III that the clusters obtained based
on the graph learned by GL-SigRep is more consistent with the
groundtruth than that based on GL-LogDet.

E. Learning Political Graph From Voting Data

We now move onto the final real world example, where we
consider voting data from the national referendums for 37 fed-
eral popular initiatives in Switzerland between 2008 and 2012
[66]. Specifically, we consider the percentage of votes support-
ing each initiative in the 26 Swiss cantons as our observed
signal. This leads to 37 signals (i.e., one per initiative), each of
dimension 26. By applying the proposed graph learning frame-
work, we would like to infer a graph that captures the political
relationships between the Swiss cantons in terms of their votes
in the national referendums. In this example, we neither have
an obvious groundtruth relationship graph nor a groundtruth
partitions of the cantons in terms of their political preferences.
Therefore, we focus in this example on validating our results,
by interpreting the clusters obtained by partitioning the learned
graph using GL-SigRep.

In Fig. 10(a), we show one 3-cluster partition obtained by ap-
plying spectral clustering to the graphs learned by GL-SigRep.
We can see that the blue cluster contains all the French-speaking
cantons, while the yellow clusters contain most of the German-
speaking cantons and the Italian-speaking canton Ticino. Then,



6172 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, 2016

Fig. 10. (a) Clustering of the 26 Swiss cantons based on their votes in the national referendums between 2008 and 2012. (b) The results in the 26 Swiss cantons
of the national referendum for the federal popular initiative “Against mass immigration”.

the five cantons in the red cluster, namely, Uri, Schwyz,
Nidwalden, Obwalden and Appenzell Innerrhoden, the first four
of which constituting the so-called “primitive” cantons at the
origin of Switzerland, are all considered among the most con-
servative cantons in Switzerland. The cluster membership of
the canton Basel-Stadt can be explained by the fact that Basel
regularly agrees with the cantons in the French-speaking part of
Switzerland on referendums for close relations with the Euro-
pean Union. Therefore, this clustering result demonstrates that
the graph learned by GL-SigRep indeed captures the hidden
political relationships between the 26 Swiss cantons, which are
consistent with the general understanding of their voting behav-
iors in the national referendums.

Finally, to confirm the meaningfulness of the clusterings
shown in Fig. 10(a), we illustrate in Fig. 10(b) a 3-cluster parti-
tion of the cantons based on voting statistics in a recent national
referendum for the initiative “Against mass immigration”. This
referendum, which was held in February 2014, has the largest
turnout of 55.8% in recent years. In Fig. 10(b), the cantons in
the blue cluster voted against the initiative, while the ones in the
yellow and red clusters voted for it. In particular, the seven can-
tons where the percentage of voters supporting the initiative is
greater than 58.2% are grouped in the red cluster. As we can see,
this partition is largely consistent with those in Fig. 10(a), with
the only exceptions of the cantons of Zürich and Zug agreeing
with the French-speaking cantons with small margins. This con-
firms the clustering in Fig. 10(a) hence demonstrates the quality
of the graphs learned by GL-SigRep.

VI. CONCLUSION

In this paper, we have presented a framework for learning
graph topologies (graph Laplacians) from signal observations
under the assumption that the signals are smooth on the learned
graph. Specifically, we have developed a method for learning
graphs that enforces the smoothness property of the graph sig-
nals, under a Gaussian prior distribution imposed on the latent
variables in a generalized factor analysis model. We believe
the proposed graph learning framework can benefit numerous
signal processing and learning tasks on graphs through the learn-
ing of an appropriate graph topology that captures relationships
between data entities. Furthermore, it opens new perspectives
in the field of graph signal processing. In particular, although

we only focus on a Gaussian prior in the present paper, we can
also impose other statistical priors on the latent variables in the
generalized factor analysis model. We leave such an analysis for
future work.
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