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Clustering on Multi-Layer Graphs via Subspace
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Abstract—Relationships between entities in datasets are often of
multiple nature, like geographical distance, social relationships, or
common interests among people in a social network, for example.
This information can naturally be modeled by a set of weighted
and undirected graphs that form a global multi-layer graph, where
the common vertex set represents the entities and the edges on
different layers capture the similarities of the entities in term of
the different modalities. In this paper, we address the problem of
analyzing multi-layer graphs and propose methods for clustering
the vertices by efficiently merging the information provided by the
multiple modalities. To this end, we propose to combine the char-
acteristics of individual graph layers using tools from subspace
analysis on a Grassmann manifold. The resulting combination can
then be viewed as a low dimensional representation of the orig-
inal data which preserves the most important information from di-
verse relationships between entities. As an illustrative application
of our framework, we use our algorithm in clustering methods and
test its performance on several synthetic and real world datasets
where it is shown to be superior to baseline schemes and competi-
tive to state-of-the-art techniques. Our generic framework further
extends to numerous analysis and learning problems that involve
different types of information on graphs.

Index Terms—Multi-layer graphs, subspace representation,
Grassmann manifold, clustering.

I. INTRODUCTION

G RAPHS are powerful mathematical tools for modeling
pairwise relationships among sets of entities; they can be

used for various analysis tasks such as classification or clus-
tering. Traditionally, a graph captures a single form of relation-
ships between entities and data are analyzed in light of this one-
layer graph. However, numerous emerging applications rely on
different forms of information to characterize relationships be-
tween entities. Diverse examples include human interactions
in a social network or similarities between images or videos
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in multimedia applications. The multimodal nature of the re-
lationships can naturally be represented by a set of weighted
and undirected graphs that share a common set of vertices but
with different edge weights depending on the type of informa-
tion in each graph. This can then be represented by a multi-layer
or multi-view graph which gathers all sources of information in
a unique representation. Assuming that all the graph layers are
informative, they are likely to provide complementary informa-
tion and thus to offer richer information than any single layer
taken in isolation. We thus expect that a proper combination of
the information contained in the different layers leads to an im-
proved understanding of the structure of the data and the rela-
tionships between entities in the dataset.
In this paper, we consider a -layer graph with individual

graph layers , where repre-
sents the common vertex set and represents the edge set in
the -th individual graph with associated edge weights . An
example of a three-layer graph is shown in Fig. 1(a), where the
three graph layers share the same set of 12 vertices but with dif-
ferent edges (we assume unit edge weights for the sake of sim-
plicity). Clearly, different graph layers capture different types of
relationships between the vertices, and our objective is to find
a method that properly combines the information in these dif-
ferent layers. We first adopt a subspace representation for the
information provided by the individual graph layers, which is
inspired by the spectral clustering algorithms [1]–[3]. We then
propose a novel method for combining the multiple subspace
representations into one representative subspace. Specifically,
we model each graph layer as a subspace on a Grassmann man-
ifold. The problem of combining multiple graph layers is then
transformed into the problem of efficiently merging different
subspaces on a Grassmann manifold. To this end, we study the
distances between the subspaces and develop a new framework
to merge the subspaces where the overall distance between the
representative subspace and the individual subspaces is mini-
mized. We further show that our framework is well justified by
results from statistical learning theory [4], [5]. The proposed
method is a dimensionality reduction algorithm for the original
data; it leads to a summarization of the information contained
in the multiple graph layers, which reveals the intrinsic relation-
ships between the vertices in the multi-layer graph.
Various learning problems can then be solved using these

relationships, such as classification or clustering. Specifically,
we focus in this paper on the clustering problem: we want
to find a unified clustering of the vertices (as illustrated in
Fig. 1(b)) by utilizing the representative subspace, such that it
is better than clustering achieved on any of the graph layers
independently. To address this problem, we first apply our
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Fig. 1. (a) An illustration for a three-layer graph , whose three layers
share the same set of vertices but with different edges. (b) A potential

unified clustering of the vertices based on the information provided
by the three layers.

generic framework of subspace analysis on the Grassmann
manifold to compute a meaningful summarization (as a repre-
sentative subspace) of information contained in the individual
graph layers. We then implement a spectral clustering algo-
rithm based on the representative subspace. Experiments on
synthetic and real world datasets demonstrate the advantages
of our approach compared to baseline algorithms, like the
summation of individual graphs [6], as well as state-of-the-art
techniques, such as co-regularization [7]. Finally, we believe
that our framework is beneficial not only to clustering, but
also to many other data processing tasks based on multi-layer
graphs or multi-view data in general.
This paper is organized as follows. We first review the related

work and summarize the contribution of the paper in Section II.
In Section III, we describe the subspace representation inspired
by spectral clustering, which captures the characteristics of a
single graph. In Section IV, we review the main ingredients
of Grassmann manifold theory, and propose a new framework
for combining information from multiple graph layers. We then
propose our novel algorithm for clustering onmulti-layer graphs
in Section V, and compare its performance with other clustering
methods on multiple graphs in Section VI. Finally, we conclude
in Section VII.

II. RELATED WORK

In this section we review the related work in the literature.
First, we describe briefly graph-based clustering algorithms,
with a particular focus on the methods that have subspace
interpretations. Second, we summarize the previous works built
upon subspace analysis and the Grassmann manifold theory.
Finally, we report the recent progresses in the field of analysis
of multi-layer graphs or multi-view data.
Clustering on graphs has been studied extensively due to its

numerous applications in different domains. The works in [8],
[9] have given comprehensive overviews of the advancements
in this field over the last few decades. The algorithms based on
spectral techniques on graphs are of particular interest, typical

examples being spectral clustering [1]–[3], [10] and modularity
maximization via spectral method [11], [12]. Specifically, these
approaches propose to embed the vertices of the original graph
into a low dimensional space, usually called the spectral embed-
ding, which consists of the top eigenvectors of a special matrix
(graph Laplacian matrix for spectral clustering and modularity
matrix for modularity maximization). Due to the special proper-
ties of these matrices, clustering in such low dimensional spaces
usually becomes trivial. Therefore, the corresponding clustering
approaches can be interpreted as transforming the information
on the original graph into a meaningful subspace representation.
Another example is the Principal Component Analysis (PCA)
interpretation on graphs described in [13]. These works have in-
spired us to consider the subspace representation in Section III.
In the past few decades, subspace-based methods have been

widely used in classification and clustering problems, most no-
tably in image processing and computer vision. In [14], [15],
the authors have discovered that human faces can be character-
ized by low-dimensional subspaces. In [16], the authors have
proposed to use the so-called “eigenfaces” for recognition. In-
spired by these works, researchers have been particularly inter-
ested in data where data points of the same pattern can be repre-
sented by a subspace. Due to the growing interests in this field,
there is an increasingly large number of works that use tools
from the Grassmann manifold theory, which provides a natural
tool for subspace analysis. In [17], the authors have given a de-
tailed overview of the basics of the Grassmann manifold theory,
and developed new optimization techniques on the Grassmann
manifold. In [18], the author has presented statistical analysis
on the Grassmann manifold. Both works study the distances on
the Grassmann manifold. In [19], [4], the authors have proposed
learning frameworks based on distance analysis and positive
semidefinite kernels defined on the Grassmann manifold. Other
recent representative works include [20]–[24], however, none of
the above works considers datasets represented by multi-layer
graphs.
At the same time, multi-view data have attracted a large

amount of interest in the learning research communities. These
data form multi-layer graph representations (or multi-view rep-
resentations), which generally refer to data that can be analyzed
from different viewpoints. In this setting, the key challenge is
to combine efficiently the information from multiple graphs (or
multiple views) for learning purposes. The existing techniques
can be roughly grouped into the following categories. First, the
most straightforward way is to form a convex combination of
the information from the individual graphs. For example, in
[25], the authors have developed a method to learn an optimal
convex combination of Laplacian kernels from different graphs.
In [26], the authors have proposed a Markov mixture model,
which corresponds to a convex combination of the normalized
adjacency matrices of the individual graphs, for supervised
and unsupervised learning. In [27], the authors have presented
several averaging techniques for combining information from
the individual graphs for clustering. Finally, in [28], the authors
have proposed to combine multiple kernels by forming summa-
tions of weighted or projected kernels. Second, following the
intuitive approaches in the first category of convex combina-
tion of information layers, many existing works aim at finding
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a unified representation of the multiple graphs (or multiple
views), but using more sophisticated methods. For instances,
the authors in [6], [29]–[33] have developed several joint matrix
factorization approaches to combine different views of data
through a unified optimization framework, where the authors
in [34] have proposed to find a unified spectral embedding
of the original data by integrating information from different
views. Similarly, clustering algorithms based on Canonical
Correlation Analysis (CCA) first project the data from different
views into a unified low dimensional subspace, and then apply
simple algorithms like single linkage or -means to achieve the
final clustering [35], [36]. Third, unlike the previous methods
that try to find a unified representation before applying learning
techniques, another strategy in the literature is to integrate the
information from individual graphs (views) directly into the
optimization problems for the learning purposes. Examples
include the co-EM clustering algorithm proposed in [37], and
the clustering approaches proposed in [38], [7] based on the
frameworks of co-training [39] and co-regularization [40].
Fourth, particularly in the analysis of multiple graphs, regular-
ization frameworks on graphs have also been applied. In [41],
the authors have presented a regularization framework over
edge weights of multiple graphs to compute an improved simi-
larity graph of the vertices (entities). In [42], [31], the authors
have proposed graph regularization frameworks in both vertex
and graph spectral domain to combine individual graph layers.
Finally, other representative approaches include introducing
additional graph representations in the learning processes [43],
[41] and ensemble clustering [44]–[47]. From this categoriza-
tion, the proposed approach belongs to the second category
mentioned above, where we first find a representative subspace
for the information provided by the multi-layer graph and
then implement the clustering step, or other learning tasks.
We believe that this type of approaches is intuitive and easily
understandable, yet still flexible and generic enough to be
applied to different types of data.
To summarize, the main differences between the related

work and the contributions proposed in this paper are the
following. First, the research work on Grassmann manifold
theory has been mainly focused on subspace analysis. The
subspaces usually come directly from the data but are not
linked to graph-based learning problems. Our paper makes
the explicit link between subspaces and graphs, and presents
a fundamental and intuitive way of approaching the learning
problems on multi-layer graphs, with help of subspace analysis
on the Grassmann manifold. Second, we show the link between
the projection distance on the Grassmann manifold [17], [19]
and the empirical estimate of the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) [5]. Therefore, together with the results
in [4], we offer a unified view of concepts from three different
perspectives, namely, the projection distance on the Grassmann
manifold, the Kullback-Leibler (K-L) divergence [48] and the
HSIC [5]. This helps to understand better the key concept of
distance measure in subspace analysis. Finally, using our novel
layer merging framework, we provide a simple yet competitive
solution to the problem of clustering on multi-layer graphs.
We also discuss the influence of the relationships between the
individual graph layers on the performance of the proposed

clustering algorithm. We believe that this is helpful towards the
design of efficient and adaptive learning algorithms.

III. SUBSPACE REPRESENTATION FOR GRAPHS

In this section, we describe a subspace representation for the
information provided by a single graph, which is inspired by the
spectral clustering algorithms. Let us consider a weighted and
undirected graph1 , where repre-
sents the vertex set and represents the edge set with associ-
ated edge weights , respectively. Let and denote the ad-
jacency and degree matrix of . The normalized graph Lapla-
cian matrix is then defined as: .
The graph Laplacian is of broad interests in the studies of spec-
tral graph theory [49]. Among several variants, we use the nor-
malized graph Laplacian defined above, since its spectrum (i.e.,
its eigenvalues) always lie between 0 and 2, a property favor-
able in comparing different graph layers in the following sec-
tions. We consider now the problem of clustering the vertices

of into distinct subsets such that the ver-
tices in the same subset are similar, i.e., they are connected by
edges of large weights. This problem can be efficiently solved
by the spectral clustering algorithms. Specifically, we focus on
the algorithm proposed in [2], which solves the following trace
minimization problem:

(1)

where is the number of vertices in the graph, is the target
number of clusters, and denotes the matrix transpose op-
erator. It can be shown by a version of the Rayleigh-Ritz the-
orem [3] that the solution to the problem of (1) contains the
first eigenvectors (which correspond to the smallest eigen-
values) of as columns. The clustering of the vertices in
is then achieved by applying the -means algorithm [50] to the
normalized row vectors of the matrix2 . This algorithm is sum-
marized in Algorithm 1.

Algorithm 1: Normalized Spectral Clustering [2]

1: Input:
: the weighted adjacency matrix of graph :

target number of clusters
2: Compute the degree matrix and the normalized graph
Laplacian matrix .

3: Let be the matrix containing the first
eigenvectors of (solution of (1)). Normalize
each row of to get .

4: Let be the transpose of the -th
row of .

5: Cluster in into clusters using the
-means algorithm.

6: Output:
: the cluster assignment

1We use the notation for a single graph exclusively in this section.
2The necessity for row normalization is discussed in [3] and we omit this dis-

cussion here. However, the normalization does not change the nature of spectral
embedding, hence, it does not affect our derivation later.



908 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 4, FEBRUARY 15, 2014

Inspired by the spectral clustering theory, one can define a
meaningful subspace representation of the vertex connectivity
in a graph using its -dimensional spectral embedding, which
is driven by the matrix built on the first eigenvectors of
the graph Laplacian . Each row being the coordinates of the
corresponding vertex in the low dimensional subspace, this rep-
resentation contains the information on the connectivity of the
vertices in the original graph. Such information can be used for
finding clusters of the vertices, as shown above, but it is also
useful for other analysis tasks on graphs. By adopting this sub-
space representation that “summarizes” the graph information,
multiple graph layers can naturally be represented by multiple
such subspaces (whose geometrical relationships can be quite
flexible). The task of multi-layer graph analysis can then be
transformed into the problem of effective combination of the
multiple subspaces. This is the focus of the next section.

IV. MERGING SUBSPACES VIA ANALYSIS ON THE

GRASSMANN MANIFOLD

We now discuss the problem of effectively combining mul-
tiple graph layers by merging multiple subspaces. The theory of
Grassmann manifold provides a natural framework for such a
problem. In this section, we first review the main ingredients of
the Grassmannmanifold theory, and then move onto our generic
framework for merging subspaces.

A. Ingredients of Grassmann Manifold Theory

By definition, a Grassmann manifold is the set of
-dimensional linear subspaces in , where each unique
subspace is mapped to a unique point on the manifold. The
advantage of using tools from Grassmann manifold theory
is thus two-fold: (i) it provides a natural and intuitive rep-
resentation for our problem: the subspaces representing the
individual graph layers can be considered as individual points
on the Grassmann manifold3; (ii) the analysis on the Grassmann
manifold permits to use efficient tools to study the distances
between points on the manifold, namely, distances between
different subspaces. Such distances play an important role in
the problem of merging the information from multiple graph
layers. Mathematically speaking, each point on can
be represented by an orthonormal matrix whose
columns span the corresponding -dimensional subspace in
; it is thus denoted as . The distance between two

points on the manifold, or between two subspaces
and , is then defined based on a set of principal
angles between these subspaces [51]. Specifically,
is defined as the smallest possible angle between all pairs of
unit vectors and that come from and
respectively. The other principal angles are defined recursively
as the smallest possible angle between all pairs of unit vectors
that (i) come from and and (ii) are orthog-
onal to all the previously selected and . By definition, the
principal angles measure how the subspaces are geometrically
close to each other, and are the fundamental measures used to
define various distances on the Grassmann manifold, such as

3Different graph layers naturally lead to different points on the manifold;
However, we do not specifically exclude the case where there exist two graph
layers that are exactly the same.

the Riemannian (geodesic) distance or the projection distance
[17], [19]. In this paper, we use the projection distance, which
is defined as:

(2)

where and are the orthonormal matrices representing the
two subspaces under comparison4. The reason for choosing the
projection distance is two-fold: (i) the projection distance is de-
fined as the -norm of the vector of sines of the principal angles.
Since it uses all the principal angles, it is therefore an unbiased
definition. This is favorable as we do not assume prior knowl-
edge on the importance of specific principal angles, and we con-
sider that all of them carry meaningful information; (ii) the pro-
jection distance can be interpreted using a one-to-one mapping
that preserves distinctness: . Note
that the squared projection distance can be rewritten as:

(3)

(4)

where the third equality comes from the definition of the prin-
cipal angles and the fifth equality uses the fact that and
are orthonormal matrices. It can be seen from (4) that the pro-
jection distance can be related to the Frobenius norm of the dif-
ference between the mappings of the two subspaces
and in . Because the mapping preserves distinct-
ness, it is natural to take the projection distance as a proper dis-
tance measure between subspaces. Moreover, (3) provides an
explicit way of computing the projection distance between two
subspaces from their matrix representations and . We are
going to use it in developing the generic merging framework in
the following section.

B. Layer Merging Framework

Equipped with the subspace representation for individual
graphs and with a distance measure to compare different sub-
spaces, we are now ready to present our generic framework
for merging the information from multiple graph layers. Given
a multi-layer graph with individual layers ,
we first compute the graph Laplacian matrix for each
and then represent each by the spectral embedding matrix

from the first eigenvectors of , where is the
number of vertices and is the target number of clusters. Recall
that each of the matrices defines a -dimensional
subspace in , which can be denoted as . The goal is
to merge these multiple subspaces in a meaningful and efficient
way. To this end, our philosophy is to find a representative

4In the special case where and represent the same subspace, we have
.
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subspace that is close to all the individual subspaces
, and at the same time the representation preserves

the information about vertex connectivity in each graph layer.
For notational convenience, in the rest of the paper we simply
refer to the representations and as the corresponding
subspaces, unless indicated specifically.
The squared projection distance between subspaces defined

in (4) can be naturally generalized for analysis of multiple sub-
spaces. More specifically, we can define the squared projection
distance between the target representative subspace and the
individual subspaces as the sum of squared projec-

tion distances between and each individual subspace given
by :

(5)

The minimization of the distance measure in (5) enforces the
representative subspace to be close to all the individual sub-
spaces in terms of the projection distance on the Grass-
mann manifold. At the same time, we want to preserve the
information about vertex connectivity in each graph layer. This
can be achieved by minimizing the Laplacian quadratic form
evaluated on the columns of , as also indicated by the objec-
tive function in (1) for spectral clustering. Therefore, we finally
propose to merge multiple subspaces by solving the following
optimization problem that integrates (1) and (5):

(6)

where and are the graph Laplacian and the subspace rep-
resentation for , respectively. The regularization parameter
balances the trade-off between the two terms in the objective

function.
The problem of (6) can be solved in a similar manner as

(1). Specifically, by ignoring constant terms and rearranging the
trace form in the second term of the objective function, (6) can
be rewritten as

(7)

It is interesting to note that this is the same trace minimization
problem as in (1), but with a “modified” Laplacian:

(8)

Therefore, by the Rayleigh-Ritz theorem, the solution to the
problem of (7) is given by the first eigenvectors of the mod-
ified Laplacian , which can be computed using efficient
algorithms for eigenvalue problems [52], [53].

In the problem of (6) we try to find a representative subspace
from the multiple subspaces . Such a representation

not only preserves the structural information contained in the
individual graph layers, which is encouraged by the first term
of the objective function in (6), but also keeps a minimum dis-
tance between itself and the multiple subspaces, which is en-
forced by the second term. Notice that the minimization of only
the first term itself corresponds to simple averaging of the in-
formation from different graph layers, which usually leads to
suboptimal clustering performance as we shall see in the exper-
imental section. Similarly, imposing only a small projection dis-
tance to the individual subspaces does not necessarily
guarantee that is a good solution for merging the subspaces.
In fact, for a given -dimensional subspace, there are infinitely
many choices for the matrix representation, and not all of them
are considered as meaningful summarizations of the informa-
tion provided by the multiple graph layers. However, under the
additional constraint of minimizing the trace of the quadratic
term over all the graphs (which is the first term of the ob-
jective function in (6)), the vertex connectivity in the individual
graphs tends to be preserved in . In this case, the smaller the
projection distance between and the individual subspaces, the
more representative it is for all graph layers.
Finally, we note that the proposed merging framework can be

easily extended to take into account the relative importance of
each individual graph layer with respect to the specific learning
purpose. For instance, when prior knowledge about the impor-
tance of the information in the individual graphs is available, we
can adapt the value of the regularization parameter in (6) to the
different layers such that the representative subspace is closer
to the most informative subspace representations. Also, we do
not incorporate specific prior knowledge about vertex pairs that
must, or must not be linked in the design of the merging frame-
work. That could be done by introducing additional graph layers
that only consist of such connections, which would certainly
be emphasized by the spectral (subspace) representations com-
puted from these graph layers. We can then choose rather large
regularization parameters for these layers in the optimization
problem to enforce such constraints.

C. Discussion of the Distance Function

Interestingly, the choice of projection distance as a similarity
measure between subspaces in the optimization problem of (6)
can be well justified from information-theoretic and statistical
learning points of view. The first justification is from the work
of Hamm et al. [4], in which the authors have shown that the
Kullback-Leibler (K-L) divergence [48], which is a well-known
similarity measure between two probability distributions in in-
formation theory, is closely related to the squared projection dis-
tance. More specifically, the work in [4] suggests that, under
certain conditions, we can consider a linear subspace as the
“flattened” limit of a Factor Analyzer distribution [54]:

(9)

where stands for the normal distribution, is the
mean, is a full-rank matrix with (which
represents the subspace), is the ambient noise level, and is
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the identity matrix of dimension . For two subspaces and
, the symmetrized K-L divergence between the two corre-

sponding distributions and can then be rewritten as:

(10)

which is of the same form as the squared projection distance
when we ignore the constant factor (see (3)). This shows that,
if we take a probabilistic view of the subspace representations

, then the projection distance between subspaces can be
considered consistent with the K-L divergence.
The second justification is from the recently proposed

Hilbert-Schmidt Independence Criterion (HSIC) [5], which
measures the statistical dependence between two random vari-
ables. Given that are the centered Gram
matrices of some kernel functions defined over two random
variables and , the empirical estimate of HSIC is given
by

(11)

That is, the larger the , the stronger the statistical
dependence between and . In our case, using the idea of
spectral embedding, we can consider the rows of the individual
subspace representations and as two particular sets of
sample points in , which are drawn from two probability dis-
tributions governed by the information on vertex connectivity
in and , respectively. In other words, the sets of rows of
and can be seen as realizations of two random variables
and . Therefore, we can define the Grammatrices of linear

kernels on and as:

(12)

Combining (11) and (12), we can see that:

(13)

This shows that the projection distance between subspaces
and can be interpreted as the negative dependence between
and , which reflect the information provided by the two

individual graph layers and .
Therefore, from both information-theoretic and statistical

learning points of view, the smaller the projection distance be-
tween two subspace representations and , the more similar
the information in the respective graphs that they represent.
As a result, the representative subspace (the solution to the
problem of (6)) can be considered as a subspace representation
that “summarizes” the information from the individual graph
layers, and at the same time captures the intrinsic relationships
between the vertices in the graph. As one can imagine, such
relationships are of crucial importance in our multi-layer graph
analysis.

V. CLUSTERING ON MULTI-LAYER GRAPHS

In Section IV, we introduced a novel framework for merging
subspace representations from the individual layers of a
multi-layer graph, which leads to a representative subspace
that captures the intrinsic relationships between the vertices of

the graph. This representative subspace provides a low dimen-
sional form that can be used in several applications involving
multi-layer graph analysis. In particular, we study now one
such application, namely the problem of clustering vertices in
a multi-layer graph5. We further analyze the behavior of the
proposed clustering algorithm with respect to the properties of
the individual graph layers (subspaces).

A. Clustering Algorithm

As we have already seen in Section III, the success of the
spectral clustering algorithm relies on the transformation of the
information contained in the graph structure into a spectral em-
bedding computed from the graph Laplacian matrix, where each
row of the embedding matrix (after normalization) is treated
as the coordinates of the corresponding vertex in a low dimen-
sional subspace. In our problem of clustering on a multi-layer
graph, the setting is slightly different, since we aim at finding
a unified clustering of the vertices that takes into account in-
formation contained in all the individual layers of the multi-
layer graph. However, the merging framework proposed in the
previous section can naturally be applied in this context. In
fact, it leads to a natural solution to the clustering problem on
multi-layer graphs. In more details, similarly to the spectral em-
bedding matrix in the spectral cluttering algorithm, which is a
subspace representation for one individual graph, our merging
framework provides a representative subspace that contains the
information from the multiple graph layers. Using this represen-
tation, we can then follow the same steps of spectral clustering
to achieve the final clustering of the vertices with a -means al-
gorithm. The proposed clustering algorithm is summarized in
Algorithm 2.

Algorithm 2: Spectral Clustering on Multi-Layer graphs
(SC-ML)

1: Input:
: weighted adjacency matrices of

individual graph layers
: target number of clusters
: regularization parameter

2: Compute the normalized Laplacian matrix and the
subspace representation for each .

3: Compute the modified Laplacian matrix
.

4: Compute that is the matrix containing the first
eigenvectors of . Normalize each row

of to get .
5: Let be the transpose of the -th
row of .

6: Cluster in into using the -means
algorithm.

7: Output:
: The cluster assignment

5In addition to clustering, which is in an unsupervised fashion, the proposed
framework can also be applied in a semi-supervised fashion, to learning prob-
lems such as classification. It can also be useful in ranking where an intrinsic
relationship between objects, which is summarized from the individual graph
layers, would certainly help.
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Fig. 2. A 3-layer graph with unit edge weights for toy example 1. The colors
indicate the groundtruth clusters.

TABLE I
ANALYSIS OF TOY EXAMPLE 1

It is clear that Algorithm 2 is a direct generalization of Algo-
rithm 1 in the case of multi-layer graphs. The main ingredient of
our clustering algorithm is the merging framework proposed in
Section IV, in which information from individual graph layers
is summarized, prior to the actual clustering process (i.e., the
-means step) is implemented. This provides an example that
illustrates how our generic merging framework can be applied
to specific learning tasks on multi-layer graphs.

B. Analysis of the Proposed Algorithm

We now analyze the behavior of the proposed clustering
algorithm under different conditions. Specifically, we first out-
line the link between subspace distance and clustering quality,
and then compare the clustering performances in two scenarios
where the relationships between the individual subspaces

are different. Finally, we discuss about the relations
between the choice of the number of clusters and the clustering
performance.
As we have seen in Section IV, the rows of the subspace rep-

resentations can be viewed as realizations of random
variables governed by the graph information. At the
same time, spectral clustering directly utilizes for the purpose
of clustering. Therefore, can be considered as random
variables that control the cluster assignment of the vertices6.
Since the projection distance can be understood as the negative
statistical dependence between such random variables, the min-
imization of the projection distance in (6) is equivalent to the
maximization of the dependence between the random variable
from the representative subspace and the ones from the indi-
vidual subspaces . The optimization in (6) can then

6The columns of are a rotation of the columns of a cluster indicator matrix
by . It has been discussed in [3] that if there exist vertices of particularly
low degrees, this rotation wouldmake the columns of differ from the indicator
vectors. However, according to [3], one can argue that such low-degree vertices
can be considered as outliers anyway, which does not affect much the global
clustering quality. Therefore, the columns of U are quite informative about the
global clustering structure.

Fig. 3. A 3-layer graph with unit edge weights for toy example 2. The colors
indicate the groundtruth clusters.

TABLE II
ANALYSIS OF TOY EXAMPLE 2

be seen as a solution that tends to produce a clustering with the
representative subspace that is consistent with those computed
from the individual subspace representations.
We now discuss how the relationships between the individual

subspaces possibly affect the performance of our clustering al-
gorithm SC-ML. Intuitively, since the second term of the objec-
tive function in (6) represents the distance between the represen-
tative subspace and all the individual subspaces , it
tends to drive the solution towards those subspaces that them-
selves are close to each other on the Grassmann manifold. To
show it more clearly, let us consider two toy examples. The first
example is illustrated in Fig. 2, where we have a 3-layer graph
with the individual layers and sharing the same set of
vertices. For the sake of simplicity, all the edge weights are set to
one. In addition, three groundtruth clusters are indicated by the
colors of the vertices. Table I(a) shows the performances of Al-
gorithm 1 with individual layers as well as Algorithm 2 for the
multi-layer graph7, in terms of Normalized Mutual Information
(NMI) [55] with respect to the groundtruth clusters. Table I(b)
shows the projection distances between various pairs of sub-
spaces. It is clear that the layers and produce better clus-
tering quality, and that the distance between the corresponding
subspaces is smaller. However, the vertex connectivity in layer
is not very consistent with the groundtruth clusters and the

corresponding subspace is further away from the ones from
and . In this case, the solution found by SC-ML is enforced
to be close to the consistent subspaces from and , hence
provides satisfactory clustering results ( represents
perfect recovery of groundtruth clusters). Let us now consider a
second toy example, as illustrated in Fig. 3. In this example we
have two layers and with relatively low quality informa-
tion with respect to the groundtruth clustering of the vertices. As

7We choose the value of the regularization parameter that leads to the best
possible clustering performance. For the results presented in both Tables I and II,
the regularization parameter is set to be 0.5. More discussions about the choices
of this parameter are presented in Section VI.
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Fig. 4. Clustering performances of Algorithm 1 on the individual graph layers
and Algorithm 2 on the multi-layer graph in the first toy example, under different
values of (number of clusters).

we see in Table II(b), their corresponding subspaces are close to
each other on the Grassmann manifold. The most informative
layer , however, represents a subspace that is quite far away
from the ones from and . At the same time, we see in
Table II(a) that the clustering results are better for the first layer
than for the other two less informative layers. If the quality of
the information in the different layers is not considered in com-
puting the representative subspace, SC-ML enforces the solu-
tion to be closer to two layers of relatively lower quality, which
results in unsatisfactory clustering performance in this case.
The analysis above implies that the proposed clustering al-

gorithm works well under the following assumptions: (i) the
majority of the individual subspaces are relatively informative,
namely, they are helpful for recovering the groundtruth clus-
tering, and (ii) they are reasonably close to each other on the
Grassmannmanifold, namely, they are expected to provide com-
plementary but not contradictory information. When this is the
case, the majority of informative views tend to agree with each
other, and the information contained in these informative views
is likely to be mainly captured by -dimensional subspaces. The
global clustering structure will then mainly be defined by the
informative views that admit a value of for clustering, even
though might not be optimal for each individual view inde-
pendently (in fact we do not assume that is optimal for each
individual view. Therefore, without loss of generality, it is rea-
sonable for the proposed framework to consider a universal
for the subspace dimension across different views).
In Algorithm 2 we assume that the target number of clusters
is known a priori. Although this is a reasonable assumption

done in many popular clustering algorithms, there are practical
situations where is not defined a priori. Traditionally, in spec-
tral methods we could use the eigen-gap of the graph Laplacian
matrices as a heuristic to choose the number of clusters [3]. In
the case of Algorithm 2, if the majority of the informative views
agree with each other, one could estimate the number of clus-
ters such that the gap between the -th and the -th
eigenvalues is reasonably large for all these views. We remark,
however, that after the merging of multiple layers a particular

value of could emerge as a good choice, which is not nec-
essarily optimal for all the individual views, as in the first toy
example illustrated in Fig. 4. A more detailed analysis in this
respect remains as our future work.
Finally, we note that we could use the information about the

disagreement between views to tune the regularization parame-
ters in the optimization problem to promote better final clus-
tering quality. For example, if one view is significantly dif-
ferent or contradictory from other views, we tend to discard it
or choose a rather small regularization parameter to attenuate its
influence on the final clustering quality.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the SC-ML
algorithm presented in Section V on one synthetic and two real
world datasets. We first describe the datasets that we use for
the evaluation, and then explain the various clustering algo-
rithms that we adopt in the performance comparisons. We fi-
nally present the results in terms of three evaluation criteria as
well as some discussions.

A. Datasets

The first dataset that we use is a synthetic dataset, where we
have three point clouds in forming the English letters “N”,
“R” and “C” (shown in Fig. 5). Each point cloud is generated
from a five-component Gaussian mixture model with different
values for the mean and covariance of the Gaussian distribu-
tions8, where each component represents a class of 500 points
with specific color. A 5-nearest neighbor graph is then con-
structed for each point cloud by assigning the weight of the
edges connecting two vertices (points) as the reciprocal of the
Euclidean distance between them. This gives us a 3-layer graph
of 2500 vertices, where each graph layer is from a point cloud
forming a particular letter. The goal with this dataset is to re-
cover the five clusters (indicated by five colors) of the 2500
vertices using the three graph layers constructed from the three
point clouds.
The second dataset contains data collected during the Lau-

sanne Data Collection Campaign [56] by the Nokia Research
Center (NRC) in Lausanne. This dataset contains the mobile
phone data of 136 users living and working in the Lake Léman
region in Switzerland, recorded over a one-year period. Con-
sidering the users as vertices in the graph, we construct three
graphs by measuring the proximities between these users in
terms of GPS locations, Bluetooth scanning activities and phone
communication. More specifically, for GPS locations and blue-
tooth scans, we measure how many times two users are suf-
ficiently close geographically (within a distance of roughly 1
km), and how many times two users’ devices have detected
the same bluetooth devices, respectively, within 30-minute time

8For letter “N”, the mean and covariance of the five components are
, [1 3], [3 2], [6 3], [4 0], and [1 0.3; 0.3 1], [0.6 0.1; 0.1 0.5],

, [0.8 0.3; 0.3 0.4], [0.5 0.2; 0.2 1.5], respectively. For
letter “R”, the mean and covariance of the five components are [1 0], [0 2],
[2 4], [4 3], [4 0], and , [0.3 0.1; 0.1 0.7], [1 0.3; 0.3
0.2], , respectively. For letter
“C”, the mean and covariance of the five components are [1 0], [0 1], [2 3],
[4 3], , and , [0.6 0.1; 0.1 0.5], [1.2 0.3; 0.3 0.2],

, [1.6 0.3; 0.3 0.2], respectively.
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Fig. 5. Three five-class point clouds in forming English letters “N”, “R”
and “C”.

Fig. 6. Spy plots of three adjacency matrices in (a) the synthetic dataset, (b)
the NRC dataset, and (c) the Cora dataset.

windows. Aggregating these results for a one-year period leads
to two weighted adjacency matrices that represent the physical
proximities of the users measured with different modalities. In
addition, an adjacency matrix for phone communication is gen-
erated by assigning edge weights depending on the number of
calls between any pair of two users. These three adjacency ma-
trices form a 3-layer graph of 136 vertices, where the goal is
to recover the eight groundtruth clusters that have been con-
structed from the users’ email affiliations.
The third dataset is a subset of the Cora bibliographic

dataset9. This dataset contains 292 research papers from three
different fields, namely, natural language processing, data

9Available online at “http://people.cs.umass.edu/~mccallum/data.html”
under category “Cora Research Paper Classification”.

mining and robotics. Considering papers as vertices in the
graph, we construct the first two graphs by measuring the sim-
ilarities among the title and the abstract of these papers. More
clearly, for both title and abstract, we represent each paper by a
vector of non-trivial words using the Term Frequency-Inverse
Document Frequency (TF-IDF) [55] weighting scheme, and
compute the cosine similarities between every pair of vectors as
the edge weights in the graphs. Moreover, we add a third graph
which reflects the citation relationships among the papers,
namely, we assign an edge with unit weight between papers
and if has cited or been cited by . This results in a

3-layer graph of 292 vertices, and the goal in this dataset is to
recover the three clusters corresponding to the different fields
the papers belong to.
The adjacency matrices of the graphs are visualized as the spy

plots shown in Fig. 6(a), (b) and (c) for the synthetic, NRC and
Cora dataset, respectively, where the orderings of the vertices
are made consistent with the groundtruth clusters10. A spy plot
is a global view of a matrix where every non-zero entry in the
matrix is represented by a blue dot. As shown in these figures,
we see clearly the clusters in the synthetic and Cora datasets,
while the clusters in the NRC dataset are not very clear. The
reason for this is that, in the NRC dataset, the email affiliations
used to create the groundtruth clusters only provide approxima-
tive information.

B. Clustering Algorithms

We now explain briefly the clustering algorithms in our com-
parative performance analysis along with some implementation
details. We adopt three baseline algorithms as well as a state-of-
the-art technique, namely the co-regularization approach intro-
duced in [7]. As we shall see, there are interesting connections
between the competitor clustering schemes and the proposed al-
gorithm. First of all, we describe some implementation details
of the proposed SC-ML algorithm and the co-regularization ap-
proach in [7]:
• SC-ML: Spectral Clustering on Multi-Layer graphs, as
presented in Section V. The implementation of SC-ML is
pretty straightforward, and the only parameter to choose is
the regularization parameter in (6). In our experiments,
we choose the value of through multiple empirical trials
and report the peak and average performances of 20 test
runs11. We will discuss the choice of this parameter later in
this section.

• SC-CoR: Spectral Clustering with Co-Regularization pro-
posed in [7]. We follow the same practice as in [7] to
choose the most informative graph layer to initialize the
alternating optimization scheme in SC-CoR. The stopping
criteria for the optimization process is chosen such that the
optimization stops when changes in the objective function
are smaller than . Similarly, we choose the value of
the regularization parameter in SC-CoR through mul-
tiple empirical trials. As in [7], the parameter is fixed in
the optimization steps for all graph layers.

10The adjacency matrix for GPS proximity in the NRC dataset is thresholded
for better illustration.
11The values of that achieve the peak performances are 0.695, 0.42 and

0.44 for the synthetic, NRC and Cora datasets, respectively.
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TABLE III
PEAK PERFORMANCES OF DIFFERENT CLUSTERING ALGORITHMS OUT OF 20 TEST RUNS ON ONE SYNTHETIC AND TWO REAL WORLD DATASETS

TABLE IV
AVERAGE PERFORMANCES OF DIFFERENT CLUSTERING ALGORITHMS OUT OF 20 TEST RUNS ON ONE SYNTHETIC AND

TWO REAL WORLD DATASETS. THE NUMBERS IN PARENTHESIS ARE THE STANDARD DEVIATIONS

Next, we introduce three baseline comparative algorithms
that work as follows:
• SC-Single: Spectral Clustering (Algorithm 1) applied on a
single graph layer, where the graph is chosen to be the one
that leads to the best clustering results.

• SC-Sum: Spectral clustering applied on a global matrix
that is the summation of the normalized adjacencymatrices
of the individual layers:

(14)

• SC-KSum: Spectral clustering applied on the summation
of the spectral kernels [6] of the adjacency matrices:

(15)

where is the number of vertices, is the number of
eigenvectors used in the definition of the spectral kernels
, and represents the -th eigenvector of the Lapla-

cian for graph . To make it more comparable with
spectral clustering, we choose to be the target number of
clusters in our experiments.

C. Clustering Results

We evaluate the performance of the different clustering algo-
rithms with three different criteria, namely Purity, Normalized
Mutual Information (NMI) and Rand Index (RI) [55]. Specif-
ically, let be the computed clusters and

be the intended groundtruth classes. First,
Purity is defined as:

(16)

where is the total number of objects, and denotes
the number of objects in the intersection of and . Next,
Normalized Mutual Information is defined as:

(17)

where is the mutual information between clusters and
classes , and and represent the entropies of the
clusters and classes, respectively. Finally, when interpreting
clustering as a series of binary decisions on each pair of objects,
Rand Index is defined as:

(18)

where represent true positive, true negative,
false positive and false negative decisions, respectively.
The clustering results are summarized in Tables III and IV

for the peak and average performances of all the algorithms out
of 20 test runs, respectively. For each scenario, the best result
is highlighted in bold font. First, as expected, we see that the
clustering performances for the synthetic and Cora datasets are
higher than that for the NRC dataset, which indicates that the
latter one is indeed more challenging due to the approximative
groundtruth information. Second, it is clear that SC-ML and
SC-CoR generally outperform the baseline approaches for the
three datasets. More specifically, although both SC-Sum and
SC-KSum indeed improve the clustering quality compared to
clustering with individual graph layers, they only provide lim-
ited improvement, and the potential drawback for both of the
summation methods is that they can be considered as similar
to building a simple average graph for representing the dif-
ferent layers of information. Therefore, depending on data char-
acteristics in specific datasets, this might smooth out the par-
ticular information provided by individual layers, and thus pe-
nalize the clustering performance. In comparison, SC-ML and
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Fig. 7. Comparison of performances (in terms of NMI) of SC-ML and SC-CoR under different values of parameter in the corresponding implementations.

TABLE V
CONFUSION MATRICES FOR DIFFERENT CLUSTERING

ALGORITHMS ON THE NRC DATASET

SC-CoR always achieve significant improvements in the clus-
tering quality compared to clustering using individual graph
layers. Third, SC-ML achieves very competitive performances
compared to SC-CoR for all the three evaluation criteria on the
three datasets, with a much simpler implementation scheme and
lower computational complexity, which we will explain in more
details in the following section.
In addition to the clustering benchmarks provided above, we

have computed and shown in Table V the confusion matrices
based on the outcomes of the five clustering algorithms on the
NRC dataset, as an illustrative example of the clustering qual-
ities. The columns of the confusion matrices represent the pre-
dicted clusters while the rows represent the intended classes.
The diagonal entries represent the numbers of objects that have
been correctly identified for each class. By summing up the di-
agonal entries, it is clear that overall SC-ML best reveals the
eight classes in the groundtruth data.
Finally, the eigen-gap is considered as a heuristic indicator

of the clusterability of the vertices into subsets. To under-
stand better the benefits of multi-layer graph clustering com-
pared to clustering with individual graph layers, we have com-
puted the gap between the -th and the -th eigenvalues
of the graph Laplacian matrices corresponding to individual and
merged graph layers, where is the target number of clusters.

TABLE VI
EIGEN-GAP BETWEEN THE -TH AND THE -TH EIGENVALUES OF
THE GRAPH LAPLACIAN MATRICES FROM THE INDIVIDUAL GRAPH

LAYERS AND THE “VIRTUAL” GRAPHS COMPUTED BY

SC-COR AND SC-ML ON DIFFERENT DATASETS

Specifically, although the proposed merging framework does
not lead directly to a graph topology, but rather a representa-
tive subspace, we created a “virtual” graph by using a Gaussian
kernel together with the Euclidean distances between the low
dimensional representations of every pair of vertices in the rep-
resentative subspace. The same method can be used to create a
“virtual” graph in the co-regularization approach. We then com-
pared the eigen-gaps of the individual graph Laplacian matrices
and the eigen-gaps computed using the “virtual” graphs, and
the results for different datasets are shown in Table VI. As we
can see, clustering on multi-layer graphs always leads to larger
eigen-gaps, which is indicative of better clustering structures.

D. Further Discussions

We now present some discussions on parameter selection
in SC-ML and its connections to the competitor clustering
schemes. First of all, we discuss the influence of the choice of
the regularization parameter on the performance of SC-ML.
In Fig. 7, we compare the performances of SC-ML and
SC-CoR in terms of NMI under different values of parameter
in the corresponding implementations. As we can see, in our

experiments, SC-ML achieves the best performances when
is chosen between 0.4 and 0.6, and it outperforms SC-CoR for
a large range of for the synthetic and NRC datasets. For the
Cora dataset, the two algorithms achieve very similar perfor-
mances at different values of , but SC-ML permits a larger
range of parameter selection. Furthermore, it is worth noting
that the optimal values for in SC-ML lie in similar ranges
across different datasets, thanks to the adoption of the nor-
malized graph Laplacian matrix whose spectral norm is upper
bounded by 2. In summary, this shows that the performance
of SC-ML is reasonably stable with respect to the parameter
selection.
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Fig. 8. Comparison between performances (in terms of NMI) of SC-ML, SC-Sum and SC-KSum under different values of parameter .

Fig. 9. Illustrations of graph layer merging. (a) SC-CoR: iterative update of the individual subspace representations. The superscript represents the number
of iterative steps on each individual subspace representation. The final update of the subspace representation for the most informative graph layer ( , shown
as a star) is considered as a good merging solution; (b) SC-ML: the representative subspace ( , shown as a star) is found in one step.

The role of the parameter can also be understood by
comparing SC-ML with SC-Sum and SC-KSum. Specifi-
cally, SC-Sum can be considered as taking an average of the
graph Laplacian matrices of the individual graph layers, while
SC-KSum takes the average of the corresponding low-dimen-
sional spectral representations. These are exactly the two parts
of the objective function in the optimization problem of (6),
whose relative importance is weighted by . Theoretically, on
the one hand, if we set to be zero, the solution of the problem
becomes equivalent to the one found by SC-Sum; on the other
hand, if we let go to infinity, then the solution becomes equiv-
alent to the one found by SC-KSum. This intuition is confirmed
by the results shown in Fig. 8. As we can see, SC-ML achieves
the same performances as SC-Sum and SC-KSum when is
chosen to be 0 and very large, respectively. More importantly,
for a wide and stable range of choices of , it leads to better
clustering performances than these two baseline schemes.
Finally, we take a closer look at the comparisons between

SC-ML and SC-CoR. Although the latter is not developed
from the viewpoint of subspace analysis on the Grassmann
manifold, it can actually be interpreted as a process in which
individual subspace representations are updated based on the
same distance analysis as in our framework. In this sense,
SC-CoR uses the same distance as ours to measure similarities
between subspaces. The merging solution however leads to a
different optimization problem than that of (6), which is based
on a slightly different merging philosophy. Specifically, it
enforces the information contained in the individual subspace
representations to be consistent with each other. An alternating
optimization scheme optimizes, at each step, one subspace
representation, while fixing the others. This can be interpreted
as a process in which one subspace at each step becomes closer
to other subspaces in term of the projection distance on the
Grassmann manifold. Upon convergence, all initial subspaces

are “brought” closer to each other and the final subspace repre-
sentation from the most informative graph layer is considered
as the one that combines information from all the graph layers
efficiently. Two illustrations of SC-CoR and SC-ML are shown
in Fig. 9(a) and (b), respectively. Therefore, on the one hand,
results for both approaches demonstrate the benefit of using
our distance analysis on the Grassmann manifold for merging
information in multi-layer graphs. Indeed, for both approaches,
since the distances between the solutions and the individual
subspaces are minimized without sacrificing too much of the
information from individual graph layers, the resulting com-
binations can be considered as good summarizations of the
multiple graph layers. On the other hand, however, SC-ML
differs from SC-CoR mainly in the following aspects. First,
the alternating optimization scheme in SC-CoR focuses only
on optimizing one subspace representation at each step, and it
requires a sensible initialization to guarantee that the algorithm
ends up at a good local minimum for the optimization problem;
it also does not guarantee that all the subspace representations
converge to one point on the Grassmann manifold (it uses the
final update of the most informative layer for clustering)12. In
contrast, SC-ML directly finds a single representation through a
unique optimization of the representative subspace with respect
to all graph layers jointly, which does not need alternating opti-
mization steps and careful initializations. These are the possible
reasons why SC-ML performs slightly better than SC-CoR for
the synthetic and NRC datasets in our experiments. Second, it
is worth noting from a computational point of view that, the
performance improvements are achieved with lower compu-
tational complexity, since the optimization process involved

12In [7], the authors have also proposed a “centroid-based co-regularization
approach” that introduces a consensus representation. However, such a repre-
sentation is still computed via an alternating optimization scheme, which needs
a sensible initialization and keeps the same iterative nature.
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in SC-ML is much simpler than that in SC-CoR. Specifically,
the iterative nature of SC-CoR requires solving an eigenvalue
problem for times, where and are the number of
individual graphs and the number of iterations needed for the
algorithm to converge, respectively. In contrast, since SC-ML
aims at finding a globally representative subspace without
modifying the individual ones, it needs to solve an eigenvalue
problem only once.

VII. CONCLUSION

In this paper, we provide a framework for analyzing infor-
mation provided by multi-layer graphs and for clustering ver-
tices of graphs in rich datasets. Our generic approach is based
on the transformation of information contained in the individual
graph layers into subspaces on the Grassmann manifold. The
estimation of a representative subspace can then be essentially
considered as the problem of finding a good summarization of
multiple subspaces using distance analysis on the Grassmann
manifold. The proposed framework can be applied to various
learning tasks where multiple subspace representations are in-
volved. Under appropriate and realistic assumptions, we show
that it leads to a novel clustering algorithm onmulti-layer graphs
that is competitive to the state-of-the-art techniques. Finally,
we mention the following research directions as interesting and
open problems. First, as the subspace representation inspired by
spectral clustering is not the only valid representation for the
graph information (alternatively we can consider eigenvectors
of the modularity matrix of the graph as suggested in [11], [12]),
an interesting problem is to find the most appropriate subspace
representation for the data available, either they are in the forms
of graphs or they are of more general forms. Second, we be-
lieve that better clustering performance can be achieved if spe-
cific prior knowledge on the data is available, in particular the
consistency of the information in the different graph layers and
their relative importances. These problems are however left for
future studies.
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