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Gaussian Processes on Graphs Via Spectral
Kernel Learning

Yin-Cong Zhi , Yin Cheng Ng , and Xiaowen Dong

Abstract—We propose a graph spectrum-based Gaussian pro-
cess for prediction of signals defined on nodes of the graph.
The model is designed to capture various graph signal structures
through a highly adaptive kernel that incorporates a flexible poly-
nomial function in the graph spectral domain. Unlike most existing
approaches, we propose to learn such a spectral kernel defined on
a discrete space. In addition, this kernel has the interpretability
of graph filtering achieved by a bespoke maximum likelihood
learning algorithm that enforces the positivity of the spectrum. We
demonstrate the interpretability of the model through synthetic
experiments from which we show various ground truth spectral
filters can be accurately recovered, and the adaptability translates
to improved predictive performances compared to the baselines on
real-world graph data of various characteristics.

Index Terms—Gaussian processes, graph signal prediction,
spectral kernel learning.

I. INTRODUCTION

GRAPHS are highly useful data structures that represent
relationships and interactions between entities. Such re-

lational structures are commonly observed in the real-world,
but can also be artificially constructed from data according to
heuristics. The graph structure can be exploited in conjunction
with other auxiliary data to build more powerful predictive
models. One particular class of models that can be enhanced
for graph data is Gaussian processes (GP). As a kernel-based
method, GPs can be adapted to incorporate non-Euclidean dis-
tance information through kernels derived on graphs. With the
kernel defined, the standard Bayesian inference machinery can
be directly applied to yield predictions, with the inherent benefit
of incorporating uncertainties.

Multi-output Gaussian processes (MOGP) are regression
models for vector-valued data. Given a set of input covariates
and the corresponding output vectors, the model makes vecto-
rial predictions given a novel input. In graph signal prediction
problems, each output signal can be viewed as a vector where
the dependency between elements of the signal is encoded in
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the graph structure. At the same time, the dependency between
different graph signals can be modeled using a typical kernel
on the input covariates (e.g., the squared exponential kernel).
This leads to the formulation of separable kernels for MOGP,
as is the case in co-regionalization model in [1], which makes
choosing the overall kernel function straightforward. The two
kernels can be designed separately and combined by means of
a Kronecker product. We refer to the kernel operating on the
inputs covariates as kernel on the input space, and the kernel
operating on the output signals as node-level kernel, where the
latter provides a measure of smoothness between data observed
on the nodes.

Smola et al. [2] have introduced the notion of kernel on graphs,
where kernel functions between nodes were derived from a
regularization perspective by solving for a reproducing kernel
hilbert space (RKHS). The resulting kernel is based on the graph
Laplacian, and this is closely related to graph signal processing,
which makes use of tools such as graph Fourier transform and
filtering [3], [4], [5]. One particular low-pass filter defined in [3],
commonly used to denoise graph signals, also assumes the form
of kernels on graphs. This was subsequently used in [6], [7] to
construct a GP model on graphs for predicting low frequency
signals. However, the filter as defined in [3], [6], [7] only has a
low-pass nature and modifications are required to adapt to band-
or high-pass signals. The same limitation also applies to other
existing GP models developed for graph-structured data such
as [8], where the relationship between the node observations
is defined a priori based on the assumption of low-frequency
characteristics. Models will need to make use of high frequency
information to better handle less smooth data such as in het-
erophilic graphs [9], [10]. Addressing this limitation requires a
different choice of kernels with a spectrum that better adapts to
the characteristics of the data.

Learning kernels in the spectral domain have been studied in
the continuous case such as [11], [12], [13], but the extension
of the approach to a discrete graph space has yet to be explored.
In this paper, we propose a novel MOGP model for graph-
structured data, which uses a kernel on the graph to measure
node-level relationships in the data. We explicitly relate this
kernel to a graph filter, which is used to obtain the target graph
signals according to our generative model. Importantly, the fre-
quency response of the filter (hence the spectrum of the kernel)
is learned by adapting to the data, thus making the resulting
MOGP flexible in capturing different signal characteristics.

Our model constitutes several unique contributions to the
literature: First, the model is designed to capture various graph
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signal structures by incorporating a flexible polynomial function
in the graph spectral domain, producing a highly adaptable
model. Second, the polynomial function is learned by maximiz-
ing the log-marginal likelihood while respecting a constraint to
enforce the positivity of the spectrum. The positivity constraint
allows for a meaningful interpretation of the learned models as
graph filters, giving the modelers insights on the characteristics
of the data. Finally, we demonstrate that our algorithm can
recover ground truth filters applied to synthetic data, and show
the adaptability of the model on real-world data with different
spectral characteristics.

II. BACKGROUND

A. Gaussian Processes

A GP f is defined as

f(x) ∼ GP (m(x),K(x,x′)) (1)

for any inputs x,x′, wherem(·) is the mean function, andK(·, ·)
is the symmetric and positive definite kernel function. The mean
function is often taken to be the zero function, while for training
inputs X = (x1, . . . ,xN ) and outputs y = (y1, . . . , yN ), and a
given novel point (x∗, y∗), the GP forms the prior of a Bayesian
regression model

P

(
y
y∗

)
∼ N

(
0,

[
K K∗
K�

∗ K∗∗

])
(2)

such that Kij = K(xi,xj), K∗ = (K(x1,x∗), . . . ,
K(xN ,x∗)� ∈ R

N and K∗∗ = K(x∗, x∗). To make predictions
we condition on the training data to obtain the posterior

P(y∗|y) ∼ N (K�
∗ K

−1y , K∗∗ −K�
∗ K

−1K∗). (3)

The distribution mean can be used as a point prediction while
the covariance allows the construction of confidence intervals to
provide a level of uncertainty. We will refer readers to [14] for
a more thorough tutorial of the GP models.

B. Kernels for Vector Valued Functions

The tasks of predicting vectorial values will require the model
f to be a multi-output function. Kernels for this type of functions
are formulated by the product of two kernels, one for the inputs
and the other on the elements of f . This is described as separable
kernels in [1], where between any two inputs the function f will
have the following form

Cov(f(x), f(x′)) = K(x,x′)H (4)

where H is of size M ×M such that M is the dimension of the
output of f . This matrix operates on the output elements of f
and thus it is referred to as the kernel on the output space. When
applied to X = (x1, . . . ,xN )�, the matrix can be written in a
compact manner through a Kronecker product

K(X,X) = K⊗H (5)

with Kij = K(xi,xj). K is therefore referred to as the kernel
on the input space.

C. Spectral Filtering on Graphs

Let G be a graph with vertex set V such that |V | = M , we
define the notion of spectral filtering on graphs from the graph
Laplacian [15] defined as

L = D−A, (6)

where A is the adjacency matrix and D is the diagonal degree
matrix. Assuming that G is undirected, the Laplacian admits
the eigen-decomposition L = UΛU� where U contains the
eigenvectors and Λ is the diagonal matrix of eigenvalues. A
signal y ∈ R

M on G can be viewed as a function

y : V → R, (7)

and the graph Fourier transform of the signal, defined as U�y
in [3], computes the spectrum of y to produce the amplitude of
each eigenvector (frequency) component. Filtering then involves
a non-negative function g(Λ) in the graph spectral domain that
may reduce or amplify each component leading to a filtered
signal

Ug(Λ)U�y. (8)

The term Ug(Λ)U� is therefore referred to as a filtering func-
tion on the graph characterized by g.

D. Kernels and Regularization on Graphs

A property of kernel functions is provided by Bochner’s
theorem [16], which states that positive definite functions have
non-negative measures as the spectrum in the spectral domain.
On the discrete graph space, kernels are derived by the graph
Fourier transform and a non-negative transfer function. In this
section we briefly summarize the formulation of kernels on
graphs described in [2].

The graph Laplacian is the discrete counterpart of the Laplace
operator, therefore it has the property of quantifying the smooth-
ness of a function on the graph [17], [18]. When finding a
smooth model f for graph signal y, it is common to solve for
the following regularized problem

min
f

||f − y||22 +R(||f ||2), (9)

where we have the regularization function R on f . In the graph
case, R(||f ||2) = f�Pf where P often takes the form of a
penalty function of the graph Laplacian, i.e. P = r(L), that
penalizes specific graph spectral components of f . The kernel
function is then computed by K = P−1 in order for (9) to have
a representation in a RKHS, with Moore-Penrose pseudoinverse
used if P is singular [19]. The solution of (9) then exists by the
Representer Theorem [20]. More generally, kernels on graphs
assume the following form

M∑
i=1

r−1(λi)viv
�
i = Ur−1(Λ)U� = r−1(L) (10)

for diagonal matrix Λ containing the eigenvalues (i.e., {λi}Mi=1)
of L in increasing order and U containing the corresponding
eigenvectors (i.e., {vi}Mi=1). Furthermore, this definition is flex-
ible in that different variations of the Laplacian such as the
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Fig. 1. Illustration of graph data construction into input-output pairs for a GP.
Each column in blue is a graph signal that indicates the value on the nodes, with
a corresponding column in red of input covariate below.

normalized Laplacian

L̃ = D− 1
2LD− 1

2 (11)

and scaled Laplacian

LS =
1

λmax(L)
L (12)

will both lead to valid kernels.

III. PROPOSED MODEL

A. Gaussian Processes for Graph Signals

Consider data pairs of the form {xn,yn}Nn=1 where each
output yn ∈ R

M is a signals on a graph G of M nodes indexed
by some input covariates xn ∈ R

C . One way to generate data of
this form is to consider G as a sub-graph of a bigger graph Gfull,
and the values on the remaining nodes Gfull\G are used as xn.
For example, in the context of predicting traffic flow in a city, the
network between the junctions will beGfull and we use the values
at a fixed number of junctions as inputxn to predict the flow at the
rest of the nodes used as the outputs yn. When predicting a new
signal, this makes the assumption that if the traffic flows on two
different days are similar on the input junctions then they will be
similar at the output junctions. How each junction in yn behaves
is then modelled by the sub-graph containing only the output
junctions (which is G). Fig. 1 visualizes these input-output pairs
with associated kernel matrices introduced later this section.
Other setups are also possible depending on the problem. We
will refer readers to our experiments in Section VI-C2 for details.

From a generative model perspective, we assume each yn is
a realization of a filtering system Bf(xn) where B ∈ R

M×M is
the graph filter, and f(·) ∈ R

M is a simple MOGP function with
independent components evaluated at xn - the elements in f are
assumed to be independent GPs with identical kernel functionK
on any two inputsxn andx′

n. This leads to Cov(f(xn), f(x
′
n)) =

K(xn,x
′
n)IM , where IM ∈ R

M×M is the identity matrix. Graph
information in yn is therefore induced by the filtering matrix B,
giving rise to the following model

yn = Bf(xn) + εn, (13)

where εn ∼ N (0, σ2
ε IM ). The model in (13) is generic in the

sense that, depending on the design of B, we can incorporate
any characteristics of the signal yn in the graph spectral domain.

The prior covariance between two signals yn and
ym can be computed as Cov(yn,ym) = E(yny

�
m) =

BE(f(xn)f(xm)�)B� = K(xn,xm)BB�, and if we let
ỹ = vec([y1, . . . ,yN ]), the covariance of the full data becomes

Cov(ỹ) = K⊗BB� + σ2
ε IMN , (14)

where Knm = K(xn,xm), and ⊗ denotes the Kronecker prod-
uct. The BB� term can be thought of as a kernel between
elements of each outputs yn, while K operates on the signals’
corresponding inputs xn and xm. Generally, K will be referred
to as the input kernel, while we will call BB� the node-level
kernel.

We now state our main model for prediction of graph signals.
Given the GP prior on f(x), the vectorized training signals ỹ
and test signal y∗ ∈ R

M with given input x∗ follow the joint
distribution

P

([
ỹ
y∗

])
∼ N

(
0 ,

[
K⊗BB� K∗ ⊗BB�

K�
∗ ⊗BB� K∗∗ ⊗BB�

]

+ σ2
ε IMN

)
, (15)

where K∗ = (K(x1,x∗), . . . ,K(xN ,x∗)� ∈ R
N and K∗∗ =

K(x∗,x∗). For the inputs, the kernelK can be any existing kernel
such as the squared exponential or Matérn kernel. For node-level,
we consider B as a kernel on graphs that is based on the scaled
graph Laplacian of (12), and follows the general form in (10) as
B =

∑M
i=1 g(λi)viv

�
i = g(LS). From this point onwards, λi

and vi correspond to the eigenvalues and eigenvectors of LS ,
and g(λ) is the function in the scaled graph spectral domain.

It is worth noting that in choosing a non-negative g, the
resulting B gives us two different interpretations of the model.
From a kernel perspective BB� forms the node-level kernel
to measure similarities on the elements of each signal yi, and
this corresponds to the kernel on the output space from separable
kernels defined in [1]. From the filtering perspective, we identify
that all kernels on graphs defined in [2] are of low-pass nature,
and suggest that this is restrictive and less suitable to data that
does not exhibit smoothness or a low-frequency characteristic.
In order for the model to become more adaptive, we propose to
use a more flexible spectral function so that it can pick up on the
likes of band- or high-pass data profiles.

B. Graph Spectral Kernel Learning

To achieve an increase in model flexibility, we use a polyno-
mial for the function g, while we give the model the ability to
adapt to the data by learning the polynomial shape as part of the
training step. We parameterize g as follows

g(λ) = β0 + β1λ + · · ·+ βPλP ⇒ B =
P∑
i=0

βiL
i
S , (16)

with coefficients β0, . . . , βP learned via log-marginal likelihood
maximization. Learning of the coefficients is done by optimizing
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them as hyperparameters which we will go into more details in
Section IV.

There are a number of advantages of our model setup, in
particular:
� The kernel on graphs is learned rather than chosen a priori,

and the function that characterizes the kernel is a flexible
polynomial making the model highly adaptable to data with
different spectral properties. Moreover, existing choices
provided in [2] all consist of functions that have polynomial
expansions. Hence our model provides suitable approxima-
tions if data came from a more complex generative model.

� The application of the P th power of the Laplacian corre-
sponds to filtering restricted to theP -hop neighbourhood of
nodes. Our polynomial is finite, thus the user can control the
localization in the kernel, a property that is often desirable
in graph-based models such as the graph convolutional
network (GCN) [21].

� The scaled Laplacian ensures the eigenvalues lie in the
full range [0,1] regardless of the graph. Other alternatives
such as the normalized Laplacian L̃ = D− 1

2LD− 1
2 often

found in the literature of graph signal processing [3] bounds
the eigenvalues to be within [0,2] and, by subtracting the
identity matrix, shifts the eigenvalues to the range [−1, 1].
However, the eigenvalues of L̃ are often not spread over
the full domain [−1, 1], thus the polynomial is only defined
partially over this range.

As a remark, a suitable choice for the degree P is based on a
balance between the number of hyperparameters and flexibility.
A higher degree means more hyperparameters to optimize but
the polynomial can fit towards a more complex shape. While
we want g to have enough curvature, the degree should be kept
small to ensure g is smooth and easy to learn. Practically we
found a choice of P = 3 often leads to good performances, and
this is consistent with the observations that have been made in
the context of graph neural networks (e.g., [21] suggested that
information propagation on graphs might not benefit from going
beyond the 3-hop neighbourhood).

In addition, our setting is a more generalized version of that
in Section II.B of [6], where the terms in the regularizer Jp can
in theory be learned, but it does not have the advantage of the
proposed polynomial methods: first, it does not correspond to
a localised filtering; second, it has a high learning complexity,
which can reduce the regularizing effect of the norm and as a
result makes it more prone to over-fitting.

C. Equivalence to the Co-Regionalization Model

The prior model in (15) follows the form of separable kernels
similar to the co-regionalization model in the literature of kernels
for vector-valued functions [1]. Our derivation specifies the
kernel on the output space more directly, but in this section we
show how we can arrive at our model from the co-regionalization
setup. Starting with the model yn = f(xn) + εn for a GP func-
tion f(xn) ∈ R

M , under the setup of intrinsic co-regionalization
model (ICM) [1], we have

f(xn) =

Q∑
i=1

biu
i(xn) (17)

where u1(x), . . . , uQ(x) are i.i.d. variables following
GP(0,K(x,x′)) and bi ∈ R

M for all i. This leads to a
model whose covariance is

Cov(f(xn), f(xm)) =

Q∑
i=1

Q∑
j=1

bib
�
j E(u

i(xn)u
j(xm))

=

Q∑
i=1

bib
�
i E(u

i(xn)u
i(xm))

= K(xn,xm)

Q∑
i=1

bib
�
i . (18)

Denoting B = (b1, . . . ,bQ), we can see that BB� =∑Q
i=1 bib

�
i , thus the covariance can be written as

Cov(f(xn), f(xm)) = K(xn,xm)BB�. When we have
N input-output data pairs, the full covariance of
f̃ = vec(f(x1), . . . , f(xN )) will follow the separable form
Cov(f̃) = K⊗BB�. Since a kernel on graphs is usually a
square matrix, our graph GP model is equivalent to ICM if
Q = M and the vectors bi combine into a matrix that takes the
general form of (10).

As an additional note, the covariance we derive is depen-
dent on the manner in which f(x1), . . . , f(xN ) are stacked
into a single vector (the covariance of ỹ is then formed
from the covariance of f plus a noise term). If we take f̃ =
vec((f(x1), . . . , f(xN ))�) instead, we will get the covariance
BB� ⊗K. These are simply different ways to represent the
prior covariance, and BB� and K still correspond to the input
and node-level kernels, respectively.

IV. OPTIMIZING GP LOG-MARGINAL LIKELIHOOD

The polynomial coefficients βi in the kernel on graphs are
found by maximizing the log-marginal likelihood on a training
set using gradient optimization. Let β = (β0, . . . , βP )

�, and let
Ω contain β and all other hyperparameters, the GP log-marginal
likelihood is

L(Ω) = logP(ỹ|Ω)

= −1

2
log |ΣΩ| − 1

2
ỹ�Σ−1

Ω ỹ − NM

2
log(2π), (19)

whereΣΩ is the covariance of (14). As described in (13), the term
B = g(LS) also acts as a filter on the GP prior to incorporate
information from the graph structure. In order forB to be a valid
filter, we need to constrain B to be positive semi-definite (PSD);
in other words, we need to have g(λ) ≥ 0 for all eigenvalues [1],
[3]. Just optimizing β alone in an unconstrained fashion will not
guarantee this, thus we utilize Lagrange multipliers to combine
constraints with our main objective function.

Assuming all hyperparameters are fixed (details of optimizing
for hyperparameters are presented in the experiments section),
our constrained optimization problem for finding the optimal
kernel on graphs is the following

min
β

− L(β)

subject to −Bvβ ≤ 0, (20)
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Algorithm 1: Constrained Optimization of Polynomial Co-
efficients for GP Log-Marginal Likelihood.

1: Input: Initialization of β and L′

2: Solve for minβ L(β, Sm(L′)) using gradient descent:
βi → βi − γβ

∂L
∂βi

(β, Sm(L′)) for i = 0, . . . , P

3: Update L′: L′ → L′ + γL ∂L
∂L′ (β, Sm(L′))

4: Repeat 2 and 3 until L converges
5: Output: β

where we express the log-marginal likelihood l as a function ofβ
andBv ∈ R

M×(P+1) is the Vandermonde matrix of eigenvalues
of the Laplacian with the following form

Bv =

⎛
⎜⎜⎜⎜⎝

1 λ1 λ2
1 . . . λP

1

1 λ2 λ2
2 . . . λP

2

...
...

...
. . .

...

1 λM λ2
M . . . λP

M

⎞
⎟⎟⎟⎟⎠. (21)

It is easy to see that to have g(λ) ≥ 0 for all eigenvalues is
equivalent to setting −Bvβ ≤ 0. Hence, our objective function
now becomes

L(β,L) = −L(β) + L�(−Bvβ) = −L(β)− L�Bvβ (22)

whereL ∈ R
M is a vector of Lagrange multipliers. The solution

to this problem is guided by the Karush–Kuhn–Tucker (KKT)
conditions [22], which specifies that β∗ is the optimal solution
to (20) if (β∗,L) is the solution to

min
β

max
L≥0

L(β,L). (23)

Due to the non-convexity of the log-likelihood, the Lagrangian
is non-convex with respect to both variables and we instead solve
for the dual problem

max
L≥0

min
β

L(β,L) (24)

as this makes the function concave with respect to L [23], [24]
leading to an easier problem overall.

We find the solution by alternatively updating β and L de-
scribed in Algorithm 1. Here, we place a softplus function on L
defined as

Sm(L′) = log(1 + eL
′
) (25)

to keep the Lagrange multipliers positive during the optimiza-
tion.

Due to the non-convexity of (24), Algorithm 1 may only
find a local optimum depending on the initialization. A simple
strategy to obtain a sensible initialization is to maximize for the
log-marginal likelihood (problem (20) without the constraint
on β), with initialization chosen from a small set of values
that lead to the highest log-marginal likelihood. The solution to
this unconstrained optimization is then used as the initialization
for β in Algorithm 1. Compared to β, the algorithm is much
more stable with respect to the initialization of the log-Lagrange
multiplier Sm(L), and we found using either a fixed or random
initialization worked well in practice.

A. Scalability

By exploiting the Kronecker product structure of the covari-
ance matrix, inversion of (14) needed for Algorithm 1 and GP
inference can be reduced to a runtime of O(N3 +M3) and
thus avoiding the expensive O(N3 M3). We manipulate the
covariance matrix in a similar fashion to [25], first re-writing
it as follows

Σ = BB� ⊗K+ σ2
ε I

= (I⊗K)(BB� ⊗ I) + σ2
ε (BB� ⊗ I)−1BB� ⊗ I

=
[
I⊗K+ σ2

ε ((BB�)−1 ⊗ I)
]
BB� ⊗ I

=
[
σ2
ε (BB�)−1 ⊕K

]
BB� ⊗ I (26)

for Kronecker sum ⊕. Next, take the eigen-decomposition
K = UKΛKU�

K and BB� = UBΛBU
�
B , the above equation

becomes

Σ =
[
σ2
εUBΛ

−1
B U�

B ⊕UKΛKU�
K

]
UBΛBU

�
B ⊗ I

= σ2
ε (UB ⊗UK)(Λ−1

B ⊕ΛK)

× (U�
B ⊗U�

K)(UBΛBU
�
B ⊗ I). (27)

Each bracket can then be individually inverted by utilizing the
orthogonality of the eigenvector matrices and the full matrix
inverse becomes

Σ−1 =
1

σ2
ε

(UBΛ
−1
B U�

B ⊗ I)(UB ⊗UK)

× (ΛB ⊕Λ−1
K )(U�

B ⊗U�
K). (28)

Computational complexity is therefore dominated by the two
eigen-decomposition of matrices of size N ×N and M ×M
giving an overall cost of O(N3 +M3).

Potential further reduction can come in the form of graph
coarsening to reduce signals’ dimension M while preserving
the spectral characteristics [26], as well as sparse GP variational
inference [27]. We will leave these as future work.

V. RELATED WORK

Learning on graph-structured data has been studied from both
machine learning and signal processing perspectives such as [3],
[4], [28], [29]. Our model is unique in that it makes use of tools
from both fields to achieve interpretations of filtering and kernel
learning in the graph spectral domain.

Laplacian-based functions in graph signal processing such as
graph filters have been applied to data with certain smoothness
assumptions, thus transforming data into one of low-, band-
or high-pass profiles [3], [4]. In contrast, our algorithm learns
the filter based on the data to exempt the need for choosing
the filter profile a priori. This extends the non-probabilistic
approach in [30], [31] with the added benefit of producing a
measure of uncertainty. From the kernel methods perspective,
our model is based on Smola et al. [2] where kernels are derived
by regularization; the dependence on graphs is achieved by using
the graph Laplacian in place of the Laplace operator, thus graph
smoothness is enforced on the function based on the connectivity

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 28,2023 at 11:20:36 UTC from IEEE Xplore.  Restrictions apply. 



ZHI et al.: GAUSSIAN PROCESSES ON GRAPHS VIA SPECTRAL KERNEL LEARNING 309

of the graph. The same concept is used in [32] to derive the graph
equivalence of the Matern class of kernels. We however take the
more flexible form of these graph Laplacian based kernels by
using a polynomial and adapting the shape to the data for better
performances.

The node-level kernel we have defined also bears similarity to
spectral designs of graph neural networks (GNNs) such as [21],
[33], [34], [35]. The work in [33] proposes to learn a free-form
graph filter, which does not guarantee its spatial localization.
The models in [21], [34] and more recently [35], [36] do of-
fer such localization property by controlling the degree of the
polynomial that is modelling the filter, while the use of larger
neighbourhoods while avoiding over-smoothing on graphs was
achieved through various additional tools such as [37], [38],
[39]. However, as neural network models they typically require a
large amount of training data, while being a Bayesian model, the
predictions our model makes also provides a level of uncertainty,
a property the neural network based models lack.

In previous works relating to GP on graphs, our model re-
sembles that of [6], but with the distinction that the kernel on
the output space is learned instead of a chosen low-pass filter.
More importantly, Algorithm 1 demonstrates that spectral kernel
learning is possible on a discrete graph space. Previously this
concept has only been applied to learning continuous kernels
such as [11], and if one wishes to apply a similar concept on
graphs the method will not translate trivially.

Other graph-based GP models are predominantly applied to
scalar output (instead of vector output or multiple output as
called in the GP literature) problems. The way the graph is
utilized follows a similar framework to graph neural network
models such as [21], with one representative approach being
local averaging of neighbourhood information for node level
classification [8]. More complicated aggregation functions have
since been applied as a linear function to the GP covariance
in [40], [41], [42]. Although these models may be extended to
vector outputs, they generally involve averaging or smoothing
of the data, and the resulting effect is similar to a low-pass
filter on the graph. Hence, these models are likely to perform
less well on data that are not customarily smooth. Our model
overcomes this issue through spectral learning of the kernel on
graphs to adapt to the data more effectively. More recently, the
use of spectral graph wavelets are proposed in [43] to capture
multi-scale information, while models have expanded to using
deep GPs [44] to effectively predict vectorial graph signals, but
this relies more on the inference step and does not learn a kernel
on the graph. Finally, the convolutional patch-based technique
in [45] has also been extended to graph data [46]. This method
can be viewed as an extension to the approach in [8], but it is
still based on pre-defined kernel functions in the graph domain.

VI. EXPERIMENTS

In this section, we first present results on synthetic experi-
ments to demonstrate our algorithm’s ability to recover ground
truth filter shapes. We then apply our method to several real-
world datasets that exhibit different spectral characteristics to
show the adaptability of our model.

In all experiments, the GP prior will be in the form of (15)
and we consider baseline GP models from [6], [8], and kernels
on graphs defined in [2] in (17)–(20):
� Standard GP: B = I
� Global filtering: B = (I+ αL)−1 [6]
� Local averaging:B = (I+ αD)−1(I+ αA) [8] where we

also added a weighting parameter α.
� Graph Laplacian regularization: BB� = L† (pseudo-

inverse of the Laplacian) [1]
� Regularized Laplacian: BB� = (I+ αL̃)−1 [2]
� Diffusion: BB� = exp{(−α/2)L̃} [2]
� p-step random walk: BB� = (αI− L̃)p [2]
� Cosine: BB� = cos(L̃π/4) [2]
The kernel on the input space will be the squared exponential

Kij = σ2
w exp{− 1

2 l ||xi − xj ||22} applied to inputs xn and x′
n.

The set of hyperparameters is Ω = {α, l, σ2
w, σ

2
ε }, and these

will be found in conjunction with the model parameters β
in our polynomial. The hyperparameters in the baselines are
found by maximizing the log-marginal likelihoods by direct
gradient ascent in the same manner as our models. The predictive
performance will be evaluated by the posterior log-likelihoods
logP(y∗|μ∗,Σ∗) for test signals y∗, with GP posterior meaning
μ∗ and covariance Σ∗ defined in (3). To provide a measure
of robustness, the test set is split into 10 subsets for which
we compute the batch posterior log-likelihoods on each subset,
and we report the mean test log-likelihood and standard error,
μ({l1, . . . , l10}) and std({l1, . . . , l10})/

√
10 respectively.

We would also like to investigate the effect of the constraint
on learning performance. To this end, we include our model
where we only solve the problem of (20) without the constraint.
In the real-world experiments, we include this for polynomials
of degrees 3 and 4, where the resulting spectral functions are
generally not always valid graph filtering functions.

We provide the code for producing the results in this paper
in the following: https://github.com/yincong-zhi/Polynomial_
Kernel_Learning.

A. Initialization Strategy

Due to the highly non-convex structure of the GP log-marginal
likelihood, optimizing hyperparameters is heavily reliant on the
initializations. Here, we propose a procedure of steps to get the
best and most stable solution before passing it to Algorithm 1.

The model parameters β are optimized with the hyperparam-
eters giving the set of parameters to learn asΩ = {β, l, σ2

w, σ
2
ε }.

Based on a training set of {y1, . . . ,yN}, we initialize

l = Mean({||y1||22, . . . , ||yN ||22}) (29)

σ2
w = Var([y1; . . . ;yN )] (30)

with σ2
w is set as the variance of the flattened vector from the

response data matrix [y1; . . . ;yN ]. We set the other parameters
by empirically testing a small range of values, using the com-
bination that leads to the highest log-marginal likelihood as the
initialization. Our procedure is as follows:

1) Find the optimal β and σ2
ε that maximize the log-

marginal likelihood by a grid search. We use σ2
ε ∈
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Fig. 2. Spectral kernel learning on synthetic Sensor graphs. We show the synthetic graph Fourier coefficients in (a) and (d) (each colour represents a signal), and
the scaled polynomials learned with their log-marginal likelihoods, for data with low- (first row) and band-pass (second row) spectra. Ground truth polynomials
are θ = (1,−1.5, 1.52/2,−1.53/6, 1.54/24) for the low-pass (first 5 terms of e−1.5), and θ = (0, 1, 4, 1,−6) for the band-pass. Figures (b) and (c) compare
the degrees of the polynomial, (c) and (f) compare the SNR noise levels.

{ 1
10σ

2
w,

1
5σ

2
w}, while for each elements βi we use βi ∈

{−10,−9, . . . , 10}.
2) Use the best combinations from grid search as initializa-

tions (along with initial l and σ2
w) for the unconstrained

problem, i.e., maximizing the log-marginal likelihood
with respect to {β, l, σ2

ε } by gradient ascent (σ2
w is in-

directly optimized through β.
3) Use the solution found in step 2 as the initializations to

Algorithm 1 and solve for β, while keeping all other
hyperparameters fixed.

As a final note, we follow a general rule for selecting the
learning rate for each parameter in the gradient optimization as:
choosing the largest r ∈ Z such that γp = 10r for hyperparame-
ter p, that leads to a consistent increase/decrease in the objective
function. This will require some tuning from the user beforehand
in order to ensure the algorithm converges in a reasonable time.

B. Synthetic Experiments

1) Synthetic Filter Reconstruction: For the first experiment
we use synthetic signals which are generated following (13)
using aBwith a known polynomial chosen beforehand. The aim
is to demonstrate that our model is able to recover the polynomial
shapes of the ground truth filters through optimizing the GP
log-marginal likelihood.

We set the underlying graph to be a 30-node Sensor graph from
the PyGSP library [47]. The Sensor graph has an even spread of
eigenvalues which helps the visualization of the polynomial. Sig-
nals are first sampled independently as y′

1,y
′
2, · · · ∼ N (0, I).

Using the scaled graph LaplacianLS , we denote the ground truth
filter as θ(LS) with coefficients (θ0, . . . , θQ). Each synthetic

signal is then set as yn = θ(LS)y
′
n and we corrupt it with noise

at a signal-to-noise ratio (SNR) of 10 dB. As the signals are sam-
pled independently, the kernel function is BB� ⊗ σ2

wI+ σ2
ε I

where σ2
w is set to signal variance. Input covariates xi are not

required in this context as the input kernel matrix is already
defined as K = I. We denote the polynomials learned from our
algorithm as gd for degree d which has d+ 1 coefficients. If
the gd(λ) goes above 1 for any λ ∈ [0, 1], we can scale it down
as g′d(λ) =

1
cgd(λ) for c = maxx∈[0,1] gd(x). The resulting g′d

will be in the range [0,1] making it easier to compare different
filters, and the c term can be absorbed into the variance of
the full kernel function, alleviating the need to optimize for
σ2
w.
In Fig. 2, we show the results from learning on synthetic data

with low- and band-pass spectrum (a high-pass spectrum will
simply have the reversed shape of the low-pass so we will not
present here due to the similarity). In Fig. 2(a) and (d) we plot
the graph Fourier coefficients U�y of the generated signals
(using the ground truth filters). The learned polynomials with
different degrees can be found in Fig. 2(b) and (e) along with
the ground truth polynomial θ(·). Visually we can see that using
a polynomial with d = 2 and 3 respectively capture the ground
truth of low- and high-pass filters well enough that higher degree
no longer offers clear improvement. This is also evident in the
log-marginal likelihood, where we see only little improvement
for d > 2 for low-pass and d > 3 for band-pass spectra.

We next study the effect of noise on learning the spectrum,
using a degree 2 polynomial for low-pass and degree 3 for band-
pass. Fig. 2(c) and (f) show the spectrum learned for various
SNRs, where we can see visually that our model recovers the
true spectrum well for SNR 10 dB or higher. As expected, the
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Fig. 3. Synthetic filter reconstruction on a BA graph. (a) and (c) are signal graph Fourier coefficients, (b) and (d) are the recovered polynomial filters of degree
1–4. Ground truth polynomials are θ = (1,−1.5, 1.52/2,−1.53/6, 1.54/24) for the low-pass (first 5 terms of e−1.5) for (a) and (b), and θ = (0, 1, 4, 1,−6) for
the band-pass (c) and (d).

corresponding log-marginal likelihood steadily decrease as SNR
decreases when data becomes noisier.

2) Synthetic Filter Reconstruction Using Barabás-albert
Random Graph: To show that our algorithm can generalize
to different graphs, we also try recovering graph filters on a
Barabási-Albert (BA) random graph in place of the Sensor graph.
Generally, BA graphs exhibit characteristics closer to real world
behaviours. We sample a graph of 30 nodes generated from an
initial 10 nodes, and each node added is randomly connected to
5 existing nodes. Filter recovery follows the same procedure as
the previous section. Fig. 3 show the low- and band-pass filter
shapes are still recovered well using Algorithm 1.

3) Synthetic Predictive Signals: The main advantage of our
spectral kernel learning approach is that we no longer need to
worry if the kernel suits the profile of the data. As the models
we considered for baselines have low-pass designs, they will not
suit the likes of band- and high-pass data. In the previous section,
we used K = I due to the signals being sampled independently.
Although this allowed us to see the full effect of the node-level
kernel on the log-marginal likelihood, it cannot be used for
inference as predictions from the posterior will be the same as
the prior. We now carry out a similar synthetic experiment as that
in [7] which defines a non-identity K. This means we can com-
pute the GP posteriors which are the predictive performances of
GP models, therefore demonstrating that spectral kernel learning
also translates into better predictive performances, especially on
band- and high- pass data.

We start by sampling a positive definite matrix C from the
inverse Wishart distribution with identity hyperparameter. The
size of C is of N ×N where N corresponds to the number of
signals, here N = 30. We then draw M samples from N (0,C)
to create our data matrix Δ of size M ×N . Each column in Δ is
of dimension M , forming a signal on the graph. We use a Sensor
graph again with M = 25 nodes with Laplacian LS . Next, let
ri denote the ith row of Δ, we filter this signal by

yi = θ(LS)ri. (31)

We test on 4 different ground truths θ, this includes firstly
the same low- and band-pass polynomials as the previ-
ous section, as well as the addition of a high-pass θ =
(0, 1.5, 1.52/2, 1.523/6, 1.54/24) (first 5 terms of e1.5 − 1), and
finally we also test on θ(L) = (I+ αL)−1 for α = 1 which is
also low-pass but matches the generative model of [6]. The prior

TABLE I
SYNTHETIC TEST LOG-LIKELIHOODS (STANDARD ERROR), HIGHER THE

BETTER. LOW, BAND, HIGH ARE PRE-CHOSEN GROUND TRUTH PROFILES,
WHILE FILTERING IS SET TO (I+ L)−1 TO MATCH THE MODEL OF [6]

covariance between signals yi and yj will be CijBB�. Hence
C can be used as the covariance matrix on the input space and
input covariates xi are again not required. The full kernel of the
GP becomes

C⊗BB� + σ2
ε I. (32)

After running Algorithm 1 of log-marginal likelihood maximiza-
tion, we compute the posterior by conditioning on the first 20 sig-
nalsP(y∗|y1, . . . ,y20), to get the posterior log-likelihood on the
remaining test signals. We present these performances against
the baselines in Table I, with the Filtering column corresponding
to θ(L) = (I+ L)−1. Where there are significant improvements
are on band- and high-pass data, which demonstrates our model’s
ability to capture the higher frequency elements in the data, on
low-pass signals the baseline profiles now match the data, lead-
ing to a number of models producing similar test log-likelihoods
to that of the polynomials. The difference is expectedly the
smallest between the polynomials and global filtering [6] on
the Filtering ground truth. Overall, using a polynomial still
offers marginal improvements on low-pass data, but is the most
advantageous when there are higher frequency elements.

From the two synthetic experiments, we can conclude that a
degree 1 polynomial can be too restrictive as we are fitting the
spectrum into a straight line. Thus, when applied to real world
data, we will only consider a lowest degree of 2 as this will
ensure a level of curvature in the filter we learn.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 28,2023 at 11:20:36 UTC from IEEE Xplore.  Restrictions apply. 



312 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 9, 2023

Fig. 4. (a)–(c) Real world data magnitude of graph Fourier transform coefficients of the training signals |U�y|. (d)–(f) Polynomial filters learned on the
corresponding datasets (on the larger training set). The polynomials generally picked up non-low-pass elements, leading to the predictions in Fig. 5 varying in a
more similar manner to the test signals.

TABLE II
REAL WORLD TEST LOG-LIKELIHOODS (STANDARD ERROR), HIGHER THE BETTER

C. Real World Data

In real world experiments, the graph may not always be
available and sometimes needs to be constructed. We will detail
how the graph is constructed in each experiment, with the re-
quirement for the graph to be connected and not having multiple
components. This is due to the fact that each component may
have different spectral profiles, while we only learn a single filter.
In the case graphs have more than one component, it would be
more suitable to use multiple GPs.

1) fMRI Dataset: In the first real-world experiment we con-
sider data from functional magnetic resonance imaging (fMRI)
where an existing graph of 4465 nodes corresponds to different
voxels of the cerebellum region in the brain (we refer to [6], [48]
for more details on graph construction and signal extraction).
A graph signal is the blood-oxygen-level-dependent (BOLD)
Signal observed on the voxels. Due to the size of the full

graph, we use a small subset of nodes. To achieve a connected
sub-graph, we first sample 500 nodes randomly and pick the
largest component, which gives us a Gfull of size 37. We then
take the readings on the first 10 nodes as xn along with the
corresponding outcome signals yn on the remaining 27 nodes
(yn ∈ R

27) which form the underlying graph on the outcome
signals. The dataset contains 292 signals for which we train on a
sample of up to 42 signals to learn the hyperparameters, we then
compute the posterior to predict the remaining 250 test signals.
The model’s polynomial filters are presented in Fig. 4(d) while
the GFT coefficients are displayed in Fig. 4(a) to show how the
polynomials resembled the data. The posterior log-likelihoods
are presented in the first two columns of Table II, where we see
our polynomial learning was significantly better than any of the
baseline models. The polynomial results did have slightly higher
standard error, which may be due to the model not consistently
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Fig. 5. Test signals zt from Weather dataset (a) z�t Lzt = 19.84 & (f) z�t Lzt = 36.35; GP predictions from degree 3 polynomial zp (b) z�pLzp = 16.28 (g)

z�pLzp = 29.56 (d) and (i); from a low-pass of [6] zl (c) z�l Lzl = 6.69, (h) z�l Lzl = 8.06, (e) & (j) representing the low-pass nature of all baselines. The
difference in graph smoothness between the test signals and the predictions are bigger in the low-pass, showing that the model over-smooths compared to the degree
3 polynomial, while the standard deviations show that our model is also far more certain in the predictions.

producing equally high likelihoods for every test signal, but
all polynomials produced higher test log-likelihoods than all
baselines. The spectrum of the data has a relatively smooth
shape as shown in Fig. 4(a) and so a low degree polynomial
was able to capture the spectrum well and using a higher de-
gree has little improvements on the performance. Our adaptive
approach to training the GP resulted in much higher posterior
log-likelihoods, indicating that we get a prediction with much
higher certainty. In our next experiment, we also visualize the
improved certainty that our model predicts with.

2) Weather Dataset: We now consider the temperature mea-
surement in 45 cities in Sweden available from SMHI [49].
Using the cities’ longitude and latitude, we construct a k-nearest
neighbour graph fork = 10using the function from PyGSP [47].
For this dataset, we perform the task of next-day prediction,
where each xn ∈ R

45 is the temperature signal on day n, and
the corresponding yn ∈ R

45 is the temperature signal on day
n+ 1. The weather dataset is the smoother of the examples we
consider, but some minor high frequency elements can still be
observed in Fig. 4(b). We have a total of 90 input-output pairs,
and we randomly sample 30 signal pairs (xn,yn) for training
and hyperparameters learning, and predict the signals on the
other 60 pairs divided into 10 subsets to give us a mean and
standard error in the same way in the previous dataset. The
results are presented in Table II middle two columns and the
polynomial filters are shown in Fig. 4(e), where again, we can
see the significant difference between the polynomial models
and the baselines. Furthermore, by doing next-day prediction,
our signals are on the whole graph, allowing us to visualize
them in Fig. 5. Here, we compared the predictions of a de-
gree 3 polynomial, and that of [6] which represents a typical
low-pass filter, something all baseline models have in common.
We also reported the graph smoothness of each signal in the
figure, defined as z�Lz, and generally we would want the graph
smoothness of the prediction to be similar to that of the test
signal. We can conclude from Fig. 5 that our model is superior
in terms of both the prediction and uncertainty: visually the

polynomial predictions better resembled the ground truth due to
the small amount of high-pass picked up by the polynomial. This
is also reflected in the predictive mean having a level of graph
smoothness more similar to the test signals, while the graph
smoothness from the low-pass is much smaller implying its
predictions are over-smoothed. The standard deviations are also
much lower from the polynomials meaning our model predicts
with much more certainty, this is one of the main reasons the
polynomial log-likelihoods are much higher.

3) Uber Dataset: The final dataset is Uber rides in New York
City for the month of September 2014. The dataset contains loca-
tions for pickups atM = 29 taxi zones which form the nodes of a
graph, and edges are constructed based on a k-nearest neighbour
graph using k = 4. The hourly number of Uber pickups in each
zone is a signal on the graph (more information on the dataset
can be found in [50]). We randomly select 9 zones as inputs such
that each xn ∈ R

9; on the remaining 20 zones, we ensure they
form a connected graph, and the values form the output signals
yn ∈ R

20. The test performances can be found in the final two
columns in Table II, where the mean and standard errors are
over 10 splits like previous experiments. The data is of low-
and high-pass nature as shown by the GFT coefficients 4(c) and
reflected by the filters learned in Fig. 4(f), thus all our models
offered improvements compared to the baselines due to the high
frequency information picked up in polynomial filter. Similar to
the fMRI dataset, the standard errors of our models are slightly
higher than the baselines, this again is due to the model not
predicting some test signals as well as others, but all polynomial
predictions still had higher log-likelihoods than all baselines.

VII. CONCLUSION

We have developed a novel GP-based method for graph-
structured data to capture the inter-dependencies between ob-
servations on a graph. The kernel on graphs adapts to the char-
acteristics of the data by using a bespoke learning algorithm that
also provides a better interpretability of the model from a graph
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filtering perspective. Our model was superior in better capturing
the smoothness of the data, and predicting with a higher level of
certainty. Promising future directions include the extension of
the model for application in classification and improvement in
scalability of the model.

REFERENCES

[1] M. A. Alvarez et al., “Kernels for vector-valued functions: A review,”
Foundations Trends Mach. Learn., vol. 4, no. 3, pp. 195–266, 2012.

[2] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in Proc.
Learn. Theory Kernel Mach.: 16th Annu. Conf. Learn. Theory 7th Kernel
Workshop, COLT/Kernel, Washington, DC, USA, Aug. 24–27, 2003,
pp. 144–158.

[3] D. I. Shuman, K. SunilP. NarangA. F. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[4] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst,
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