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Kernel-Based Graph Learning From Smooth Signals:
A Functional Viewpoint

Xingyue Pu , Siu Lun Chau, Xiaowen Dong , and Dino Sejdinovic

Abstract—The problem of graph learning concerns the construc-
tion of an explicit topological structure revealing the relationship
between nodes representing data entities, which plays an increas-
ingly important role in the success of many graph-based represen-
tations and algorithms in the field of machine learning and graph
signal processing. In this paper, we propose a novel graph learning
framework that incorporates prior information along node and
observation side, and in particular the covariates that help to
explain the dependency structures in graph signals. To this end,
we consider graph signals as functions in the reproducing kernel
Hilbert space associated with a Kronecker product kernel, and
integrate functional learning with smoothness-promoting graph
learning to learn a graph representing the relationship between
nodes. The functional learning increases the robustness of graph
learning against missing and incomplete information in the graph
signals. In addition, we develop a novel graph-based regularisation
method which, when combined with the Kronecker product kernel,
enables our model to capture both the dependency explained by the
graph and the dependency due to graph signals observed under
different but related circumstances, e.g. different points in time.
The latter means the graph signals are free from the i.i.d. assump-
tions required by the classical graph learning models. Experiments
on both synthetic and real-world data show that our methods
outperform the state-of-the-art models in learning a meaningful
graph topology from graph signals, in particular with heavy noise,
missing values, and multiple dependency.

Index Terms—Functional viewpoint, graph learning, graph
signal processing, kernel methods.

I. INTRODUCTION

MODELLING based on graphs has recently attracted
an increasing amount of interest in machine learning

and signal processing research. On the one hand, many
real-world data are intrinsically graph-structured, e.g. individual
preferences in social networks or environmental monitoring
data from sensor networks. This makes graph-based methods a
natural approach to analysing such structured data. On the other
hand, graphs are an effective modelling language for revealing
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relational structure in complex domains and may assist in a va-
riety of learning tasks. For example, knowledge graphs improve
the performance in semantic parsing and question answering [1].
Despite their usefulness, however, a graph is not always readily
available or explicitly given. The problem of graph learning
therefore concerns the construction of a topological structure
among entities from a set of observations on these entities.

Methodologies to learn a graph from the structured data
include naïve methods such ask-nearest neighbours (k-NN), and
approaches from the literature of probabilistic graphical models
(PGMs) and more recently graph signal processing (GSP) and
graph neural networks (GNNs). The basic idea of k-NN is to
connect a node to k other nodes with the smallest pairwise
distances in terms of the observations [2]–[5]. In PGMs, a graph
expresses the conditional dependence with edges between ran-
dom variables represented by nodes [6]. The GSP literature, on
the other hand, focuses on algebraic and spectral characteristics
of the graph signals [7]–[9], which are defined as observations
on a collection of nodes. The GSP-based graph learning methods
(see [10], [11] for two recent reviews) further fall into two
distinct branches, i.e. those based on the diffusion processes
on graphs [12]–[15] and those based on smoothness measures
of graph signals [16]–[21]. Very recently, GNNs have attracted a
surging interest in the machine learning community which leads
to a number of approaches to graph inference [22], [23].

While many of the above methods can effectively learn a
meaningful graph from observations, there is a lack of con-
sideration of the prior information, e.g. node-side covariates,
which may be available for the task at hand. Those covariates
that provide valuable side information should be integrated into
the graph learning framework. Taking an example of measuring
temperature records in different locations in a country, where
nodes represent weather stations, the latitude, longitude and
altitude of each station are useful node-side information. One
major benefit is to lessen the reliance of the above models on the
quality of the observations. Heavily corrupted or even missing
records can be predicted by such prior information, which in
turn helps improve the efficiency in graph inference.

Besides the node-side prior information, the observation-side
dependency is also largely ignored in the literature. One example
are temperature records collected at different timestamps, which
are clearly related and could largely affect the evaluation of
the strength of relation between stations. Another example is
that of a recommender system, where the item ratings collected
from different individuals are largely affected by the social
relationship between them.

2373-776X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 20,2021 at 12:35:02 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9841-0619
https://orcid.org/0000-0002-1143-9786
mailto:xpu@robots.ox.ac.uk
mailto:xdong@robots.ox.ac.uk
mailto:siu.chau@stats.ox.ac.uk
mailto:dino.sejdinovic@stats.ox.ac.uk
https://doi.org/10.1109/TSIPN.2021.3059995


PU et al.: KERNEL-BASED GRAPH LEARNING FROM SMOOTH SIGNALS: A FUNCTIONAL VIEWPOINT 193

Fig. 1. A functional viewpoint of graph learning: (a) The observation matrix with missing and noisy entries; (b) Each row of the observation matrix is modelled
as samples obtained at a collection of fixed locations (considered as nodes in a graph) from an underlying function f (top); Values at each node are determined by
the underlying function, as well as node-side information x and observation-side information z (bottom); (c) The learned graph topology.

To tackle the above issues, we revisit the graph signal observa-
tions from a functional viewpoint and propose a framework for
learning undirected graphs by considering additional covariates
on both the node- and observation-side. This allows us to capture
dependency structure beyond the graph signals which leads to
more effective and graph and signal recovery. More specifically,
as shown in Fig. 1, the ij-th entry of the graph-structured data
matrix Y ∈ Rn×m, which contains n graph signals collected on
m nodes, can be viewed as some potentially noisy or missing
observation of fi(j), i.e. the i-th function evaluated at j-th node.
To model the node-side information, we introduce a covariate
x ∈ X that can explain the variations in a graph signal, e.g.
a vector that contains the latitude, longitude and altitude of
stations in the aforementioned temperature example. To model
the observation-side information, we also introduce a generic
covariate z ∈ Z . For example, z could be the timestamp at
which the temperature record is collected. Observation-side
dependency hence arises due to fi depending on zi. Combining
the two, the function underlying the graph signals takes the form
of fi(j) = f(zi,xj).

Formally, we define a function f : Z × X → R in a repro-
ducing kernel Hilbert space (RKHS) with a product kernel
κ⊗ = κZ ⊗ κX on Z × X , where ⊗ denotes the Kronecker
product. The function draws a connection between graph signals
and both node- and observation-side covariates. At the same
time, by modifying the classical Laplacian quadratic form that is
widely adopted in the literature, we propose a novel smoothness
measure that takes into account the observation-side dependency
introduced by z ∈ Z , which has a nice interpretation associated
with a Kronecker product graph. Our key contribution is the
Kernel Graph Learning (KGL) framework, which allows us to

learn the graph Laplacian matrix L by jointly inferring the func-
tion f and optimising the smoothness overL of the graph signals
modelled and refined by f with node- and observation-side prior
information.

In addition, we provide several extensions of KGL for the
scenario of a partially observed Y with known missing value
positions, and that of observations without either node-side or
observation-side information. The learning problem is effec-
tively solved via a block coordinate descent algorithm, which
has a theoretical guarantee of convergence. We show that KGL
can effectively recover the groundtruth graph from the two-side
dependent data and outperform the state-of-the-art smoothness-
based graph learning methods in both synthetic and real-world
experiments.

In summary, the main contributions of our work are as follows:
� A novel graph-based regularisation based on a smoothness

measure of graph signals with observation-side depen-
dency;

� A graph learning framework that integrates node- and
observation-side covariates from a functional viewpoint;

� An efficient method for denoising and imputing missing
values in the observed graph signals as a byproduct of the
graph learning framework.

II. RELATED WORK

In this section, we survey the classical methods of learning
a graph from a number of different perspectives. From each
perspective, we highlight the most related work that consid-
ers one or more aspects of the 1) node-side information, 2)
observation-side dependency, and 3) noisy and missing data.
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A. k-Nearest Neighbours Methods

The k-nearest neighbours (k-NN) connects a node to k other
nodes with the smallest pairwise distances in terms of the obser-
vations. It is flexible with different choices of distance metrics
and yet heuristic since the neighbourhood search is based on
pairwise comparison of observations on nodes. The majority of
thek-NN variants focuses on fast approximate search algorithms
(ANN) [2]–[5] and recent variants apply deep reinforcement
learning to explicitly maximise search efficiency [24], [25]. By
comparison, the model-based methods, e.g. PGMs and GSP,
directly integrate global properties of the observations into
learning objectives.

B. Probabilistic Graphical Models

In the field of PGMs, the inverse covariance matrix Θ is
often regarded as an undirected graph that parameterises the
joint distribution of random variables representing nodes. There
is a rich literature on effective algorithms to estimate a sparse
Θ from Gaussian-distributed data by solving an �1-regularised
log-likelihood maximisation [26]–[30], including the widely
used graphical Lasso [31] and G-ISTA [32]. The recent state-of-
the-art algorithm BigQUIC [33] scales to millions of nodes with
performance guarantees. Besides computational improvements,
models based on attractive Gaussian Markov Random Fields
(GMRFs) [34]–[37] further restrict the off-diagonal entries of
Θ to be non-positive, which is equivalent to learning the Lapla-
cian matrix of the corresponding graph with non-negative edge
weights. The most related extensions of the graphical Lasso
were proposed in [38], [39], which simultaneously learn two de-
pendency structures in the matrix-variate Gaussian data. While
their work focuses on estimating covariance matrices, our work
focuses on recovering a graph topology from data.

C. Structural Equation Models

Structural equation models (SEMs) are another type of models
(similar to PGMs) that is widely used to learn a directed acyclic
graph (DAG) that encodes the conditional dependence of ran-
dom variables [40]–[42]. Based on SEMs, the authors in [43]
proposed a block coordinate descent algorithm to solve the
joint optimisation problem of denoising the data and learning a
directed graph. The joint learning framework is further extended
to time series [44], where the structural vector autoregressive
models (SVARMs) replace the linear SEMs to handle temporal
dependency. The main difference from our work is that their
denoising function is an identity mapping without side informa-
tion as covariates. The work in [42] also considers the temporal
dependency in learning a DAG with SVARMs, but does not
consider the denoising scenario.

D. Graph Signal Processing

In the context of GSP, every observation on a collection of
nodes is defined as a graph signal. GSP-based graph learning
models have seen an increasing interest in the literature [10],
[11] and further fall into two distinct branches. The first branch
assumes graph signals are outcomes of diffusion processes on

graphs and reconstructs a graph from signals according to the
diffusion model [12]–[15]. The other branch constructs a graph
by promoting the global smoothness of graph signals, which is
defined by the Laplacian quadratic form [16], [17] or more gen-
erally via total variation [21]. Smoothness-based methods are
related to GMRFs by recognising that the Laplacian quadratic
form is closely related to the log-likelihood of the precision
matrix defined as the graph Laplacian. Our work can be regarded
as an extension to smoothness-based graph construction.

In the literature of smoothness-based GSP graph learning, the
authors in [17], [21] adopt a two-step learning algorithm to learn
an undirected graph while denoising graph signals. They simply
assume an identity mapping between the actual graph signals
and noisy observations, which is different from our work that
considers side information. The most related work is proposed
in [45], which uses kernel ridge regression with observation-side
covariates to infer graph signals. However, their work mainly fo-
cuses on data prediction and graph learning is only a byproduct in
their approach. In Section V-A, we will show, both theoretically
and empirically, that their method uses a smoothness term that
imprecisely incorporates the observation-side dependency in the
learned graph structure, leading to an inferior performance in
learning a graph.

In terms of the observation-side dependency, there exist some
GSP graph learning models that consider temporal dependency
in graph signals. A so-called spatiotemporal smoothness was
proposed in [46], [47] to transform the graph signals using a
temporally weighed difference operator. If every timestamp is
equally important, the operator is equivalent to a prepossessing
step to make the time series observed on each node stationary. It
should be noted that there is another branch of research assuming
that the temporal dependency in graph signals originates in
the dynamic changes in the edges [48], [49], and therefore the
problem is formulated as learning a dynamic series of graphs,
which is different from the goal of our paper.

E. Graph Neural Networks

A new branch of graph learning models is developed from the
perspective of GNNs. Essentially, GNNs discover the patterns
in graph-structured data in a hierarchical manner [50]–[52]. The
activations at intermediate layers, e.g. the l-th layer, can be
interpreted as a new representation for the nodes in the embed-
ding space that incorporates the information from a specifically
defined neighbourhood of the nodes. The authors in [22], [53]
thus defined the strength of connectivity between nodes i and
j based on the pairwise similarity of their embeddings h(l)i and

h
(l)
j at the l-th layer of the GNN architecture. The authors in [54]

extended this method to construct a directed graph in the process
of training a GNN that deals with time series data. The main goal
of these methods is to improve the performance of node-related
tasks (e.g. classification or prediction) and graph learning is only
a byproduct, whose performance is often not guaranteed. The
recent works in [23], [55]–[57] start to incorporate an additional
loss for recovering graphs while training the GNNs. However, a
significant limitation of most GNN-based methods is that they
typically require a large volume of training data and the learned
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connectivity is often less explainable compared to PGM and
GSP methods.

III. PRELIMINARIES

A. Smoothness-Based Graph Learning in GSP

Observing a data matrixY ∈ Rn×m whose ij-th entryyij cor-
responds to the observation on the j-th node in the i-th graph sig-
nal, we are interested in constructing an undirected and weighted
graph G = {V, E ,W}. The node set V represents a collection
of variables, where |V| = m. The edge set E represents the
relational structure among them to be inferred. The structure is
completely characterised by the weighted adjacency matrix W
whose jj′-th entry iswjj′ . If two nodes j and j ′ are connected by
an edge ejj′ ∈ E then wjj′ > 0, else if ejj′ /∈ E then wjj′ = 0.
The graph Laplacian matrix is defined as L = diag(W1)−W,
where 1 denotes the all-one vector. L and W are equivalent and
complete representations of the graph on a given set of nodes.

In the literature of GSP, one typical approach of constructing
a graph from Y is formulated as minimising the variation
of signals on graphs as measured by the Laplacian quadratic
form1 [7], [16], [17]:

min
L∈L

Tr(YLY�) + λΩ(L) (1)

where L = {L|L1 = 0,Ljj′ = Lj′j ≤ 0, ∀j 	= j′} defines the
space of valid Laplacian matrices, and Ω(L) is a regularisation
term with a hyperparameter λ > 0. Equivalently, the problem
can be formulated using the weighted adjacency matrix W such
that

min
W∈W

1

2

n∑
i=1

∑
j,j′

wjj′(yij − yij′)
2 + λΩ(W) (2)

where W = {W|diag(W) = 1, wjj′ = wjj′ ≥ 0, ∀j 	= j′} de-
fines the space of valid weighted adjacency matrices. Popular
choices of regularisation include the sum barrier Ω(L) = ||L||2F
and Ω(L) = |Tr(L)−m| (often added as a constraint such
that Tr(L) = m) to prevent trivial solutions where all edge
weights are zero and meanwhile controlling the variations of
edge weights [17], or the log-barrier Ω(W) = 1� log(W1) to
prevent isolated nodes and promote connectivity [16].

With a fixed Frobenius norm for Y, a small value of the
objective in Eq. (1) implies that Y is smooth on G in the
sense that neighbouring nodes have similar observations. The
authors in [17] further propose a probabilistic generative model
of the noise-free smooth observations Y = [y1,y2, . . . ,yn]

�

such that

yi
i.i.d.∼ N (0,L†), i = 1, 2, . . . , n (3)

1We acknowledge that the conventional form of the Laplacian quadratic in
GSP literature is Tr(Y�LY), where each column of Y corresponds to a graph
signal. In our case, Y has two-side dependency such that either a column or
a row may be regarded as a graph signal. The term Tr(YLY�) measures the
smoothness of row vectors over a column graph. This formulation is however
consistent with the statistical modelling convention where each column in Y is
often regarded as a random variable and the graph of main interest is the column
graph.

where (·)† denotes the Moore-Penrose pseudo-inverse of a ma-
trix. This leads to a graph learning framework which solves an
optimisation problem similar to Eq. (1).

B. Kronecker Product Kernel Regression

Taking a functional viewpoint on the generation of graph-
structured data matrix, we can make use of the well-studied
formalism of Kronecker product kernel ridge regression to infer
the latent function [58]. Specifically, we consider f : Z × X →
R to be an element of a reproducing kernel Hilbert space (RKHS)
corresponding to the product kernel function κ⊗ = κZ ⊗ κX on
Z × X .

A kernel function can be expressed as an inner prod-
uct in a corresponding feature space, i.e. κZ(zi, zi′) =
〈φZ(zi), φZ(zi′)〉HZ where φZ : Z → HZ and κX (xi,xi′) =
〈φX (xi), φX (xi′)〉HX , where φX : X → HX . An explicit rep-
resentation of feature maps φX and φZ is not necessary and the
dimension of mapped feature vectors could be high and even
infinite. By the representer theorem, the function f that fits the
data Y takes the form

f(z,x) =

n∑
i=1

m∑
j=1

aijκZ(zi, z)κX (xj ,x) (4)

where aij ∈ R are the coefficients to be learned, and the esti-
mated value ŷij = f(zi,xj). Denoting the corresponding ker-
nel matrices as Kz and Kx, where (Kz)ii′ = κZ(zi, zi′) and
(Kx)jj′ = κX (xj ,xj′), we have the matrix form

Ŷ = KzAKx (5)

where Ŷ is an approximation to Y and the coefficient ma-
trix A ∈ Rn×m has the ij-th entry as aij . We assume the
observation Y is a noisy version of Ŷ, where the noise is
i.i.d. normally distributed random variables such that εij =
Yij − Ŷij ∼ N (0, σ2

ε ), whereσ2
ε measures the noise level. This

leads to a natural choice of the sum of squared errors as the loss
function.

A standard Tikhonov regulariser is often added to the regres-
sion model to reduce overfitting and penalise complex functions,
which is defined in our case as

||f ||2H⊗ = vec(A)�(Kx ⊗Kz)vec(A)

= Tr(KzAKxA
�)

(6)

where vec(·) is the vectorisation operator for a matrix. We now
arrive at the following optimisation problem to infer the function
f(z,x) that approximates the observation matrix Y such that

min
A

||Y −KzAKx||2F + λTr(KzAKxA
�) (7)

where the hyperparameter λ > 0 controls the penalisation of the
complexity of the function to be learned.

To have a better understanding of how this model is expressive
for the two-side dependency, we show that the objective in
Eq. (7) can be derived from a Bayesian viewpoint. In the vector
form, i.e. a = vec(A) and y = vec(Y), we assume that both
the data likelihood p(y|a) and the prior p(a) follow a Gaussian
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distribution:

y|a ∼ N ((Kx ⊗Kz)a, σ
2
ε Inm), (8a)

a ∼ N (0nm,K
†
x ⊗K†

z), (8b)

where 0mn is a zero-vector of length mn. Notice that Kx and
Kz (and their Kronecker product) can be either singular or non-
singular matrices, depending on the kernel choice. For the sake
of simplicity, we use the pseudo-inverse notation throughout the
paper. Now, the marginal likelihood of y is

y ∼ N (0mn,Kx ⊗Kz + σ2
ε Inm) (9)

from which we can see that the covariance structure of y can be
understood as a combination of Kx and Kz . Specifically, in the
noise-free scenario where σ2

ε = 0, the covariance matrix over
the rows of Y is

Covr[Y] = E[Y�Y] = Tr(Kz)Kx (10)

Similarly, the covariance matrix over the columns of Y is

Covc[Y] = E[YY�] = Tr(Kx)Kz (11)

The proof for Eq. (10) and Eq. (11) can be found in [59]. In
Appendix A, we show that the maximisation of the log-posterior
of the coefficient vector a leads to the objective in Eq. (7).

IV. KERNEL GRAPH LEARNING

A. A Smoothness Measure for Dependent Graph Signals

Given n dependent graph signals observed on m nodes, we
want to infer a graph Laplacian matrix L ∈ Rm×m that captures
the invariant relationship between node pairs. The invariance
here is understood in the sense that L does not change due to the
observation-side dependency. This is motivated by the fact that
the classical Laplacian quadratic in Eq. (1) as a smoothness mea-
sure is no longer applied for non-i.i.d. signals. By recognising a
Kronecker product covariance structure in a noise-free version
of y from Eq. (9), we define a novel measure of smoothness
for the graph signals with observation-side dependency over an
invariant graph (with graph Laplacian L) as

y�(L⊗K†
z)y (12)

where y is modelled by the Kronecker product kernel regression
in Section III-B and thus the measure can be approximated,
based on Eq. (5), by

ŷ�(L⊗K†
z)ŷ = vec(Ŷ)�(L⊗K†

z)vec(Ŷ)

= Tr(AKxLKxA
�Kz)

(13)

One interpretation of the above smoothness term is associ-
ated with a Kronecker product graph, if we further assume the
observation-side dependency corresponds to a graph such that
K†

z = Lz . Such an assumption is typically used in defining
kernel functions on graphs [60]. Now, Eq. (12) turns into a
standard Laplacian quadratic form such that

y�(L⊗K†
z)y = y�L⊗y (14)

where L⊗ = L⊗ Lz . We further show in Appendix B that L⊗
is a Laplacian-like operator on which a notion of frequency of
y in the context of graph Fourier transform can be defined.

Furthermore,L⊗ brings another interpretation for the smooth-
ness term. It can be viewed as a Laplacian-based regulariser
which can be added to the problem of inferring a function f that
fits the graph signals in Eq. (7):

||f ||2HM = 〈f,L⊗f〉HM

= 〈f, (L⊗K†
z)f〉HM

= vec(Ŷ)�(L⊗K†
z)vec(Ŷ)

= Tr(AKxLKxA
�Kz)

(15)

where M denotes a compact manifold.2

The difference between Kx and L is worth clarifying, as they
both represent the relationship between nodes in the graph. Kx

is obtained from node-side covariates x ∈ X and can be viewed
as an initial estimate of the dependency between nodes obtained
from prior information, e.g. node feature in addition to graph
signals. By contrast,L can be interpreted as the refined estimate,
i.e. the graph of interest, obtained by learning from the observed
graph signals.

B. Learning Framework

We propose a joint learning framework for inferring the
function f that fits the graph signals as in Eq. (7) as well as
the underlying graph L to capture the relationship between the
nodes as in Eq. (15). This relationship is disentangled from the
observation-side dependency of non-i.i.d. graph signals with
the notion of smoothness introduced in Section IV-A. We name
this framework Kernel Graph Learning (KGL) which aims at
solving the following problem:

min
L∈L,A

J(L,A) = ||Y −KzAKx||2F + λTr(KzAKxA
�)

+ ρTr(AKxLKxA
�Kz) + ψ||L||2F

s.t. Tr(L) = m (16)

where L = {L|L1 = 0,Ljj′ = Lj′j ≤ 0, ∀j 	= j′}, and || · ||F
denotes the Frobenius norm. The first two terms correspond to
the functional learning part where the hyperparameter λ > 0
controls the complexity of the function f for fitting Y. The
last two terms and the constraints can be viewed as a graph
learning model in Eq. (1) with the fitted values of Y as input
graph signals and the sum barrier as the graph regulariser. The
hyperparameter ρ > 0 controls the relative importance between
fitting the function and learning the graph, and ψ > 0 controls
the distribution of edge weights. The trace constraint acts as a
normalisation term such that the sum of learned edge weights
equals the number of nodes. The model is compatible with
constraints that enforce other properties on the learned graph,
e.g. the log barrier introduced in Section III-A. This paper is

2We refer the interested reader to [61] for the theorem of manifold regulari-
sation with the Laplace-Beltrami operator.
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mainly based on one of the choices for the constraints in order
to maintain focus on the general framework.

C. Optimisation: Alternating Minimisation

We first recognise that Eq. (16) is a biconvex optimisation
problem, i.e. convex w.r.t A while L is fixed and vice versa.
This motivates an iterative block-coordinate descent algorithm
that alternates between minimisation in A and L [62], [63]. In
this section, we derive the update steps of A and L separately,
propose the main algorithm in Algorithm 1, and prove its con-
vergence.

1) Update of A: The update of coefficients A can be re-
garded as solving a Laplacian-regularised kernel regression [61].
Given L, the optimisation problem of Eq. (16) becomes

min
A

||Y −KzAKx||2F + λTr(KzAKxA
�)

+ ρTr(AKxLKxA
�Kz)

(17)

and, after dropping constant terms,

min
A

JL(A) = Tr(A�K2
zAK2

x)− 2Tr(KxA
�KzY)

+ λTr(KzAKxA
�) + ρTr(AKxLKxA

�Kz). (18)

Denote a = vec(A) andy = vec(Y), we obtain a dual-form for
JL(A) such that

JL(a) = a�(K2
x ⊗K2

z)a− 2a�(Kx ⊗Kz)y

+ λa�(Kx ⊗Kz)a+ ρa� ((KxLKx)⊗Kz)a

= a�
(
K2 + λK+ ρS⊗Kz

)
a− 2a�Ky

(19)

where K = Kx ⊗Kz , and S = KxLKx for simplicity. We
prove in Appendix C that K2 + λK+ ρS⊗Kz is positive
semi-definite thus Eq. (19) is an unconstrained quadratic pro-
gramme. The gradient of JL(a) w.r.t. a is

∇JL(a) =
(
K2 + λK+ ρS⊗Kz

)
a−Ky. (20)

Strictly speaking, the matrix K2 + λK+ ρS⊗Kz may con-
tain zero eigenvalues which makes it not invertible. However,
a majority of popular kernel functions for Kx and Kz are
positive-definite, e.g. the RBF kernel. Since Kronecker product
preserves positive definiteness, K and hence the whole matrix
is positive-definite and invertible. Setting ∇JL(a) = 0 and can-
celling out K, we have:

(
K2 + λK+ ρS⊗Kz

)
a−Ky = 0

⇒ (
K2 + λK+ ρK(LKx ⊗ In)

)
a−Ky = 0

⇒ (K+ λImn + ρLKx ⊗ In)a = y

(21)

Denote H = K+ λImn + ρLKx ⊗ In, where H has a dimen-
sion of nm× nm. We can therefore obtain a closed-form solu-
tion such that

a = H−1y (22)

where the inverse of H requires O(n3 m3).

To further reduce the complexity, we make use of the Kro-
necker structure and matrix tricks. We first recognise H as

H =
((
ρL+ λK−1

x

)⊕Kz

)
(Kx ⊗ In)

where ⊕ is the Kronecker sum. With the eigendecompo-
sition Kx = QxΛxQ

�
x , Kz = QzΛzQ

�
z and ρL+ λK−1

x =
UxDxU

�
x , we have

H = (Ux ⊗Qz) (Dx ⊕Λz)
(
U�

x ⊗Q�
z

) (
QxΛxQ

�
x ⊗ In

)
.

(23)
Here, Dx ⊕Λz is an mn×mn diagonal matrix with entries
being all the pairwise sums of eigenvalues in Dx and Λz .
Inversion of that matrix is thus O(mn). We can now obtain
cheap inversion with

H−1y =
(
QxΛ

−1
x Q�

x ⊗ In
)
(Ux ⊗Qz) (Dx ⊕Λz)

−1

· vec
(
Q�

z YUx

)
.

(24)

The operation (Dx ⊕Λz)
−1vec(Q�

z YUx) is simply rescaling
each term in the mn-vector with the corresponding diagonal
entry of (Dx ⊕Λz)

−1. If we denote dx and dz column vectors
containing the diagonal entries this can be expressed as vec(B)
with

B =
(
1nd

�
x + dz1

�
m

)◦−1 ◦ (Q�
z YUx

)
,

where ◦ denotes the Hadamard product and (·)◦−1 denotes
entrywise inversion. Remaining operations are now direct and
give the closed-form solution as

A = QzBU�
xQxΛ

−1
x Q�

x

= QzBU�
xK

−1
x

= Qz

[(
1nd

�
x + dz1

�
m

)◦−1 ◦ (Q�
z YUx

)]
U�

xK
−1
x . (25)

Notice that this solution requires only matrix multiplications
and inversions and eigendecompositions on m×m or n× n
matrices, giving an overall computational cost of O(n3 +m3 +
nm2 + n2m).

WhenKx andKz are not invertible, we suggest using the gra-
dient descent to avoid the inverse of a large matrix of dimension
nm× nm. The update step using Eq. (20) is:

a(τ+1) = a(τ) − γ∇JL(a(τ)) (26)

where γ > 0 is the step size.
2) Update of L: Given A, the optimisation problem of

Eq. (16) becomes

min
L∈L

JA(L) = ρTr(AKxLKxA
�Kz) + ψ||L||2F

s.t Tr(L) = m
(27)

which is a constrained quadratic programme w.r.t. L. By taking
P = K

1/2
z AKx, the problem fits in the learning framework in

Eq. (1). We use the package CVXPY [64] to solve this problem.
The overall KGL framework is presented in Algorithm 1. The

convergence for each update step of A(t) and L(t) is guaranteed
in solving the respective convex optimisation of Eq. (18) and
Eq. (27). It should be noted that the step size γ in Eq. (26) needs
to be set appropriately for the gradient descent to converge.
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Algorithm 1: Kernel Graph Learning (KGL).
Input: Observation Y, node-side kernel matrix Kx,

observation-side kernel matrix Kz ,
hyper-parameters ρ, λ and ψ, tolerance level ε.

1: Initialisation: t = 0,A = 0 ∈ Rn×m

2: while |L(t) − L(t−1)| > ε and |A(t) −A(t−1)| > ε do
3: Update L(t) = argmin JA(t−1)(L) by solving Eq. (27)
4: Update A(t) = argmin JL(t)(A) by

(i) using the closed-form solution in Eq. (25), if Kx

and Kz are invertible; or
(ii) updating vec(A(t)) with gradient descent in
Eq. (26), otherwise

5: t = t+ 1
6: end while
7: return L(t), A(t)

We suggest a γ ≤ 10−4 from empirical results. The choices
of hyperparameters λ, ρ and ψ are discussed in Section V-F.
We now provide the following statement on convergence of
Algorithm 1.

Lemma IV.1: The sequence {J(L(t),A(t))} generated by Al-
gorithm 1 converges monotonically and the solution obtained
by Algorithm 1 is a stationary point of Eq. (16).

Proof: We follow the convergence results of the alternate
convex search in [63] and that of a more general cyclic
block-coordinate descent algorithm in [62]. By recognising that
Eq. (18) and Eq. (27) are quadratic programmes (with Lemma
C.1 in Appendix C), the problem of Eq. (16) is a bi-convex prob-
lem with all the terms differentiable and the function J(L,A)
continuous and bounded from below. Theorem 4.5 in [63] states
that the sequence {J(L(t),A(t))} generated by Algorithm 1
converges monotonically. Theorem 4.1 in [62] states that the se-
quence {L(t)} and {A(t)} generated by Algorithm 1 are defined
and bounded. Furthermore, according to Theorem 5.1 in [62],
every cluster point {L(t),A(t)} is a coordinatewise minimum
point of J hence the solution is a stationary point of Eq. (16). �

Our empirical results suggest that after only 10 iterations
or less, the sequence {L(t),A(t)} does not change more than
the tolerance level. The computational complexity of KGL in
Algorithm 1 is dominated by the step of updating A. It requires
O(n3 +m3 + nm2 + n2 m) to compute the closed-form solu-
tion of A or O(n3 m3) to compute the gradient in Eq. (20) if
the closed-form solution is not applied when Kz and Kx are not
invertible. Updating L requires O(m2). Overall, for T iterations
that guarantee the convergence of Algorithm 1, it requires either
O(T (n3 +m3 + nm2 + n2 m)) or O(T (n3 m3)) operations,
depending on whetherKz andKx are chosen to be invertible. We
note that one could readily appeal to large-scale kernel approxi-
mation methods for further reduction of computational and stor-
age complexity of the KGL framework, and hence broaden its
applicability to larger datasets. There are two main approaches
to large-scale kernel approximations and both can be applied
to KGL. The former focuses on kernel matrix approximations
using methods such as Nyström sampling [65], while the latter
deals with the approximation of the kernel function itself, using

methods such as Random Fourier Features [66]. Nonetheless,
this paper focuses on the modelling perspective, and we will
leave the algorithmic improvement as a future direction.

D. Special Cases of Kernel Graph Learning

Independent observations. It is often assumed that graph
signals are i.i.d. hence there exists no dependency along the
observation side. This is equivalent to setting Kz = In in our
framework. We refer to this special case of KGL as Node-side
Kernel Graph Learning (KGL-N):

min
L∈L,A

||Y −AKx||2F + λTr(AKxA
�)

+ ρTr(AKxLKxA
�) + ψ||L||2F

s.t Tr(L) = m

(28)

No node-side information. It also may be the case that no
node-side information is available for the problem at hand. In
this case, we can simply set Kx = Im in KGL, leading to to
Observation-side Kernel Graph Learning (KGL-O):

min
L∈L,A

||Y −KzA||2F + λTr(A�KzA)

+ ρTr(ALA�Kz) + ψ||L||2F
s.t Tr(L) = m

(29)

In the cases of one-side KGL, the optimisation again follows
the alternating minimisation, i.e. to solve for KGL-N or KGL-
O), one can simply set Kz = In or Kx = Im in Algorithm 1. It
should be noted, however, that the update step of A requires less
computational cost when either Kz = In or Kx = Im. Indeed,
the objective function of KGL−N can be decomposed into
the sum according to n functions such that

JL({ai}ni=1) =

n∑
i=1

(||yi −Kxai||22 + a�i (λKx + ρS)ai
)

(30)
where A = [a1,a2, . . . ,an]

� and S = KxLKx. Consequently,
the update step can be parallelised.

E. Learning With Missing Observations

By modifying the least-squares loss in KGL, we propose
an extension to jointly learn the underlying graph and function
from graph-structured data with missing values. We encode the
positions of missing values with a mask matrix M ∈ Rn×m

such that Mij = 0 if Yij is missing, and Mij = 1 otherwise.
Now, we only need to minimise the least-squares loss over
observed Yij in the functional learning part, which leads to
the formulation:

min
L∈L,A

||M ◦ (Y −KzAKx)||2F + λTr(KZAKxA
�)

+ ρTr(AKxLKxA
�Kz) + ψ||L||2F

s.t Tr(L) = m.

(31)

This formulation also applies to one-side kernel graph learning,
i.e. KGL-N or KGL-O, with Kz = In or Kx = Im.
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The optimisation problem in Eq. (31) is a bi-convex problem
and alternating minimisation can still be applied. The update
step of L remains the same as in Eq. (27), but the gradient in the
update step of a = vec(A) (Step 4. in Algorithm 1) becomes

∇JL(a) = (Kdiag(m)K+ λK

+ρS⊗Kz)a−Kvec(M ◦Y) (32)

where m = vec(M). The detailed derivation of the gradient is
provided in Appendix D. We further assume K is invertible,
which is a mild assumption as we have many choices of kernel
functions forKx andKz to be invertible. Also notingS⊗Kz =
K(LKx ⊗ In), the gradient becomes

∇JL(a) = (diag(m)K+ λInm + ρ(LKx ⊗ In)) a

− vec(M ◦Y). (33)

One can either derive a close-form solution or use gradient
descent based on Eq. (33).

V. SYNTHETIC EXPERIMENTS

A. General Settings

Groundtruth Graphs. Random graphs of m nodes are drawn
from the Erdös-Rényi (ER), Barabási-Albert (BA) and stochas-
tic block model (SBM) as groundtruth, which are denoted as
GER, GBA and GSBM, respectively. The parameters of each net-
work model are chosen to yield an edge density of 0.3. The
edge weights are randomly drawn from a uniform distribu-
tion Wij ∼ U(0, 1). The weighted adjacency matrix is set as
W = (W +W�)/2 for symmetry and normalised such that
the sum of edge weights is equal to m for ease in comparison.
The graph LaplacianL is calculated fromL = diag(W1)−W.

Groundtruth Data. We generate mild noisy data Y ∈ Rn×m

fromY = KzAKx +E, wherea = vec(A) is drawn froma ∼
N (0mn,K

†
x ⊗K†

z) according to Eq. (8b). Every entry of the
noise matrix E is an i.i.d. sample from Eij ∼ N (0, σ2

ε ). To test
the proposed model against different levels of noises, we vary the
value of σ2

ε in Section V-B. For all other synthetic experiments,
we add a mild-level noise with σ2

ε = 0.01. We choose Kx =
(I+ λL)−1, as it is a popular method to generate smooth signals
in related work [16], [45]. We consider both dependence and
independence along the observation side:
� Independent Data: Kz = In;
� Dependent Data: Kz is obtained from an RBF kernel

evaluated on synthetic observation-side information z =
[0, 1, 2, . . . , n− 1]�, which can be interpreted as the time-
stamps of a discrete-time Markov chain. The bandwidth
parameter is chosen according to the median heuristic [67].

Model Candidates. To have a fair comparison, the models are
divided into two groups. The first group contains the baseline
models that cannot deal with observation-side dependence:
� GL (Eq. (14) in [16]): the GSP graph learning model in

Eq. (1) with Ω(L) = ||L||2F .
� GL-2step (Eq. (16) in [17]): a two-step GSP graph learning

framework with an identity mapping as denoising function.
From a modelling perspective, Eq. (13) in [21] proposed a
similar model with more constraints on edge weights and

a different optimisation algorithm. We treat them as the
same kind of techniques.

� KGL-N (proposed model in Eq. (28)): Kz = In in KGL.
The second group is examined with observation-side depen-

dent data:
� KGL-Agnostic (Eq. (18) in [45]): As discussed in Sec-

tion II, the joint learning model in [45] considered the
observation-side kernel, but did not use the observation-
side dependence in learning the graph. We denote their
model as KGL-Agnostic with our notations:

min
L∈L,A

||Y −KzA||2F + λTr(A�KzA)

+ ρTr(KzALA�Kz) + ψ||L||2F
(34)

� KGL (proposed model in Eq. (16)): the main learning
framework.

� KGL-O (proposed model in Eq. (29)): To have a fair
comparison to KGL-Agnostic, we also assume the graph
is agnostic to the model (i.e. Kx = Im as model input).

For each method, we determine the hyperparameters via a
grid search, and report the highest performance achieved by the
best set of hyperparameters.

Evaluation Metrics. Average precision score (APS) and nor-
malised sum of squared errors (SSEG) are used to evaluate the
graph estimates, and out-of-sample mean squared error (MSEy)
is used to evaluate the estimated entries of graph-structured
data matrix that were not observed (or missing). The APS is
defined in a binary classification scenario for graph structure
recovery, which automatically varies the threshold of weights
above which the edges are declared as learned edges. An APS
score of 1 indicates that the algorithm can precisely detect the
ground-truth edges and non-edges. The SSEG is defined over
learned adjacency matrix Ŵ and the groundtruth adjacency
matrix W0 as

SSEG =
||Ŵ −W0||2F

||W0||2F
.

The out-of-sample MSEy of data matrix is defined with a mask
matrix M (same as in Eq. (31)), where Mij = 0 indicates Yij

is a missing entry:

Out-of-sample MSEy =
||(11� −M) ◦ (Ŷ −Y)||2F

||11� −M||2F
where Ŷ = KzAKx and A is obtained from model estimates.
Similarly, we are interested in the training MSEy for analysing
overfitting:

Training MSEy =
||M ◦ (Ŷ −Y)||2F

||M||2F
.

B. Learning a Graph From Noisy Data

In order to evaluate the performance of the proposed model in
learning a graph from noisy data, we add noise to the groundtruth
data such thatY = KzAKx +E, where every entry of the noise
matrix E is an i.i.d. sample from Eij ∼ N (0, σ2

ε ). We vary the
noise level σ2

ε from 0 to 2 against which we plot the evaluation
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Fig. 2. The performance of recovering groundtruth graphs GSBM in terms of
APS and SSEG from independent data (1st row) and dependent data (2nd row)
with different noise levels. (a) GSBM, independent data. (b) GSBM, independent
data. (c) GSBM, dependent data. (d) GSBM, dependent data.

metrics in Fig. 2. Under the same settings of the noise level,
random graph and model candidate, we repeat the experiment
for 10 times and report the mean (the solid curves) as well as the
5th and 95th percentile (the error bars) of the evaluation metrics.

From Fig. 2, Fig. 8 and Fig. 9 (the latter two in Appendix E-A),
the proposed models outperform the baseline models in terms
of all evaluation metrics. Specifically, for GSBM, when the data
are independent, the performance of KGL-N drops slowly as
the noise level increases, while that of GL and GL-2step drops
quickly when noise level goes above 0.5. It is worth mentioning
that the curves of two almost overlap in terms of APS. This
indicates the identity mapping in GL-2step as denoising func-
tion does not help much in recovering graph structure, although
it yields slightly smaller SSEG than GL with the noise level
greater then 0.75.

For the dependent data, the proposed model KGL achieves
a high performance when the noise level is less than 0.75. Even
without the node-side information Kx as model input in KGL
(note that the groundtruth data are generated in a consistent
way in [45] proposing KGL-agnostic), the proposed method
(KGL−O) can still learn a meaningful graph with slightly
worse performance compared to KGL. By contrast, KGL-
agnostic cannot recover the groundtruth graph to a satisfying
level even with little noise (σ2

ε = 0), as its smoothness term
does not capture the dependence structure on the observation
side.

From Fig. 8 and Fig. 9, we see that GBA is slightly more diffi-
cult to recover from data, but an improvement can nevertheless
be seen in the proposed models from the baselines when the
noise level is low.

C. Learning a Graph From Missing Data

To examine the performance of learning a graph from incom-
plete data with KGL described in Section IV-E, we generate

Fig. 3. The performance of recovering groundtruth graphs GSBM in terms
of APS and SSEG from independent data (1st row) and dependent data (2nd
row) with different rates of missing values in Y. (a) GSBM, independent data.
(b) GSBM, independent data. (c) GSBM, dependent data. (d) GSBM, dependent
data.

the mask matrix M indicating missing entries, where Mij
i.i.d.∼

Bernoulli(1− r) and r is the missing rate, i.e. Mij has a prob-
ability of r to be missing and has a value of 0. The preprocessed
data with 0 replacing missing entries is Ym = Y ◦M, which is
a natural choice in practice for the model candidates that cannot
directly deal with missing entries, as the mean value of the entries
in Y is 0 by design. We use Ym as the input in the baseline
models GL and GL-2Step. For KGL-Agnostic in Eq. (34), we
also add a mask matrix M in the least-squares loss term to have
a fair comparison.

We vary r from 0 to 0.9, against which we plot the evaluation
metrics, APS and SSEG , in Fig. 3. The plots for GER and GBA are
in Appendix E-B. Similar to the noisy scenario, we repeat the
experiments 10 times under the same settings of missing rate,
random graph and model candidate and report the mean (the
solid curves) as well as the 5th and 95th percentile (the error
bars) of the evaluation metrics.

For GSBM, the proposed methods KGL and KGL-N can
recover the groundtruth graphs reasonably well even when there
are 80% missing entries. For the independent data scenario, the
performance of the baseline models with the preprocessed data
Ym drops steeply as the missing rate increases. Although it can
still recover the groundtruth graphs with a high APS and low
SSEG when the missing rate is less than 20%, the performance is
not as good as KGL-N. By contrast, for KGL-N, the APS only
drops by 0.1 from no missing entries to around 90% missing
entries, while SSEG only increases by around 0.05.

For the dependent data scenario, all three model candidates
can deal with missing data directly by adding a mask matrix
in the least-squares loss term. Consequently, their curves are
relatively stable as the missing rate increases from 0 to 80%.
However, the accuracy levels at which each of the model sta-
bilises are different. The proposed method KGL, aware of
both node-side and observation-side information, achieves the
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Fig. 4. The MSE of recovering missing entries in Ym. The results show the
mean of 30 random experiments of 3 different types of graphs, i.e. 10 for each
graph type. (a) independent data. (b) dependent data.

Fig. 5. The performance of learning graphs of different sizesm against varying
number of observations n with the proposed model KGL. The results show the
mean of 30 random experiments of 3 different types of graphs, i.e. 10 for each
graph type.

highest APS and lowest SSEG . By contrast, KGL−O, without
access to the node-side information, can still recover a mean-
ingful graph but with less correct edges and less accurate edge
weights when the missing rate is less than 0.6. The performance
of KGL−Agnostic is not as good as KGL−O because
the smoothness term in Eq. (34) is not able to disentangle the
influence of the observation-side dependency from the graph
structure.

The performance of KGL does not differ much for different
random graph models. Still, there is an improvement in recov-
ering GBA compared to the baseline graph learning models, as
can be seen in Fig. 11(c) and Fig. 11(d) in Appendix E-B.

D. Graph-Structured Matrix Completion

In the experiment of learning a graph with incomplete data
matrix in Section V-C, we are also interested in the performance
of matrix completion. In Fig. 4, we plot the MSEy of the missing
entries (i.e. the out-of-sample MSEy) that is averaged over all
types of graphs against the varying missing rate. The proposed
methods lead to much smaller errors compared to baseline
models, for both independent and dependent data. It should be
noted that GL does not offer a mechanism for inferring missing
data, hence is not included in this experiment.

E. Learning a Graph of Different Sizes

The graph learning performance of the proposed method
varies with the size of graphs and number of observations. As
shown in Fig. 5, a hundred observations are sufficient to recover

a small graph withm = 20 nodes with a high accuracy. When the
graph size increases, the number of the observations required for
KGL to achieve a high APS increases roughly exponentially.
On the other hand, when the number of observations increases,
the variance of APS of the learned graphs decreases.

F. Impact of Regularisation Hyperparameters

Three hyperparameters are involved in KGL and its variants.
As introduced in Section IV, λ > 0 controls the complexity of
the functional learning and prevents overfitting; ρ > 0 controls
the relative importance of graph learning compared to functional
learning, and at the same time determines the smoothness of
the predicted data ŷ over L⊗K†

z; Finally, ψ > 0 controls the
Frobenius (�2) norm of the graph Laplacian which, together
with the trace (�1) constraint, bears similarity to an elastic net
regularisation [68]. The larger the ψ, the less sparse the graph
with more uniform edge weights. The accuracy in learning the
graph LaplacianL and inferring the data matrixY is determined
by the combination of these three hyperparameters, which is
not straightforward to visualise and analyse at the same time.
Fortunately, we may still gain some insights by examining their
distinct effects separately.

Firstly, ψ should be chosen according to the prior belief of
the graph sparsity defined as the number of edges with non-zero
weights. As shown in Fig. 12 (in Appendix E-C), when ψ → 0,
the learned graph contains only a few most significant edge. Due
to the constraint on the sum of edge weights, i.e. tr(L) = m,
the total weights m are allocated to a few significant edges
when ψ is small. When ψ → ∞, the learned graph becomes
fully connected with equal edge weights. In the synthetic exper-
iment where we have knowledge of the groundtruth graph, the
best accuracy is obtained when the sparsity coincides with the
groundtruth graph.

The value of ψ, on the other hand, has little effect on the
accuracy of predicting the missing entries in Y, as the update
step of A does not involve the term with ψ. As shown in
Fig. 13(a)-(d), the out-of-sample MSEy is determined by the
combination of λ and ρ. We first notice that the error is the same
when λ > 102, showing that we overly penalise the function
complexity in this case. Indeed, when λ → ∞, the function is
overly smooth such that the entries of the coefficient matrix
A are all zero leading to the entries of prediction Ŷ being
all zero as well. This also happens when ρ→ ∞, where the
vector form of the prediction ŷ is forced to be overly smooth on
L⊗K†

z . In particular, when K†
z = In, every row vector of Ŷ

(i.e. the predicted graph signal) has constant entries, as a result
of minimising the term Tr(Ŷ�K†

zŶL) to zero. On the other
hand, when K†

z 	= In, all the entries in Ŷ has constant values
such that this term is minimised to zero.

The ranges of values of λ and ρ for which the out-of-sample
MSEy is the smallest generally coincide with that for which
the APS is the largest in Fig. 13 (in Appendix E-C), e.g. when
ψ = 10−5, λ = 10−2 andρ = 10−2. However, the out-of-sample
MSEy is generally small when λ < 0.1 and ρ < 0.1. This is
understandable as the function could be very complex with little
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penalisation, but this does not guarantee good performance in
recovering the groundtruth graph.

VI. REAL-WORLD EXPERIMENTS

A. Swiss Temperature Data

In this experiment, we test the proposed models in learning
a meteorological graph of 89 weather stations in Switzerland
from the incomplete temperature data.3 The raw data matrix
contains 12 rows representing the temperatures of 12 months
that are averaged over 30 years from 1981 to 2010 and 89
columns representing 89 measuring stations. The raw data are
preprosessed such that each row has a zero mean.

To have a fair comparison, we deliberately omit a portion
of the data as input for the model candidates and treat as
groundtruth the learned graph obtained from GL using the
complete 12-month data. Specifically, we only use the first
three-month temperature records (i.e. the first three rows) to
learn a graph. To test the performance in missing scenario,
we further generate the mask matrix M with different rates of
missing values, as described in Section V-C, and apply them to
the three-month data. Similar to the synthetic experiment, we
choose the hyperparameters in models that yield a graph density
of 30% (i.e. keeping 30% most significant edges) to make the
learned graphs comparable.

The altitude of a weather station is a useful node-side in-
formation for predicting temperature and learning a meteoro-
logical graph. Therefore, the corresponding kernel matrix Kx

is obtained from an RBF kernel evaluated at the altitudes of
each pair of weather stations for use in KGL and KGL-N.
Monthly time-stamps correspond to the known observation-side
information. The bandwidth parameter is chosen according to
the median heuristic [67]. As described in Section V-A, Kz

is thus obtained from an RBF kernel evaluated at three time-
stamps for three-month graph signals and used as input in KGL,
KGL-Agnostic and KGL-O. For GL and GL-2step, no side
information is used. The hyperparameters are tuned via a grid
search and highest performance achieved by the best set of
hyperparameters is reported. For the real-world scenario where
a groundtruth graph is not easy to obtain, the hyperparameter
can be chosen according to the results in Section V-F.

We present the results in Fig. 6. In terms of both APS and
SSEG , KGL and KGL-N outperform the other candidates.
This indicates that altitude is a reliable node-side covariate
with which we can learn a meaningful meteorological graph
despite a small number of signals. When there are more missing
values, KGL, with the known temporal information, slightly
outperforms KGL-N. However, since we only have three-month
signals, the temporal information is less predictive. Since the
groundtruth graph is learned from GL with 12-month signals,
the recovering ability of GL and GL− 2step is not far behind
when there is no missing values in three-month data, but drops
sharply with an increasing missing rate. Compared to KGL-O,

3The data are obtained from https://www.meteoswiss.admin.ch/
home/climate/swiss-climate-in-detail/climate-normals/normal-values-per-
measured-parameter.html

Fig. 6. The performance of learning a meteorological graph of 89 Swiss
weather stations from the incomplete temperature data with various missing
rates. (a) APS. (b) SSEG .

the poor performance of KGL−Agnostic indicates that the
imprecise smoothness term in Eq. (34) is the main reason that
we cannot recover an annual meteorological graph with only
three-month temperature records, as both of them are agnostic
to the node-side information.

B. Sushi Review Data

In this experiment we will evaluate the performance of our
proposed methods by comparing the recovered graphs with
groundtruth using the Sushi review data collected in [69]. The
authors tasked 5000 reviewers to rate 10 out of 100 sushis ran-
domly with a score from 1 (least preferred) to 5 (most preferred);
reviews for each sushi are treated as one graph signal in this
experiment. For each reviewer, we have 10 descriptive features
which cover demographical information about the reviewers,
such as age, gender and the region the reviewer currently lives
in. We also have 7 attributes describing each sushi, including its
oiliness in taste, normalised price and its grouping (for example,
red-meat fish sushi, white-meat fish sushi or shrimp sushi). We
will treat the grouping attribute as the underlying groundtruth
label for each sushi and not use it in the KGL algorithm.

We will consider 32 sushis from 5 sushi groups, namely red-
meat (7 sushis), clam (6 sushis), blue-skinned fish (8 sushis),
vegetable (6 sushis) and roe sushi (5 sushis). These are treated
as the groundtruth labels. Our goal will be to recover a graph
of sushis which contains clusters corresponding to these group
labels (while omitting the group attribute from the node-side
information, i.e. we retain only 6 remaining attributes).

We pick an increasing number of reviewers at random for our
experiment. This is to demonstrate how the algorithm performs
under different number of signals. After preprocessing, we arrive
to a data matrix with 32 columns, each representing a type of
sushi, and rows representing each reviewer’s rating to the sushis.
This is a sparse matrix with an average sparsity of 74%. We run
KGL, KGL-N, KGL-O, GL, GL-2step and KGL Agnostic
to obtain a graph of sushis. To evaluate the result quantita-
tively, we compute the normalised mutual information (NMI)
between the cluster assignments obtained by applying spectral
clustering [70] to the recovered graphs and the underlying sushi
grouping. NMI is used to measure the agreement between two
grouping assignments, 0 indicating no mutual information while
1 indicating perfect correlation. To emphasise that node-side
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Fig. 7. Agreement between cluster assignments on learned sushi graphs and
the withheld sushi group attributes. Graphs are learned from incomplete sushi
review data.

attributes alone are not sufficient to recover the groundtruth
label, we also applied clustering on the RBF graph obtained
from remaining six sushi attributes, which resulted in an NMI
score of 0.34.

Fig. 7 illustrated our results. KGL was the best performer, fol-
lowed by KGL-N, and both significantly outperformed KGL-
Agnostic, KGL-O, GL-2step and GL. Moreover, both KGL
and KGL-N outperformed the case where we solely use the
RBF Graph. The results demonstrate the merit of our proposed
methods in incorporating side information for graph recovery, in
particular the observation-side information (i.e. the reviewers’
information) to capture the dependency between the observed
signals.

VII. CONCLUSION

In this paper, we have revisited the smooth graph signals from
a functional viewpoint and proposed a kernel-based graph learn-
ing framework that can integrate node-side and observation-side
covariates. Specifically, we have designed a novel notion of
smoothness of graph signals over the Kronecker product of two
graph Laplacian matrices and combined it with a Kronecker
product kernel regression of graph signals in order to capture
the two-side dependency. We have shown the effectiveness and
efficiency of the proposed method, via extensive synthetic and
real-world experiments, demonstrating its usefulness in learning
a meaningful topology from noisy, incomplete and dependent
graph signals. Although we have proposed a fast implementa-
tion exploiting the Kronecker structure of kernel matrices, the
computational complexity remains cubic in the maximum of the
number of nodes and the number of signals. Hence, a natural fu-
ture direction is to further reduce the computational complexity
with the state-of-the-art methods for large-scale kernel-based
learning, such as random Fourier features. Another interesting
direction is to develop a generative graph learning model based
upon the framework presented here, using connections between
Gaussian processes and kernel methods.

APPENDIX A
KRONECKER PRODUCT KERNEL REGRESSION

Taking a Bayesian viewpoint, we provide an interpretation
of Eq. (7). From Eq. (8), maximising the log-posterior of the

coefficient vector a leads to the objective in Eq. (7):

max
a

log p(a|y)

= max
a

log p(y|a) + log p(a)

= max
a

− (y − (Kx ⊗Kz)a)
� (y − (Kz ⊗Kza)

− λa�(Kx ⊗Kz)a

= min
a

||y − (Kx ⊗Kz)a||22 + λa�(Kx ⊗Kz)a

= min
A

||Y −KzAKx||2F + λTr(KzAKxA
�)

where λ is some constant parameter proportional to the variance
of the noise σ2

ε in Eq. (8a).

APPENDIX B
KRONECKER PRODUCT LAPLACIAN-LIKE OPERATOR

We define a Laplacian-like operator with a Kronecker product
structure L⊗ = L⊗ Lz for the data matrix with both node-side
and observation-side dependency. Although L⊗ may have pos-
itive off-diagonal entries and thus may not be a valid graph
Laplacian matrix, it satisfies the following properties and a
notion of frequency of y can be defined upon L⊗:
� L⊗ is symmetric and L⊗ · 1 = 0;
� L⊗ admits the eigendecomposition

L⊗ = L⊗ Lz

= (U⊗Uz)(Λ⊗Λz)(U⊗Uz)
�

where U and Λ, and Uz and Λz , are the eigenvector and
eigenvalue matrices of the Laplacian matrices L and Lz ,
respectively, andU⊗ = (U⊗Uz) is an orthogonal matrix
andΛ⊗ = (Λ⊗Λz) is a diagonal matrix with real entries.

We can also obtain a two-dimensional graph Fourier transform
Y̌ of Y as in [71]:

vec(Y̌) = (U⊗Uz)
�vec(Y).

APPENDIX C
PROOF OF POSITIVE SEMI-DEFINITENESS

Lemma C.1: The matrix C = K2 + λK+ ρS⊗Kz is pos-
itive semi-definite.

Proof: To proveC is positive semi-definite (p.s.d.), it suffices
to show that the matrices K2, K and S⊗Kz are p.s.d.

As Kx and Kz are kernel matrices constructed by pairwise
evaluations from two reproducing kernels κX and κZ , they are
p.s.d. The Kronecker product K is p.s.d, which is easy to prove
from the eigendecomposition:

K = Kx ⊗Kz

= (UxΛxU
�
x )⊗ (UzΛzU

�
z )

= (Ux ⊗Uz)(Λx ⊗Λz)(Ux ⊗Uz)
�

(35)

where U = (Ux ⊗Uz) is an orthogonal matrix and Λ =
(Λx ⊗Λz) is a diagonal matrix with non-negative real entries.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 20,2021 at 12:35:02 UTC from IEEE Xplore.  Restrictions apply. 



204 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 7, 2021

Fig. 8. The performance of recovering groundtruth graphs GER from indepen-
dent data (1st row) and dependent data (2nd row) with different noise levels.
(a) GER, independent data. (b) GER, independent data. (c) GER, dependent
data. (d) GER, dependent data.

Fig. 9. The performance of recovering groundtruth graphs GBA from indepen-
dent data (1st row) and dependent data (2nd row) with different noise levels. (a)
GBA, independent data. (b) GBA, independent data. (c) GBA, dependent data. (d)
GBA, dependent data.

Next,K2 = KK is also p.s.d., as it is a product of commuting
matrices and K2 preserves symmetry [72].

Finally, denote the column vectors ofKx as [k1,k2, . . . ,km],
the weighted adjacency matrix as W, and the non-negative edge
weight between node j and j′ as wjj′ . We have

S = KxLKx =
∑
j 	=j′

wjj′(kj − kj′)(kj − kj′)
�

where wjj′ ≥ 0. S can then be viewed as a weighted covariance
matrix, which is symmetric and p.s.d. Therefore, S⊗Kz is
p.s.d. following the same argument as for K. �

Fig. 10. The performance of recovering groundtruth graphs GER from inde-
pendent data (1st row) and dependent data (2nd row) with different rates of
missing values in Y. (a) GER, independent data. (b) GER, independent data. (c)
GER, dependent data. (d) GER, dependent data.

Fig. 11. The performance of recovering groundtruth graphs GBA from inde-
pendent data (1st row) and dependent data (2nd row) with different rates of
missing values in Y. (a) GBA, independent data. (b) GBA, independent data. (c)
GBA, dependent data. (d) GBA, dependent data.

APPENDIX D
DERIVATION OF GRADIENT IN EQ. (33)

In this section, we show the derivation of Eq. (33), i.e. the
gradient for updating A in the missing values scenario. Recall
that the objective function is

JL(A) = ||M ◦ (Y −KzAKx)||2F + λTr(KzAKxA
�)

+ ρTr(AKxLKxA
�Kz).

With the following standard linear algebra identities for any
matrices D,E,F
� ||D ◦E||2F = Tr((D ◦E)�(D ◦E)) = Tr(E�(D ◦E))
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Fig. 12. Graph sparsity with respect to ψ. The first row (a)-(d): the learned GSBM; the second row (f)-(i): the learned GER; the third row (k)-(n): the learned
GBA, all from KGL with λ = 10−1, ρ = 10−2 and a fixed ψ. The respective groundtruth graphs are shown in the last column. (a) ψ = 10−7 (APS = 0.39). (b)
ψ = 10−5 (APS = 0.86). (c) ψ = 10−3 (APS = 0.80). (d) ψ = 10−1 (APS = 0.52). (e) Groundtruth GSBM. (f) ψ = 10−7 (APS = 0.33). (g) ψ = 10−5 (APS =
0.90). (h) ψ = 10−3 (APS = 0.78). (i) ψ = 10−1 (APS = 0.48). (j) Groundtruth GER. (k) ψ = 10−7 (APS = 0.40). (l) ψ = 10−5 (APS = 0.89). (m) ψ = 10−3

(APS = 0.80). (n) ψ = 10−1 (APS = 0.67). (o) Groundtruth GBA.

� vec(D ◦E) = vec(D) ◦ vec(E)
� Tr(D�E) = vec(D)�vec(E)
� vec(DEF) = (F� ⊗D)vec(E)
the first term of JL(A) becomes

||M ◦ (Y −KzAKx)||2F
= Tr

(
(Y −KzAKx)

� (M ◦ (Y −KzAKx))
)

By dropping constant terms, we have

||M ◦ (Y −KzAKx)||2F
= Tr

(−2(KzAKx)
�(M ◦Y)

)

+ Tr
(
(KzAKx)

� (M ◦ (KzAKx))
)

= − 2vec(A)�(Kx ⊗Kz)vec(M ◦Y)

+ vec(KzAKx)
� (vec(M) ◦ vec(KzAKx))

= − 2a�Kvec(M ◦Y) + a�K (m ◦ (Ka))

where a = vec(A), m = vec(M) and K = Kx ⊗Kz . Putting
it back to the objective and recognising the fact that d ◦ e =

diag(d)e for two vectors d and e, we have

JL(a) = − 2a�Kvec(M ◦Y) + a�K (m ◦ (Ka))

+ λa�Ka+ ρa�(S⊗Kz)a

= − 2a�Kvec(M ◦Y) + a�Kdiag(m)Ka

+ λa�Ka+ ρa�(S⊗Kz)a

where S = KxLKx. We thus obtain the gradient for deriving
Eq. (32) such that

∇JL(a) = −Kvec(M ◦Y) +Kdiag(m)Ka (38a)

+ λKa+ ρ (S⊗Kz)a. (38b)

APPENDIX E
ADDITIONAL RESULTS FOR SYNTHETIC EXPERIMENTS

A. Learning ER and BA Graphs From Noisy Data

Following the settings in Section V-B, we present in Fig. 8 and
Fig. 9 the results of recovering GER and GBA from independent
data and dependent data with different noise levels, respectively.
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Fig. 13. The out-of-sample MSE for data matrix Y (the first row) and the APS of the learned graph (the second row) with respect to λ and ρ, with 80% entries
of Y as training sample from KGL with a fixed ψ. (a) ψ = 10−7. (b) ψ = 10−5. (c) ψ = 10−3. (d) ψ = 10−1. (e) ψ = 10−7. (f) ψ = 10−5. (g) ψ = 10−3. (h)
ψ = 10−1.

B. Learning ER and BA Graphs From Missing Data

Following the settings in Section V-B, we present in Fig. 10
and Fig. 11 the results of recovering GER and GBA from
independent data and dependent data with different missing
rates, respectively.

C. Impact of Regularisation Hyperparameters

Fig. 12 and Fig. 13 illustrate the learning performance with
respect to the three hyperparameters in the proposed KGL model
in Section V-F.
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