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Learning Heat Diffusion Graphs
Dorina Thanou, Xiaowen Dong, Daniel Kressner, and Pascal Frossard

Abstract—Information analysis of data often boils down to prop-
erly identifying their hidden structure. In many cases, the data
structure can be described by a graph representation that sup-
ports signals in the dataset. In some applications, this graph may be
partly determined by design constraints or predetermined sensing
arrangements. In general though, the data structure is not readily
available nor easily defined. In this paper, we propose to represent
structured data as a sparse combination of localized functions that
live on a graph. This model is more appropriate to represent local
data arrangements than the classical global smoothness prior. We
focus on the problem of inferring the connectivity that best explains
the data samples at different vertices of a graph that is a priori un-
known. We concentrate on the case where the observed data are
actually the sum of heat diffusion processes, which is a widely used
model for data on networks or other irregular structures. We cast
a new graph learning problem and solve it with an efficient non-
convex optimization algorithm. Experiments on both synthetic and
real world data finally illustrate the benefits of the proposed graph
learning framework and confirm that the data structure can be ef-
ficiently learned from data observations only. We believe that our
algorithm will help solving key questions in diverse application
domains such as social and biological network analysis where it
is crucial to unveil proper data structure for understanding and
inference.

Index Terms—Graph signal processing, heat diffusion,
Laplacian matrix learning, representation theory, sparse prior.

I. INTRODUCTION

DATA analysis and processing tasks typically involve large
sets of structured data, where the structure carries critical

information about the nature of these data. One can find numer-
ous examples of such datasets in a wide diversity of application
domains, such as transportation networks, social or computer
networks, brain analysis or even digital imaging and vision. In
such datasets, there is a clear interplay between the structure
(e.g., the transportation network) and the data (e.g., traffic mea-
surements, or signals, captured by sensors in different parts of
the network) that should be exploited for data analysis. Graphs
are commonly used to describe the structure of such data as they

Manuscript received November 4, 2016; accepted June 15, 2017. Date of pub-
lication July 24, 2017; date of current version August 14, 2017. The guest editor
coordinating the review of this manuscript and approving it for publication was
Guest editor Prof. Michael Rabbat. (Corresponding author: Dorina Thanou.)

D. Thanou is with the Swiss Data Science Center, EPFL/ETHZ, Lausanne
1015, Switzerland (e-mail: dorina.thanou@epfl.ch).

X. Dong is with the MIT Media Lab, Cambridge, MA 02139 USA (e-mail:
xdong@mit.edu).

D. Kressner is with the Chair of Numerical Algorithms and High-Performance
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provide a flexible tool for representing and eventually manip-
ulating information that resides on topologically complicated
domains. In particular, the structure of the data is captured by
the topology of the graph and the data or signals are mod-
eled as the result of graph processes evolving on that topology.
Once an appropriate graph is constructed, inference and analysis
tasks can be carried out with a careful consideration of the data
structure using, for example, spectral theory [1] or graph signal
processing [2] concepts. While recent research has put a focus
on the development of effective methods for processing data on
graphs and networks, relatively little attention has been given
to the definition of graphs when they are not readily available
in the datasets. This problem remains critical and may actu-
ally represent the major obstacle towards effective processing
of structured data.

In this work, we first propose a generic graph signal model
where the data consists of (sparse) combinations of overlapping
local patterns that reside on the graph. These patterns may de-
scribe localized events or specific processes appearing at differ-
ent vertices of the graph, such as traffic bottlenecks in transporta-
tion networks or rumor sources in social networks. This model
is more appropriate for capturing specific or local properties
of structured data than the traditional global smoothness model
[3], [4]1. More specifically, we view the data measurements as
observations at different time instants of a few processes that
start at different nodes of an unknown graph and diffuse with
time. Such data can be represented as the combination of graph
heat kernels or, more generally, of localized graph kernels. Par-
ticularly the heat diffusion model can be widely applied in real
world scenarios to understand the distribution of heat (sources)
[5]. One example is the propagation of a heat wave in geo-
graphical spaces. Another example is the movement of people
in buildings or vehicles in cities, which are represented on a
geographical graph. Finally, a shift of people’s interest towards
certain subjects on social media platforms such as Twitter could
also be understood via a heat diffusion model [6].

We then cast a new graph learning problem that aims at esti-
mating a graph that best explains the data measurements under
the heat diffusion model. Specifically, we represent our graph
signals as a linear combination of a few (sparse) components
from a graph dictionary consisting of heat diffusion kernels.
The graph learning problem is then formulated as a regularized
inverse problem where both the graph and the sparse coeffi-
cients are unknown. We propose a new algorithm to solve the
resulting nonconvex optimization problem, which, under mild

1In the extreme case, when the diffusion parameter tends to infinity, this
model can capture globally smooth signals.
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Fig. 1. Decomposition of a graph signal (a) in four localized simple components (b), (c), (d), (e). Each component is a heat diffusion process (e−τ L) at time τ
that has started from different network nodes (δn ). The size and the color of each ball indicate the value of the signal at each vertex of the graph.

assumptions [7], guarantees that the iterates converge to a crit-
ical point. We finally provide a few illustrative experiments on
synthetic data, as well as on two real world datasets that capture
(i) the diffusion of tracers in atmospheric systems and (ii) the
mobility patterns of Uber trips in New York City. The graph
recovered from the first dataset correctly captures the trajectory
of the chemical tracer, while the graphs learned from the Uber
data reveal mobility patterns at different time intervals of the
day across the city. The results confirm that the proposed al-
gorithm is effective at inferring meaningful graph topologies in
both synthetic and real world settings. Our framework is one of
the first attempts to learn graphs carrying the structure of data
that are not necessarily globally smooth but instead obey a more
generic sparse model. We believe that this framework will prove
particularly useful in the analysis of social and biological net-
works, for example, where the data structure is not immediately
given by the application settings or design constraints.

The structure of the paper is as follows. We first highlight
some related work on the learning of graph topologies in
Section II. In Section III, we introduce our signal model and
the structure of the diffusion dictionary. The graph learning al-
gorithm is presented in Section IV. Finally, in Section V, we
evaluate the performance of our algorithm for both synthetic
and real world graph signals.

II. RELATED WORK

A number of approaches have recently been proposed to learn
the structure of data. Intense research efforts have been dedicated
to methods for estimating covariance matrices (see, e.g., [8]),
which carry information about the data structure. Richer struc-
tures can be estimated by learning data graphs instead of the
mere covariance matrix. For example, the work in [3] learns a
valid graph topology (the adjacency matrix) with an optimiza-
tion problem that is very similar to sparse inverse covariance
estimation, but it instead involves a regularized full-rank Lapla-
cian matrix. Then, the authors in [4] relax the assumption of
a full-rank matrix and propose to learn a valid graph Lapla-
cian by imposing smoothness of observations on the graph.
Thus, instead of focusing on pairwise-correlations between ran-
dom variables, they explore the link between the signal model
and the graph topology to learn a graph that provides a glob-
ally smooth representation of the corresponding graph signals.
This framework has been extended further to yield a more scal-
able algorithm for learning a valid graph topology [9]. The
authors in [10] propose an algorithm to estimate a generalized

Laplacian matrix instead of the classical combinatorial or nor-
malized Laplacian. Finally, manifold learning certainly repre-
sents another important class of works that aims at estimating
the data structure and bears some similarity with the graph learn-
ing algorithms in some specific settings [11]. However, all the
above works assume that the data evolve smoothly on the un-
derlying structure, which is not necessarily the ideal model for
all datasets.

The idea of recovering graph topologies for different graph
signal models is relatively new and has not yet received a lot
of attention. An autoregressive model that is based on graph
filter dynamics is used in [12] to discover unknown relations
among the vertices of a set of time series. The authors in [13]
model the observations as being measured after a few steps
of diffusing signals that are initially mutually independent and
have independent entries. The diffusion process is modeled by
powers of the normalized Laplacian matrix. They propose an
algorithm for characterizing and then computing a set of ad-
missible diffusion matrices, which relies on a good estimation
of the covariance matrix from the independent signal observa-
tions. The exact point on the polytope is chosen using some
specific criteria that are based either on the simplicity of the
solution or the desired sparsity of the recovered graph. The
problem of estimating a topology from signal observations that
lead to particular graph shift operators is studied in [14]. The
authors propose to learn a sparse graph matrix that can explain
signals from graph diffusion processes, under the assumption
that eigenvectors of the shift operators, i.e., the graph templates,
are estimated from the covariance of the graph signals. The
graph learning problem then becomes equivalent to learning
the eigenvalues of the shift matrix, under the constraints that
the shift operator is sparse. We will discuss the differences with
this scheme in the experimental section. Contrary to the existing
works, we learn a graph diffusion process without making any
assumption on the eigenvectors of the graph process but instead
make an explicit assumption on the diffusion process and the
sparse signal model.

III. SPARSE REPRESENTATION OF GRAPH SIGNALS

A. Signal Representation

We consider a weighted and undirected graphG = (V, E ,W ),
where V and E represent the vertex (node) and edge sets of
the graph, respectively. The N × N matrix W contains the
edge weights, with Wij = Wji denoting the positive weight
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of an edge connecting vertices i and j, and Wij = 0 if there
is no edge. Without loss of generality, we assume that the
graph is connected. The graph Laplacian operator is defined
as L = D − W , where D is the diagonal degree matrix with
the ith diagonal element equal to the sum of the weights of all
edges incident to vertex i [1]. Being a real symmetric matrix, the
graph Laplacian has an orthonormal basis of eigenvectors. We
let χ = [χ0 , χ1 , . . . , χN −1 ] denote the eigenvector matrix of L.
The diagonal matrix Λ contains the corresponding eigenvalues
0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λN −1 on its diagonal.

A graph signal is a function x : V → R such that x(v) is
the value of the function at the vertex v ∈ V . We consider the
factor analysis model from [15] as our graph signal model,
which is a generic linear statistical model that aims at explaining
observations of a given dimension from a set of unobserved
latent variables. Specifically, we consider

x = Dh + ux + ε, (1)

where x ∈ RN is the observed graph signal, h ∈ RK is the latent
variable that controls x, and D ∈ RN ×K is a representation
matrix that linearly relates the two variables, with K ≥ N . The
parameter ux ∈ RN is the mean of x, which we set to zero for
simplicity, and ε is a multivariate Gaussian noise with zero mean
and covariance σ2

ε IN .
To represent signals residing on graphs, and especially to

identify and exploit structure in the data, we need to take the
intrinsic geometric structure of the underlying graph into ac-
count. This structure is usually incorporated in the columns of
the representation matrix, i.e., atoms of a dictionary [16], [17].
These atoms carry spectral and spatial characteristics of the
graph. Specifically, one can consider spectral graph dictionaries
defined by filtering the eigenvalues of the graph Laplacian in
the following way:

D = [ĝ1(L) ĝ2(L) . . . ĝS (L)], (2)

where {ĝs(·)}s=1,...,S are graph filter functions defined on a
domain containing the spectrum of the graph Laplacian. Each
of these filters captures different spectral characteristics of the
graph signals.

For efficient signal representation, the latent variables h
should be sparse such that they reveal the core components of
the graph signals [18]. In particular, one can impose a Laplace
(sparse) prior on the latent variable h like

p(h) =
∏

i

α exp(−α|h(i)|), (3)

where α is constant, and a Gaussian prior on the noise ε. Then
the conditional probability of x given h can be written as

p(x|h) ∼ N (Dh, σ2
ε IN ).

Given the observation x and the Laplace prior distribution of h
in (3), we can compute a maximum a posteriori (MAP) estimate
of the sparse set of components. Specifically, by applying Bayes’
rule and assuming without loss of generality that ux = 0, the

MAP estimate of the latent variable h is [19]:

hMAP(x) := arg max
h

p(h|x) = arg max
h

p(x|h)p(h)

= arg min
h

(−log pE (x −Dh) − log pH (h))

= arg min
h

‖x −Dh‖2
2 + α‖h‖1 , (4)

where ‖ · ‖1 denotes the �1-norm.
Sparsity-based inverse problems have been widely used in

the literature to perform classical signal processing tasks on
the observations x, such as denoising and inpainting. Sparsity
however largely depends on the design of the dictionary, which
itself depends on the graph. In the following, we discuss the
choice of the representation matrix and the latent variables in
our heat diffusion signal model.

B. Diffusion Signals on Graphs

In this paper, we focus on graph signals generated from heat
diffusion processes, which are useful in identifying processes
evolving nearby a starting seed node. In particular, the graph
Laplacian matrix is used to model the diffusion of the heat
throughout a graph or, more generally, a geometric manifold.
The flow of the diffusion is governed by the following differen-
tial equation with initial conditions:

∂x

∂τ
− Lx = 0, x(v, 0) = x0(v) (5)

where x(v, τ) describes the heat at node v at time τ , beginning
from an initial distribution of heat given by x0(v) at time zero.
The solution of the differential equation is given by

x(v, τ) = e−τ Lx0(v). (6)

Going back to our graph signal model, the graph heat diffusion
operator is defined as [20]

ĝ(L) := e−τ L = χe−τ ΛχT .

Intuitively, different powers τ of the heat diffusion operator cor-
respond to different rates of heat flow over the graph. From the
differential equation point of view, they correspond to different
durations of the dynamics. If such operators are used to define
a dictionary in (2), our graph signal model of (1) becomes

x = Dh + ε = [e−τ1 L e−τ2 L · · · e−τS L ]h + ε,

which is a linear combination of different heat diffusion pro-
cesses evolving on the graph. For each diffusion operator e−τs L ,
the signal component e−τs Lhs can also be interpreted as the re-
sult of filtering an initial graph signal hs with an exponential,
low-pass filter e−τs L on the graph spectral domain. The ob-
tained signal x is the sum of each of these simple components
x =

∑S
s=1 e−τs Lhs . Notice that the parameter τ in our model

carries a notion of scale. In particular, when τ is small, the ith
column of D, i.e., the atom D(i, :) centered at node i of the
graph is mainly localized in a small neighborhood of i. As τ
becomes larger, D(i, :) reflects information about the graph at
a larger scale around i. Thus, our signal model can be seen as
an additive model of diffusion processes that started at different
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time instances. Finally, the sparsity assumption of (3) on the
latent variables h implies that we expect the diffusion process
to start from only a few nodes of the graph, at specific time
instances, and spread over the entire graph over time.

IV. LEARNING GRAPH TOPOLOGIES UNDER SPARSE

SIGNAL PRIOR

In many applications, the graph is not necessarily known,
and thus the MAP estimate of the latent variables in (4) cannot
be solved directly. In the following, we show how the sparse
representation model of the previous section can be exploited to
infer the underlying graph topology, under the assumption that
the signals are generated by a set of heat diffusion processes.
First, we formulate the graph learning problem, and then we
propose an efficient algorithm to solve it.

A. Problem Formulation

Given a set of M signal observations X = [x1 , x2 , . . . ,
xM ] ∈ RN ×M , resulting from heat diffusion processes evolving
on an unknown weighted graph G, our objective is twofold: (i)
infer the graph of N nodes by learning the graph Laplacian L,
and (ii) learn, for each signal, the latent variable that reveals the
sources of the observed processes, i.e., H = [h1 , h2 , . . . , hM ]
and the diffusion parameters τ = [τ1 , τ2 , . . . , τS ]. As the graph
Laplacian L captures the sparsity pattern of the graph, learn-
ing L is equivalent2 to learning the graph G. This results in the
following joint optimization problem for H , L, and τ :

minimize
L, H, τ

‖X −DH‖2
F + α

M
∑

m=1

‖hm‖1 + β‖L‖2
F

subject to D = [e−τ1 L e−τ2 L . . . e−τS L ]

tr(L) = N,

Lij = Lji ≤ 0, i �= j,

L · 1 = 0,

τ ≥ 0, (7)

where hm corresponds to the mth column of the matrix H . Ac-
cording to (4), the objective can be interpreted as the negative
log-likelihood of the latent variables (columns of H) condi-
tioned on the graph Laplacian L. The positive scalars α and β
are regularization parameters, while 1 and 0 denote the vectors
of all ones and zeros, respectively. In addition, tr(·) and ‖ · ‖F

denote the trace and Frobenius norm of a matrix, respectively.
The trace constraint acts as a normalization factor that fixes the
volume of the graph and the remaining constraints guarantee
that the learned L is a valid Laplacian matrix that is positive
semidefinite. Note that the trace constraint, together with the
other constraints, also fixes the �1-norm of L, while the Frobe-
nius norm is added as a penalty term in the objective function
to control the distribution of the off-diagonal entries in L, that

2Since our graph does not contain self-loops, the weight matrix W of the
graph can be simply computed as W = −L, and then setting the diagonal
entries to zero.

is, the edge weights of the learned graph. For a small α, a big β
implies a small Frobenius norm, which, together with the trace
constraint on the graph Laplacian, lead to a Laplacian matrix
with many non-zero entries that are similar to each others. The
influence of the parameters α, β will be analyzed in the experi-
mental section. When H is fixed, the optimization problem bears
similarity to the linear combination of �1 and �2 penalties in an
elastic net regularization [21], in the sense that the sparsity term
is imposed by the trace constraint. When L, τ are fixed, problem
(7) becomes equivalent to a MAP estimator, as discussed in the
previous subsection.

Note that our problem formulation depends on the number of
blocks S, i.e., the number of scales of the diffusion processes.
The choice of S depends on the training signals, in particular, on
the number of scales that one can detect in the training data. As
we expect the diffusion processes to be localized, we typically
choose a small value for S, say, 1 to 3. One of the blocks
would correspond to a very small scale (i.e., highly localized
atoms), and the other blocks would capture larger scale, but still
somewhat localized patterns.

The optimization problem (7) is nonconvex with respect
to L,H, τ simultaneously. In particular, the data fidelity term
‖X −DH‖2

F is smooth but nonconvex as it contains the prod-
uct of the three matrix variables (e.g., e−τ LH). As such, the
problem may have many local minima and solving it is hard.
One could apply alternating minimization, where at each step of
the alternation we update one variable by fixing the rest. This,
however, does not provide convergence guarantees to a local
minimum and, moreover, solving the problem with respect to L
is difficult due to the matrix exponential, which makes the prob-
lem nonconvex even when τ,H are fixed. In the next section,
we propose an effective algorithm to solve the graph learning
problem, which is not affected by this difficulty.

B. Graph Learning Algorithm

In order to solve (7), we apply a proximal alternating lin-
earized minimization algorithm (PALM) [7], which can be inter-
preted as alternating the steps of a proximal forward-backward
scheme [22]. PALM is a general algorithm for solving a broad
class of nonconvex and nonsmooth minimization problems,
which, under mild assumptions [7], guarantees that the iterates
converge to a critical point. Moreover, it does not require con-
vexity of the optimization problem with respect to each variable
separately. The basis of the algorithm is alternating minimiza-
tion between the three variables (L,H, τ), but in each step we
linearize the nonconvex fitting term ‖X −DH‖2

F with a first
order function at the solution obtained from the previous itera-
tion. In turn, each step becomes the proximal regularization of
the nonconvex function, which can be solved efficiently. More
specifically, the algorithm consists of three main steps: (i) up-
date of H , (ii) update of L, (iii) update of τ , and inside each
of these steps we compute the gradient and estimate the Lips-
chitz constant with respect to each of the variables. Algorithm 1
contains a summary of the basic steps of PALM adapted to our
graph learning problem.
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Algorithm 1: Learning heat kernel graphs (LearnHeat).
1: Input: Signal set X , number of iterations iter
2: Output: Sparse signal representations H , graph

Laplacian L, diffusion parameter τ
3: Initialization: L = L0 , D0 = [e−τ1 L e−τ2 L . . . e−τS L ],

τ = τ 0

4: for t = 1, 2, . . . , iter do:
5: Choose ct = γ1C1(Lt, τ t)
6: Update Ht+1 by solving opt. problem (9)
7: Choose dt = γ2C2(Ht+1 , τ t)
8: (a) Update Lt+1 by solving opt. problem (11)
9: (b) Update Dt+1 = [e−τ t

1 Lt + 1
. . . e−τ t

S Lt + 1
]

10: Choose et = γ3C3(Lt+1 ,Ht+1)
11: (a) Update τ t+1 by solving opt. problem (12)
12: (b) Update Dt+1 = [e−τ t + 1

1 Lt + 1
. . . e−τ t + 1

S Lt + 1
]

13: end for
14: L = Liter,H = H iter, τ = τ iter.

In the following, we explain in detail each of the steps of
Algorithm 1. We make use of the following definitions:

Z(L,H, τ) = ‖X −DH‖2
F , f(H) = α

M
∑

m=1

‖hm‖1 ,

g(L) = δ(L|C) + β‖L‖2
F ,

where δ is an indicator function for the convex set C = {tr(L) =
N,Lij = Lji ≤ 0, i �= j, L · 1 = 0}, defined as

δ(L|C) =

{

1, if L ∈ C
+∞, otherwise.

1) Update of H (Algorithm 1: Lines 5-6): For iteration t + 1
of the sparse coding update step, we apply the first step of the
PALM algorithm that requires the proximal regularization of the
nonconvex function Z(L,H, τ), linearized at (Lt,Ht, τ t):

Ht+1 = proxf
ct

(

Ht − 1
ct
∇H Z(Lt,Ht, τ t)

)

where Lt,Ht, τ t are the updates obtained at iteration t and ct is
a positive constant. proxf

ct
is the proximal operator [23] of the

convex function f(H) with parameter ct , given by

proxf
ct

(G) = sign(G)max(|G| − α/ct , 0), (8)

with all operations understood elementwise and G = Ht −
1
ct
∇H Z(Lt,Ht, τ t). We note that the soft thresholding operator

is applied on each column of the matrix H . From the definition
of the proximal operator, this step is equivalent to solving the
following optimization problem:

Ht+1 = argmin
H

〈H − Ht,∇H Z(Lt,Ht, τ t)〉

+
ct

2
‖H − Ht‖2

F + f(H), (9)

where we recall that the definition of the inner product between
two matrices is 〈H − Ht,∇ZH (Lt,Ht, τ t)〉 = tr

(∇ZH (Lt,

Ht, τ t)T (H − Ht)
)

. The required gradient of Z(L,H, τ) =

‖X −DH‖2
F with respect to H is computed in Appendix A-A.

The parameter ct is defined such that ct = γ1C1(Lt, τ t),
with γ1 > 1 and the Lipschitz constant C1(Lt, τ t) of ∇H Z
(Lt,H, τ t) with respect to H , as derived in Appendix B-A.

2) Update of L (Algorithm 1: Lines 7-9): Similarly, the
graph update step, that is the second step of PALM, is performed
by

Lt+1 = proxg
dt

(

Lt − 1
dt
∇LZ(Lt,Ht+1 , τ t)

)

, (10)

with dt = γ2C2(Ht+1 , τ t) for some γ2 > 1 and the estimate
C2(Ht+1 , τ t) of the Lipschitz constant of ∇LZ(Lt,Ht+1 , τ t)
described in Appendix B-B. Given that g(L) = δ(L|C) +
β‖L‖2

F comprises a quadratic term constrained in a convex
polytope, the proximal minimization step (10) is a quadratic
program (QP) that can be written as:

minimize
L

〈L − Lt,∇LZ(Lt,Ht+1 , τ t)〉

+
dt

2
‖L − Lt‖2

F + β‖L‖2
F

subject to tr(L) = N,

Lij = Lji ≤ 0, i �= j,

L · 1 = 0. (11)

This requires the gradient of Z(L,H, τ) = ‖X −DH‖2
F with

respect to L, the derivation of which can be found in
Appendix A-B. Given this gradient, the optimization prob-
lem (11) can be solved using operator splitting methods, such as
the alternating direction method of multipliers (ADMM) [24].
In this paper, we solve the problem by using the algorithm pro-
posed in [25], which converts the problem to a convex cone opti-
mization problem, and utilizes ADMM to solve the homogenous
self-dual embedding. Compared to other methods, this approach
finds both primal and dual solutions of the problem, is free of
parameters, and scales to large problem sizes.

3) Update of τ (Algorithm 1: Lines 10-12): Finally, we can
update the diffusion parameters τ = [τ1 , τ2 , . . . , τS ] following
the same reasoning as above. The corresponding proximal split-
ting step is

τ t+1 = proxδτ
et

(

τ t − 1
et
∇τ Z(Lt+1 ,Ht+1 , τ t)

)

where et = γ3C3(Ht+1 , Lt+1), with γ3 > 1 and the Lipschitz
constant C3(Ht+1 , Lt+1) computed in Appendix B. δτ (τ) is an
indicator function defined as follows:

δτ (τ) =

{

1, if τ ≥ 0
+∞, otherwise.

The optimization problem can be written as

minimize
τ

〈τ − τ t ,∇τ Z(Lt+1 ,Ht+1 , τ t)〉 +
et

2
‖τ − τ t‖2

F

subject to τ ≥ 0. (12)
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This problem has a closed form solution given by

τ t+1 = max
(

−∇τ Z(Lt+1 ,Ht+1 , τ t) − etτ
t

et
, 0
)

, (13)

with the gradient computed in Appendix A-C. Finally, we note
that if we have an a priori estimate of the diffusion parameters
τ (e.g., from the training phase) then we solve our optimization
problem with respect to L,H by following the first two steps of
our algorithm.

C. Discussion on the Computational Complexity

In the following, we discuss the computational complexity
of our graph learning algorithm. Dealing with the heat diffu-
sion processes e−τs L represents one of the main computational
bottlenecks. Both, the computation of the matrix exponential
via a spectral decomposition or via the scaling and squaring
method [26] as well as the computation of its gradient described
in Appendix A-B require O(N 3) operations. Thus, this part of
the algorithm can be expected to become time consuming for
very large graphs. One way to reduce this cost is to approxi-
mate the heat diffusion kernel with a polynomial of degree K,
reducing the complexity of applying a heat diffusion process
to O(|E|K), where |E| is the number of edges of the graph
Laplacian. Since we generally consider heat diffusion processes
that remain well localized, the degree K will typically be small.
This approximation of the heat diffusion process is particularly
efficient when the graph Laplacian is sparse. Also, it can be ex-
pected that the complexity of the gradient computation greatly
reduces when using a polynomial approximation of the ker-
nel; see [27] for some recent work in this direction. A detailed
investigation of this aspect is part of our future work.

We further note that the computational complexity of the
sparse coding step (lines 5-6 of the Algorithm) is domi-
nated by the cost of computing the Lipschitz constant (see
Appendix A-A), which requires the computation of the prod-
uct DT D and is of order O(S2N 3). Again, this cost greatly
reduces when using a polynomial approximation of the kernel.
In particular, the term DDT X can be computed in a fast way by
exploiting the fact that DDT X =

∑S
s=1 ĝ2

s (L)X , which leads
to a polynomial of degree 2K. Thus, the computational cost can
be reduced to the one of the iterative sparse matrix-vector mul-
tiplication [17]. The update of the sparse codes in (9) requires
O(N 2S) operations. Finally, the update of the graph Laplacian
(Algorithm 1: lines 7-9) consists of three steps: the recursive
approximation of the Lipschitz constant (Appendix B-B), the
computation of the gradient discussed above and the solution
of the optimization problem (11). The solution of (11) involves
three main steps [25], among which the most expensive one is
solving a linear system. For large scale systems, this can be done
efficiently by applying a conjugate gradient method. Finally, the
computation of the Lipschitz constant in the update of τ (see
Appendix B-C) requires the computation of the spectral norm of
L, which can be estimated in O(|E|) operations by a few steps
of the power or Lanczos method [28].

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed
algorithm in both synthetic and real world experiments. We
solve the optimization problem of (11) using ADMM, which
is implemented with the splitting conic solver [25], a numer-
ical optimization package for solving large-scale convex cone
problems.3 As a termination criteria, we stop the algorithm when
a maximum number of iterations (set to 1000 in our experiments)
is reached or the absolute difference in the value of the objec-
tive function at two consecutive iterations is smaller than 10−4 .
Whenever a groundtruth graph is available, in order to evalu-
ate quantitatively the performance of our learning algorithm in
recovering the edges of the groundtruth graph, we report the
Precision, Recall, F-measure and Normalized Mutual Informa-
tion (NMI) [29] scores, as well as the difference in terms of the
Frobenius norm of the edge weights. Specifically, the Precision
evaluates the percentage of correct edges in the learned graph,
that is, the edges that are present in the groundtruth graph. The
Recall evaluates the percentage of the edges in the groundtruth
graph that are present in the learned graph. The F-measure thus
takes into account both Precision and Recall to measure the
overall accuracy of the obtained edge set, and it is defined as

F-measure = 2
Precision × Recall
Precision + Recall

.

Finally, the NMI measures the mutual dependence between the
obtained edge set and that of the groundtruth graph from an
information theoretic viewpoint.

A. Results on Synthetic Data

1) Simulation Settings: We first test the performance of the
learning algorithm by comparing the learned graph to the one
from the groundtruth in synthetic datasets. We evaluate the
performance of the algorithm on random graphs of N = 20
vertices, generated from three different models: the radial ba-
sis function (RBF) random graph, the Barabási-Albert model
(BA) [30], and the Erdős-Rényi model (ER) [31]. In the case
of the RBF graph, we generate the coordinates of the vertices
uniformly at random in the unit square, and we set the edge
weights based on a thresholded Gaussian kernel function so that

W (i, j) = e−
[dist( i , j ) ] 2

2 σ 2 if the distance between vertices i and j
is less than or equal to κ, and zero otherwise. We further set
σ = 0.5 and κ = 0.75 in our experiments. In the ER graph, an
edge is included with probability 0.2 independently of the other
edges. Finally, in the BA graph, we add vertices one after the
others and connect them to existing vertices following a pref-
erential attachment mechanism. Given the adjacency matrix of
each type of graph, we finally compute the graph Laplacian and
we normalize in such a way that its trace is equal to N .

With the above model-based graphs, we then construct syn-
thetic graph signals as follows. We use the graph Laplacian to
generate an oracle dictionary of the form D = [e−τ1 L e−τ2 L ],
with τ1 = 2.5, τ2 = 4, for the RBF and the ER graph and
τ1 = 1, τ2 = 4 for the BA model. These values are chosen in

3The conic solver can be found at https://github.com/cvxgrp/scs
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such a way that our dictionaries contain two patterns that are
sufficiently distinct from each other. In particular, the one cor-
responding to a small τ captures a very localized pattern while
the one corresponding to a large τ captures a diffusion that has
already spread in the local neighborhood of the vertex. We then
generate 100 graph signals by linearly combining three random
atoms from the dictionary with random coefficients drawn from
a Gaussian distribution with zero mean and unit variance. The
sparse vector of random coefficients represents the initial heat
on the graph. We finally hide the graph structure, and apply
Algorithm 1 with different sets of parameters α, β. In particu-
lar, we choose different powers of 10 ranging from 1 to -6, with
a stepsize of -0.5 for α, and from 0 to -2, with a stepsize of -1 for
β. For each pair of parameters, we estimate the graph only from
the signal observations. The initialization of the graph Laplacian
is done with a random valid Laplacian matrix. We compare our
algorithm (LearnHeat) with the following three methods: (i) the
algorithm proposed in [14], which is based on learning the graph
Laplacian from diffusion filters and does not have any assump-
tion on the global smoothness of the signals, (ii) the algorithm
in [4] which recovers a graph Laplacian by assuming global
smoothness of the signals on the graph, and (iii) the algorithm
in [13] which infers a normalized graph Laplacian that belongs
to the polytope of admissible solutions for diffusion matrices.
We solve the algorithm in [14] for different values of the param-
eter ε = [0 : 0.02 : 2], where ε controls the imperfection of the
spectral templates estimated from the covariance matrix, and
provides a constraint on how close the optimized matrix should
be to these templates. We threshold the learned Laplacian ma-
trices by ignoring entries whose absolute values are smaller
than 10−4 . For the algorithm of [13], we select the graph on
the polytope under the simplicity criterion that is defined in the
corresponding paper. This criterion encourages the recovery of
eigenvalues that lead to a diffusion matrix with empty diagonal.

2) Graph Learning Performance: We first compare visually
the learned graph Laplacian for an RBF graph model with the
corresponding groundtruth one. The results illustrated in Fig. 2
are the ones obtained for the pair of α and β that leads to the best
quantitative results (see below), and the best ε for [14]. First, we
consider the noiseless case of clean training signals (rows 1-2).
We observe that both the graph Laplacians learned with the pro-
posed algorithm and the diffusion filters of [14] are visually con-
sistent with the groundtruth Laplacian, reaching an F-measure
score [29] of 0.9784 and 0.9927 respectively. On the other hand,
the performance of [4] that is based on a smooth signal model
is worse in terms of F-measure score (0.9173). This is quite ex-
pected as, when the diffusion parameter τ is relatively small, the
signals generated by heat diffusion processes consist mainly of
localized, piecewise smooth components that can be better cap-
tured with the other two algorithms. A globally smooth signal
model can help recovering parts of the graph, but is not accurate
enough to reveal the true topology. However, as τ increases the
diffusion tends to a steady state that is a smooth signal on the
graph. In that case, the behavior of our algorithm is expected to
be close to the one in [4]. Finally, the algorithm of [13] gener-
ates results that are less consistent with the groundtruth graph.
However, we should note that the algorithm is designed for

estimating the normalized graph Laplacian, which means that
the signal model is not consistent with out training signals. In
addition, since the objective of the algorithm is to find a ma-
trix that belongs to the admissible set of the diffusion matrices,
due to this assumption the algorithm is more constrained, and in
general more training signals are needed to give a good recovery
performance. On the other hand, the other algorithms, including
the proposed one, do not necessarily guarantee that the matrix
belongs to this set.

In the second set of experiments, we test the sensitivity of the
three algorithms to noise on the training signals. In particular,
we add some white noise with zero mean and variance 0.02
to our training signals, leading to a signal to noise ratio of
approximately 13 dB. In the second row of Fig. 2 , we observe
that LearnHeat is quite resilient to the noise, reaching an F-
measure score of 0.9552 and an error of 0.2642 in terms of
the Frobenius difference of the edge weights compared to the
groundtruth ones. The performance of [14] seems to deteriorate
significantly due to the noise, achieving an F-measure score of
0.8451 and error weight of 0.3546. This is quite expected as the
algorithm is based on the estimation of the eigenvectors of the
Laplacian, which depends on the covariance of the noisy training
set. The performance of [4] deteriorates too but less significantly,
as this algorithm contains a term in the optimization problem that
performs denoising of the training signals. Finally, the algorithm
of [13] seems to be able to recover only the strongest edges of
the topology.

In order to evaluate quantitatively the performance of our
learning algorithm in recovering the edges of the groundtruth
graph, we report the Precision, Recall, F-measure and Nor-
malized Mutual Information (NMI) [29] scores, as well as the
difference in terms of the Frobenius norm of the edge weights,
averaged over ten random instances of three graph models with
their corresponding 100 signal observations. For computing the
NMI, we first compute a 2-cluster partition of all the vertex pairs
using the learned graph, based on whether or not there exists an
edge between the two vertices. We then compare this partition
with the 2-class partition obtained in the same way using the
groundtruth graph. Since more training signals are needed for
[13], we skip these results in this comparison. The LearnHeat
results shown in Tables I, II are the ones corresponding to the
best combinations of α and β in terms of F-measure for noise-
less and noisy training signals respectively, while the results of
[14] are the ones obtained for the constant ε that gives the best
F-measure. These results confirm that our algorithm is able to
learn graph topologies that are very similar to the groundtruth
ones and its performance is quite robust to noise. The algo-
rithm of [14] seems to perform very well in the noiseless case.
However, its performance deteriorates significantly in some of
the noisy cases (i.e., RBF graph). The reason for that is that
this algorithm makes no assumptions on the underlying graph
process, apart from the fact that the process is a filter of an
unknown graph matrix. On the other hand, our algorithm uses
the knowledge of the heat diffusion process to limit the effect
of the noise in the data. As expected, the worst performance is
observed in [4]. Since our training signals consist of localized
heat diffusion patterns, the performance of [4] is significantly
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Fig. 2. The learned graph Laplacian matrices for a Gaussian RBF graph. The color indicates the values of the entries of the graph Laplacians. The first two rows
illustrate the groundtruth Laplacian and the Laplacians recovered with LearnHeat, the algorithm of [14], the smooth signal model of [4], and the diffusion learning
model of [13] when the training signals are clean. The other two rows illustrate the same results obtained from noisy training signals.

penalized since it is rather designed for signals that have global
smoothness properties.

3) Algorithm Analysis: To understand the effect of the num-
ber of the training signals in the learning performance, we run
a set of experiments on some clean training signals. In Fig. 3,

we illustrate the best F-measure score achieved for a training
set of size M = [2, 20, 200, 2000, 20000] for the algorithms
proposed in [14], [4] and [13]. For a fairer comparison, we
compute the number of edges in the groundtruth topology and
for each of the learned graph, we keep only the highest in
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TABLE I
GRAPH LEARNING PERFORMANCE FOR CLEAN DATA

Graph model F-measure Precision Recall NMI �2 Weight Error

Gaussian RBF (LearnHeat) 0.9779 0.9646 0.9920 0.8977 0.2887
Gaussian RBF [14] 0.9911 0.9905 0.9919 0.9550 0.2081
Gaussian RBF [4] 0.8760 0.8662 0.8966 0.5944 0.4287
ER (LearnHeat) 0.9303 0.8786 0.9908 0.7886 0.3795
ER [14] 0.8799 0.8525 0.9157 0.65831 0.3968
ER [4] 0.7397 0.6987 0.8114 0.4032 0.5284
BA (LearnHeat) 0.9147 0.8644 0.9757 0.7538 0.4009
BA [14] 0.8477 0.7806 0.9351 0.6009 0.3469
BA [4] 0.6969 0.6043 0.8459 0.3587 0.5880

TABLE II
GRAPH LEARNING PERFORMANCE FOR NOISY DATA

Graph model F-measure Precision Recall NMI �2 Weight Error

Gaussian RBF (LearnHeat) 0.9429 0.9518 0.9355 0.7784 0.3095
Gaussian RBF [14] 0.8339 0.8184 0.8567 0.5056 0.3641
Gaussian RBF [4] 0.8959 0.7738 0.9284 0.5461 0.4572
ER (LearnHeat) 0.8217 0.7502 0.9183 0.5413 0.3698
ER [14] 0.8195 0.7662 0.8905 0.5331 0.3809
ER [4] 0.6984 0.5963 0.8690 0.3426 0.5172
BA (LearnHeat) 0.8155 0.7503 0.8986 0.5258 0.4036
BA [14] 0.8254 0.7613 0.9068 0.5451 0.3980
BA [4] 0.7405 0.6800 0.8230 0.3980 0.5899

Fig. 3. Dependence of the F-measure on the size of the training set (in a
logarithmic scale) for the four different algorithms i.e., LearnHeat, Diffusion
Filters [14], smooth prior [4], and the topology inferred with admissibility
constraints [13].

magnitude entities such that the total number corresponds to
the number of edges of the groundtruth graph. We then compute
the F-measure score based on the thresholded learned matrix.
We observe that the performance of all four algorithms under
study depends on the training set. However, for a very small size
of the training set, our algorithm seems to outperform the oth-
ers. In that regime, the recovery performance from the diffusion
filters [14] depends on the estimation of the spectral templates,
which is highly dependent on the number of the training sam-
ples. Although this approach is quite interesting and works very
well when the training set is large and the estimation of the

covariance matrix is accurate, it might face some limitations
when the training set is limited and noisy. Similar behavior is
shown also by the algorithm proposed in [13]. In contrary, our
algorithm learns a graph diffusion process without making any
assumption on the eigenvectors of the graph process: it rather
sets an explicit assumption on the (heat) diffusion process and
the signal model. Moreover, our sparsity assumption imposes
additional structure to the problem, leading to high recovery
performance even when the training set is limited.

We now study the effect of the parameters α and β in the
objective function of (7). We illustrate in Fig. 4 the number of
edges of the learned graph and the F-measure score under dif-
ferent combinations of these parameters, for a random instance
of the Gaussian RBF graph. The obtained results indicate that
for very large or very small values of α, the influence of β is
limited and the performance of the algorithm in terms of both
the number of edges and the F-measure is mainly determined
by the sparsity control parameter α. For the remaining values
of α, the value of β is linked to the sparsity of the learned
graph; an optimal β would lead to a graph that has a similar
level of sparsity to the groundtruth graph, hence maximizes the
learning performance. In particular, for a fixed α, the number of
learned edges decreases as β decreases. A big β implies a small
Frobenius norm, which leads to a Laplacian matrix with many
non-zero entries that are similar to each other. Thus, the correct
value of β is determined by the true sparsity of the underlying
graph. Then, in order to understand the effect of the parameter
α, we need to distinguish the following three cases. When α is
relatively small, due to a constraint on the trace (effectively the
�1-norm) of the Laplacian matrix, the algorithm does not allow
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Fig. 4. (a) The number of edges in the learned graph, and (b) the F-measure score, under different combinations of the parameters α and β for an instance of
the Gaussian RBF graph.

to learn an empty graph. In fact, the penalty on �1-norm on H
becomes negligible due to a small α, and the graph is being op-
timized under the constraint of a fixed �1-norm and a penalty on
the �2-norm. This would lead to a fitting term that is almost neg-
ligible. Thus, the solution of the optimization problem is mainly
determined by the second and the third term of the objective
function of (11) and the Laplacian constraints. In this case, a β
sufficiently large would promote small and similar off-diagonal
entries in the Laplacian matrix. As we increase α, we observe
in Fig. 4 that the number of edges decreases, and the learned
graph becomes similar to the groundtruth one as indicated by
the F-measure score. In particular, there exists a range of values
for the parameter α where the learned graph reaches a number
of edges that is similar to the one of the true graph, and the
F-measure reaches its peak. Alternatively, when the value of α
is relatively big, the solution of the sparse coding step tends to
give a matrix H that is sparser. In that case, the algorithm tries
to express the signals in the dense matrix X as a heat diffusion
process starting from some sparse initial heat sources H . We
recall that the heat kernel can be written as the Taylor expansion
of the exponential function e−τ L =

∑∞
k=0(−τ)k Lk

k ! . Moreover,
the kth power of the Laplacian is localized in the k-hop neigh-
borhood of a node n, i.e., (Lk )n,m = 0 if nodes n and m are not
connected with a path of at least k-hops on the graph [32]. Thus,
the initial heat h, corresponding to an observation x, diffuses all
over the graph only if there exists a finite path connecting the
sources indicated in h with the other nodes of the graph. As a
result, in order to approximate a dense observation x, the graph
that we learn should be more connected. In the extreme case
when H is a zero matrix, the objective function penalizes only
the Frobenius norm of L. The latter explains the tendency of the
algorithm to favor complete graphs with similar entries when α
is large.

4) Source Localization: In a final set of experiments, we
illustrate the performance of the learned diffusion dictionary in
terms of source localization. For the sake of simplicity, we focus
on the case of only one dictionary block. In particular, we use the
different instances of the learned topologies with our scheme for

an RBF Gaussian graph model. We then use the learned graphs
to solve a sparse inverse problem, similar to (4), to recover the
sources from a set of some other signal observations. For each
value of the parameter τ = [10−1 : 100.5 : 101.5 ], we generate
one diffusion dictionary per topology instance. Each of these
dictionaries are used to generate a set of 1000 testing signals that
are each a linear combination of 3 atoms of the corresponding
dictionary, generated in the same way as the training signals.
The location of these atoms defines the initial sources of the
process. We aim at recovering the initial sources by solving
an iterative soft thresholding algorithm [33] with the diffusion
dictionary on a learned graph.

In Fig. 5, we show the source recovery performance for dif-
ferent values of the parameter τ . In particular, in Fig. 5(a), we
illustrate the average F-measure score between the groundtrouth
sparse codes of the testing signals and the recovered ones as a
function of τ . We observe that the F-measure is high when τ
is low. The latter is intuitive as a small τ implies that the diffu-
sion process is quite localized around the initial sources, leading
to an easier recovery. As τ increases the performance reduces
significantly, as the diffusion process tends towards a smooth
signal on the graph. Thus, recovering the sources becomes more
difficult. We notice that the recovery performance is measured
in terms of the activation of the sources, i.e., the non-zero po-
sition of the learned sparse codes, and not the actual value. In
order to understand better the source localization performance
with a sparse prior, we keep only the s = 3 highest ones in terms
of magnitude values of the sparse codes, where s is the number
of the initial sources. We then illustrate in Fig. 5(b) the average
number of recovered sources for different values of the param-
eter τ , for the sparsity parameter α of (4) that gives the best
source recovery results. These results are consistent with the
previous ones and they confirm that when τ is low, the location
of the sparse codes with higher magnitude refers to the initial
sources.

5) Discussion on the Performance of the Algorithm: We note
that the algorithm proposed in this paper can be seen as a sparse
dictionary learning algorithm with a dictionary that has some
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Fig. 5. Source recovery performance measured with respect to (a) the F-measure score between the recovered and the groundtruth sparse codes and (b) the
location of the highest in magnitude sparse codes coefficients for different values of the diffusion parameter τ , and three initial sources.

predefined structure, defined by the heat diffusion kernel. In the
previous simulation results, we have studied the effect of the
number of the training signals and the sparsity of the signals on
the underlying dictionary. Here, we discuss another important
parameter, that is the coherence of the dictionary.

Given the heat diffusion structure, the coherence of the atoms
depends on the connectivity of the graph and the diffusion pa-
rameter τ . These two parameters define the support of the dic-
tionary atoms, i.e., their spread on the graph. In particular, for
the same value of τ , the denser the graph, the faster the heat
is expected to diffuse on the network. This however leads to a
dictionary with coherent atoms, which might penalize the per-
formance of the sparse coding step. On the other hand, when
the graph is sparser, and τ not very large, the coherence of the
atoms is significantly lower. The choice of the graph sparsity
thus depends on the distribution of the data. If our signals con-
sists of very localized patterns, the diffusion of the heat on a
sparser graph would be able to capture these patterns, favoring
sparser representations of the signals.

For a fixed graph connectivity, the values of the diffusion
parameters τ and their relative difference within the different
subdictionaries also play a significant role. When the atoms
from each subdictionary are quite different from each other (the
diffusion patterns are sufficiently distinct), we expect the F-
measure score to be high. On the other hand, when the diffusion
parameters of each subdictionary generate atoms that are similar
to each other, both subdictionaries contain similar information,
leading to a high coherence of the dictionary. As a result, the
sparse coding step, which is one of the two steps of the graph
learning algorithm, tends to fail, and the recovery performance
of the graph deteriorates significantly.

B. Graph Learning in Real-World Datasets

1) ETEX Dataset: We now illustrate the performance of our
algorithm on real world datasets and in particular in the ap-
plication of graph signal representation using learned graph
topologies. We first consider data from the European Tracer

Experiment (ETEX), which took place in 1994 [34].4 The ex-
periment consists in injecting a particular gas, namely the tracer,
into the atmospheric system and then in observing the evolu-
tion of the tracer with a variety of sampling and analysis tools.
Tracer techniques are widely applied for the determination of
dispersion and dilution patterns of atmospheric pollutants. In
particular, an easily identifiable tracer (perfluorocarbons) has
been released in the atmosphere from the city of Rennes, in
France. The concentration of the tracer has then been measured
over a period of 72 consecutive hours, at 168 ground-level sta-
tions in Western and Eastern Europe. In our experiments, we
consider the 168 sampling stations as nodes of the graph and the
concentration measured in each of them as signals on the graph.
The measurements obtained at different time instances within
the 72-hour period form 30 observations, which are used to infer
the diffusion topology that can explain well the diffusion of the
tracer. For this experiment, we choose S = 1 as the observa-
tions consist of many zeros entries, which indicates that they
can be approximated with a single diffusion process at small
scale. Moreover, we fix the scale parameter to τ = 3 and we
initialize the Laplacian matrix, with a random graph Laplacian
matrix.

In Fig. 6, we illustrate the most important edges of the graph
learned with LearnHeat and some representative measurements
of the concentration of the tracers, which are used as training
signals in the learning. The estimated graph indicates the main
directions towards which the tracer moved, which are consistent
with the signal observations. These directions are influenced by
many parameters such as the meteorological conditions and
the direction of the wind. We observe that there exist some
strong connections between stations in France and Germany,
and those in Sweden and Hungary, which are consistent with
the conclusions in the documentation of the dataset [34].

Finally, in Fig. 7, we study how well a diffusion dictionary
based on the graph Laplacian can represent the signal obser-
vations with only a few atoms of the dictionary. We compute

4The dataset is publicly available in https://rem.jrc.ec.europa.eu/etex/ and has
already been processed in [35].
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Fig. 6. (a)-(c) The learned graph and different measurements over time of the concentration of the tracer (signal observations). The color code represents the
concentration measured in each station. The color indicates the strength of the edge. The lighter the color, the stronger is the edge.

Fig. 7. Approximation performance of the daily signals for different sparsity
levels on dictionaries generated from a geographical graph (blue) and the learned
graph (red).

the sparse approximation using an iterative soft thresholding
algorithm that promotes sparsity of the coefficients H . We com-
pare our results with a diffusion dictionary designed based on
a graph that is constructed using geographical distances be-
tween these stations. We observe that the approximation error
‖X − e−τ LH‖2

F is significantly smaller in the case of the diffu-
sion dictionary based on the learned graph for different sparsity
levels. These results indicate that learning the topology can bring
significant benefits for effective structured data representation.

2) Uber Dataset: In the final set of experiments, we use our
graph learning algorithm to detect patterns from Uber rides in
New York City. In particular, we use the Uber dataset5 for the
month of September 2014, which provides time and location
for pickups. For the sake of simplicity, we divide the city into
N = 29 taxi zones, as shown in Fig. 8(a), and each zone is a
node of a graph. The hourly number of Uber pickups in each
zone is a signal on the graph. Moreover, we divide the day into

5The dataset is publicly available in https://github.com/fivethirtyeight/uber-
tlc-foil-response

five time slots 1) 7 am - 10 am, 2) 10 am - 4 pm, 3) 4 pm - 7 pm,
4) 7 pm - 12 pm, 5) 12 pm - 7 am. For each of these slots, we
define as training signals the number of pickups measured for
each hour inside the corresponding time interval, all weekdays
of the month.

For each of these five set of training signals, we learn a heat
diffusion dictionary with S = 2 blocks, for different parameters
of α and β. In order to choose the best parameter of α and β,
we define as a criteria that the number of edges of the learned
graph should be approximately 4N . We expect that the graph
learned for each time interval conveys some information about
the traffic patterns in the city. In Fig. 8, we show the learned
graphs for each of the time intervals. We can clearly see patterns
that are indicative of the behavior of the people in the city. First,
there is a clear tendency of people using Uber to go/come mostly
to/from airports (JFK, La Guardia, Newark) in early morning
[see Fig. 8(b)]. Moreover, the connections of the graph during
the rush hours (7 am - 10 am and 4 pm - 7 pm) indicate the
commuting of people from/to different neighborhood of the
city to/from Manhattan. During the day (10 am - 4 pm), there
is no clear pattern as the graph learned from the distribution
of the Uber cars indicates that people tend to use Uber to go
to random places in the city. Finally, from 7 pm to midnight
[see Fig. 8(f)], most of the connections are concentrated across
Manhattan, which probably indicates that most of the people use
Uber to visit bars or restaurants that are concentrated around that
area. These are of course just some observations that confirm
the efficiency of our algorithm in learning meaningful graphs.
A more detailed mining of the mobility patterns in New York
City requires taking into consideration other factors such as
the population of each region, a finer grid of the zone, the
organization of the city in terms of public transport, which is
out of the scope of this paper.

For the sake of completeness, we compare visually the graphs
that we learn with the state-of-the-art methods [14], [13], [4],
using the same Uber data, for the time interval between 7 pm
to midnight. Since there is no groundtruth graph to compare
with, for each method, we illustrate the graph that corresponds
to parameters that give almost the same number of edges. The
results are shown in Fig. 9. Although there is no clear way
of validating these results, we can observe that the algorithm
proposed in [13] seems to give similar patterns with Fig. 8(f),
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Fig. 8. (a) Boundaries of the taxi zones in New York City. Each zone is represented by a node on a the learned graph. The learned graphs over different time
intervals: (b) 0.00 - 7.00 am, (c) 7.00 am - 10.00 am, (d) 10.00 am - 4.00 pm, (e) 4.00 pm - 7.00 pm, and (f) 7.00 pm - 12 pm.

Fig. 9. The learned graphs over the time interval of 7.00 pm - 12 pm with different state-of-the-art methods: (a) [14], (b) [13], and (c) [4]. The color indicates
the strength of the edge.

which is a big concentration of the edges inside the Manhatten
area. On the other hand, in Fig. 9(c), we observe that the graph
learned with a globally smooth model [4] contains connections
that are spread across all the areas of the city.

To summarize, we should note that when the underlying train-
ing signals do not necessarily follow a heat diffusion model, as
it might be the case in real-world data, there might be a gap
between signal representation and learning graphs. Since our
graph learning framework is posed as an optimization problem
which promotes sparse signal representation, it is possible that
a good graph for representation is not the actual one that reflects
the diffusion but the one that minimizes the approximation er-
ror. The advantage of our algorithm though is that we manage
to learn a meaningful graph topology, by only utilizing signals

that are aggregated, without having access to the time-stamped
data, as it is the case in our real-world experiments.

VI. CONCLUSION

In this paper, we have presented a framework for learning
graph topologies (graph Laplacians) from signal observations
under the assumption that the signals are generated from heat
diffusion processes starting from a few nodes of the graph.
Specifically, we have proposed an algorithm for learning graphs
that enforces sparsity of the graph signals in a dictionary that
is a concatenation of graph diffusion kernels at different scales.
Experimental results on both synthetic and real world diffu-
sion processes have confirmed the usefulness of the proposed
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algorithm in recovering a meaningful graph topology and thus
leading to better data understanding and inference. We believe
that the proposed graph learning framework opens new perspec-
tives in the field of data inference and information propagation in
particular from the emerging graph signal processing viewpoint.

APPENDIX A
COMPUTATION OF THE GRADIENT

As noted in Section IV-B, Algorithm 1 requires the computa-
tion of the gradient of the fitting term with respect to each of the
variables H,L, τ . In the following, we discuss the computation
of each of the gradients separately.

A. Gradient with Respect to H

The gradient of Z(L,H, τ) = ‖X −DH‖2
F with respect to

a column hj of H is independent of the other columns of H .
Moreover, it depends only on the corresponding observation xj

and it can be written as

∇Zhj
(Lt,Ht, τ t) = −2DT (xj −Dhj ). (14)

B. Gradient with Respect to L

The gradient of ‖X −DH‖2
F with respect to L is:

∇L‖X −DH‖2
F

= ∇L

⎛

⎝tr

⎛

⎝

(

X −
S
∑

s=1

e−τs LHs

)T (

X −
S
∑

s=1

e−τs LHs

)

⎞

⎠

⎞

⎠

= ∇L

(

tr(XT X) − 2
S
∑

s=1

tr(HsX
T e−τs L )

+
S
∑

s=1

S
∑

s ′=1

tr(Hs ′HT
s e−(τs +τs ′ )L )

)

= −2
S
∑

s=1

∇L tr(HsX
T e−τs L )

+
S
∑

s=1

S
∑

s ′=1

∇L tr(Hs ′HT
s e−(τs +τs ′ )L ). (15)

In order to compute (15), we make use of the following propo-
sition.

Proposition 1: Consider a general matrix A ∈ RN ×N and a
symmetric matrix L ∈ RN ×N , admitting a spectral decomposi-
tion L = χΛχT . Then

∇L tr(AeL ) = χ
(

(χT AT χ) ◦ B
)

χT ,

where ◦ denotes the Hadamard product and B is the N × N
matrix defined by the entries

[B]ij =

{

eΛ i i if Λii = Λjj

eΛ i i −eΛ j j

Λ i i −Λj j
otherwise.

(16)

Proof: The desired gradient is uniquely defined by satisfying
the relation

tr(Ae(L+Δ)) − tr(AeL ) = 〈∇L tr(AeL ),Δ〉 + O(‖Δ‖2)
(17)

for all sufficiently small perturbations Δ. Using the fact that the
eigenvectors of L are orthonormal, i.e., χT χ = I , where I is
the identity matrix, we can write the left hand-side of (17) as
follows:

tr(Ae(L+Δ)) − tr(AeL )

= tr(χT AχχT e(L+Δ)χ) − tr(χT AχχT eLχ)

= tr(χT Aχe(Λ+χT Δχ)) − tr(χT AχeΛ). (18)

The Frèchet derivative of the matrix exponential at a diago-
nal matrix Λ applied to a direction Δ is the N × N matrix
DeΛ(Δ) = B ◦ Δ with B defined in (16); see [26]. Using the
above developments and the linearity of the trace operator we
obtain that

〈∇Λtr(χT AχeΛ)),Δ〉 = tr(χT AχDeΛ(Δ))

= tr(χT Aχ(B ◦ Δ)) = 〈χT AT χ ◦ B,Δ〉. (19)

Finally, using again the orthonormality of the eigenvectors χ,
we can write

〈∇L tr(AeL ),Δ〉 = 〈χT ∇L tr(AeL )χ, χT Δχ〉
(18)
= 〈∇Λtr(χT Aχe−Λ), χT Δχ〉
= 〈χ∇Λtr(χT Aχe−Λ)χT ,Δ〉. (20)

Combining (19), (20), we conclude that ∇L tr(AeL ) = χ(χT

AT χ ◦ B)χT . �
Given the result of Proposition 1, the gradient ∇L tr(AeνL )

for some ν ∈ R can be found by applying the chain rule:
∇L tr(AeνL ) = ν∇νL tr(AeνL ).

C. Gradient With Respect to τ

The gradient of ‖X −DH‖2
F with respect to τ satisfies

∇τ ‖X −DH‖2
F

= ∇τ

⎛

⎝tr

⎛

⎝

(

X −
S
∑

s=1

e−τs LHs

)T (

X −
S
∑

s=1

e−τs LHs

)

⎞

⎠

+
S
∑

s=1

S
∑

s ′=1

tr(Hs ′HT
s e−(τs +τs ′ )L )

)

= −2
S
∑

s=1

∇τ tr(HsX
T e−τs L )

+
S
∑

s=1

S
∑

s ′=1

∇τ tr(Hs ′HT
s e−(τs +τs ′ )L ). (21)

By the Taylor expansion of the exponential, it follows for any
A ∈ RN ×N that

∇τs
tr(Ae−τs L ) = −tr(ALe−τs L ). (22)
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Combining (21), (22), we obtain that

∇τs
‖X −DH‖2

F = 2tr(HsX
T Le−τs L )

− 2
S
∑

s ′=1

tr(Hs ′HT
s Le−(τs +τs ′ )L ).

Finally, the gradient with respect to the vector τ is given by a vec-
tor whose elements consist of the gradient with respect to each
element of τ , i.e.,∇τ ‖X −DH‖2

F =
{∇τs

‖X −DH‖2
F

}S

s=1 .

APPENDIX B
COMPUTATION OF THE LIPSCHITZ CONSTANTS

A condition for ensuring convergence of PALM is that at
each iteration of the algorithm the descent lemma is satisfied [7].
This, however, requires to determine a global Lipschitz constant
or an approximation thereof such that the descent condition is
satisfied. Next, we discuss the computation of the Lipschitz
constants related to the update of each of the three variables
L,H, τ in our graph learning algorithm. As we will see, it is
feasible to compute these constants for the update of H and τ . On
the other hand, the computation of the Lipschitz constant is more
difficult for L because of the involved matrix exponential. In this
case, we perform backtracking to approximate the Lipschitz
constant.

A. Variable H

The function ∇H Z(H,L, τ) is globally Lipschitz with Lips-
chitz constant C1(L, τ) = ‖2DT D‖F , as can be seen from

‖∇H Z(L,H1 , τ) −∇H Z(L,H2 , τ)‖F

= ‖ − 2DT (X −DH1) + 2DT (X −DH2)‖F

= ‖2DT DH1 − 2DT DH2‖F

≤ ‖2DT D‖F ‖H1 − H2‖F ,

B. Variable L

Due to the difficulty of computing the Lipschitz constant
for an exponential matrix function, we estimate the associated
constant C2(H, τ) by performing backtracking line search as
follows. One condition for convergence of PALM is that the
descent lemma is satisfied at each iteration, i.e.,

Z(Lt+1 ,Ht+1 , τ t) ≤ Z(Lt,Ht+1 , τ t)

+〈Lt+1− Lt,∇LZ(Lt,Ht+1 , τ t)〉+ C2(H, τ)
2

‖Lt+1− Lt‖2
F .

(23)

Moreover, the solution Lt+1 of the optimization problem (11)
indicates that for every L ∈ C, the objective function evalu-
ated at L will always be greater or equal to the one evaluated

at Lt+1 , i.e.,

〈Lt+1 − Lt,∇LZ(Lt,Ht+1 , τ t)〉 +
dt

2
‖Lt+1 − Lt‖2

F

+ β‖Lt+1‖2
F

≤ 〈L − Lt,∇LZ(Lt,Ht+1 , τ t)〉 +
dt

2
‖L − Lt‖2

F + β‖L‖2
F .

By setting L = Lt in the right-hand side of the inequality, we
obtain that

〈Lt+1 − Lt,∇LZ(Lt,Ht+1 , τ t)〉 +
dt

2
‖Lt+1 − Lt‖2

F

+ β‖Lt+1‖2
F ≤ β‖Lt‖2

F

Combining with (23) and using the fact that dt ≥ C2(H, τ), we
obtain that

Z(Lt+1 ,Ht+1 , τ t)+ β‖Lt+1‖2
F ≤ Z(Lt,Ht+1 , τ t)+ β‖Lt‖2

F .
(24)

This result guarantees the decrease of the objective function
after each update of the Laplacian matrix over the iterations.
The backtracking is shown in Algorithm 2.

Algorithm 2: Backtracking Algorithm for Estimating C2
(H, τ) at Iteration t + 1.

1: Input: η = 1.1, initial guess for C2(H, τ), k = 1
2: Output: Estimate of the Lipschitz constant C2(H, τ)
3: while (23) is False do:
4: Update: C2(H, τ) = ηkC2(H, τ), dt = γ2C2(H, τ)
5: k = k + 1
6: Update Lt+1 by solving (11)

C. Variable τ

Since the objective function is convex and twice differentiable
with respect to τ , we estimate the Lipschitz C3(L,H) by com-
puting the Hessian ∇2

τ ‖X −DH‖2
F . Using (21), the entries of

this S × S matrix are given by

∇2
τ Zss = − 2 tr(HsX

T L2e−τs L ) + 4 tr(HsH
T
s L2e−τs L )

+ 2
S
∑

s ′ �=s=1

tr(Hs ′HT
s L2e−(τs +τs ′ )L ), (25)

∇2
τ Zss ′ = 2 tr(Hs ′HT

s L2e−(τs +τs ′ )L ), if s �= s′.

Given that the Hessian is a positive semidefinite matrix, its
2-norm is its largest eigenvalue and any upper bound on this
eigenvalue gives a global Lipschitz constant. We will use the
fact that the largest absolute row sum of the matrix represents
such an upper bound. For this purpose, we first estimate

|∇2
τ Zss | ≤

(

2‖Hs‖F ‖XT ‖F + 4‖Hs‖F ‖HT
s ‖F

)‖L2‖2
2

+ 2
S
∑

s ′ �=s=1

‖Hs ′ ‖F ‖HT
s ‖F ‖L2‖2

2 ,

|∇2
τ Zss ′ | ≤ ‖Hs ′ ‖F ‖HT

s ‖F ‖L2‖2
2 ,
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where we have used the fact that ‖L2e−τs L‖2 ≤ ‖L2‖2 , for
every τs ≥ 0, due to the positive semidefiniteness of L. An
upper bound on the largest eigenvalue, which in turn gives the
Lipschitz constant, is thus given by

C3(L,H) =

max
s ′

‖L‖2
2

(

2‖Hs ′ ‖F ‖X‖F + 4
S
∑

s=1

‖Hs ′ ‖F ‖Hs‖F

)

.

ACKNOWLEDGMENT

The authors would like to thank S. Segarra, A. Ribeiro, and B.
Pasdeloup for sharing their MATLAB code of the algorithms in
[14] and [13] used in the experiments. Additionally, we would
like to thank G. Stathopoulos for discussions on the solution
of the optimization problem, and the anonymous reviewers for
their constructive comments on earlier versions of this paper.

REFERENCES

[1] F. R. K. Chung, Spectral Graph Theory. Providence, RI, USA: Amer.
Math. Soc., 1997.

[2] D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[3] B. Lake and J. Tenenbaum, “Discovering structure by learning sparse
graph,” in Proc. 33rd Annu. Cogn. Sci. Conf., 2010, pp. 778–783.

[4] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning Lapla-
cian matrix in smooth graph signal representations,” IEEE Trans. Signal
Process., vol. 64, no. 23, pp. 6160–6173, Dec. 2016.

[5] F. Chung, “The heat kernel as the pagerank of a graph,” Natl. Acad. Sci.,
vol. 104, no. 50, pp. 19 735–19 740, 2007.

[6] H. Ma, H. Yang, M. R. Lyu, and I. King, “Mining social networks using
heat diffusion processes for marketing candidates selection,” in Proc. 17th
ACM Conf. Inf. Knowl. Manage., 2008, pp. 233–242.

[7] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized
minimization for nonconvex and nonsmooth problems,” Math. Program.,
vol. 146, nos. 1/2, pp. 459–494, Aug. 2014.

[8] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covari-
ance estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3,
pp. 432–441, Jul. 2008.

[9] V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. 19th
Int. Conf. Artif. Intell. Statist., 2016, pp. 920–929.

[10] E. Pavez and A. Ortega, “Generalized Laplacian precision matrix estima-
tion for graph signal processing,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2016, pp. 6350–6354.

[11] M. Belkin and P. Niyogi, “Towards a theoretical foundation for Laplacian-
based manifold methods,” in Proc. 15th Annu. Conf. Comput. Learn.
Theory, 2005, pp. 486–500.

[12] J. Mei and J. M. F. Moura, “Signal processing on graphs: Estimating the
structure of a graph,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Brisbane, Australia, Apr. 2015, pp. 5495–5499.

[13] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat, “Char-
acterization and inference of weighted graph topologies from observations
of diffused signals,” 2016, arXiv:1605.02569.

[14] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network topology
inference from spectral templates,” 2016, arXiv:1608.03008v1.

[15] D. J. Bartholomew, M. Knott, and I. Moustaki, Latent Variable Models
and Factor Analysis: A Unified Approach, 3rd ed. Hoboken, NJ, USA:
Wiley, Jul. 2011.

[16] X. Zhang, X. Dong, and P. Frossard, “Learning of structured graph dictio-
naries,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Kyoto,
Japan, 2012, pp. 3373–3376.

[17] D. Thanou, D. I Shuman, and P. Frossard, “Learning parametric dictionar-
ies for signals on graphs,” IEEE Trans. Signal Process., vol. 62, no. 15,
pp. 3849–3862, Aug. 2014.

[18] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse
representation modeling,” Proc. IEEE, vol. 98, no. 6, pp. 1045–1057,
Apr. 2010.

[19] R. Gribonval, “Should penalized least squares regression be interpreted as
maximum a posteriori estimation?” IEEE Trans. Signal Process., vol. 59,
no. 5, pp. 2405–2410, May. 2011.

[20] A. Smola and R. Kondor, “Kernels and regularization on graphs,” in Proc.
16th Annu. Conf. Comput. Learn. Theory, 2003, pp. 144–158.

[21] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” J. Roy. Stat. Soc. Ser. B, vol. 67, no. Pt2, pp. 301–320, 2005.

[22] H. Bauschke and P. Combettes, Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. Berlin, Germany: Springer, 2011.

[23] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, Jan. 2014.

[24] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[25] B. O. Brendan, E. Chu, N. P. Neal, and S. Boyd, “Operator splitting
for conic optimization via homogeneous self-dual embedding,” J. Optim.
Theory Appl., vol. 169, no. 3, pp. 1042–1068, 2016.

[26] N. J. Higham, Functions of Matrices: Theory and Computation.
Philadelphia, PA, USA: SIAM, 2008.

[27] P. Kandolf and S. D. Relton, “A block Krylov method to compute the
action of the Frechet derivative of a matrix function on a vector with
applications to condition number estimation,” SIAM J. Sci. Comput., May
2017.

[28] G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins
Studies in the Mathematical Sciences), 4th ed. Baltimore, MD, USA: The
Johns Hopkins Univ. Press, 2013.

[29] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[30] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.
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