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The effective representation, processing, analysis, and visual-
ization of large-scale structured data, especially those related 
to complex domains, such as networks and graphs, are one 

of the key questions in modern machine learning. Graph signal 
processing (GSP), a vibrant branch of signal processing models 
and algorithms that aims at handling data supported on graphs, 
opens new paths of research to address this challenge. In this ar-
ticle, we review a few important contributions made by GSP con-
cepts and tools, such as graph filters and transforms, to the devel-
opment of novel machine learning algorithms. In particular, our 
discussion focuses on the following three aspects: exploiting data 
structure and relational priors, improving data and computation-
al efficiency, and enhancing model interpretability. Furthermore, 
we provide new perspectives on the future development of GSP 
techniques that may serve as a bridge between applied mathe-
matics and signal processing on one side and machine learning 
and network science on the other. Cross-fertilization across these 
different disciplines may help unlock the numerous challenges of 
complex data analysis in the modern age.

Introduction
We live in a connected society. Data collected from large-scale 
interactive systems, such as biological, social, and financial 
networks, become largely available. In parallel, the past few 
decades have seen a significant amount of interest in the ma-
chine learning community for network data processing and 
analysis. Networks have an intrinsic structure that conveys 
very specific properties to data, e.g., interdependencies be-
tween data entities in the form of pairwise relationships. These 
properties are traditionally captured by mathematical repre-
sentations such as graphs.

In this context, new trends and challenges have been devel-
oping fast. Let us consider, for example, a network of protein–
protein interactions and the expression level of individual genes 
at every point in time. Some typical tasks in network biology 
related to this type of data are 1) discovery of key genes (via 
protein grouping) affected by the infection and 2) prediction 
of how the host organism reacts (in terms of gene expression) 
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to infections over time, both of which can inform the best inter-
vention strategies. These are two classical machine learning 
tasks that involve learning with graph-structured data (see Fig-
ure 1 for an illustration). Furthermore, the rapid growth of gene 
and protein sequence data stretches the limit of graph-based 
algorithms, which need to be robust and stable against poten-
tial noise. Finally, the understanding and interpretability of the 
learning model (such as the interpretation of the coefficients 
of the regression model) are of crucial importance to clinical 
decision making, for example, vaccine administration. 

The quest for more efficient representation of signals col-
lected in new structured observation domains has led to the 
recent development of GSP [1]–[3]. GSP is a fast-growing field 
at the intersection of applied mathematics and signal process-
ing that has seen a significant amount of research effort in the 
signal processing community at large. In these settings, data 
are modeled as signals defined on the node set of a weighted 
graph, which provide a natural representation that incorporates 
both the data (node attribute) and the underlying structure 
(edge attribute). By extending classical signal processing con-
cepts, such as sampling, convolution, and frequency-domain 
filtering, to signals on graphs, GSP provides new ways of lever-
aging the intrinsic structure and geometry of the data in the 
analysis. This provides a generic framework and numerous 
appealing tools to address some of the new challenges encoun-
tered by current machine learning models and algorithms that 
handle network data.

On the one hand, GSP provides new ways of exploiting data 
structure and relational priors from a signal processing per-
spective. This leads to both the development of new machine 
learning models that handle graph-structured data, e.g., graph 
convolutional networks for representation learning [4], and 
improvement in the efficiency and robustness of classical net-
work algorithms, e.g., spectral clustering to detect network com-
munities [5]. On the other hand, GSP provides a new perspective 

about the interpretability of popular machine learning models, 
e.g., the deep neural networks (DNNs), and gives additional 
insights on understanding real-world systems, e.g., by infer-
ring the underlying network structure from observations [6], 
[7]. Hence, GSP tools interestingly serve as a bridge that con-
nects machine learning, signal processing, and network science 
toward solving important challenges in modern data analysis.

In this article, we review the application of GSP concepts 
and tools in developing novel as well as improving existing 
machine learning models. Our discussion revolves around 
three broad categories of GSP-based ideas: 1) regulariza-
tion techniques to enforce smoothness of signals on graphs; 
2) sampling techniques, filters, and transforms defined on 
graphs; and 3) learning models inspired or interpretable by 
GSP concepts and tools. We highlight their utilization for: 
1) exploiting data structure and relational priors; 2) improv-
ing data efficiency, computational efficiency, and robustness; 
and 3) designing interpretable machine learning and artificial 
intelligence systems. We further provide a number of open 
challenges and new perspectives on the design of future GSP 
algorithms for machine learning and data analysis applica-
tions in general.

GSP for exploiting data structure
GSP typically permits one to model, analyze, and process 
data supported on graphs. For ease of discussion, consider a 
weighted and undirected graph { , }G V E=  with the node set 
V  of cardinality N  and edge set .E  A graph signal is defined 
as a function, : ,x RV "  that assigns a scalar value to each 
node. The main research effort in GSP is therefore concerned 
with the generalization of classical signal processing concepts 
and tools to graph signals. One key development is that the 
set of eigenvectors of the graph Laplacian matrix or a graph 
shift operator (a generic matrix representation of the graph) 
provides a notion of frequency on graphs and helps define the 
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FIGURE 1. An illustrative example of a typical graph-based machine learning task and the corresponding challenges. The input of the algorithm consists 
of 1) a typical protein–protein interaction network captured by a graph and 2) a signal on the graph (color coded) that is an expression level of individual 
genes at any given time point. The output can be a classical machine learning task, such as clustering of the proteins or prediction of gene expression 
over time.
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so-called graph Fourier transform (GFT). For example, con-
sider the combinatorial graph Laplacian ,L D W= -  where 
W is the weighted adjacency matrix of the graph and D is 
the degree matrix. The graph Laplacian L admits the eigen-
composition ,L TUKU=  where U  is the eigenvector matrix 
that contains the eigenvectors as columns and K  is the ei-
genvalue matrix ( , , , )diag N1 2 fm m m  that contains the associ-
ated eigenvalues (conventionally sorted in increasing order) 
along the diagonal. Due to the analogy between the continu-
ous Laplace operator and the graph Laplacian L, the operation 

,x xTG HU U=  can be thought of as a GFT for the graph signal 
x, with the i th entry of xTU  being the Fou-
rier coefficient that corresponds to the dis-
crete frequency im  [1] (similar transforms 
could be defined using a general graph shift 
operator [2], [3]). This observation is use-
ful in two aspects. First, the notion of fre-
quency helps define a measure of smooth-
ness for signals on graphs and provides a 
new interpretation of the theory of kernels and regularization 
on graphs [8]. Second, this enables the generalization of op-
erations such as convolution and frequency-domain filtering 
for graph signals. GSP-based ideas thus provide new tools for 
exploiting data structure and relational priors. Since their in-
ception, they have been applied in the context of a wide range 
of machine learning problems. In this section, we discuss the 
application of GSP in supervised and unsupervised learning 
problems when the underlying graph is known; alternatively, 
it may be inferred from observations of different variables (see 
the “Inference of Hidden Relational Structure for Interpret-
ability” section for further discussion on this point).

Regression for multiple response variables
Regression is one of the basic forms of supervised learning 
where, in its simplest setting, we are interested in learning 
a mapping from a set of inputs (or features) to a real-valued 
output (or response). Of particular interest is the general-
ized problem of multivariate regression, where we learn 
such a mapping for multiple response variables. Existing 
approaches in the literature usually rely on some type of 
modeling of the interdependencies between the response 
variables. For example, in a parametric model, such inter-
dependencies are implicitly captured by the coefficients of 
a multivariate autoregressive process; in a nonparametric 
model, they may be explicitly modeled by the kernel func-
tion of a multioutput Gaussian process (GP). In particular, 
in the case of separable kernels for multioutput GP, a posi-
tive semidefinite (PSD) matrix is incorporated into the ker-
nel function to encode the interactions among the response 
variables [9, Sec. 4].

GSP provides an interesting alternative to tackling such 
regression problems by assuming that observations of the 
response variables form graph signals with certain properties 
(e.g., smoothness) on a predefined graph. For example, a glob-
ally smooth graph signal, ,y RN!  can be obtained by solving 
a regularization problem on the graph and interpreted as the 

outcome of the low-pass filtering of an input signal, x RN!  
[1, see Example 2]:

 ( ) ( ) ,y Bx I L x I xT1 1a aU K U= = + = +- -  (1)

where I  is an identity matrix and a  is a hyperparameter. No-
tice that the filter matrix ,B  which is a function of the graph 
Laplacian L, encodes relationships between observations on 
different nodes. Based on this, the authors of [10] have gone 
on to propose a GP model on graphs whose kernel function is 
reminiscent of that in a multi-output GP, where B is used to 

construct the PSD matrix that relates obser-
vations of the response variables.

This example demonstrates the useful-
ness of GSP tools, e.g., graph regulariza-
tion and graph filters, in designing models 
that capture interdependencies between 
multiple response variables in a regression 
setting. In particular, this enriches the mul-

tioutput GP literature by providing new ways of designing the 
kernel functions. For example, in addition to the example in 
[10], the recent work in [11] has proposed to learn a graph filter 
that leads to the most suitable GP kernel for the observed graph 
data, hence improving the prediction performance.

Graph-based classification
Another basic form of supervised learning is classification, 
which is similar to regression but with a categorical response 
variable. Recent advances in deep learning, in particular con-
volutional neural networks (CNNs), have led to significant 
improvements in tasks such as image classification. However, 
classical CNNs cannot be directly applied to classify signals 
that are supported on a graph structure due to a lack of notion 
of shift and convolution in the irregular graph domain.

GSP provides a convenient tool to address such a challenge. 
More specifically, by providing a notion of frequency and a 
GFT, convolution may be implicitly defined via the graph 
spectral domain. Consider a graph signal x and a convolutional 
kernel ( ),g mt  which is defined directly in the graph spectral 
domain as a function applied to the Laplacian eigenvalues. We 
may define the convolution between x and g as

 ( ) ( ) .g g gx x L xT) U K U= =t t  (2)

In (2), ( ) ( ( ), ( ), , ( ));g g g gdiag N1 2 fm m mK =t t t t  thus, the convo-
lution operator ( )g Lt  can generally be interpreted as a graph 
filter whose characteristic is determined by the form of ( )g $ ,t  
which can be learned in the context of a neural network. This 
is exactly the idea behind the work in [12], where the authors 
have considered the problem of graph signal classification 
and proposed a spectral CNN whose architecture resembles 
that of a classical CNN, with the spatial filter replaced by a 
graph filter:

 ( ( ) ) .gx x, ,l q
p

P
T

l p1
1

,q pv U K U= i+

=

t/  (3)

GSP provides new ways of 
exploiting data structure 
and relational priors 
from a signal processing 
perspective.
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In (3), [ , , , ]X x x xR , , ,l
N P

l l l P1 2 f! =#  and X Rl
N Q

1 ! =#
+

[ , , , ]x x x, , ,l l l Q1 1 1 2 1f+ + +  are the feature maps at layer l  and 
,l 1+  respectively, ( ) ( ),g diag ,q p,q p iK =it  where R,q p

N!i  are 
the learnable parameters, and (·)v  is a nonlinearity applied to 
the node-wise signal values. In this construction, node-domain 
convolution is implicitly carried out in the graph spectral do-
main by an element-wise multiplication between the Fourier 
coefficients of the signal, x ,

T
l pU , and the learnable parameter 

vector, ,,q pi  before going back to the node domain. This early 
work thus highlights the benefits of GSP tools in addressing 
an important challenge in the design of graph neural networks 
(GNNs) [4].

The work in [12] is conceptually important, but it is lim-
iting in a number of ways. In particular, the convolutional 
filter defined in the graph spectral domain is not necessarily 
localized in the spatial (node) domain, a property that is often 
desired in neural network design. Furthermore, the necessity 
for computing the eigendecomposition [with a complexity of 

( )]NO 3  as well as the GFT via the matrix−vector multiplica-
tion [with a complexity of ( )]NO 2  prevents this framework 
from being applied to large-scale graphs. Motivated by these 
limitations, Defferrard et al. have proposed a graph CNN 
framework, also known as the ChebNet [13]. The key idea in 
[13] is the design of the convolutional filter via a finite polyno-
mial of the eigenvalues of the graph Laplacian:

 ( )       ( ) ,g gthus L Lj
j

K
j

j
j

K
j

0 0

i iK K= =i i

= =

t t/ /  (4)

where [ , , ] RK
K

0
1f !i i i= +  are the learnable parameters. 

It has been pointed out in [13] that, due to the property of the 
K-degree polynomial of the Laplacian, the convolutional fil-
ter is guaranteed to be localized within the K-hop neighbor-

hood of each node. Furthermore, the convolution can be done 
by matrix–vector multiplication using the powers of the graph 
Laplacian; no explicit computation of the eigendecomposi-
tion or the GFT is required. Finally, to improve the stability 
of the convolution operation, the authors of [13] consider a 
scaled version of the graph Laplacian, L ,u  and a Chebyshev 
approximation to ( )g Li ,t u  hence the name of the approach. 
ChebNet represents an important advance in GNN designs, 
and its development is based on the core idea of graph con-
volution via polynomial spectral graph filters in (4). An il-
lustration of the graph convolutional layer of the ChebNet is 
shown in Figure 2.

The works in [12] and [13] consider supervised learning 
(classification) of graph signals, an exact analogy to image 
classification via traditional CNNs. Another popular graph-
based classification problem is semisupervised node classi-
fication, where one is interested in inferring the label for a 
set of testing nodes given labels on a set of training nodes as 
well as the connectivity and any additional features for the 
full set of nodes. Although there exists an extensive literature 
on semisupervised learning on graphs, the perspective of neu-
ral network-based approaches provides renewed interest in 
the problem from the machine learning community. A major 
development along this line is the graph convolutional net-
work (GCN) proposed in [14], which can be thought of as a 
special case of the ChebNet design by letting .K 1=  After 
a series of simplifications, one can express the convolutional 
layer of the GCN as

 ( ) .g L D WD/ /1 2 1 2i=i
- -t u u u  (5)

In (5), Du  is a diagonal matrix with the ith  entry of the di-
agonal being ,WDii ijjR=u u  where Wiju  is the ijth entry of the 
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FIGURE 2. The graph convolution via polynomial spectral graph filters proposed in the ChebNet architecture. An input graph signal is passed through three 
graph filters separately to produce the output of the first graph convolutional layer (before nonlinear activation and graph pooling) of the ChebNet. (a) 
Input graph signal. (b) Graph filter. (c) Graph convolution output. (Adapted from [13, Fig. 1].) 
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 matrix W W I= +u , and i  is the single learnable parameter 
for each filter. The GCN can be considered as a neural net-
work that updates node features for node classification; hence, 
it does not require a graph pooling layer as in the case of [12] 
and [13]. The update process is a simple one-hop neighborhood 
averaging, as implied by the choice of K 1=  for the convo-
lutional filter and reflected by the form of normalized adja-
cency matrix in (5). This also demonstrates the interesting 
point that although GNN designs, such as the ChebNet and 
the GCN, might be motivated from a graph spectral view-
point, they may be implemented in the spatial (node) domain 
directly. The work in [14] has demonstrated that the GCN sig-
nificantly outperforms a number of baselines in graph-based 
semisupervised learning tasks, and it has since sparked major 
interest in developing GNN models from the machine learn-
ing community.

In summary, GSP tools, and especially the graph filters, 
have played an important role in some early designs of GNN 
architectures. Furthermore, the recent study 
in [15] has shown that several popular GNNs  
can be interpreted as implementing de -
noising and/or smoothing of graph signals. 
GNNs, especially those designed from a  
spectral perspective, therefore can be thought 
of as learning models inspired or interpre-
table by GSP concepts and tools. They have 
contributed not only to graph-based classification but also to 
other aspects of machine learning, as we explain in the follow-
ing sections.

Graph-based clustering and dimensionality reduction
Unsupervised learning is another major paradigm in machine 
learning, where clustering and dimensionality reduction are 
two main problems of interest. Graph-based clustering, in its 
simplest form, aims to partition the node set into mutually 
exclusive clusters using a similarity graph. This problem has 
attracted major interest in the network science and machine 
learning communities. Spectral clustering, for example, is one 
of the most popular solutions that has been introduced in the 
last two decades.

Although graph-based clustering does not typically involve 
node attributes (i.e., graph signals), concepts that are provided 
by GSP have found their application in a number of related 
problems. One example is multiscale clustering, where one 
is interested in finding a series of clustering results, each of 
which reflects the grouping of nodes at a particular scale. 
While classical solutions are usually based on the generaliza-
tion of concepts such as modularity to the multiscale scenario, 
multiscale transforms in signal processing, such as the wave-
let transform, provide a natural alternative. For example, the 
work in [16] has utilized the spectral graph wavelets [17], a 
generalization of wavelets to the graph domain, to address the 
problem. Specifically, the graph wavelet ,s v}  centered around 
node v  at a particular scale s  is defined as

 ( ) ( )g s g sL,s v
T

v v} d dU UK= = ,t t  (6)

where ( ) ( ( ), ( ), , ( ))g s g s g s g sdiag N1 2 fm m mK = ,t t t t  and vd  is a 
delta impulse that has value 1 at node v  and 0 elsewhere. It is 
clear from (6) that the graph wavelet ,s v}  can be interpreted 
as the outcome of a scaled (in the graph spectral domain) 
graph filter given the delta impulse as the input. It provides 
an “egocentered view” of the graph seen from node ,v  and 
correlation between such views therefore provides a similarity 
between the nodes at scale .s  A simple hierarchical cluster-
ing is then applied to the similarity matrix at different scales 
to obtain multiscale clustering. Another example of the GSP 
approach for clustering is discussed in [5], again based on the 
graph filters, which we explain in more detail in the “GSP for 
Improving Efficiency and Robustness” section from an effi-
ciency viewpoint.

Unsupervised learning can also take the form of dimension-
ality reduction problems. In the context of graph-structured 
data, this usually means learning a low-dimensional repre-
sentation for the data entities in the presence of a graph that 

captures the pairwise similarity between 
them. Classical solutions to dimensional-
ity reduction, such as matrix factorization 
and autoencoders, have recently been com-
bined with advances in GNNs to provide 
novel solutions. For example, the work in 
[18] has proposed an architecture based 
on the GCN to train a graph autoencoder 

for learning a low-dimensional representation of the data. 
Another example is the work in [19], where the authors have 
proposed an architecture that combines the ChebNet with a 
recurrent neural network architecture for matrix completion 
and factorization. Both the GCN and ChebNet are based on 
the idea of polynomial spectral graph filters, which demon-
strates how such GSP-inspired models can benefit learning 
algorithms for dimensionality reduction problems.

GSP for improving efficiency and robustness
Although GSP is a framework originally developed for in-
corporating the graph structure into data analysis, recently, 
many classical machine learning algorithms have also ben-
efited from exploiting typical GSP tools. Significant im-
provement in terms of robustness with respect to scarse and 
noisy training data, or adversarial examples, has been shown 
in tasks such as (semi-)supervised learning, few-shot learn-
ing, zero-shot learning, and multitask learning. Furthermore, 
large-scale data analysis and statistical learning can benefit 
from typical GSP operations, such as sampling and filtering, 
to reduce the computational complexity and time of graph-
based learning. We discuss some of these aspects in the fol-
lowing sections.

Improvement on data efficiency and robustness
Graph regularization has been introduced in many learning 
architectures, including DNNs, to improve the performance 
of supervised and semisupervised learning tasks. In semisu-
pervised settings, the loss term has been augmented by a 
graph-based penalization term that biases the network toward 

GSP tools, and especially 
the graph filters, have 
played an important role in 
some early designs of GNN 
architectures.
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 learning similar representations for neighboring nodes on a 
graph that contains as nodes both labeled and unlabeled data 
[20]. In supervised learning problems, the regularization tech-
nique that encourages smoothness of the label signal on a simi-
larity graph constructed from the data [21] has been shown to 
improve the robustness of deep learning architectures by max-
imizing the distance between outputs for different classes. A 
similar regularization idea can be applied to intermediate rep-
resentations in a DNN; for example, the regularizer proposed 
in [22] is based on constructing a series of graphs, one for each 
layer of the DNN architecture, where each 
graph captures the similarity between all 
training examples given their representa-
tions at that layer. It aims at achieving ro-
bustness by penalizing large changes in the 
smoothness of class indicator vectors from 
one layer to the next. Both [21] and [22] 
demonstrate the benefit of using regulariza-
tion techniques on graphs to introduce inductive bias toward 
more effective learning.

Few-shot learning is another domain of machine learning 
where GSP-inspired models, in particular the GNNs, have been 
shown to improve generalization to novel tasks using only a 
few examples from the unknown classes. For instance, GCNs 
have been introduced in classical learning architectures: in 
[23], seen and unknown classes are represented by prototypes 
that are learned jointly; in [24], a graph is constructed from 
images in all classes, and it is eventually given as an input 
to a GCN. On the other hand, zero-shot learning, i.e., when 
samples of the unknown classes do not even exist in the train-
ing set, has also benefited from GSP tools such as transforms 
defined on graphs. As an example, the authors of [25] have 

introduced the isoperimetric loss as a regularization criterion 
for learning the map from a visual representation to a semantic 
embedding in a zero-shot learning scenario. Sample embed-
dings are modeled as nodes of a graph whose connectivity is 
learned in the training phase. Smoothness on the graph is then 
achieved through the isoperimetric loss, which is approximat-
ed using polynomial functions that correspond to the spectral 
graph wavelets [17].

Generalization across tasks is also key to multitask learn-
ing, a field of research that has been recently addressed with 

GSP in [26]. In this setting, the graph cap-
tures the correlation between multiple tasks, 
with each task being a node on the graph 
(see Figure 3 for an illustration). The overall 
goal is for each task to infer the parameter 
vector that optimizes a differentiable cost 
function. Looking at the cost function as 
a signal on the graph, the knowledge from 

other tasks can be exploited by imposing a regularizer on the 
task graph, promoting the existing relationships between the 
tasks. This work shows how the structure between tasks can be 
inferred and exploited in learning-to-learn (or metalearning) 
settings, generalizing the learning process across tasks.

Robustness against topological noise
In addition to robustness in terms of data samples, another 
natural consideration is the stability and robustness of graph-
based models against topological noise. This usually means 
perturbation in the graph topology, which may be due to 
noise observed in real-world graphs or inaccuracy in the in-
ference of the graph topology if one is not readily available. 
Stability and robustness against such perturbation is key to 
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Recently, many classical 
machine learning 
algorithms have also 
benefited from exploiting 
typical GSP tools. 
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the generalization capability of graph-based machine learn-
ing models.

It is well known that Laplacian eigenvectors are not stable 
against perturbation in graph topology. The stability of GSP-
based tools, especially the Laplacian-based spectral graph 
filters and spectral domain designs of GNN architectures, 
has come under scrutiny. However, a few recent results have 
shown that spectral graph filters are, under certain conditions, 
indeed stable. For example, the work in [27] has shown that 
spectral graph filters in the Cayley smoothness space are sta-
ble under absolute perturbation in the graph Laplacian, in the 
sense that the change in the filter output is linear with respect 
to the amount of perturbation. They have further analyzed the 
transferability of spectral domain designs of GNNs between 
graphs that discretize the same underlying metric space. The 
work in [28] has analyzed the stability of graph filters with 
respect to both absolute and relative graph perturbation and 
used the results to bound the change in the output of a GNN 
architecture as a function of properties of the perturbation 
(i.e., eigenvector misalignment and upper bound for the norm 
of the perturbation matrix), filter characteristic (i.e., integral 
Lipschitz constant of the filter), and design of the GNN archi-
tecture (i.e., number of filters and layers).

In addition to these stability results, there exist several other 
studies on the impact of perturbation or uncertainty in the 
graph topology on GSP and network analysis in general. For 
example, recent works have analyzed polynomial graph fil-
ters with random graph realizations, changes in the Laplacian 
eigenvalues and eigenvectors due to perturbation, and stabil-
ity and continuity of centrality measures in weighted graphs. 
All of these examples are important attempts in understanding 
the robustness of network analysis, GSP operations, and GSP-
inspired models against topological noise.

Improvement of computational efficiency
The benefit of graph priors in machine learning tools in terms 
of data efficiency, robustness, and generalization has been 
empirically and theoretically supported. Nevertheless, these 
learning frameworks usually scale poorly with the number of 
graph nodes, resulting in high computational complexity in 
large-scale problems. Hence, there exists a strand of research 
aimed at adopting GSP tools to reduce the computational com-
plexity of classical learning frameworks, such as spectral clus-
tering and spectral sparsification.

Spectral clustering is a typical example of highly useful yet 
expensive frameworks. The three main steps of spectral clus-
tering are 1) graph construction for the N  entities to cluster; 2) 
computation of the first k  eigenvectors of the graph Laplacian 
to identify a feature vector (embedding) for each entity; and 3) 
application of the k-means algorithm to these feature vectors. 
Each of these three steps becomes computationally intensive 
for a large number of nodes N  and/or target number of clusters 
k . Fundamental GSP techniques, such as graph filtering and 
random signal sampling, have been proposed to simplify the 
last two steps of spectral clustering, leading to a compressive 
spectral clustering algorithm [5]. In particular, the computa-

tion of the eigenvectors is bypassed by filtering random sig-
nals on the graph. The k-means step is then performed on a 
small number (instead of )N  of randomly selected feature vec-
tors, exploiting the theory of random sampling of bandlimited 
graph signals. We refer the reader to [5] for a review of the 
recent works aimed at reducing the computational complexity 
of spectral clustering.

More broadly, analysis and processing of data that reside 
on large-scale graphs can be simplified by factorizing the 
complex graph structure into the product of smaller graphs. 
This is the idea behind the work in [29], which adopts prod-
uct graph as a model for large graphs and defines signal pro-
cessing operations, such as the GFT and filtering, in a more 
efficient manner. For example, a Cartesian product graph 
can be used to modularize a regular grid image to gain in 
terms of computational efficiency in the computation of 
eigendecomposition for the GFT. This enables efficient 
implementation of GSP analysis on large graphs via paral-
lelization and vectorization.

GSP for enhancing model interpretability
A third domain that has recently benefited from the advances 
in the GSP literature is the interpretation of complex systems 
as well as classical machine learning algorithms. In this sec-
tion, we focus our discussion on two aspects: 1) inferring hid-
den structure from data that leads to a better understanding of 
a complex system and 2) explaining the outcome of classical 
“black-box” learning architectures.

Inference of hidden relational structure for interpretability
Analysis of complex systems typically involves large sets of 
data whose underlying structure is often unknown. Such a 
structure can be estimated from the data to permit effective 
understanding or visualization of the system behavior. For ex-
ample, in neuroscience, inferring a structure in the form of the 
connectivity between brain regions from activation signals may 
lead to a better understanding of the functionality of the brain.

The problem of structure or topology inference has been 
studied from classical viewpoints in statistics (e.g., sparse 
inverse covariance estimation) or physics (e.g., cascade mod-
els). More recently, the problem has been addressed from a 
GSP perspective, where the structure is modeled as a graph 
that is to be inferred by exploiting the interplay between the 
graph and the signals observed on the nodes. GSP-based 
graph learning frameworks therefore have the unique advan-
tage of enforcing certain desirable representations of the sig-
nals via frequency-domain analysis and filtering operations 
on graphs. For example, models based on assumptions such 
as the smoothness or the diffusion of the graph signals have 
been successfully applied to identify weather patterns, brain 
connectivity, mobility patterns, and 3D point cloud structure. 
We refer the reader to [6] and [7] for two reviews of the recent 
works on the topic.

Furthermore, topology inference has been introduced in 
the context of DNNs/GNNs to infer hidden, and more inter-
pretable, structures. For example, the authors in [30] have 
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proposed to impose a graph-based regularization on features 
of each layer of the DNN, based on the signal smoothness, by 
simultaneously learning the feature space graph, with nodes 
being the neurons. Specifically, features associated with the 
neurons in the intermediate layers are constrained to take 
into account the structure of a graph through a smoothness-
promoting regularizer. Such an approach is shown to increase 
the interpretability of the DNN layers. Another example is 
the graph attention network (GAT) [31], which is a form of 
GNN that adaptively updates edge weights in a data-driven 
manner and, thus, can be used to interpret the importance 
of neighbors in feature aggregation. Interestingly, the recent 
work in [15] has shown that the GAT itself can be interpreted 
as implementing denoising of edge weights in a graph signal 
denoising problem.

A posteriori interpretation of learning architectures
A first attempt to exploit GSP tools to better understand com-
plex learning architectures is the framework proposed in [32], 
called MARGIN. It provides a generic way to perform several 
metalearning tasks by allowing the user to incorporate rich se-
mantic information. More specifically, for each task, a graph 
whose nodes represent entities of interest is constructed, and 
a hypothesis is defined as a function or signal on that graph. 
For example, if the task is to determine faulty labels in a data 
set with corrupted labels, the domain is the set of samples and 
the hypothesis becomes a local label agreement signal that 
measures how many neighbors have the same label as the cur-
rent node. The central idea of MARGIN is then to use GSP to 
identify fluctuations of the signal on the graph, which serve as 
explanations. In particular, high-pass graph filtering reveals 
which nodes can maximally describe the variations in the la-
bel agreement signal. The node influence scores are computed 
as the magnitude of the filtered signal value at that node. The 
influence score is eventually translated into an interpretable 
explanation. A summary of the different steps of the approach 
is illustrated in Figure 4. MARGIN is an interesting attempt 
based on GSP tools; however, one limitation of this method 
is the fact that if the domain is chosen to be the entire data 
set, the graph construction and the filtering operators become 
computationally intensive as the size of the data set increases.

Another example for improving interpretability is the work 
in [33], which uses GSP to monitor the intermediate represen-
tations obtained in a DNN. Preliminary findings suggest that 
smoothness of the label signal on a k-nearest neighbor graph, 
which is obtained using normalized Euclidean distance of fea-
tures in each layer, is a good measure of separation of classes 
in these intermediate representations. Thus, this constitutes a 
first step toward exploiting the frequency behavior of the label 
signal on some well-defined graphs across the layers to provide 
meaningful interpretations of the DNN layers. Besides global 
smoothness, other spectral properties of graph signals, such as 
local smoothness or sparsity, as well as graph metrics, such as 
centrality and modularity, could be worth investigating toward 
the same objective.

Summary, open challenges, and new perspectives
Handling complex and dynamic structures within large-scale 
data sets presents significant challenges in modern data  analytics 
and machine learning tasks. Therefore, the novel signal 
processing perspective reviewed in this article has both 
theoretical and practical significance. On the one hand, 
GSP provides a new theoretical framework for incorporat-
ing complex structures within the data and contributes to 
the development of new data analysis and machine learn-
ing frameworks and systems. Furthermore, GSP tools have 
been utilized to improve existing machine learning mod-
els, mainly in terms of data and computational efficiency, 
robustness against noise in data and graph structure, and 
model interpretability. Some of the representative contribu-
tions discussed in this article are summarized in Table  1 
(an extended version of this article with a more com-
prehensive list of references is available at https://arxiv 
.org/abs/2007.16061). On the other hand, machine learning 
problems, such as classification, clustering, and reinforce-
ment learning (RL), as well as their application in real-
world  scenarios, also provide important motivations for new 
theoretical development in GSP. For these reasons, there has 
been an increasing amount of interest in the GSP community 
in engaging with machine learning applications. Here, we 
will provide a few open challenges and new perspectives on 
future investigation.
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FIGURE 4. An illustrative example of MARGIN. (Adapted from [32]; used with permission.)  
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GSP and probabilistic modeling
One important direction is the connection between GSP, ma-
chine learning, and probabilistic modeling of the graph topol-
ogy. Most existing GSP and machine learning frameworks 
and tools follow a deterministic setting, where a fixed graph 
topology is predefined or inferred from data. Real-world 
networks, however, are often noisy, incomplete, or evolving 
constantly over time. Therefore, it is important to take into 
account the uncertainty in the graph topology in the analysis. 
First, it would be important to study analytical models for 
noise in the graph topology and its impact on GSP analy-
sis tasks. For example, the work in [34] has used the Erdös-
Rényi graph, a well-known random graph model, as a model 
for topological noise and analyzed its impact on the filter-
ing operation and independent component analysis of graph 
signals. Second, it would be interesting to take a Bayesian 
viewpoint to model the uncertainty in the graph topology. 
For example, the observed graph may be considered an in-
stance generated from a parametric model, and the posterior 
of the parameters may be computed so that new instances of 
the graph may be generated. This is exactly the idea behind 
the work in [35], which has adopted a mixed membership 
stochastic block model for the graph and proposed a Bayes-
ian GCN framework. Both are promising future directions to 
combine GSP and machine learning in a coherent probabilis-
tic framework.

GSP and decision-making strategy
It is interesting to notice the link recently established between 
GSP and decision-making strategies (DMSs) under uncertain-
ty, in which an agent needs to accomplish a task (maximize a 
cumulative or long-term reward) without any prior informa-
tion. The environment (state space in RL or context in bandit 
problems) can be modeled as a graph, and instantaneous or 
long-term rewards can be seen as a signal on the graph (see Fig-
ure 5 for an illustration). GSP tools can then be used to provide 
a sparse representation of the signal and reduce the learning of 
the agent to a low-dimensional space. This improves the learn-
ing rate in DMS problems, which otherwise does not scale 
with the dimension of the state space, leading to highly subop-
timal decisions in large-scale problems. Many open challeng-
es, however, still remain overlooked. First, the graph in these 
problems is usually constructed and not adaptively inferred, 
a scenario where GSP-based topology inference ideas may 
be useful. Second, most solutions to DMS problems involve 
either the inversion of the Laplacian matrix or an expensive 
optimization problem, yet they need to be performed at each 
decision opportunity. GSP tools of lower complexity therefore 
could be essential in this regard, and related theoretical results 
may prove to be useful in establishing the error quantification 
bound for safe DMSs. Finally, an open challenge in the de-
sign of DMSs is the control over high-dimensional processes. 
From a network optimization perspective, several works have 

(a) (b) (c)

FIGURE 5. A maze as an RL problem: (a) an environment is represented by its multiple states—(x, y) coordinates in the space. We quantize the maze 
space into four positions (therefore, states) per room. (b) States are identified as nodes of a graph and state transition probabilities as edge weights.  
(c) The state value function can then be modeled as a signal on the graph, where both the color and size of the nodes reflect the signal values. (a) Environ-
ment. (b) Topology. (c) Value function.

Table 1. A summary of contributions of GSP concepts and tools to machine learning models and tasks.

Graph-Based Smoothness  
and Regularization Graph Sampling, Filters, and Transforms 

GSP-Inspired/ 
Interpretable Models 

Exploiting data  
structure 

GP and kernels on graphs [10], 
[11] 

GP and kernels on graphs [10], [11]; multiscale clustering [16] Spectral GNNs  
[12]–[14], [18], [19] 

Improving efficiency 
and robustness 

Improving DNNs [20]–[22];  
multitask learning [26] 

Zero-shot learning [25]; stability of filters and GNNs [27], [28]; 
spectral clustering [5]; large-scale data processing [29] 

Few-shot learning [23], 
[24] 

Enhancing model  
interpretability 

Interpreting DNNs [30], [33] Topology inference [6], [7]; interpreting DNNs [32] GAT [31] 
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provided appropriate models to characterize systems evolv-
ing on high-dimensional networks. However, the theory and 
optimization techniques developed there do not directly apply 
to problems involving adaptive and online sequential decision 
strategies. GSP tools could be adopted to 
overcome these limitations and tackle the 
challenge of online control of high-dimen-
sional dynamic processes.

GSP and model interpretability
GSP can play a significant role toward better 
defining what we call interpretable machine learning. Currently, 
deep learning with large systems typically leads to nonrobust 
and black-box decision systems, which is insufficient in safety-
critical applications, such as personalized medicine and auton-
omous systems. Modeling the structure of the data with a graph 
could be a way of introducing domain knowledge (e.g., physi-
cal interactions such as the ones illustrated in Figure 6) in the 
learning process and eventually biases the system toward rela-
tional learning, which is a core ingredient for human-like intel-
ligence [36]. For this reason, learning architectures that incor-
porate the graph structure, such as the GNNs described in the  
“GSP for Exploiting Data Structure” section, are significantly 
more explainable than typical black-box models. By extend-
ing GNNs toward architectures that are built on more generic 
permutation-invariant functions, we believe that a further step 
could be made toward relational learning. In addition, creating 
anisotropic filters [37] and adapting graph attention mecha-
nisms, such as the GAT, both could open the door to more in-
terpretable learning architectures.

GSP and higher-order structures
There is a growing interest in recent years in analyzing higher-
order interactions in networks. In the complex systems litera-
ture, it has been shown recently that higher-order structures, 

such as network motifs, play a key role in detecting communi-
ties in complex networks [38]. A similar idea has been adopted 
in machine learning, where motifs have been used to design 
GNN models that are capable of handling directed graphs [39]. 

The extensions of GSP theories to deal with 
higher-order structures, such as motifs, sim-
plicial complexes, and hypergraphs, are an 
interesting direction, and the topological 
signal processing framework proposed in 
[40] is a promising first step. Such exten-
sions might reveal a more complex struc-

ture within the data that goes beyond pairwise interactions; in 
addition, they may also help define machine learning models 
with improved interpretability.
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nections between them. (Adapted from [36]; used with permission.)

GSP can play a significant 
role toward better defining 
what we call interpretable 
machine learning.
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