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The construction of a meaningful graph topology plays a 
crucial role in the effective representation, processing, 
analysis, and visualization of structured data. When a nat-

ural choice of the graph is not readily available from the data 
sets, it is thus desirable to infer or learn a graph topology from 
the data. In this article, we survey solutions to the problem of 
graph learning, including classical viewpoints from statistics 
and physics, and more recent approaches that adopt a graph 
signal processing (GSP) perspective. We further emphasize 
the conceptual similarities and differences between classical 
and GSP-based graph-inference methods and highlight the 
potential advantage of the latter in a number of theoretical and 
practical scenarios. We conclude with several open issues and 
challenges that are keys to the design of future signal pro-
cessing and machine-learning algorithms for learning graphs 
from data.

Introduction
Modern data analysis and processing tasks typically involve 
large sets of structured data, where the structure carries criti-
cal information about the nature of the data. One can find nu-
merous examples of such data sets in a wide diversity of ap-
plication domains, including transportation networks, social 
networks, computer networks, and brain networks. Typically, 

graphs are used as mathematical tools to describe the struc-
ture of such data. They provide a flexible way of representing 
the relationship between data entities. In the past decade, 
numerous signal processing and machine-learning algorithms 
have been introduced for analyzing structured data on a priori 
known graphs [1]–[3]. However, there are often settings where 
the graph is not readily available, and the structure of the data 
has to be estimated to permit the effective representation, pro-
cessing, analysis, or visualization of the data. In this case, a 
crucial task is to infer a graph topology that describes the char-
acteristics of the data observations, hence capturing the under-
lying relationship between these entities.

Consider an example in brain signal analysis: suppose we 
are given blood-oxygen-level-dependent (BOLD) signals, i.e., 
time series extracted from functional magnetic resonance 
imaging data that reflect the activities of different regions of 
the brain. An area of significant interest in neuroscience is the 
inference of functional connectivity, i.e., to capture the relation-
ship between brain regions that correlate or synchronize given a 
certain condition of a patient, which may help reveal underpin-
nings of some neurodegenerative diseases (see Figure 1). This 
leads to the problem of inferring a graph structure, given the 
multivariate BOLD time series data.

Formally, the problem of graph learning is the following: 
given M  observations on N  variables or data entities rep-
resented in a data matrix ,X RN M! #  and given some prior 
knowledge (e.g., distribution, data model, and so on) about 

Xiaowen Dong, Dorina Thanou, Michael Rabbat,  
and Pascal Frossard

Digital Object Identifier 10.1109/MSP.2018.2887284 
Date of publication: 26 April 2019

Learning  
Graphs  

From Data
A signal representation perspective



45IEEE Signal Processing Magazine   |   May 2019   |

the data, we would like to build or infer the relationship 
between these variables that take the form of a graph .G  
As a result, each column of the data matrix X  becomes a 
graph signal defined on the node set of the estimated graph, 
and the observations can be represented as ( ),X F G=  
where F  represents a certain generative process or func-
tion on the graph.

The graph-learning problem is an important one because 
1) a graph may capture the actual geometry of structured 
data, which is essential to efficient processing, analysis, and 
visualization; 2) learning the relationship between data enti-
ties benefits numerous application domains, such as under-
standing functional connectivity between brain regions or 
behavioral influence between a group of people; and 3) the 
inferred graph can help to predict future data evolution.

Generally speaking, inferring graph topologies from ob
servations is an ill-posed problem, and there are many ways 
of associating a topology with the observed data samples. 
Some of the most straightforward methods include computing 
the sample correlation or using a similar-
ity function, e.g., a Gaussian radius basis 
function kernel to quantify the similarity 
between data samples. These methods are 
based purely on observations without any 
explicit prior on or model of the data, hence 
they may be sensitive to noise and have dif-
ficulty in tuning the hyperparameters. A 
meaningful data model or accurate prior 
may, however, guide the graph-inference 
process and lead to a graph topology that 
better reveals the intrinsic relationship among 
the data entities. Therefore, a main challenge with this prob-
lem is to define such a model for the generative process or 
function ,F  so that it captures the relationship between the 
observed data X  and the learned graph topology, .G  Typi-
cally, such models often correspond to specific criteria to 
describe or estimate structures between the data samples, e.g., 
models that put a smoothness assumption on the data, or that 
represent an information diffusion process on the graph.

Historically, there have been two 
general approaches for learning graphs 
from data: one based on statistical 
models and one based on physically 
motivated models. From the statisti-
cal perspective, ( )F G  is modeled as a 
function that draws realizations from a 
probability distribution over the vari-
ables, which is determined by the struc-
ture of .G  One prominent example is 
found in probabilistic graphical models 
[5], where the graph structure encodes 
the conditional independence relation-
ship among random variables that are 
represented by the vertices. Therefore, 
learning the graph structure is equiva-
lent to learning a factorization of a joint 

probability distribution of these random variables. Typical 
application domains include inferring interactions between genes 
using gene expression profiles, and the relationship between 
politicians given their voting behaviors [6].

For physically motivated models, ( )F G  is defined based 
on the assumption of an underlying physical phenomenon 
or process on the graph. One popular process is network 
diffusion or cascades [7]–[10], where ( )F G  dictates the 
diffusion behavior on ,G  which leads to the observations 

,X  possibly at different time steps. In this case, the problem 
is equivalent to learning a graph structure on which the gen-
erative process of the observed signals may be explained. 
Practical applications include understanding information 
flowing over a network of online media sources [7] or observ-
ing epidemics spreading over a network of human interac-
tions [11], given the state of exposure or infection at certain 
time steps.

The fast-growing field of GSP [3], [12] offers a new per-
spective on the problem of graph learning. In this setting, the 

columns of the observation matrix X  are 
explicitly considered as signals that are 
defined on the vertex set of a weighted 
graph, .G  The learning problem can then 
be cast as one of learning a graph ,G  such 
that ( )F G  permits certain properties or 
characteristics of the observations X  to be 
explicit, e.g., smoothness with respect to 
G  or sparsity in a basis related to .G  This 
signal representation perspective is partic-
ularly interesting because it puts a strong 
and explicit emphasis on the relationship 

between the signal representation and the graph topology, 
where ( )F G  often comes with an interpretation of frequency-
domain analysis or filtering operation of signals on the graph. 
For example, it is common to adopt the eigenvectors of the 
graph Laplacian matrix associated with G  as a surrogate for 
the Fourier basis for signals supported on G  [3], [13]; we go 
deeper into the details of this view in the “Graph Learning: A 
Signal Representation Perspective” section.

(a) (b)

FIGURE 1. Inferring functional connectivity between different regions of the brain. (a) BOLD time series 
data recorded in different regions of the brain and (b) a functional connectivity graph where the vertices 
represent the brain regions and the edges (with thicker lines indicating heavier weights) represent the 
strength of functional connections between these regions. (This figure was adapted from [4, Fig. 1].)
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One common representation of interest is a smooth rep-
resentation in which X  has a slow variation on ,G  which 
can be interpreted as X  mainly consisting of low-frequency 
components in the graph spectral domain. Such Fourier-like 
analysis on the graph leads to novel graph-inference methods 
compared to approaches rooted in statistics or physics. More 
importantly, it offers the opportunity to represent X  in terms 
of its behavior in the graph spectral domain, which makes 
it possible to capture complex and nontypical behavior of 
graph signals that cannot be explicitly handled by classical 
tools, e.g., bandlimited signals on graphs. Therefore, given 
potentially more accurate assumptions underlying the GSP 
models, the inference of ,G  given a specifically designed 

,F  may better reveal the intrinsic relationship between the 
data entities and benefit subsequent data processing appli-
cations. Conceptually, as illustrated in Figure 2, GSP-based 
graph-learning approaches can thus be considered as a new 
family of methods that have close connections with classi-
cal methods while also offering certain unique advantages 
in graph inference.

In this article, we first review well-established solutions to 
the problem of graph learning, which adopt a statistics or a 
physics perspective. Next, we survey a series of recent GSP-
based approaches and show how signal processing tools and 
concepts can be utilized to provide novel solutions to the 
graph-learning problem. Finally, we showcase applications of 
GSP-based methods in a number of domains and conclude with 
open questions and challenges that are central to the design of 
future signal processing and machine-learning algorithms for 
learning graphs from data.

Literature review
The recent availability of large amounts of data collected in 
a variety of application domains leads to increased interest 
in estimating the structure (often encoded in a network or 
graph) that underlies the data. Two general approaches have 
been proposed in the literature, one based on statistical mod-
els and the other based on physically motivated models. We 

provide a detailed review of these two approaches in the fol-
lowing sections.

Statistical models
The general philosophy behind the statistical view is that 
there exists a graph ,G  whose structure determines the joint 
probability distribution of the observations on the data en-
tities, i.e., columns of the data matrix .X  In this case, the 
function ( )F G  in our problem formulation is one that draws 
a collection of realizations, i.e., the columns of ,X  from the 
distribution governed by .G  Such models are known as 
probabilistic graphical models [5], [6], [14]–[16], where 
the edges (or lack thereof) in the graph encode conditional 
independence relationship among the random variables rep-
resented by the vertices.

There are two main types of graphical models: 1) undi-
rected graphical models, also known as Markov random fields 
(MRFs), in which local neighborhoods of the graph capture 
the independence structure of the variables, and 2) directed 
graphical models, also known as Bayesian networks or belief 
networks (BNs), which have a more complicated notion of 
independence by taking into account the direction of edges. 
Both MRFs and BNs have their respective advantages and 
disadvantages. In this section, we focus primarily on the 
approaches for learning MRFs, which admit a simpler repre-
sentation of conditional independence and also have connec-
tions to GSP-based methods. Those who are interested in the 
comparison between MRFs and BNs as well as approaches for 
learning BNs are referred to [5] and [17].

An MRF with respect to a graph { , },G V E=  where V  
and E  denote the vertex and edge set, respectively, is a set 
of random variables { : }x vx Vi i !=  that satisfy a Markov 
property. We are particularly interested in the pairwise Mar-
kov property

	 , , , , .v v p x x x x p x x xx xEi j i j i j i i j+ ==" ;; =^ ^ ^h h h" ", , 	 (1)

Equation (1) states that two variables, xi  and ,x j  are condi-
tionally independent given the rest if there is no edge between 
the corresponding vertices vi  and v j  in the graph. Suppose 
we have N  random variables, then this condition holds for the 
exponential family of distributions with a parameter matrix 
RN N!H #
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where iji  represents the ijth entry of ,H  and ( )Z H  is a normal-
ization constant.

Pairwise MRFs consist of two main classes: 1) Gaussian 
graphical models, i.e., Gaussian MRFs (GMRFs), in which the 
variables are continuous, and 2) discrete MRFs, in which the 
variables are discrete. In the case of a (zero-mean) GMRF, the 
joint probability can be written as 

	
( )

,expp
2 2

1x x x/

/

N
T

2

1 2

;
; ;

r
H

H
H= -^ `h j 	 (3)

Graph Learning

Statistical
Models

(Joint Distribution)

Physically
Motivated Models

(Network Diffusion)

GSP Models
(Signal Representation)

FIGURE 2. A broad categorization of different approaches to the problem 
of graph learning.



47IEEE Signal Processing Magazine   |   May 2019   |

where H  is the inverse covariance or precision matrix. In this 
context, learning the graph structure boils down to learning 
the matrix ,H  which encodes pairwise conditional indepen-
dence between the variables. It is typical to assume, or take as 
a prior, that H  is sparse because 1) real-world interactions are 
typically local and 2) the sparsity assumption makes learning 
computationally more tractable. We now review some key de-
velopments in learning Gaussian and discrete MRFs.

To learn GMRFs, one of the first approaches is suggested 
in [18], where the author has proposed learning H  by sequen-
tially pruning the smallest elements in the inverse of the sam-
ple covariance matrix ( / ( ))M1 1 XXTR= -t  (see Figure 3). 
Although it is based on a simple and effective rule, this method 
does not perform well when the sample covariance is not a good 
approximation of the “true” covariance, often due to a small 
number of samples. In fact, this method cannot even be applied 
when the sample size is smaller than the number of variables, 
in which case, the sample covariance matrix is not invertible.

Since a graph is a representation of a pairwise relation-
ship, it is clear that learning a graph is equivalent to learning a 
neighborhood for each vertex, i.e., the other vertices to which it 
is connected. In this case, it is natural to assume that the obser-
vation at a particular vertex may be represented by observa-
tions at the neighboring vertices. Based on this assumption, the 
authors in [14] have proposed approximating the observation 
at each variable as a sparse linear combination of the observa-
tions at other variables. For a variable ,x1  for instance, this 

approximation leads to a Lasso regression problem [19] of 
the form

	 mini ,mize X X \1 1 1 2
2

1 1
1
< < < <b bm- +

b
	 (4)

where X1  and X \1  represent the observations on the variable 
x1  (i.e., transpose of the first row of X) and the rest of the 
variables, respectively, and RN

1
1!b -  is a vector of coef-

ficients for x1  [see Figure 4(a) and (b)]. In (4), the first term 
can be interpreted as a local log-likelihood of ,1b  and the L1  
penalty is added to enforce its sparsity, with a regularization 
parameter m  balancing the two terms. The same procedure 
is then repeated for all of the variables (or vertices). Finally, 
the connection between a pair of vertices, vi  and ,v j  is given 
by , .maxij ji ij ji; ; ; ;i i b b= = ^ h  This neighborhood selection 
approach using the Lasso is intuitive with certain theoretical 
guarantees; however, due to the Lasso formulation, it does not 
work well with observations that are not independent and 
identically distributed (i.i.d.).

Instead of per-node neighborhood selection, the works in 
[6], [15], and [20] have proposed a popular method for estimat-
ing an inverse covariance or precision matrix at once, which 
is based on maximum-likelihood estimation. Specifically, the 
so-called graphical Lasso method aims to solve the following 
problem:

	 maximize ,log det tr 1< <tH H HR- -
H

t^ h 	 (5)
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where Rt  is the sample covariance matrix (see Figure 3), and 
( )det $  and ( )tr $  represent the determinant and trace operators, 

respectively. The first two terms together can be interpreted 
as the log-likelihood under a GMRF, and the entry-wise L1  
norm of H  is added to enforce sparsity of the connections with 
a regularization parameter, .t  The main difference between 
this approach and the neighborhood selection method of [14] is 
that the optimization in the latter is decoupled for each vertex, 
while the one in the graphical Lasso is coupled, which can be  
essential for stability under noise. Although the problem of 
(5) is convex, log-determinant programs are, in general, com-
putationally demanding. Nevertheless, a number of efficient 
approaches have been proposed specifically for the graphical 
Lasso. For example, the work in [16] proposes a quadratic ap-
proximation of the Gaussian negative log-likelihood that can 
significantly speed up optimization.

Unlike the GMRFs, variables in discrete MRFs take 
discrete values; one popular example is the binary Ising 
model [21]. Various learning methods may be applied in 
such cases, and one notable example is the approach pro-
posed in [22], based on the idea of neighborhood selection 
similar to that in [14]. Specifically, given the exponential 
family distribution previously introduced, it is easy to ver-
ify that the conditional probability of one variable given 
the rest, e.g., p X X \m m1 1;^ h for variable ,x1  where X m1  and 

,X \ m1  respectively, represent the first entry and the rest of 
the mth column of X  [see Figure 4(c)], follows the form 
of a logistic function. Therefore, x1  can be considered as 
the dependent variable in a logistic regression where all of 
the other variables serve as independent variables. To learn 
sparse connections within the neighborhood of this vertex, 
the authors of [22] have proposed solving an L1 -regular-
ized logistic regression

	 maximize .log p X X \m m1 1 1 1
1

1 ; < <bm-
b

b ^ h 	 (6)

The same procedure is then repeated for the rest of the vertices 
to compute the final connection matrix, similar to that in [14].

Most previous approaches for learning GMRFs recover 
a precision matrix with both positive and negative entries. A 
positive off-diagonal entry in the precision matrix implies 
a negative partial correlation between the two random vari-
ables, which is difficult to interpret in some contexts, such 
as road traffic networks. For such application settings, it is, 
therefore, desirable to learn a graph topology with nonnega-
tive weights. To this end, the authors in [23] have proposed 
selecting the precision matrix from the family of the so-called 
M-matrices [24], which are symmetric and positive definite 
matrices with nonpositive off-diagonal entries leading to the 
attractive GMRFs. Because the graph Laplacian matrix L  is 
a (singular) M-matrix that uniquely determines the adjacency 
matrix ,W  it is a popular modeling choice, and numerous 
papers have focused on learning L  as a specific instance of the 
precision matrices.

One notable example is the work in [25], which has adapt-
ed the graphical Lasso formulation of (5) and proposed solv-

ing (7), which is slightly different from but equivalent to the 
optimization problem in [25], because of the following rela-
tionship: L1 1< < < <H = + / / .NN1 2 1W2

1
2< <v v= +^ ^h h  We 

therefore choose the formulation in (7) because it illustrates the 
connection with the graphical Lasso formulation in a straight-
forward way
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where I  is the identity matrix, 022v  is the a priori feature 
variance, L is the set of valid graph Laplacian matrices, and 

1$< <  represents the entry-wise L1  norm. In (7), the precision 
matrix H  is modeled as a regularized graph Laplacian ma-
trix (hence, full rank). By solving for it, the authors obtain the 
graph Laplacian matrix, or equivalently, an adjacency matrix 
with nonnegative weights.

Note that the trace term in (7) includes the so-called 
Laplacian quadratic form ,X LXT  which measures the smooth-
ness of the data on the graph and has also been used in other 
approaches that are not necessarily developed from the 
viewpoint of inverse covariance estimation. For instance, 
the works in [26] and [27] have proposed learning the graph 
by minimizing quadratic forms that involve powers of the 
graph Laplacian matrix .L  When the power of the Lapla-
cian is set to two, this is equivalent to the locally linear 
embedding criterion proposed in [28] for nonlinear dimen-
sionality reduction. As shown later,  the criterion of signal 
smoothness has also been adopted in one of the GSP models 
for graph inference.

Physically motivated models
While the aforementioned methods mostly exploit statistical 
properties for graph inference, in particular, the conditional 
independence structure between random variables, another  
family of approaches tackles the problem by taking a physi-
cally motivated perspective. In this case, the observations, 

,X  are considered outcomes of some physical phenomena 
on the graph specified by the function ( );F G  the inference 
problem consists in capturing the structure inherent to the 
physics of the observed data. Two examples of such methods 
are 1) network tomography, where the physical process mod-
els data actually transmitted in a communication network, 
and 2) epidemic or information propagation models, where 
the physical process represents a disease spreading over a 
contact network or a meme spreading over social media.

The field of network tomography broadly concerns 
methods for inferring properties of networks from indirect 
observations [29]. It is most commonly used in the context 
of telecommunication networks, where the information 
to be inferred may include the network routes, or proper-
ties such as the available bandwidth or the reliability of each 
link in the network. For example, end-to-end measure-
ments are acquired by sending a sequence of packets from 
one source to many destinations, and sequences of received 
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packets are used to infer the internal network topology. The 
seminal work on this problem aimed to infer the routing tree 
from one source to multiple destinations [30]. Subsequent 
work considered interleaving measurements from multiple 
sources to the same destinations simultaneously to infer gen-
eral topologies [31]. These methods can be interpreted as 
choosing the function ( )F G  in our formulation as one that 
measures network responses by exhaustively sending probes 
between all possible pairs of end hosts. Consequently, this 
may impose a significant amount of measurement traffic on 
the network. To reduce this traffic, approaches based on active 
sampling have also been proposed [32].

Information propagation models have been applied to 
infer latent biological, social, and financial networks based 
on observations of epidemics, memes, or other signals dif-
fusing over them (e.g., [7]–[10]). For simplicity and con-
sistency, in this discussion, we adopt the terminology of 
epidemiology. These types of models are characterized by 
three main components: 1) the nodes, 2) an infection process 
(i.e., the change in the state of the node that is transferred by 
neighboring nodes in the network), and 3) the causality (i.e., 
the underlying graph structure based on which the infection 
is propagated). Given a known graph structure, epidemic 
processes over graphs have been well studied through pop-
ular models in which nodes may be susceptible, infected, 
and possibly recovered [33]. On the other hand, when the 
structure is not known beforehand, it may be inferred by 
considering the propagation of contagions over the edges 
of an unknown network, given usually only the time steps 
when nodes became infected.

A (fully observed) cascade may be represented by the 
sequence of triples ( , , ) ,v v tp p p p

P
0=l" ,  where ,P N#  represent-

ing that node vpl  infected its neighbor vp at time tp. In many 
applications, one may observe when a node becomes infect-
ed, but not which neighbor infected it, as shown in Figure 5. 
Then, the task is to recover an underlying graph, ,G  given the 
(partial) observations ( , ) ,v tp p p

P
0=" ,  usually for a number of 

such cascades. In this case, the set of nodes is given and the 
goal is to recover the edge structure. The common convention 
is to shift the infection times so that the initial infection in 
each cascade always occurs at time .t 00 =  Equivalently, let 
x  denote a length-N vector where xi  is the time when vi  is 
infected, using the convention xi 3=  if vi  is not infected in 
this cascade. The observations from M  cascades can then be 
represented in a N-by-M matrix, ( ) .X F G=

Methods for inferring networks from information cascades 
can be generally divided into two main categories depending 
on whether they are based on homogeneous or heterogeneous 
models. Methods based on homogeneous models assume that 
cascades propagate in a statistically identical manner across 
all edges. For example, one model treats entries wij  of the 
(unknown) adjacency matrix as representing the conditional 
probability that vi  infects ,v j  given vi  is infected [8]. In addi-
tion, a transmission time model, ( ),h t  is assumed known such 
that the likelihood that vi  infects v j  at time ,x j  given that vi  
was infected at time ,x x ji1  is

	 , ( ) .p x x w h x x wj i ij j i ij; = -^ h 	 (8)

Here, ( )h t  is taken to be zero for t 01  and typically decays to 
zero as .t "3  

Assuming that the function ( )h t  is given, the inference 
problem reduces to finding the conditional probabilities .wij  
Given the set of nodes infected as well as the time of infec-
tion in each observed cascade, and assuming that cascades 
are independent and identically distributed, the likelihood 
of a graph with adjacency matrix W  (with wij  being the ijth 
entry) is derived explicitly in [8], and it is further shown that 
maximizing this likelihood can be recast as an equivalent geo-
metric program so that convex optimization techniques can be 
applied to the problem of inferring .W

A similar model is considered in [7], in which the conditional 
transmission probabilities are taken to be the same on all edges, 
i.e., ( , ) ,w v v1· Eij i j !b= " ,  where { }1 $  is an indicator func-
tion, for a given constant .( , )0 1!b  The task, therefore, reduces 
to determining where there are edges, which is a discrete opti-
mization problem. The maximum-likelihood objective is shown 
to be submodular in [7], and an edge selection scheme based on 
greedy optimization obtains the optimal likelihood up to a con-
stant factor. Clearly, the main drawbacks of homogeneous meth-
ods are the strong underlying assumption that cascades propagate 
in an identical manner across all edges in the network.

Methods based on heterogeneous models relax these require-
ments and allow for cascades to propagate at different rates across 
different edges. The NetRate algorithm [9] is a prototypical exam-
ple of this category, in which one assumes a parametric form for 
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the edge conditional likelihood , .p x x wj i ij;^ h  For example, in an 
exponential model, , · { } .p x x w w e x x1( )

j i ij ij
w x x

j i
ij j i 2; = - -^ h  

If we write ( , ) ( , )pP x x w t x w dtj i ij x
x

i iji
j8; ;=  for the cumulative 

density function, then the survival function

	 , : ,x x w P x x w1Sur j i ij j i ij; ;= -^ ^h h � (9)

is the probability that v j  is not infected by vi  by time ,x j  given 
that vi  was infected at time .xi  Furthermore, the hazard function

	 ( , ):
( , )

( , )
,x x w

x x w
p x x w

Haz
Surj i ij

j i ij
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is the instantaneous probability at time x j  that v j  is infected by 
,vi  given that vi  was infected at time .xi

With this notation, the likelihood of a given cascade obser-
vation x  that is observed up to time { : },maxT x v Vv 31 !=  
is [9]
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When the survival and hazard functions are log-concave (which 
is the case for exponentially distributed edge conditional likeli-
hoods as well as others), then the resulting maximum-likeli-
hood inference problem is shown to be convex in [9]. In fact, 
the overall maximum-likelihood problem decomposes into 
per-node problems that can be solved using a soft-thresholding 
algorithm, in a manner similar to [14]. Furthermore, condi-
tions are provided in [34] under which the resulting estimate 
is shown to be consistent (as the number of observed cascades 
tends to infinity), and sample complexity results are provided, 
quantifying how quickly the error decays as a function of the 
number of observed cascades. 

The aforementioned heterogeneous approach requires 
adopting a parametric model for the edge conditional likeli-
hood, which may be difficult to justify in some settings. The 
approach described in [10] uses kernel methods to estimate the 
edge conditional likelihoods in a nonparametric manner. More 
recently, a Bayesian approach that infers a graph topology from 
diffusion observations has been proposed in which the infec-
tion time is not directly observed [35], but rather the state of 
each node (susceptible or infected) is a latent variable affecting 
the statistics of the signal that is observed at each node.

In summary, many physically motivated approaches consid-
er the function ( )F G  to be an information propagation model 
on the network and generally fall under the bigger umbrella 
of probabilistic inference of the network of diffusion or epi-
demic data. Note, however, that despite its probabilistic nature, 
such an inference is carried out with a specific model of the 
physical phenomena in mind, instead of using a general prob-
ability distribution of the observations considered by statistical 
models in the previous section. In addition, for both methods 
in network tomography and those based on information propa-

gation models, the recovered network typically indicates only 
the existence of edges and does not promote a specific graph 
signal structure. As we shall see, this is a clear difference from 
the GSP models that are discussed in the following section.

Graph learning: A signal representation perspective
There is a growing interest in the signal processing commu-
nity to analyze signals that are supported on the vertex set of 
weighted graphs, leading to the fast-growing field of GSP [3], 
[12]. GSP enables the processing and analysis of signals that 
lie on structured but irregular domains by generalizing clas-
sical signal processing concepts, tools, and methods, such as 
time–frequency analysis and filtering, on graphs [3], [12], [13].

Consider a weighted graph { , }G V E=  with the vertex set 
V  of cardinality N  and edge set .E  A graph signal is defined 
as a function :x RV N

"  that assigns a scalar value to each 
vertex. When the graph is undirected, the combinatorial or 
unnormalized graph Laplacian matrix L  is defined as

	 ,L D W= - 	 (12)

where D  is the degree matrix that contains the degrees of the 
vertices along the diagonal, and W  is the weighted adjacency 
matrix of .G  Since L  is a real and symmetric matrix, it admits 
a complete set of orthonormal eigenvectors with the associated 
eigenvalues via the eigencomposition

	 ,L T| |K= 	 (13)

where |  is the eigenvector matrix that contains the ei-
genvectors as columns, and K  is the eigenvalue matrix 

, , , )(diag N0 1 1fm m m -  that contains the eigenvalues along 
the diagonal. Conventionally, the eigenvalues are sorted in 
an increasing order, and we have for a connected graph: 0= 

.N0 1 1f1 # #m m m -  The Laplacian matrix L  enables a gen-
eralization of the notion of frequency and the definition of a 
graph Fourier transform (GFT) [36]. Alternatively, a GFT may 
also be defined using the adjacency matrix ,W  and this defini-
tion can be used in directed graphs [12]. Furthermore, both L  
and W  can be interpreted as a general class of shift operators 
on graphs [12]. 

These operators are used to represent and process signals 
on a graph in a way similar to that in traditional signal process-
ing. To see this more clearly, consider two equations of cen-
tral importance in signal processing: c xD =  for the synthesis 
view and x bA =  for the analysis view. In the synthesis view, 
the signal x  is represented as a linear combination of atoms 
that are columns of a representation matrix ,D  with c  being 
the coefficient vector. In the context of GSP, the representa-
tion D  of a signal on the graph G is realized via ( ),F G  i.e., 
a function of .G  In the analysis view of GSP, given G and x  
and with a design for F  (that defines ),A  we study the char-
acteristics of x  encoded in b. Examples include the generaliza-
tion of the Fourier and wavelet transforms for graph signals 
[12], [36], which are defined based on mathematical properties 
of a given graph, .G  Alternatively, graph dictionaries can be 
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trained by taking into account information from both G and 
x  [37], [38].

Although most GSP approaches focus on developing 
techniques for analyzing signals on a predefined or known 
graph, there is growing interest in addressing the problem 
of learning graph topologies from observed signals, espe-
cially in the case when the topology is not readily avail-
able (i.e., not predefined given the application domain). This 
offers a new perspective on the problem of graph learning, 
especially by focusing on the representation of the observed 
signals on the learned graph. Indeed, this corresponds to 
a synthesis view of the signal processing model: given x, 
with some designs for F  and ,c  we would like to infer .G  
Of crucial importance is, therefore, a model that captures 
the relationship between the signal representation and the 
graph, which, together with graph operators such as the 
adjacency/Laplacian matrices or the graph shift opera-
tors [12], contributes to specific designs for .F  Moreover, 
assumptions on the structure or properties of c  also play 
an important role in determining the characteristics of the 
resulting signal representation. Graph-learning frameworks 
that are developed from a signal representation perspective 
therefore have the unique advantage of enforcing certain 
desirable representations of the observed signals by exploit-
ing the notions of frequency-domain analysis and filtering 
operations on graphs.

A graph signal representation perspective is comple-
mentary to the existing perspectives that we discussed in 
the previous sections. For instance, from the statistical per-
spective, the majority of approaches for learning graphi-
cal models do not lead directly to a graph topology with 
nonnegative edge weights, a property that is often desirable 
in real-world applications, and very little work has stud-
ied the case of inferring attractive GMRFs. Furthermore, 
the joint distribution of the random variables is mostly 
imposed in a global manner, while it is not easy to encour-
age localized behavior (i.e., about a subset of the variables) 
on the learned graph. The physics perspective, on the other 
hand, mostly focuses on a few conventional models such 
as network diffusion and cascades. It remains, however, 
an open question how observations that do not necessar-
ily come from a well-defined physical phenomenon can be 
exploited to infer the underlying structure of the data. The 
GSP viewpoint introduces one more important ingredient 
that can be used as a regularizer for complicated inference 
problems: the frequency or spectral representation of the 
observations. In the following sections, we review three 
models for signal representation on graphs, which lead to 
various methodologies for inferring graph topologies from 
the observed signals.

Models based on signal smoothness
The first model we consider is a smoothness model, under which 
the signal takes similar values at neighboring vertices. Practical 
examples of this model could be temperature observed at differ-
ent locations in a flat geographical region or ratings on movies 

by individuals in a social network. The measure of smoothness 
of a signal x  on the graph G is usually defined by the so-called 
Laplacian quadratic form

	 ( ) ( ) ( ) ,w i j
2
1L x Lx x xQ

,

T
ij

i j

2= = -^ h/ � (14)

where wij  is the ijth entry of the adjacency matrix W  and L  
is the Laplacian matrix. Clearly, ( ) 0LQ =  when x  is a con-
stant signal over the graph (i.e., a dc signal with no variation). 
More generally, we can see that given the same L2 -norm, the 
smaller the value ( ),LQ  the more similar the signal values at 
neighboring vertices (i.e., the lower the variation of x  with re-
spect to ) .G  One natural criterion is therefore to learn a graph 
(or, equivalently, its Laplacian matrix L) such that the signal 
variation on the resulting graph, i.e., the Laplacian quadratic 

( ),LQ  is small. As an example, for the same signal, learning a 
graph in Figure 6(a) leads to a smoother signal representation 
in terms of ( )LQ  than that by learning a graph in Figure 6(c). 
The criterion of minimizing ( )LQ  or its variants with powers 
of L  has been proposed in a number of existing approaches, 
such as the ones in [25]–[27].

A procedure to infer a graph that favors the smoothness of 
the graph signals can be obtained using the synthesis model 

( ) ,c xF G =  and this is the idea behind the approaches in [39] 
and [40]. Specifically, consider a factor analysis model with the 
choice of ( )F G |=  and

	 ,x c| e= + 	 (15)

where |  is the eigenvector matrix of the Laplacian L  and 
( , )0 IN 2+e ve  is additive Gaussian noise. With further as-

sumptions that c follows a Gaussian distribution with a preci-
sion matrix K

	 , ,0c N+ K@^ h 	 (16)

where K@  is the Moore–Penrose pseudoinverse of the eigen-
value matrix of ,L  and that c  and e  are statistically indepen-
dent, it is shown in [39] that the signal x  follows a GMRF 
model

	 , .0x L IN 2+ v+@ e^ h 	 (17)

This leads to formulating the problem of jointly inferring the 
graph Laplacian and the latent variable c  as

	 minimize ,cx c c
, ,

T
2
2

c
< <| a K- +

| K
	 (18)

where a  is a nonnegative regularization parameter related to 
the assumed noise level .2ve  By making the change of variables 
y c|=  and recalling that the matrix of Laplacian eigenvectors 
|  is orthonormal, one arrives at the equivalent problem

	 minimize ,x y y LyT
2
2

,L y
< < a- + 	 (19)



52 IEEE Signal Processing Magazine   |   May 2019   |

in which the Laplacian quadratic form appears. Therefore, these 
particular modeling choices for F  and c  lead to a procedure for 
inferring a graph over which the observation x  is smooth. Note 
that there is a one-to-one mapping between the Laplacian matrix 
L and a weighted undirected graph, so inferring L is equivalent 
to inferring .G

By taking the matrix form of the observations and adding 
an L2  penalty, the authors of [39] have proposed solving the 
following optimization problem

	
minimize   

subject to   

tr ,

tr ( ) , ,

X Y Y LY L

L LN L
,

2 2T

L Y
F F< < <

!

< ba- + +

=

^ h
	

(20)

where tr ( )$  and F$< <  represent the trace and Frobenius norm of a 
matrix, respectively, and a  and b are nonnegative regularization 

parameters. The trace constraint acts as a normalization factor 
that fixes the volume of the graph, and L is the set of valid Lapla-
cian matrices. This constitutes the problem of finding Y that is 
close to the data observations ,X  while ensuring at the same time 
that Y is smooth on the learned graph, represented by its Lapla-
cian matrix, .L  The Frobenius norm of L is added to control the 
distribution of the edge weights and is inspired by the approach 
in [27]. The problem is solved via alternating minimization in 
[39], in which the step of solving for L bears similarity to the 
optimization in [27]. A formulation similar to (20) has further 
been studied in [40], where reformulating the problem in terms 
of the adjacency matrix W leads to a more efficient algorithm 
computationally. Both works emphasize the characteristics of 
GSP-based graph-learning approaches, i.e., enforcing desir-
able signal representations through the learning process.
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FIGURE 6. (a) A smooth signal on the graph with ( ) 1LQ =  and (b) its GFT [36] coefficients in the graph spectral domain. The signal forms a smooth 
representation on the graph as its values vary slowly along the edges of the graph, and it mainly consists of low-frequency components in the graph 
spectral domain. (c) A less smooth signal on the graph with ( ) 5LQ =  and (d) its GFT [36] coefficients in the graph spectral domain. A different choice of 
the graph leads to a different representation of the same signal.
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As we have seen, the smoothness property of the graph signal 
is associated with a multivariate Gaussian distribution, which is 
also behind the idea of classical approaches for learning graphi-
cal models, such as the graphical Lasso. Following the same 
design for F  and slightly different designs for K  as compared 
to those in [39] and [40], the authors of [41] have proposed solv-
ing a similar objective compared to the graphical Lasso but 
with the constraints that the solutions correspond to different 
types of graph Laplacian matrices (e.g., the combinatorial or 
generalized Laplacian). The basic idea in the latter approach is 
to identify GMRF models so that the precision matrix has the 
form of a graph Laplacian. Their work generalizes the classi-
cal graphical Lasso formulation and the formulation proposed 
in [25] to precision matrices restricted to having a Laplacian 
form. From a probabilistic perspective, the problems of inter-
est correspond to a maximum a posteriori 
parameter estimation of GMRF models, 
whose precision matrix is a graph Laplacian. 
In addition, the proposed approach allows 
for incorporating prior knowledge on graph 
connectivity, which, if applicable, can help 
improve the performance of the graph-infer-
ence algorithm.

It is also worth mentioning that the ap
proaches in [39]–[41] learn a graph topology 
without any explicit constraint on the density 
of the edges in the learned graph. This infor-
mation, if available, can be incorporated into 
the learning process. For example, the work 
of [42] has proposed learning a graph with 
a targeted number of edges by selecting the 
ones that lead to the smallest ( ) .LQ

To summarize, in the global smoothness 
model, the objective of minimizing the original or a variant of 
the Laplacian quadratic form of ( )LQ  can be interpreted as 
having ( )F G = |  and c  following a multivariate Gaussian 
distribution. However, different learning algorithms may vary 
in both the output of the algorithm and the computational com-
plexity. For instance, the approaches in [40] and [42] learn an 
adjacency matrix, while the approaches in [39] and [41] learn 
a graph Laplacian matrix or its variants. In terms of complex-
ity, the approaches in [39]–[41] all solve a quadratic program, 
with efficient implementations provided in the latter two based 
on primal-dual techniques and block-coordinate-descent algo-
rithms, respectively. On the other hand, the method in [42] 
involves a sorting algorithm that scales with the desired number 
of edges.

Finally, it is important to notice that ( )LQ  is a measure 
of global smoothness on G  in the sense that a small ( )LQ  
implies a small variation of signal values along all of the edges 
in the graph, and the signal energy is mostly concentrated in 
the low-frequency components in the graph spectral domain. 
Although global smoothness is often a desirable property 
for the signal representation, it can also be limiting in other 
scenarios. The second class of models that we introduce in 
the following section relaxes this constraint by allowing for a 

more flexible representation of the signal in terms of its spec-
tral characteristics.

Models based on spectral filtering of graph signals
The second graph signal model that we consider goes beyond 
the global smoothness of the signal on the graph and focuses 
more on the general family of graph signals that are gener-
ated by applying a filtering operation to a latent (input) sig-
nal. In particular, the filtering operation may correspond to 
the diffusion of an input signal on the graph. Depending on 
the type of graph filter and input signal, the generated signal 
can have different frequency characteristics (e.g., bandpass sig-
nals) and localization properties (e.g., locally smooth signals). 
Moreover, this family of algorithms is more appropriate than 
the one based on a globally smooth signal model for learning 

graph topologies when the observations are 
the result of a diffusion process on a graph. 
Particularly, the graph diffusion model can 
be widely applied in real-world scenarios to 
understand the distribution of heat (sources) 
[43], such as the propagation of a heat wave 
in geographical spaces, the movement of 
people in buildings or vehicles in cities, and 
the shift of people’s interest toward certain 
subjects on social media platforms [44].

In these types of models, the graph fil-
ters and input signals may be interpreted 
as the functions ( )F G  and the coefficients 
c in our synthesis model, respectively. The 
existing methods in the literature therefore 
differ in the assumption on F  as well as 
the distribution of .c  In particular, F  may 
be defined as an arbitrary (polynomial) 

function of a matrix related to the graph [45], [46], or a well-
known diffusion kernel, such as the heat diffusion kernel 
[47] (see Figure 7 for two examples). The assumptions on c 
can also vary, with the most prevalent ones being zero-mean 
Gaussian distribution and sparsity. Broadly speaking, we can 
distinguish the graph-learning algorithms belonging to this 
family in two different categories. The first category models 
the graph signals as stationary processes on graphs, where 
the eigenvectors of a graph operator, such as the adjacency/
Laplacian matrix or a shift operator, are estimated from the 
sample covariance matrix of the observations in the first 
step. The eigenvalues are then estimated in the second step 
to obtain the operator. The second category poses the graph-
learning problem as a dictionary-learning problem with a 
prior on the coefficients .c  In the following sections, we give 
a few representative examples of both categories, which differ 
in terms of graph filters as well as input signal characteristics.

Stationarity-based learning frameworks
The main characteristic of this line of work is that, given a sta-
tionarity assumption, the eigenvectors of a graph operator are 
estimated by the empirical covariance matrix of the observa-
tions. In particular, the graph signal x  can be generated from

Graph-learning 
frameworks that are 
developed from a 
signal representation 
perspective therefore 
have the unique advantage 
of enforcing certain 
desirable representations 
of the observed signals by 
exploiting the notions of 
frequency-domain analysis 
and filtering operations  
on graphs.
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for some sets of the parameters { }a  and { }.b  The latter im-
plies that there exists an underlying diffusion process in the 
graph operator ,S  which can be the adjacency matrix, Lapla-
cian, or a variation thereof, that produces the signal x  from the 
input signal .c  By assuming a finite polynomial degree ,K  the 
generative signal model becomes

	 ( ) ,x c S cF G k
k

K
k

0

a= =
=

/ 	 (22)

where the connectivity matrix of G is captured through the 
graph operator .S  Usually, c  is assumed to be a zero-mean 
graph signal with the covariance matrix [ ] .ccEc

TR =  In ad-
dition, if c  is white and ,IcR =  (21) is equivalent to assuming 
that the graph process x  is stationary in .S  This assumption of 
stationarity is important for estimating the eigenvectors of the 
graph operator. Indeed, since the graph operator S is often a 
real and symmetric matrix, its eigenvectors are also eigenvec-
tors of the covariance matrix .xR  As a matter of fact,
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where we have used the assumption that IcR =  and the eigen-
decomposition .S T| |K=  Given a sufficient number of graph 
signals, the eigenvectors of the graph operator S can therefore 
be approximated by the eigenvectors of the empirical covari-
ance matrix of the observations. To recover ,S  the second step 
of the process would then be to learn its eigenvalues.

The authors in [46] have followed the aforementioned rea-
soning and modeled the diffusion process by powers of the 

normalized Laplacian matrix. More precisely, they propose 
an algorithm for characterizing and then computing a set of 
admissible diffusion matrices, which defines a polytope. In 
general, this polytope corresponds to a continuum of graphs 
that are all consistent with the observations. To obtain a par-
ticular solution, an additional criterion is required. Two such 
criteria are one that encourages the resulting graph to be sparse 
and another that encourages the recovered graph to be sim-
ple (i.e., a graph in which no vertex has a connection to itself, 
hence an adjacency matrix with only zeros along the diagonal).

Similarly, in [45], after obtaining the eigenvectors of a 
graph shift operator, the graph-learning problem is equivalent 
to learning its eigenvalues under the constraints that the shift 
operator obeys some desired properties, such as sparsity. The 
optimization problem of [45] can be written as

	
minimize   

subject to   
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where ( )f $  is a convex function applied on S that imposes the 
desired properties of ,S  e.g., sparsity via an entry-wise L -1 norm, 
and S  is the constraint set of S being a valid graph operator, 
e.g., nonnegativity of the edge weights. The stationarity assump-
tion is further relaxed in [48]. However, all of these approaches 
are based on the assumption that the sample covariance of the 
observed data and the graph operator have the same set of ei-
genvectors. Thus, their performance depends on the accuracy of 
eigenvectors obtained from the sample covariance of data, which 
can be difficult to guarantee especially when the number of data 
samples is small relative to the number of vertices in the graph.

Given the limitation in estimating the eigenvectors of the 
graph operator from the sample covariance, the work of [49] has 
proposed a different approach. They have formulated the prob-
lem of graph learning as a graph system identification prob-
lem where, by assuming that the observed signals are outputs 
of a system with a graph-based filter given certain input, the 
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FIGURE 7. Diffusion processes on the graph defined by (a) a heat diffusion kernel and (b) a graph shift operator.
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goal is to learn a weighted graph (a graph Laplacian matrix) 
and the graph-based filter (a function of the graph Laplacian 
matrices). This algorithm is based on the minimization of a 
regularized maximum-likelihood criterion, and it is valid under 
the assumption that the graph filters are one-to-one functions, 
i.e., increasing or decreasing in the space of eigenvalues, such 
as a heat diffusion kernel. More specifically, the system input 
is assumed to be multivariate white Gaussian noise (hence the 
stationarity assumption on the observed signals), and (23) is 
again used for computing an initial estimate of the eigenvectors. 
However, different from [45] and [46], where these eigenvec-
tors are used directly in forming the graph operators, in [49], 
they are used to compute the graph Laplacian. After initializing 
the filter parameter, the algorithm iterates until convergence 
between the following three steps: 1) prefilter the sample cova-
riance using the inverse of the graph filter; 2) estimate a graph 
Laplacian from the prefiltered covariance matrix by solving a 
maximum-likelihood optimization criterion using an algorithm 
proposed in [41]; and 3) update the filter parameter based on 
the current estimate of the graph Laplacian. Compared to [45] 
and [46], this approach may therefore lead to a more accurate 
inference of the graph operator (in this case, graph Laplacian).

Graph dictionary-based learning frameworks
Methods belonging to this category are based on the notion of 
spectral graph dictionaries used for efficient signal representa-
tion. Specifically, the authors in [47] and [50] assume a dif-
ferent graph signal diffusion model, where the data consist of 
(sparse) combinations of overlapping local patterns that reside 
on the graph. These patterns may describe localized events or 
specific processes appearing at different vertices of the graph, 
such as traffic bottlenecks in transportation networks or rumor 
sources in social networks. The graph signals are then viewed 
as observations at different time instants of a few processes 
that start at different nodes of an unknown graph and diffuse 
with time. Such signals can be represented as the combina-
tion of graph heat kernels or, more generally, of localized 
graph kernels. Both algorithms can be considered as a gen-
eralization of dictionary learning to graph signals. Dictionary 
learning [51], [52] is an area of research in signal processing 
and machine learning where the signals are represented as a 
linear combination of simple components, i.e., atoms, in an 
(often) overcomplete basis. Signal decompositions with over-

complete dictionaries offer a way to efficiently approximate 
or process signals, such that the important characteristics are 
revealed by the sparse signal representation. Because of these 
desirable properties, dictionary learning has been extended to 
the representation of graph signals and eventually has been ap-
plied to the problem of graph inference.

Next, we provide more details on one of the aforementioned 
algorithms. The authors in [47] have focused on graph signals 
generated from heat diffusion processes, which are useful in 
identifying processes evolving near a starting seed node. An 
illustrative example of such a signal can be found in Figure 8, 
in which case the graph Laplacian matrix is used to model the 
diffusion of the heat throughout a graph. The concatenation 
of a set of heat diffusion operators at different time instances 
defines a graph dictionary that is further on used to represent 
the graph signals. Hence, the graph signal model becomes

	 ( ) ,e e e e  x c c cF G
s
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L L L LS s1 2 f= = =x x x x- - - -
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6 @ / 	 (25)

which is a linear combination of different heat diffusion pro-
cesses evolving on the graph. In this synthesis model, the coef-
ficients cs  corresponding to a subdictionary e Lsx-  can be seen 
as a graph signal that goes through a heat diffusion process on 
the graph. The signal component e cs

Lsx-  can then be interpret-
ed as the result of this diffusion process at time .sx  It is interest-
ing to note that the parameter sx  in the model carries a notion of 
scale. In particular, when sx  is small, the ith column of ,e Lsx-  
i.e., the atom centered at node vi  of the graph, is mainly local-
ized in a small neighborhood of .vi  As sx  becomes larger, it 
reflects information about the graph at a larger scale around 

.vi  Thus, the signal model can be seen as an additive model of 
diffusion processes of S initial graph signals, which undergo a 
diffusion model with different diffusion times.

An additional assumption in this signal model is that the dif-
fusion processes are expected to start from only a few nodes of 
the graph, at specific times, and spread over the entire graph 
over time. This assumption can be formally captured by impos-
ing a sparsity constraint on the latent variable .c  The graph-
learning problem can be cast as a structured dictionary-learning 
problem, where the dictionary is defined by the unknown graph 
Laplacian matrix. The latter can then be estimated as a solution 
of the following optimization problem:

(a) (b) (c) (d) (e)

FIGURE 8. (a) A graph signal. (b)–(e) Its decomposition in four localized simple components. Each component is a heat-diffusion process ( )e Lsx-  at time 
sx  that has started from different network nodes. The size and the color of each ball indicate the value of the signal at each vertex of the graph [47]. 



56 IEEE Signal Processing Magazine   |   May 2019   |

	 , { } ,
( ) , ,

,

e e e
N

0

minimize   

subject to   
   

 
tr

X

L L

C c LD

D

L

F m
m

M

F

s s
S

1

2
1

1

2

, ,L C

L L L

s

S1 2 f

< < < < < <

$

!

x

a b-

=

=

+ +
x

x x x- - -
=

=

6 @
/

	
(26)

where cm  is the mth column of the coefficient matrix C, and 
the constraints on L  are the same as those in (20). Following 
the same reasoning, the work in [50] extends the heat diffu-
sion dictionary to the more general family of polynomial graph 
kernels. In summary, these approaches propose recovering the 
graph Laplacian matrix by assuming that the graph signals can 
be sparsely represented by a dictionary that consists of graph 
diffusion kernels. Note that, when no locality assumptions are 
imposed (e.g., large sx ) and a single diffusion kernel is used in 
the dictionary, the model reduces to a global smoothness model.

In summary, from the perspective of spectral filtering, and 
in particular, network diffusion, the function ( )F G  is one that 
helps define a meaningful diffusion process on the graph via 
the graph Laplacian, heat diffusion kernel, or other more gen-
eral graph shift operators. This directly leads to the slightly 
different output of the learning algorithms in [45]–[47]. The 
choice of the coefficients ,c  on the other hand, determines spe-
cific characteristics of the graph signals, such as stationarity or 
sparsity. In terms of computational complexity, the methods in 
[45]–[47] all involve the computation of eigenvectors, followed 
by solving either a linear program [45] or a semidefinite pro-
gram [46], [47]. 

Models based on causal dependencies on graphs
The models described in the previous two sections are main-
ly designed for learning undirected graphs, which is also 
the predominant consideration in the current GSP literature. 
Undirected graphs are associated with symmetric Laplacian 
matrices ,L  which admit a complete set of orthonormal ei-
genvalues and eigenvectors that conveniently provide a no-
tion of frequency for signals on graphs. It is often the case, 
however, that in some application domains learning directed 
graphs is more desirable as in those cases where the direc-
tions of edges may be interpreted as causal dependencies be-
tween the variables that the vertices represent. For example, 
in brain analysis, even though the inference of an undirected 
functional connectivity between the regions of interest is 
certainly of interest, a directed effective connectivity may 
reveal extra information about the causal dependencies be-
tween those regions [53], [54]. The third class of models that 

we discuss is therefore one that allows for the inference of 
these directed dependencies.

The authors of [55] have proposed a causal graph pro-
cess based on the idea of sparse vector autoregressive 
(SVAR) estimation [56], [57]. In their model, the signal at 
time step t, [ ],tx  is represented as a linear combination of 
its observations in the past T  time steps and a random noise 
process [ ]tn
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where ( )P Wj  is a degree j  polynomial of the (possibly direct-
ed) adjacency matrix W  with coefficients a jk  (see Figure 9). 
Clearly, this model admits the design of ( ) ( )P WF G i=  and 

[ ]t ic x= -  in forming one time-lagged copy of the signal 
[ ] .tx  For temporal observations ( [ ] [ ] [ ]),M0 1 1X x x xf= -  

the authors have therefore proposed solving the following op-
timization problem:
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where vec( )W  is the vectorized form of ,W  (a aa 10 11f=

)a a jk TTf  is a vector of all the polynomial coefficients ,a jk  
and the entry-wise L -1 norm is imposed on W  and a  for pro-
moting sparsity. Because of nonconvexity introduced by the 
matrix polynomials, the problem in (28) is solved in three 
steps, i.e., solving sequentially for ( ),P Wj  ,W  and .a  In sum-
mary, in the SVAR model, the specific designs of F  and c  
lead to a particular generative process of the observed signals 
on the learned graph. Similar ideas can also be found in the 
Granger causality or vector autoregressive models (VARMs) 
[58], [59].

Structural equation models (SEMs) are another popular 
approach for inferring directed graphs [60], [61]. In the SEMs, 
the signal observation x  at time step t  is modeled as

	 [ ] [ ] [ ] [ ],t t t tnx Wx Ey= + + 	 (29)

where the first term in (29) consists of endogenous variables, which 
define the signal value at each variable as a linear combination of 
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FIGURE 9. A graph signal x  at time step t  is modeled as a linear combination of its observations in the past T  time steps and a random noise process [ ] .tn



57IEEE Signal Processing Magazine   |   May 2019   |

the values at its neighbors in the graph, and the second term 
represents exogenous variables [ ]ty  with a coefficient matrix 

.E  The third term represents observation noise similar to that in 
(27). The endogenous component of the signal implies a choice 
of ( ) WF G =  (which can again be directed) and [ ],tc x=  and, 
similar to the SVAR model, enforces a certain generative pro-
cess of the signal on the learned graph.

As we can see, causal dependencies on the graph, either 
between different components of the signal or between its pres-
ent and past observations, can be conveniently modeled in a 
straightforward manner by choosing ( )F G  as a polynomial 
of the adjacency matrix of a directed graph and choosing the 
coefficients c  as the present or past signal observations. As 
a consequence, methods in [54], [55], and [62] are all able to 
learn an asymmetric graph adjacency matrix, which is a poten-
tial advantage compared to methods based on the previous 
two models. Furthermore, the SEMs can be extended to track 
network topologies that evolve dynamically [62] and deal with 
highly correlated data [63] or can be combined with the SVAR 
model, which leads to the structural vector autoregressive mod-
els (SVARMs) [64]. Interested readers are referred to [65] for a 
recent review of the related models. In these extensions of the 
classical models, the designs of F  and c  can be generalized 
accordingly to link the signal representation and learned graph 
topology. Finally, as an overall comparison, the differences 
between methods that are based on the three models discussed 
in this review are summarized in Table 1.

Connections with the broader literature
We have seen that GSP-based approaches can be unified by 
the viewpoint of learning graph topologies that enforce de-
sirable representations of the signals on the learned graph. 
This offers a new interpretation of the traditional statistical 
and physically motivated models. First, as a typical example 
of approaches for learning graphical models, the graphical 
Lasso solves the optimization problem of (5) in which the trace 
term ( / ( ))M1 1tr( ) tr ( )X XTR HH = -t  bears similarity to the 

Laplacian quadratic form ( )LQ  and the trace term in the 
problem of (20), when the precision matrix H  is chosen to 
be the graph Laplacian .L  This is the case for the approach 
in [25], which has proposed considering /1L I2vH= +^ h  in 
(7) as a regularized Laplacian to fit into the formulation of 
(5). The graphical Lasso approach, therefore, can be inter-
preted as one that promotes global smoothness of the signals 
on the learned topology. 

Second, models based on spectral filtering and causal 
dependencies on graphs can generally be thought of as the 
ones that define generative processes of the observed sig-
nals, in particular the diffusion processes on the graph. This 
is achieved either explicitly by choosing ( )F G  as diffusion 
matrices, as described in the “Models Based on Spectral Fil-
tering of Graph Signals” section, or implicitly by defining 
the causal processes of signal generation, as described in the 
“Models Based on Causal Dependencies on Graphs” section. 
Both types of models share similar philosophies to the ones 
developed from a physics viewpoint in the “Physically Moti-
vated Models” section, in that they all propose inferring the 
graph topologies by modeling signals as outcomes of physical 
processes on the graph, especially the diffusion and cascad-
ing processes.

It is also interesting to note that certain models can be 
interpreted from all three viewpoints, an example being the 
global smoothness model. Indeed, in addition to the statisti-
cal and GSP perspectives described previously, the property 
of global smoothness can also be observed in a square-lattice 
Ising model [21], hence admitting a physical interpretation. 
Despite the connections with traditional approaches, how-
ever, GSP-based approaches offer some unique advantages 
compared to the classical methods. On the one hand, the flex-
ibility in designing the function ( )F G  allows for statistical 
properties of the observed signals that are not limited to a 
Gaussian distribution, which is, however, the predominant 
choice in many statistical machine-learning methods. On the 
other hand, this also makes it easier to consider models that 

Table 1. Comparisons between different GSP-based approaches to graph learning. 

Method Signal Model Assumption Learning Output Edge Directionality

( )F G c 

Dong et al. [39] Global smoothness Eigenvector matrix i.i.d. Gaussian Laplacian Undirected 
Kalofolias et al. [40] Global smoothness Eigenvector matrix i.i.d. Gaussian Adjacency matrix Undirected 
Egilmez et al. [41] Global smoothness Eigenvector matrix i.i.d. Gaussian Generalized Laplacian Undirected 
Chepuri et al. [42] Global smoothness Eigenvector matrix i.i.d. Gaussian Adjacency matrix Undirected 
Pasdeloup et al. [46] Spectral filtering (diffusion by 

adjacency) 
Normalized 
adjacency matrix 

i.i.d. Gaussian Normalized adjacency matrix 
normalized Laplacian

Undirected 

Segarra et al. [45] Spectral filtering (diffusion by 
graph shift operator)

Graph shift operator i.i.d. Gaussian Graph shift operator Undirected 

Thanou et al. [47] Spectral filtering (heat diffusion) Heat kernel Sparsity Laplacian Undirected 
Mei and Moura [55] Causal dependency (SVAR) Polynomials of 

adjacency matrix 
Past signals Adjacency matrix Directed 

Baingana et al. [62] Causal dependency (SEM) Adjacency matrix Present signal Time-varying adjacency matrix Directed 
Shen et al. [54] Causal dependency (SVARM) Polynomials of 

adjacency matrix 
Past and present 
signals

Adjacency matrix Directed 
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go beyond a simple diffusion or cascade model. For example, 
by the sparsity assumption on the coefficients c, the method 
in [47] defines the signals as the outcomes of possibly more 
than one diffusion process that originates at different parts of 
the graph after potentially different time steps. Similarly, by 
choosing different ( )F G  and ,c  the SVAR models [55] and 
the SEMs [62] correspond to different generative processes 
of the signals, one based on the static network structure and 
the other on temporal dynamics. These design flexibilities 
provide more powerful modeling of the signal representation 
for the graph-inference process.

Applications of GSP-based graph-learning methods
The field of GSP is strongly motivated by a wide range of 
applications where there exist inherent structures behind data 
observations. Naturally, GSP-based graph-learning methods 
are appealing in areas where learning hidden structures behind 
data has been of constant interest. In particular, the emphasis 
on the modeling of the signal representation within the learning 
process has made them increasingly popular in a growing num-
ber of applications. Currently, these methods mainly find appli-
cations in image coding and compression, brain signal analysis, 
and a few other diverse areas.

Image coding and compression
Image representation and coding has been one main area of in-
terest for GSP-based methods. Images can be naturally thought 
of as graph signals defined on a regular grid structure, where 
the nodes are the image pixels and the edge weights capture 
the similarity between adjacent pixels. The design of new, flex-
ible graph signal representations has opened the door to new, 
structure-aware transform-coding techniques, and eventually 
to more efficient image-compression frameworks [66]. Such 
representation permits going beyond traditional transform cod-
ing by moving from classical fixed transforms such as the dis-
crete cosine transform to graph-based transforms that are better 
adapted to the actual image structure. 

The design of the graph and the corresponding transform 
remains, however, one of the biggest challenges in graph-based 
image compression. A suitable graph for effective transform 
coding should lead to easily compressible signal coefficients 
at the cost of a small overhead for coding the graph. Most 
graph-based coding techniques focus mainly on images, and 
they construct the graph by considering pairwise similarities 
among pixel intensities. A few attempts at adapting the graph 
topology and, consequently, the graph transform, exist in the 
literature [67], [68]; however, they rely on selecting an effi-
cient graph for compression from a set of representative graph 
templates without being fully adapted to the image signals.

Graph learning has been introduced only recently for these 
types of problems. A learning model based on signal smooth-
ness, inspired by [39] and [70], has been further extended 
to design a graph-based coding framework that takes into 
account the coding of the signal values as well as the cost of 
transmitting the graph in rate distortion terms [69]. In par-
ticular, the cost of coding the image signal is minimized by 

promoting its smoothness on the learned topology. The trans-
mission cost of the graph itself is further controlled by adding 
an additional term in the optimization problem, which penal-
izes the sparsity of the graph Fourier coefficients of the edge 
weight signal. 

An illustrative example of the graph-based transform coding 
proposed in [69] as well as its application to image compression is 
shown in Figure 10.  Briefly, the compression algorithm consists 
of three important parts. First, the solution to an optimization 
problem that takes into account the rate approximation of the 
image signal at a patch level, as well as the cost of transmitting 
the graph, provides a graph topology [Figure 10(a)] that defines 
the optimal coding strategy. Second, the GFT coefficients of 
the image signal on the learned graph can be used to efficiently 
compress the image. As we can see in Figure 10(b), the decay 
of these coefficients (in terms of their log magnitude) is much 
faster than the decay of the GFT coefficients corresponding to 
the four nearest-neighbor grid graph that does not involve any 
learning. Finally, the weights of the learned graph are treated 
as a new edge weight signal that lies on a dual graph, whose 
nodes represent the edges in the learned graph, with the sig-
nal values on the nodes being the edge weights of the learned 
graph. Two nodes are connected in this dual graph if and only 
if the two corresponding edges share one common node in the 
learned graph. The learned graph is then transmitted by the 
GFT coefficients of this edge weight signal, where the decay 
of these coefficients is shown in Figure 10(c). The obtained 
results confirm that the GFT coefficients of the graph weights 
are concentrated on the low frequencies, which indicates a 
highly compressible graph.

Another example is the work in [71], which introduces an 
efficient graph-learning approach for fast graph Fourier trans-
form, based on [41]. The authors have considered a maximum-
likelihood estimation problem with additional constraints 
based on a matrix factorization of the graph Laplacian matrix, 
such that its eigenvector matrix is a product of a block diagonal 
matrix and a butterfly-like matrix. The learned graph leads to a 
fast, nonseparable transform for intrapredictive residual blocks 
in video compression. Such efforts confirm that learning a 
meaningful graph can have a significant impact in graph-based 
image compression. These are only a few first attempts, which 
leave much room for improvement, especially in terms of cod-
ing performance. Thus, we expect to see more future research 
efforts that fully exploit the potential of graph methods.

Brain signal analysis
GSP is a promising and powerful framework for brain network 
data, mainly because of its potential to jointly model brain 
structure as a graph and brain activities as signals residing on 
the nodes of the graph. The overview paper in [72] provides a 
summary of how a GSP view of brain signals can provide ad-
ditional insights into the functionality of the brain.

Graph learning, in particular, has been successfully applied 
for inferring the structural and functional connectivity of the 
brain related to different diseases or external stimuli. For 
example, [27] introduced a graph regression model for learning 
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brain structural connectivity of patients with Alzheimer’s dis-
ease, which is based on the signal smoothness model discussed 
in the “Models Based on Signal Smoothness” section. A similar 
framework [73] extended to the noisy settings has been applied 
on a set of magnetoencephalography signals to capture the brain 
activity in two categories of visual stimuli (e.g., the subject was 
viewing face or nonface images). In addition to the smoothness 
assumption, the proposed framework is based on the assumption 
that the perturbation on the low-rank components of the noisy 
signals is sparse. The recovered functional connectivity graphs 
under these assumptions are compatible with findings in the 
neuroscientific literature, which is a promising result indicating 
that graph learning can contribute to this application domain.

Instead of the smoothness model adopted in [27] and [73], 
the authors in [54] have utilized models on causal dependencies 
and proposed inferring effective connectivity networks of brain 
regions that may shed light on the understanding of the cause 
behind epilepsy. The signals that they use are electrocorticog-
raphy time series data before and after ictal onset of seizures 
of epilepsy. All of these applications show the potential impact 
GSP-based graph-learning methods may have on the brain and, 

more generally, biomedical data analysis, where the inference 
of hidden connections can be crucial.

Other application domains
In addition to image processing and biomedical analysis, GSP-
based graph-learning methods have been applied to a number 
of other diverse areas. One notable example is meteorology, 
where it is of interest to understand the relationship between 
different locations based on the temperatures recorded at the 
weather stations in these locations. Interestingly, this is an area 
where all three major signal models introduced in this article 
may be employed to learn graphs that lead to different insights. 
For instance, the authors of [39] and [42] have proposed learn-
ing a network of weather stations using the signal smoothness 
model, which essentially captures the relationship between 
these stations in terms of their altitude. Alternatively, the work 
in [46] has adopted the heat diffusion model in which the evo-
lution of temperatures in different regions is modeled as a dif-
fusion process on the learned geographical graph. The authors 
of [55] have further developed a framework based on causal de
pendencies to infer a directed temperature propagation network 
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that is consistent with major wind directions over the United 
States. We note, however, that most of these studies are proof 
of concept, and future research is expected to focus more on 
the perspective of practical applications in meteorology.

Another area of interest is environmental monitoring. As 
an example, the author of [74] has proposed applying the 
GSP-based graph-learning framework of [70] for the analy-
sis of exemplary environmental data of ozone concentration 
in Poland. More specifically, the paper 
has proposed learning a network that re
flects the relationship between different 
regions in terms of ozone concentration. 
Such a relationship may be understood in a 
dynamic fashion using data from different 
temporal periods. Similarly, the work in 
[39] has analyzed evapotranspiration data 
collected in California to understand the 
relationship between regions of different 
geological features.

Finally, GSP-based methods have also 
been applied to infer graphs that reveal urban traffic flows [47], 
patterns of news propagation on the Internet [62], the interregion 
political relationship [39], similarities between animal species 
[41], and ontologies of concepts [25]. The diversity of these areas 
has demonstrated the potential of applying GSP-based graph-
learning methods for understanding the hidden relationship 
behind data observations in real-world applications.

Concluding remarks and future directions
Learning structures and graphs from data observations is an 
important problem in modern data analytics, and the novel 
signal processing approaches reviewed in this article have 
both theoretical and practical significance. On the one hand, 
GSP provides a new theoretical framework for graph learning 
by utilizing signal processing tools, with a strong emphasis on 
the representation of the signals on the learned graph, which 
can be essential from a modeling viewpoint. As a result, the 
novel approaches developed in this field would benefit not 
only the inference of optimal graph topologies, but also the 
subsequent signal processing and data analysis tasks. On the 
other hand, the novel signal and graph models designed from a 
GSP perspective may contribute uniquely to the understanding 
of the often complex data structure and generative processes 
of the observations made in real-world application domains, 
such as brain and social network analysis. For these reasons, 
GSP-based approaches for graph learning have recently at-
tracted increased interest. There exist, however, many open 
issues and questions that are worthy of further investigation. 
In the following sections, we discuss five general directions 
for future work.

Input signals of learning frameworks
The first important point that needs further investigation is the 
quality of the input signals. Most approaches in the literature 
have focused on the scenario where a complete set of data are 
observed for all the entities of interest (i.e., at all vertices in the 

graph). However, there are often situations when observations 
are only partially available, either because of the failure to ac-
quire data from some of the sensors or simply because of the 
costs associated with making full observations. For example, 
in large-scale social, biomedical, or environmental networks, 
sampling or active learning may need to be applied to select a 
limited number of sensors for observations [75]. It is a chal-
lenge to design graph-learning approaches that can handle 

such cases as well as to study the extent to 
which the partial or missing observations 
affect the learning performance. Another 
scenario is that of dealing with sequential 
input data that come in an online and adap-
tive fashion, which has been studied in the 
recent work of [76].

Outcome of learning frameworks
Compared to the input signals, it is arguably 
even more important to rethink the poten-
tial outcome of the learning frameworks. 

Several important lines of thought remain largely unexplored 
in the current literature. First, while most of the existing work 
focuses on learning undirected graphs, it is certainly of in-
terest to investigate approaches for learning directed ones. 
Methods described in the “Models Based on Causal Depen-
dencies on Graphs” section, such as [54], [55], and [62], are 
able to achieve this since they do not explicitly rely on the 
notion of frequency provided by the eigendecomposition 
of the symmetric graph adjacency or Laplacian matrices. 
However, it is certainly possible and desirable to extend the 
frequency interpretation obtained with undirected graphs 
to the case of directed ones. For example, alternative defi-
nitions of frequencies of graph signals have been recently 
proposed based on normalization of the random walk La-
placian [77], novel definition of inner product of graph sig-
nals [78], and explicit optimization for an orthonormal basis 
on graphs [79], [80]. How to design techniques that learn 
directed graphs by making use of these new developments 
in the frequency interpretation of graph signals remains an 
interesting question.

Second, in many real-world applications, the network struc-
ture changes over time, particularly social network interactions 
or brain functional connectivities. It is, therefore, interesting to 
look into learning frameworks that can infer dynamic graph 
topologies. To this end, [62] has proposed a method to track net-
work structure that can be switched between a number of differ-
ent states. Alternatively, [70] and [88] have proposed approaches 
to infer dynamic networks from observations within different 
time windows, with a penalty term imposed on the similarity 
between consecutive networks to be inferred. Such a notion of 
temporal smoothness is certainly an interesting question to study 
and may draw inspiration from the visualizations of dynamic 
networks recently proposed in [81].

Third, although the current lines of work reviewed in this 
article mainly focus on the signal representation, it is also 
possible to put constraints directly on the learned graphs by 

The novel approaches 
developed in this field 
would benefit not only 
the inference of optimal 
graph topologies, but also 
the subsequent signal 
processing and data 
analysis tasks.
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enforcing certain graph properties that go beyond the common 
choice of sparsity, which has been adopted explicitly by the 
optimization problems in many existing methods [15], [25], [42], 
[45], [46], [55], [62]. One example is the work in [82], where the 
authors have proposed inferring graphs with monotone topol-
ogy properties. Another example is the approach in [83], which 
learns a sparse graph with connected components. Learning 
graphs with desirable properties inspired by a specific appli-
cation domain (e.g., community detection [2]) can also have 
great potential benefit, and it is a topic worth investigating.

Fourth, in some applications, it might not be necessary to 
learn the full graph topology, but rather, some other intermedi-
ate or graph-related representations. For example, this could be 
an embedding of the vertices in the graph for the purpose of 
clustering [84] or a function of the graph, such as graph filters, 
for the subsequent signal processing tasks [85]. Another possi-
bility is to learn graph properties such as eigenvalues (for exam-
ple, using the technique described in [46]), degree distribution, 
or templates that constitute local regions of the graph. Similar 
to the previous point, in these scenarios, the learning frame-
work needs to be designed accordingly with the end objective 
or application in mind.

Finally, instead of learning a deterministic graph struc-
ture, as in most of the existing models, it would be interesting 
to explore the possibility of learning graphs in a probabilistic 
fashion, one in which we either specify the confidence in build-
ing an edge between each pair of the vertices or indicate the 
uncertainty of the inferred graph. This would benefit specific 
situations when a soft decision is preferred to a hard decision, 
possibly due to anticipated measurement errors in the observa-
tions or other constraints.

Signal models
Throughout this article, we have emphasized the importance 
of a properly defined signal model in the design of the graph-
learning framework. The current literature predominantly fo-
cuses on either the globally or locally smooth models. Other 
models, such as bandlimited signals, i.e., those that have lim-
ited support in the graph spectral domain, may also be consid-
ered for inferring graph topologies [86]. Generally speaking, 
more flexible signal models that go beyond the smoothness-
based criteria can be designed by taking into account general 
filtering operations of signals on the graph.

The learning framework may also need to adapt to the 
specific input and output, as outlined in the previous two sec-
tions. For instance, given only partially available observations, 
it might make sense to consider a signal model tailored for the 
observed, instead of the whole, region of the graph. Another sce-
nario would be that, in learning dynamic graph topologies, the 
signal model employed needs to be consistent with the temporal 
smoothness criteria adopted to learn the sequence of graphs.

Performance guarantees
Graph inference is an inherently difficult problem given the 
large number of unknown variables (generally in the order 
of )N2  and the relatively small amount of observations. As a 

result, learning algorithms must be designed with addition-
al assumptions or priors. In this case, it is desirable to have 
theoretical guarantees of the performance of graph recovery 
under the specific model and prior. It would also be inter-
esting to put the errors in graph recovery into the context of 
the subsequent data processing tasks and study their impact. 
Furthermore, for many graph-learning algorithms, in addition 
to the empirical performance, it is necessary to provide guar-
antees of the convergence when alternating minimization is 
employed as well as to study the computational complexity 
that can be essential for learning large-scale graphs. These 
theoretical considerations remain largely unexplored in the 
current literature and therefore require much further investi-
gation, given their importance.

Objective of graph learning
The final comment on future work is a reflection on the ob-
jective of the graph-learning problem and, in particular, how 
to better integrate the inference framework with the subse-
quent data analysis tasks. Clearly, the learned graph may 
be readily used for classical machine-learning tasks such as 
clustering or semisupervised learning, but it may also direct-
ly benefit the processing and analysis of the graph signals. 
In this setting, it is often the case that a cost related to the 
application is directly incorporated into the optimization for 
graph learning. For instance, the work in [87] has proposed 
a method for inferring graph topologies with a joint goal 
of dictionary learning, whose cost function is incorporated 
into the optimization problem. In many applications, such 
as image coding, accuracy is not the only interesting perfor-
mance metric. Typically, there exist different tradeoffs that 
are more complex and should be taken into consideration. For 
example, in image compression, the actual cost of coding the 
graph is at least as important as the cost of coding the image 
signal. Such constraints are indicated by the application, and 
they should be incorporated in the graph-learning framework 
(e.g., [69]) to make the learning framework more targeted to 
a specific application.
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