
Beltrami Flow and Neural Diffusion on Graphs

Benjamin P. Chamberlain∗

Twitter Inc.
bchamberlain@twitter.com

James Rowbottom∗

Twitter Inc.
Davide Eynard

Twitter Inc.

Francesco Di Giovanni
Twitter Inc.

Xiaowen Dong
University of Oxford

Michael M. Bronstein
Twitter Inc. and Imperial College London

Abstract

We propose a novel class of graph neural networks based on the discretised Beltrami
flow, a non-Euclidean diffusion PDE. In our model, node features are supplemented
with positional encodings derived from the graph topology and jointly evolved
by the Beltrami flow, producing simultaneously continuous feature learning and
topology evolution. The resulting model generalises many popular graph neural
networks and achieves state-of-the-art results on several benchmarks.

1 Introduction

The majority of graph neural networks (GNNs) are based on the message passing paradigm [30],
wherein node features are learned by means of a non-linear propagation on the graph. Multiple
recent works have pointed to the limitations of the message passing approach. These include; limited
expressive power [80, 95, 9, 7], the related oversmoothing problem [60, 62] and the bottleneck
phenomena [1, 93], which render such approaches inefficient, especially in deep GNNs. Multiple
alternatives have been proposed, among which are higher-order methods [54, 7] and decoupling
the propagation and input graphs by modifying the topology, often referred to as graph rewiring.
Topological modifications can take different forms such as graph sampling [32], kNN [43], using
the complete graph [86, 1], latent graph learning [89, 36], or multi-hop filters [92, 73]. However,
there is no agreement in the literature on when and how to modify the graph, and a single principled
framework for doing so.

A somewhat underappreciated fact is that GNNs are intimately related to diffusion equations [16],
a connection that was exploited in the early work of Scarselli et al. [76]. Diffusion PDEs have
been historically important in computer graphics [83, 11, 51, 64], computer vision [13, 18, 6], and
image processing [65, 82, 90, 85, 26, 12], where they created an entire trend of variational and
PDE-based approaches. In machine learning and data science, diffusion equations underpin such
popular manifold learning methods as eigenmaps [5] and diffusion maps [20], as well as the family of
PageRank algorithms [63, 14]. In deep learning, differential equations are used as models of neural
networks [16, 19, 25, 94, 71, 98] and for physics-informed learning [72, 22, 75, 21, 81, 47].

Main contributions In this paper, we propose a novel class of GNNs based on the discretised
non-Euclidean diffusion PDE in joint positional and feature space, inspired by the Beltrami flow [82]
used two decades ago in the image processing literature for edge-preserving image denoising. We
show that the discretisation of the spatial component of the Beltrami flow offers a principled view
on positional encoding and graph rewiring, whereas the discretisation of the temporal component
can replace GNN layers with more flexible adaptive numerical schemes. Based on this model, we
introduce Beltrami Neural Diffusion (BLEND) that generalises a broad range of GNN architectures
and shows state-of-the-art performance on many popular benchmarks. In a broader perspective, our

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

approach explores new tools from PDEs and differential geometry that are less well known in the
graph ML community.

2 Background

Beltrami flow Kimmel et al. [40, 82, 39] considered images as 2-manifolds (parametric surfaces)
(Σ, g) embedded in some larger ambient space as z(u) = (u, αx(u)) ⊆ Rd+2 where α ≥ 0 is
a scaling factor, u = (u1, u2) are the 2D positional coordinates of the pixels, and x are the d-
dimensional colour or feature coordinates (with d = 1 or 3 for grayscale or RGB images, or d = k2

when using k × k patches as features [12]). In these works, the image is evolved along the gradient
flow of a functional S[z, g] called the Polyakov action [68], which roughly measures the smoothness
of the embedding1. For images embedded in Euclidean space with the functional S minimised with
respect to both the embedding z and the metric g, one obtains the following PDE:

∂z(u, t)

∂t
= ∆Gz(u, t), z(u, 0) = z(u), t ≥ 0, (1)

and boundary conditions as appropriate. Here ∆G is the Laplace-Beltrami operator, the Laplacian
operator induced on Σ by the Euclidean space we embed the image into. Namely, the embedding
of the manifold allows us to pull-back the Euclidean distance structure on the image: the distance
between two nearby points u and u+ du is given by

d`2 = du>G(u)du = du21 + du22 + α2
d∑

i=1

dx2i , (2)

where G = I + α2(∇ux(u))
>∇ux(u) is a 2 × 2 matrix called the Riemannian metric. The fact

that the distance is a combination of the positional component (distance between pixels in the plane,
‖u− u′‖) and the colour component (distance between the colours of the pixels, ‖x(u)− x(u′)‖) is
crucial as it allows edge-preserving image diffusion.

When dealing with images, the evolution of the first two components of (z1, z2) = u is a nuisance
amounting to the reparametrisation of the manifold and can be ignored. For grayscale images (the
case when d = 1 and z = (u1, u2, x)), this is done by projection along the dimension z3, in which
case the Beltrami flow takes the form of an inhomogeneous diffusion equation of x,

∂x(u, t)

∂t
=

1√
detG(u, t)

div

(
∇x(u, t)√
detG(u, t)

)
t ≥ 0. (3)

Figure 1: Two interpretations of the Bel-
trami flow: position-dependent bilateral
kernel (top) and a Gaussian passed on the
manifold (bottom).

The diffusivity

a =
1√
detG

=
1√

1 + α2‖∇x‖2
(4)

determining the speed of diffusion at each point, can
be interpreted as an edge indicator: diffusion is weak
across edges where ‖∇x‖ � 1. The result is an adap-
tive diffusion [65] popular in image processing due to its
ability to denoise images while preserving their edges.
For cases with d > 1 (multiple colour channels), equa-
tion (3) is applied to each channel separately; however,
the metric G couples the channels, which results in their
gradients becoming aligned [38].

Special cases In the limit case α = 0, equation (3)
becomes the simple homogeneous isotropic diffusion
∂
∂tx = div(∇x) = ∆x, where ∆ = ∂2

∂u2
1
+ ∂2

∂u2
2

is the
standard Euclidean Laplacian operator. The solution is

1Explicitly, by minimising the functional with respect to the embedding one finds Euler-Lagrange (EL)
equations that can be used to dictate the evolution process of the embedding itself.

2

given in closed form as the convolution of the initial image and a Gaussian kernel with time-dependent
variance,

x(u, t) = x(u, 0) ?
1

(4πt)d/2
e−‖u‖2/4t (5)

and can be considered a simple linear low-pass filtering. In the limit t → ∞, the image becomes
constant and equal to the average colour.2

Another interpretation of the Beltrami flow is passing a Gaussian on the manifold (see Figure 1,
bottom), which can locally be expressed as non-linear filtering with the bilateral kernel [85] dependent
on the joint positional and colour distance (Figure 1, top),

x(u, t) =
1

(4πt)d/2

∫
R2

x(v, 0)e−‖u−v‖2/4te−α2‖x(u,0)−x(v,0)‖2/4tdv. (6)

For α = 0, the bilateral filter (6) reduces to a simple convolution with a time-dependent Gaussian.

3 Discrete Beltrami flow on graphs

We now develop the analogy of Beltrami flow for graphs. We consider a graph to be a discretisation
of a continuous structure (manifold), and show that the evolution of the feature coordinates in time
amounts to message passing layers in GNNs, whereas the evolution of the positional coordinates
amounts to graph rewiring, which is used in some GNN architectures.

3.1 Graph Beltrami flow

Let G = (V = {1, . . . , n}, E) be an undirected graph, where V and E denote node and edge sets,
respectively. We further assume node-wise d-dimensional features xi ∈ Rd for i = 1, . . . , n. Denote
by zi = (ui, αxi) the embedding of the graph in a joint space C × Rd, where C is a d′-dimensional
space with a metric dC representing the node coordinates (for simplicity, we will assume C = Rd′

unless otherwise stated). We refer to ui xi and zi as the positional, feature and joint coordinates of
node i, respectively, and arrange them into the matrices U, X, and Z, of sizes n × d′, n × d, and
n× (d′ + d).

For images, Beltrami flow amounts to evolving the embedding z along div(a(z)∇z), with a a
diffusivity map.3 Thus, we consider the graph Beltrami flow to be the discrete diffusion equation

∂zi(t)

∂t
=
∑

j:(i,j)∈E′

a(zi(t), zj(t))(zj(t)− zi(t)) zi(0) = zi; i = 1, . . . , n; t ≥ 0. (7)

We motivate our definition as follows: gij = zj − zi and di =
∑

j:(i,j)∈E gij are the discrete
analogies of the gradient ∇z and divergence div(g), both with respect to a graph (V, E ′) that can be
interpreted as the numerical stencil for the discretisation of the continuous Laplace-Beltrami operator
in (3). Note that E ′ can be different from the input E (referred to as ‘rewiring’). As discussed in
Section 3.3, most GNNs use E ′ = E (input graph is used for diffusion, no rewiring). Alternatively,
the positional coordinates of the nodes can be used to define a new graph topology either with
E(U) = {(i, j) : dC(ui,uj) < r}, for some radius r > 0, or using k nearest neighbours. This
new rewiring is precomputed using the input positional coordinates (i.e., E ′ = E(U(0))) or updated
throughout the diffusion (i.e., E ′(t) = E(U(t))). Therefore, (7) can be compactly rewritten as

∂zi(t)

∂t
= div (a(z(t))∇zi(t)) .

The function a is the diffusivity controlling the diffusion strength between nodes i and j and is
assumed to be normalised:

∑
j:(i,j)∈E′ a(zi, zj) = 1. The dependence of the diffusivity on the

2Assuming appropriate boundary conditions.
3Note that in equation (3) the diffusivity function a coincides with (det(G(u, t)))−

1
2 . Similarly to [82,

Section 4.2] we have neglected the extra term 1/a appearing in (3).

3

embedding z matches the smooth PDE analysed in e.g. [82, Section 4.2] and is consistent with the
form of attention mechanism used in e.g. [88, 86]. In matrix-form, we can also rewrite (7) as(

∂
∂tU(t), ∂

∂tX(t)
)
= (A(U(t),X(t))− I) (U(t),X(t)) (8)

U(0) = U; X(0) = αX; t ≥ 0,

where we emphasise the evolution of both the positional and feature components, coupled through
the matrix-valued function A

aij(t) =

{
a((ui(t),xi(t)), (uj(t),xj(t))) (i, j) ∈ E(U(t))
0 else.

representing the diffusivity. The graph Beltrami flow produces an evolution of the joint positional
and feature coordinates, Z(t) = (U(t),X(t)). In Section 3.3 we will show how the evolution of the
feature coordinates X(t) results in feature diffusion or message passing on the graph, the core of
GNNs. As noted in Section 2, in the smooth case the Beltrami flow is obtained as gradient flow of an
energy functional when minimised with respect to both the embedding and the metric on the surface
(an image). When the embedding takes values in the Euclidean space, this leads to equations of the
form (3) with no channel-mixing and an exact form of the diffusivity determined by the pull-back G
of the Euclidean metric. To further motivate our approach, it is tempting to investigate whether a
similar conclusion can be attained here. Although in the discrete case the operation of pull-back is not
well-defined, we are able to derive that the gradient flow of a modified graph Dirichlet energy gives
rise to an equation of the form (7). We note though that the gradient flow does not recover the exact
form of the diffusivity implemented in this paper. This is not a limitation of the theory and should be
expected: by requiring the gradient flow to avoid channel-mixing and imitate the image analogy in
[82] and by inducing a discrete pull-back condition, we are imposing constraints on the problem. We
leave the theoretical implications for future work and refer to the Supplementary Materials for a more
thorough discussion, including definitions and proofs.
Theorem 1. Under structural assumptions on the diffusivity, graph Beltrami flow (7) is the gradient
flow of the discrete Polyakov functional.

3.2 Numerical solvers

Explicit vs implicit schemes Equation (7) is solved numerically, which in the simplest case is done
by replacing the continuous time derivative ∂

∂t with forward time difference:

z
(k+1)
i − z

(k)
i

τ
=

∑
j:(i,j)∈E(U(k))

a
(
z
(k)
i , z

(k)
j

)
(z

(k)
j − z

(k)
i). (9)

Here k denotes the discrete time index (iteration) and τ is the time step (discretisation parameter).
Rewriting (9) compactly in matrix-vector form with τ = 1 leads to the explicit Euler scheme:

Z(k+1) = (A(k) − I)Z(k) = Q(k)Z(k), (10)

where a(k)ij = a(z
(k)
i , z

(k)
j) and the matrix Q(k) (diffusion operator) is given by

q
(k)
ij =

1− τ

∑
l:(i,l)∈E

a
(k)
il i = j

τa
(k)
ij (i, j) ∈ E(U(k))

0 otherwise
The solution to the diffusion equation is computed by applying scheme (10) multiple times in
sequence, starting from some initial Z(0). It is ‘explicit’ because the update Z(k+1) is done directly
by the application of the diffusion operator Q(k) on Z(k) (as opposed to implicit schemes of the form
Z(k) = Q(k)Z(k+1) arising from backward time differences that require inversion of the diffusion
operator [91]).

Multi-step and adaptive schemes Higher-order approximation of temporal derivatives amount to
using intermediate fractional steps, which are then linearly combined. Runge-Kutta (RK) [74, 44],
ubiquitously used in numerical analysis, is a classical family of explicit numerical schemes, including
Euler as a particular case. The Dormand-Prince (DOPRI) [24] is an RK method based on fifth and
fourth-order approximations, the difference between which is used as an error estimate guiding the
time step size [78].

4

Adaptive spatial discretisation and rewiring Many numerical PDE solvers also employ adaptive
spatial discretisation. The choice of the stencil (mesh) for spatial derivatives is done based on the
character of the solution at these points; in the simulation of phenomena such as shock waves it is
often desired to use denser sampling in the respective regions of the domain, which can change in
time. A class of techniques for adaptive rewiring of the spatial derivatives are known as Moving Mesh
(MM) methods [33]. Interpreting the graph E ′ in (7) as the numerical stencil for the discretisation of
the continuous Laplace-Beltrami operator in (3), we can regard rewiring as a form of MM.

3.3 Relation to graph neural networks

Equation (9) has the structure of many GNN architectures of the ‘attentional’ type [10], where the
discrete time index k corresponds to a (convolutional or attentional) layer of the GNN and multiple
diffusion iterations amount to a deep GNN. In the diffusion formalism, the time parameter t acts as a
continuous analogy of the layers, in the spirit of neural differential equations [19]. Typical GNNs
amount to explicit single-step (Euler) discretisation schemes, whereas our continuous interpretation
can exploit more efficient numerical schemes.

GNNs as instances of graph Beltrami flow The graph Beltrami framework leads to a family of
graph neural networks that generalise many popular architectures (see Table 1). For example, GAT
[88] can be obtained as a particular setting of our framework where the input graph is fixed (E ′ = E)
and only the feature coordinates X are evolved. Equation (10) in this case becomes

x
(k+1)
i = x

(k)
i + τ

∑
j:(i,j)∈E

a
(
x
(k)
i ,x

(k)
j

)
(x

(k)
j − x

(k)
i) (11)

and corresponds to the update formula of GAT with a residual connection and the assumption of
no non-linearity between the layers. The role of the diffusivity is played by a learnable parametric
attention function, which is generally time-dependent: a(z(k)i , z

(k)
j , k). This results in separate

attention parameters per layer k, which can be learned independently. Our intentionally simplistic
choice of a time-independent attention function amounts to parameter sharing across layers. We will
show in Section 5.1 that this leads to a smaller model that is less likely to overfit.

Another popular architecture MoNet [57] uses linear diffusion of the features with weights dependent
on the structure of the graph expressed as ‘pseudo-coordinates’, which can be cast as attention of the
form a(ui,uj). Transformers [87] can be interpreted as feature diffusion on a fixed complete graph
with E ′ = V × V [10]. Positional encoding (used in Transformers as well as in several recent GNN
architectures [9, 27]) amounts to attention dependent on both X and U, which allows the diffusion to
adapt to the local structure of the graph; importantly, the positional coordinates U are precomputed.
Similarly, DeepSets [97] and PointNet [70] architectures can be interpreted as GNNs applied on a
graph with no edges (E ′ = ∅), where each node is treated independently of the others [10]. DIGL
[43] performs graph rewiring as a pre-processing step using personalised page rank as positional
coordinates, which are then fixed and not evolved. In the point cloud methods, DGCNN [89] and
DGM [36], the graph is constructed based on the feature coordinates X and rewired adaptively (in
our notation, E ′ = E(X(t))).

Method Evolution Diffusivity Graph (V, E ′) Discretisation
ChebNet Features X Fixed aij Fixed E Explicit fixed step
GAT Features X a(xi,xj) Fixed E Explicit fixed step
MoNet Features X a(ui,uj) Fixed E Explicit fixed step
Transformer Features X a((ui,xi), (uj ,xj)) Fixed E = V × V Explicit fixed step
DeepSet/PointNet Features X a(xi) Fixed E = ∅ Explicit fixed step
DIGL∗ Features X a(xi,xj) Fixed E(U) Explicit fixed step
DGCNN/DGM∗ Features X a(xi,xj) Adaptive E(X) Explicit fixed step
Beltrami Positions U a((ui,xi), (uj ,xj)) Adaptive E(U) Explicit adaptive step /

+Features X Implicit

Table 1: GNN architectures interpreted as particular instances of our framework. ∗Attentional variant.

Graph rewiring Multiple authors have recently argued in favor of decoupling the input graph from
the graph used for diffusion. Such rewiring can take the form of graph sampling [32] to address
scalability issues, data denoising [43], removal of information bottlenecks [1], or larger multi-hop
filters [73]. The graph construction can also be made differentiable and a task-specific rewiring can

5

be learned [89, 36]. The statement of Klicpera et al. [43] that ‘diffusion improves graph learning’,
leading to the eponymous paradigm (DIGL), can be understood as a form of diffusion on the graph
connectivity independent of the features. Specifically, the authors used as node positional encoding
the Personalised PageRank (PPR), which can be interpreted as the steady-state of a diffusion process

UPPR =
∑
k≥0

(1− β)βk∆k
RW = (1− β)(I− β∆RW)−1, 0 < β < 1, (12)

where ∆RW is the random walk graph Laplacian and β ∈ (0, 1) is a parameter such that 1 − β
represents the restart probability. The resulting positional encoding of dimension d = n can be used
to rewire the graph by kNN sampling, which corresponds to using E ′ = E(UPPR) in our framework.

Numerical schemes All the aforementioned GNN architectures can be seen as an explicit discreti-
sation of equation (7) with fixed step size. On the other hand, our continuous diffusion framework
offers an additional advantage of employing more efficient numerical schemes with adaptive step
size. Graph rewiring of the form E ′ = E(U(t)) can be interpreted as adaptive spatial discretisation
(moving mesh method).

3.4 Extensions

fe
at

ur
e

sp
ac

e

u
d

dx

u

x

Figure 2: Graph Beltrami flow with hy-
perbolic positional coordinates.

Non-Euclidean geometry There are multiple theoreti-
cal and empirical arguments [52, 17] in favor of using hy-
perbolic spaces to represent real-life ‘small-world’ graphs
(in particular, scale-free networks can be obtained as kNN
graphs in such spaces [8]). Our framework allows using a
non-Euclidean metric dC for the positional coordinates U
(Figure 2). In Section 5 we show that hyperbolic positional
encodings allow for a significant reduction in model size
with only a marginal degradation of performance.

Time-dependent diffusivity The diffusivity function a
which we assumed time-independent and which lead to
parameter sharing across layers (i.e., updates of the form
Z(k+1) = Q(Z(k),θ)Z(k)) can be made time-dependent
of the form Z(k+1) = Q(Z(k),θ(k))Z(k), where θ and
θ(k) denote shared and layer-dependent parameters, respectively.

Onsager diffusion As we noted, the Beltrami flow diffuses each channel separately. A more
general variant of diffusion allowing for feature mixing is the Onsager diffusion [61] of the form
∂
∂tZ(t) = Q(Z(t))Z(t)W(t), where the matrix-valued function W acts across the channels. GCN
[42] can be regarded a particular setting thereof, with update of the form X(k+1) = AX(k)W.

MPNNs Finally, we note that the Beltrami flow amounts to linear aggregation with non-linear
coefficients, or the ‘attentional’ flavor of GNNs [10]. The more general message passing flavor [30]
is possible using a generic non-linear equation of the form ∂

∂tZ(t) = Ψ(Z(t)).

4 BLEND: Beltrami Neural Diffusion

Beltrami Neural Diffusion (BLEND) is a novel class of graph neural network architectures derived
from the graph Beltrami framework. We assume an input graph G = (V, E) with n nodes and
d-dimensional node-wise features represented as a matrix Xin. We further assume a d′-dimensional
positional encoding Uin of the graph nodes. BLEND architectures implement a learnable joint
diffusion process of U and X and runs it for time T , to produce an output node embeddings Y,

Z(0) = (φ(Uin), ψ(Xin)) Z(T) = Z(0) +

∫ T

0

∂Z(t)

∂t
dt Y = ξ(Z(T)),

where φ, ψ are learnable positional and feature encoders and ξ is a learnable decoder (possibly
changing the output dimensions). Here the α in Equations (2) and (8) is absorbed by ψ and made

6

learnable. ∂Z(t)
∂t is given by the graph Beltrami flow equation (8), where the diffusivity function

(attention) a is also learnable. The choice of attention function depends on the geometry of the
positional encoding and for Euclidean encodings we find the scaled dot product attention [86]
performs well, in which case

a(zi, zj) = softmax

(
(WKzi)

>WQzj
dk

)
(13)

where WK and WQ are learned matrices, and dk is a hyperparameter.

5 Experimental results

In this section, we compare the proposed Beltrami framework to popular GNN architectures on
standard node classification benchmarks and provide a detailed study of the choice of the posi-
tional encoding space. Additional experiments and implementation details, including runtimes
and hyperparameter tuning are given in the Supplementary Materials. The code is available at
https://github.com/twitter-research/graph-neural-pde.

Datasets In our experiments, we use the following datasets: Cora [56], Citeseer [77], Pubmed [58],
CoauthorCS [79], Amazon, Computer, and Photo [55], and OGB-arxiv [35]. Since many works using
the first three datasets rely on the Planetoid splits [96], we included them Table 2, together with a
more robust evaluation on 100 random splits with 20 random initialisations [79].

Baselines We compare to the following GNN architectures: GCN [42], GAT [88], MoNet [57]
and GraphSAGE [32], and recent ODE-based GNN models: CGNN [94], GDE [67], GODE [98],
and two versions of LanczosNet [49]. We use two variants of our method: using fixed input graph
(BLEND) and using kNN graph in the positional coordinates (BLEND-knn).

5.1 Node Classification Method CORA CiteSeer PubMed
GCN 81.9±0.8 69.5±0.9 79.0±0.5
GAT 82.8±0.5 71.0±0.6 77.0±1.3
MoNet 82.2±0.7 70.0±0.6 77.7±0.6
GS-maxpool 77.4±1.0 67.0±1.0 76.6±0.8
Lanczos 79.5±1.8 66.2±1.9 78.3±0.3
AdaLanczos 80.4±1.1 68.7±1.0 78.1±0.4
CGNN 81.7±0.7 68.1±1.2 80.2±0.3
GDE 83.8±0.5 72.5±0.5 79.9±0.3
GODE 83.3±0.3 72.4±0.6 80.1±0.3
BLEND 84.2±0.6 74.4±0.7 80.7± 0.7
BLEND-kNN 83.1±0.8 73.3±0.9 81.5±0.5

Table 2: Performance (test accuracy±std) of dif-
ferent GNN models using Planetoid splits.

In these experiments, we followed the method-
ology of [79] using 20 random weight initialisa-
tions for datasets with fixed Planetoid splits and
100 random splits otherwise. Where available,
results from [79] are reported. Hyperparameters
with the highest validation accuracy were cho-
sen and results are reported on a test set that is
used only once. Hyperparameter search used
Ray Tune [50] with a thousand random trials us-
ing an asynchronous hyperband scheduler with
a grace period and half life of ten epochs. The
code to reproduce our results is included with
the submission and will be released publicly fol-
lowing the review process. Experiments ran on AWS p2.8xlarge machines, each with 8 Tesla
V100-SXM2 GPUs.

Implementation details For all datasets excepting ogb-arxiv, adaptive explicit Dormand-Prince
scheme was used as the numerical solver; for ogb-arxiv, we used the Runge-Kutta method. For
the two smallest datasets (Cora and Citeseer) we performed direct backpropagation through each
step of the numerical integrator. For the larger datasets, to reduce memory complexity, we use
Pontryagin’s maximum principle to propagate gradients backwards in time [69]. For the larger
datasets, kinetic energy and Jacobian regularisation [28, 37] was employed. The regularisation
ensures the learned dynamics is well-conditioned and easily solvable by a numeric solver, which
reduced training time. We use constant initialisation for the attention weights, WK ,WQ, so training
starts from a well-conditioned system that induces small regularisation penalty terms [28].

The space complexity of BLEND is dominated by evaluating attention (13) over edges and is
O(|E ′|(d+ d′)) where E ′ is the edge set following rewiring and d is dimension of features and d′ is
the dimension of positional encoding. The runtime complexity is O(|E ′|(d+ d′))(Eb + Ef), split

7

https://github.com/twitter-research/graph-neural-pde

Method CORA CiteSeer PubMed Coauthor CS Computer Photo ogb-arxiv
GCN 81.5±1.3 71.9 ±1.9 77.8±2.9 91.1±0.5 82.6±2.4 91.2±1.2 71.74±0.29
GAT 81.8±1.3 71.4±1.9 78.7±2.3 90.5±0.6 78.0±19 85.7±20 73.01±0.19∗

GAT-ppr 81.6±0.3 68.5±0.2 76.7±0.3 91.3±0.1 85.4±0.3 90.9±0.3 —
MoNet 81.3±1.3 71.2±2.0 78.6±2.3 90.8±0.6 83.5±2.2 91.2±2.3 —
GS-mean 79.2±7.7 71.6±1.9 77.4±2.2 91.3±2.8 82.4±1.8 91.4±1.3 71.49±0.27
GS-maxpool 76.6±1.9 67.5±2.3 76.1±2.3 85.0±1.1 — 90.4±1.3 —
CGNN 81.4±1.6 66.9±1.8 66.6±4.4 92.3±0.2 80.3±2.0 91.4±1.5 58.70±2.50
GDE 78.7±2.2 71.8±1.1 73.9±3.7 91.6±0.1 82.9±0.6 92.4±2.0 56.66±10.9
BLEND 84.8±0.9 75.9±1.3 79.5±1.4 92.9±0.2 86.9±0.6 92.9±0.6 72.56±0.1
BLEND-kNN 82.5±0.9 73.4±0.5 80.9±0.7 92.3±0.1 86.7±0.6 93.5±0.3 —†

Table 3: Performance (test accuracy±std) of different GNN models using random splits. ∗OGB
GAT reference has 1.5M parameters vs ours 70K.† BLEND-kNN pre-processes the graph using the DIGL
methodology [43] (Section 3.3), which constructs an n-dimensional representation of each node (an n-by-n
matrix), then sparsifies into a kNN graph. The ogb-arxiv dataset has >150K nodes and goes OOM. This is not a
limitation of BLEND, but that of DIGL. Other forms of initial rewiring are possible, but we chose to compare
with DIGL (arguably the most popular graph rewiring) and so this result is missing

between the forward and backward pass and can be dominated by either depending on the number of
function evaluations (Eb, Ef).

Tables 2–3 summarise the results of our experiments. BLEND outperforms other GNNs in most of
the experiments, showing state-of-the-art results on some datasets. Another important point to note is
that compared GNNs use different sets of parameters per layer, whereas in BLEND, due to our choice
of a time-independent attention, parameters are shared. This results in significantly fewer parameters:
for comparison, the OGB versions of GCN, SAGE and GAT used in the ogb-arxiv experiment require
143K, 219K and 1.63M parameters respectively, compared to only 70K in BLEND.

5.2 Positional encoding

Cora CiteSeer PubMed Coauthor CS Computer Photo
Datasets

70

75

80

85

90

95

100

Ac
cu

ra
cy 84.8

75.9

79.5

92.9

86.9

92.9

83.6

73.4

78.8

92.9

83.7

92.3

82.6

74.5
76.8

90.3

74BLEND
BLEND w/o positional

GAT w. POS

Figure 3: An ablation study showing BLEND with and without
positional encodings as well as GAT, the most similar conventional
GNN with positional encodings added

In the second experiment, we in-
vestigated the impact of the posi-
tional encodings and vary the di-
mensionality and underlying ge-
ometry, in order to showcase the
flexibility of our framework.

Figure 3 shows that for all
datasets BLEND is superior to
a Euclidean model where posi-
tional encodings are not used,
which corresponds to Z = X
(BLEND w/o positional in Fig-
ure 3) and a version of GAT
where attention is over a concate-
nation of the same positional en-
codings used in BLEND and the
features. The only exception is
CoathorCS, where the performance without positional encodings is unchanged.

We experimented with three forms of positional encoding: DIGL PPR embeddings of dimension n
[43], DeepWalk embeddings [66] of dimensions 16–256, and hyperbolic embeddings in the Poincare
ball [15, 59] of dimension 2–16. Positional encodings are calculated as a preprocessing step and
input as the U coordinates to BLEND. We calculated DeepWalk node embeddings using PyTorch
Geometric’s Node2Vec implementation with parameters p = 1, q = 1, context size 20, and 16 walks
per node. We trained with walk length ranging between 40 and 120 and took the embeddings with
the highest accuracy for the link prediction task. Shallow hyperbolic embeddings were generated
using the HGCN [17] implementation with the default parameters provided by the authors.

Figure 4 (left) compares the performance of the best model using DIGL n-dimensional positional
encodings against the best performing d-dimensional hyperbolic positional encodings with d tuned
over the range 2-16. The average performance with DIGL positional encodings is 85.48, compared to
85.28 for hyperbolic encodings. Only in one case the DIGL encodings outperform the best hyperbolic

8

Cora CiteSeer PubMed Coauthor Computer Photo
Dataset

70

75

80

85

90

95

100

Ac
cu

ra
cy 84.8

75.9

79.5

92.9

86.9

92.9

84.2

75.9

79.6

92.5

86.4

93.1

BLEND Hyp

HYP2 HYP4 HYP8 HYP16 DW16 DW64 DW128 DW256 GDC
Positional embedding type and size

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Citeseer
Photo

Figure 4: Left: performance comparison between Euclidean and hyperbolic positional embeddings.
Right: results of positional embeddings ablation. Hyperbolic or Euclidean embeddings with d′ = 16
allow to obtain performances comparable to euclidean embeddings with d′ = n >> 16.

encodings. Figure 4 (right) show the change in performance with the dimension d′ of the positional
encoding using a fixed hyperparameter configuration. As expected, we observe monotonic increase
in performance as function of d′. Importantly most of the performance is captured by either 16
dimensional hyperbolic or positional encodings, with a small additional margin gained for going up
to d′ = n, which is impractical for larger graphs.

5.3 Additional ablations

Dopri5 0.25 0.5 1 2 4 8
Stepsize

20

30

40

50

60

70

80

90

Ac
cu
ra
cy

Cora
Citeseer
Pubmed

CoauthorCS
Computers
Photo

Figure 5: step size against accurcy for explicit Euler
compared to the adaptive dopri5.

In addition to studying the affect of posi-
tional encodings , we performed ablation
studies on the step size used in the integra-
tor as well as different forms of attention.

In Figure 5 we studied the affect of chang-
ing the step size of the integrator using the
explicit Euler method with a fixed terminal
time set to be the optimal terminal time.
The left hand side of the figure shows the
performance using the adaptive stepsize
Dopri5 for comparison. Dopri5 gives the
most consistent performance and is best if
three of the six datasets. Details of addi-
tional attention functions and their relative
performance can be found in the Supplementary Material.

6 Related work

Image processing, computer vision, and graphics. Following the Perona-Malik scheme [65],
PDE-based approaches flourished in the 1990s with multiple versions of anisotropic [90] and non-
Euclidean [82] diffusion used primarily for image denoising. The realisation of these ideas in the
form of nonlinear filters [85, 12] was adopted in the industry. PDE-based methods were also used
for low-level vision tasks including inpainting [6] and image segmentation [13, 18]. In computer
graphics, fundamental solutions (‘heat kernels’) of diffusion equations were used as shape descriptors
[83]. The closed-form expression of such solutions using the Laplace-Beltrami operator served as
inspiration for some of the early approaches for GNNs [34, 23, 42, 45].

Neural differential equations The interpretation of neural networks as discretised differential
equations (‘neural ODEs’) [19] was an influential recent result with multiple follow-up works
[25, 28, 53, 46]. In deep learning on graphs, this mindset has been applied to GNN architectures
[2, 67] and continuous message passing [94]. Continuous GNNs were also explored in [31] who,
similarly to [76], addressed the solutions of fixed point equations. Ordinary Differential Equations

9

on Graph Networks (GODE)[98] approach the problem using the technique of invertible ResNets.
Finally, [75] used graph-based ODEs to generate physics simulations.

Physics-inspired learning Solving PDEs with deep learning has been explored by [72]. Neural
networks appeared in [47] to accelerate PDE solvers with applications in the physical sciences. These
have been applied to problems where the PDE can be described on a graph [48]. [4] consider the
problem of predicting fluid flow and use a PDE inside a GNN. These approaches differ from ours
in that they solve a given PDE, whereas we use the notion of discretising PDEs as a principle to
understand and design GNNs.

Neural ODEs on graphs The most similar work to this is GRAND [16] of which BLEND can be
considered a non-Euclidean extension. In addition there are several other works that apply the neural
ODE framework to graphs. In GDE [67], GODE [98] and CGNN [94], the goal is to adapt neural
ordinary differential equations to graphs. In contrast, we consider non-Euclidean partial differential
equations and regard GNNs as particular instances of their discretisation (both spatial and temporal).
We can naturally use spaces with any metric, in particular, extending recent works on hyperbolic
graph embeddings. None of the previous techniques explore the link to differential geometry. More
specifically, GDE, GODE, and CGNN consider Neural ODEs of the canonical form ∂x

∂t = f(x, t, θ)
where f is a graph neural network (GODE), the message passing component of a GNN (CGNN), or
restricting f to be layers of bijective functions on graphs (GDE). Furthermore, in CGNN only ODEs
with closed form solutions are considered. [75] on the other hand is quite distinct as they are not
concerned with GNN design and instead use graph-based ODEs to generate physics simulations.

7 Conclusion

We developed a new class of graph neural networks based on the discretisation of a non-Euclidean
diffusion PDE called Beltrami flow. We represent the graph structure and node features as a manifold
in a joint continuous space, whose evolution by a parametric diffusion PDE (driven by the downstream
learning task) gives rise to feature learning, positional encoding, and possibly also graph rewiring.
Our experimental results show very good performance on popular benchmarks with a small fraction
of parameters used by other GNN models. Perhaps most importantly, our framework establishes
important links between GNNs, differential geometry, and PDEs – fields with a rich history and
profound results that in our opinion are still insufficiently explored in the graph ML community.

Future directions While we show that our framework generalises many popular GNN architectures
we seek to use the graph as a numerical representation of an underlying continuous space. This
view of the graph as an approximation of a continuous latent structure is a common paradigm of
manifold learning [84, 5, 20] and network geometry [8]. If adopted in graph ML, this mindset offers
a rigorous mathematical framework for formalising and generalising some of the recent trends in
the field, including the departure from the input graph as the basis for message passing [1], latent
graph inference [41, 89, 29, 36] higher-order [7, 54] and directional [3] message passing (which can
be expressed as anisotropic diffusion arising from additional structure of the underlying continuous
space and different discretisation of the PDEs e.g. based on finite elements), and exploiting efficient
numerical PDE solvers [19]. We leave these exciting directions for future research.

Societal impact GNNs have recently become increasingly utilized in industrial applications e.g. in
recommender systems and social networks, and hence could potentially lead to a negative societal
impact if used improperly. We would like to emphasize that our paper does not study such potential
negative applications and the mathematical framework we develop could help to interpret and
understand existing GNN models. We believe that better understanding of ML models is key to
managing their potential societal implications and preventing their negative impact.

Limitations The assumption that the graph can be modelled as a discretisation of some continuous
space makes our framework applicable only to cases where the edge and node features are continuous
in nature. Applications e.g. to knowledge graphs with categorical attributes could only be addressed
by first embedding such attributes in a continuous space. Finally, the structural result presented in
Theorem 1 that link our model to the Polyakov action have not been implemented. This will be
addressed in future works.

8 Acknowledgements

We thank Nils Hammerla and Gabriele Corso for feedback on early version of this manuscript. MB
and JR are supported in part by ERC Consolidator grant no 724228 (LEMAN).

References
[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical

implications. In ICLR, 2021.

[2] Pedro H. C. Avelar, Anderson R. Tavares, Marco Gori, and Luis C. Lamb. Discrete and
continuous deep residual learning over graphs. arXiv:1911.09554, 2019.

[3] Dominique Beaini, Saro Passaro, Vincent Létourneau, William L Hamilton, Gabriele Corso,
and Pietro Liò. Directional graph networks. arXiv:2010.02863, 2020.

[4] Filipe de Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable
pde solvers and graph neural networks for fluid flow prediction. In ICML, 2020.

[5] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation, 15(6):1373–1396, 2003.

[6] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Image inpainting.
In PACMCGIT, 2000.

[7] Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montúfar, Pietro Liò, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
arXiv:2103.03212, 2021.

[8] Marian Boguna, Ivan Bonamassa, Manlio De Domenico, Shlomo Havlin, Dmitri Krioukov, and
M Ángeles Serrano. Network geometry. Nature Reviews Physics, pages 1–22, 2021.

[9] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. arXiv:2006.09252,
2020.

[10] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv:2104.13478, 2021.

[11] Michael M Bronstein and Iasonas Kokkinos. Scale-invariant heat kernel signatures for non-rigid
shape recognition. In CVPR, 2010.

[12] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image denoising. In
ICCV, 2005.

[13] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. IJCV,
22(1):61–79, 1997.

[14] Soumen Chakrabarti. Dynamic personalized pagerank in entity-relation graphs. In WWW, 2007.

[15] Benjamin P. Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embeddings of
graphs in hyperbolic space. arXiv:1705.10359, 2017.

[16] Benjamin P. Chamberlain, James Rowbottom, Maria Gorinova, Michael M. Bronstein, Stefan
Webb, and Emanuele Rossi. GRAND: graph neural diffusion. In ICML 2021, pages 1407–1418,
2021.

[17] Ines Chami, Rex Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional
neural networks. In NeurIPS, 2019.

[18] Tony F Chan and Luminita A Vese. Active contours without edges. IEEE Trans. Image
Processing, 10(2):266–277, 2001.

[19] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In NeurIPS, pages 6571–6583, 2018.

[20] Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006.

[21] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley
Ho. Lagrangian neural networks. 2020.

[22] Miles Cranmer, Rui Xu, Peter Battaglia, and Shirley Ho. Learning symbolic physics with graph
networks. arXiv:1909.05862, 2019.

[23] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In NeurIPS, 2016.

[24] John R Dormand and Peter J Prince. A family of embedded Runge-Kutta formulae. Journal of
Computational and Applied Mathematics, 6(1):19–26, 1980.

[25] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural ODEs. In NeurIPS,
pages 3134–3144, 2019.

[26] Frédo Durand and Julie Dorsey. Fast bilateral filtering for the display of high-dynamic-range
images. In Proc Computer Graphics and Interactive Techniques, 2002.

[27] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv:2012.09699, 2020.

[28] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How to train
your neural ode: The world of Jacobian and kinetic regularization. In ICML, 2020.

[29] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete
structures for graph neural networks. In ICML, 2019.

[30] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

[31] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit
graph neural networks. In NeurIPS, 2020.

[32] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

[33] DF Hawken, JJ Gottlieb, and JS Hansen. Review of some adaptive node-movement techniques
in finite-element and finite-difference solutions of partial differential equations. Journal of
Computational Physics, 95(2):254–302, 1991.

[34] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv:1506.05163, 2015.

[35] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv:2005.00687, 2020.

[36] Anees Kazi, Luca Cosmo, Nassir Navab, and Michael Bronstein. Differentiable graph module
(DGN) graph convolutional networks. arXiv:2002.04999, 2020.

[37] Jacob Kelly, Jesse Bettencourt, Matthew James Johnson, and David Duvenaud. Learning
differential equations that are easy to solve. In NeurIPS, 2020.

[38] Ron Kimmel. Numerical geometry of images: Theory, algorithms, and applications. Springer,
2012.

[39] Ron Kimmel, Ravi Malladi, and Nir Sochen. Images as embedded maps and minimal surfaces:
movies, color, texture, and volumetric medical images. IJCV, 39(2):111–129, 2000.

[40] Ron Kimmel, Nir Sochen, and Ravi Malladi. From high energy physics to low level vision.
pages 236–247. Springer, 1997.

[41] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. In ICML, 2018.

[42] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[43] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In NeurIPS, volume 32, 2019.

[44] Wilhelm Kutta. Beitrag zur naherungsweisen integration totaler differentialgleichungen. Z.
Math. Phys., 46:435–453, 1901.

[45] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph
convolutional neural networks with complex rational spectral filters. IEEE Trans. Signal
Processing, 2017.

[46] Xuechen Li, Ricky Tian Qi Chen, Ting-Kam Leonard Wong, and David Duvenaud. Scalable
gradients for stochastic differential equations. In Artificial Intelligence and Statistics, 2020.

[47] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations. 2020.

[48] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. In NeurIPS, 2020.

[49] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet: Multi-scale deep
graph convo-lutional networks. In 7th International Conference on Learning Representations,
ICLR 2019, 2019.

[50] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion Stoica.
Tune: A research platform for distributed model selection and training. In arXiv: 1807.05118.,
2018.

[51] Roee Litman and Alexander M Bronstein. Learning spectral descriptors for deformable shape
correspondence. PAMI, 36(1):171–180, 2013.

[52] Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. arXiv preprint
arXiv:1910.12892, 2019.

[53] Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. Neural SDE:
Stabilizing neural ODE networks with stochastic noise. (2), 2019.

[54] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In NeurIPS, pages 2153–2164, 2019.

[55] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings Information Retrieval, 2015.

[56] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3(2):127–163,
2000.

[57] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and
Michael M. Bronstein. Geometric deep learning on graphs and manifolds using mixture
model CNNs. In CVPR, 2017.

[58] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. Query-driven active
surveying for collective classification. In Proceedings Mining and Learning with Graphs, 2012.

[59] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model
of hyperbolic geometry. In International Conference on Machine Learning, pages 3779–3788.
PMLR, 2018.

[60] Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass
filters. 2019.

[61] Lars Onsager. Reciprocal relations in irreversible processes. i. Physical Review, 37(4):405,
1931.

[62] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In ICLR, 2020.

[63] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, 1999.

[64] Giuseppe Patané. Laplacian spectral kernels and distances for geometry processing and shape
analysis. Computer Graphics Forum, 35(2):599–624, 2016.

[65] Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion.
PAMI, 12(7):629–639, 1990.

[66] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, 2014.

[67] Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and
Jinkyoo Park. Graph neural ordinary differential equations. pages 6571–6583, 2019.

[68] Alexander M Polyakov. Quantum geometry of bosonic strings. Physics Letters B,
103(3):207–210, 1981.

[69] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge, 2018.

[70] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In CVPR, 2017.

[71] Alejandro F. Queiruga, N. Benjamin Erichson, Dane Taylor, and Michael W. Mahoney.
Continuous-in-depth neural networks. CoRR, 2020.

[72] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning
(Part II): Data-driven discovery of nonlinear partial differential equations. CoRR, (Part II), 2017.

[73] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein, and
Federico Monti. SIGN: Scalable inception graph neural networks. arXiv:2004.11198, 2020.

[74] Carl Runge. Über die numerische auflösung von differentialgleichungen. Mathematische
Annalen, 46(2):167–178, 1895.

[75] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian graph
networks with ODE integrators. 2019.

[76] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Trans. Neural Networks, 27(8):61–80, 2009.

[77] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93–93, 2008.

[78] Lawrence F Shampine. Some practical Runge-Kutta formulas. Mathematics of Computation,
46(173):135–150, 1986.

[79] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv:1811.05868, 2018.

[80] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. JMLR, 12:2539–2561, 2011.

[81] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, 2020.

[82] Nir Sochen, Ron Kimmel, and Ravi Malladi. A general framework for low level vision. IEEE
Trans. Image Processing, 7(3):310–318, 1998.

[83] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably informative multi-
scale signature based on heat diffusion. Computer Graphics Forum, 28(5):1383–1392, 2009.

[84] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. Dcience, 290(5500):2319–2323, 2000.

[85] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images. In ICCV,
1998.

[86] Ashish Vaswani, Noam Shazeer, Niki Parmar, Akob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pages 5998–6008,
2017.

[87] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 2017.

[88] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[89] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph CNN for learning on point clouds. ACM Trans. Graphics, 38(5):1–12,
2019.

[90] Joachim Weickert. Anisotropic diffusion in image processing. Teubner Stuttgart, 1998.

[91] Joachim Weickert, Bart M. Ter Haar Romeny, and Max A. Viergever. Efficient and reliable
schemes for nonlinear diffusion filtering. IEEE Trans. Image Processing, 7(3):398–410, 1998.

[92] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In ICML. PMLR, 2019.

[93] Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. NeurIPS,
2020.

[94] Louis-pascal A C Xhonneux, Meng Qu, and Jian Tang. Continuous graph neural networks. In
ICML, 2020.

[95] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[96] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,
2016.

[97] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In NeurIPS, 2017.

[98] Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, and James S. Duncan. Ordinary differential
equations on graph networks. Technical Report 1, 2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In limitations (S6) and an

extensions (S3.4)
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Section 6
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? Theorem 1 is dealt
with in the supplementary material [Yes] Supplementary Material

(b) Did you include complete proofs of all theoretical results? [Yes] Supplementary
Material

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] In supplemen-
tary material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] hyperparameters are included in Supplementary Material and
splits are addressed in section 5

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Results in Section 5 include error bars

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] AWS, details at the end of 5.1 and
supplementary material

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] papers have been

cited for the most relevant OS libraries
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

	Introduction
	Background
	Discrete Beltrami flow on graphs
	Graph Beltrami flow
	Numerical solvers
	Relation to graph neural networks
	Extensions

	BLEND: Beltrami Neural Diffusion
	Experimental results
	Node Classification
	Positional encoding
	Additional ablations

	Related work
	Conclusion
	Acknowledgements

