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Abstract—The analysis of large collections of image data is
still a challenging problem due to the difficulty of capturing
the true concepts in visual data. The similarity between images
could be computed using different and possibly multimodal
features such as color or edge information or even text labels.
This motivates the design of image analysis solutions that
are able to effectively integrate the multi-view information
provided by different feature sets. We therefore propose an
algorithm that is able to sort images through a random walk on
a multi-layer graph, where each layer corresponds to a different
type of information about the image data. We propose an
effective method to select the edge weights for the multi-layer
graph, such that the image ranking scores are optimised. Our
experiments show that the proposed algorithm surpasses state-
of-the-art solutions due to a more meaningful image similarity
computation.

Keywords-Image retrieval, multi-modal data analysis, multi-
layer graphs.

I. INTRODUCTION

Image collections, stored on the Internet, are rapidly

growing every day. In the same time, retrieving relevant

information in these huge data collections is an increas-

ingly important challenge. Image retrieval systems can be

constructed in different ways, where the user can provide

the system with either a query image, text or characteristic

for the search. We are interested in the case where the

user provides a query image, and the task is to reorder the

images in a multi-view dataset according to their relevance

or similarity with the query image. We therefore develop a

new query-based image retrieval algorithm, which has access

to image labels for a part of the dataset.

The image similarity is usually estimated through the

comparison of different features that characterize the images.

However, extracting features that can effectively describe

every image in the database is a challenging problem. This is

often referred to as the semantic gap problem, as numerical

features that we can extract from images cannot really de-

scribe the semantic information of the images. To tackle this,

we propose to use multi-modal data gathered from different

sources and to combine these multi-view features to compute

the similarity between images. For example, textual and

visual features can both describe an image and characterize

diverse properties that are complementary to each other.

Figure 1. Example of a multi-layer image graph. Each image is a node,
and the edges in each layer depend on the similarity between images for a
given type of feature.

However, these features can be fundamentally different:

some features measured with real numbers (e.g., gradient

histogram of an image [1]) others are binary (e.g., indicator

that shows that an image contains a particular object [2]).

The effective combination of these different features for

image retrieval is therefore a challenging problem.

We propose in this paper a new algorithm based on multi-

layer graphs to rank images in combining heterogeneous

features. First, to work with big data collections, we store

relationship pairs between features of all images in a flexible

graph structure (see Fig.1) where each type of modality

forms a different layer. Using this structure, we preserve

important information about each type of information. Sec-

ond, we develop a random walk process on the graph to

retrieve similarity information between images. This permits

to cope with possibly incomplete data in some modalities.

Our algorithm makes transitions between layers based on the

categories’ distribution in the neighborhood of the current

node. It forms a flexible framework where labeled data can

be used to give node-specific weights to different layers.

Extensive experiments show that the proposed algorithm

outperforms baseline and state-of-the-art methods in mul-

timodal image retrieval.

In summary, our contribution is three-fold:

1) we develop a new image retrieval algorithm that works

with possibly incomplete multi-modal features;
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2) we propose a generalization of a random walk algo-

rithm to multi-layer graphs;

3) we introduce node-specific weights to effectively com-

bine features on graphs.

The paper is organized as follows. In Section II, we

describe the related work. The proposed image retrieval

algorithm and an approach to find a transition probability

matrix across layers are given in Section III. Experiments

are discussed in Section IV and we conclude in Section V.

II. RELATED WORK

An image retrieval algorithm obtains a ranking result

using features that can distinguish images from each other. In

many cases, the query image is described as a combination

of features of different nature, thus, multi-modal fusion of

the features is needed to respond to user queries [3]. The

algorithms that use multi-modal data, can be divided into

early and late fusion algorithms. In early fusion models,

multi-modal data is combined at the feature level, while in

late fusion they are rather combined at the output level.

A lot of the research work has been dedicated to early

fusion methods. In [4], the authors assume that multi-

modal data lies on manifolds that are embedded in high-

dimentional spaces. They construct multiple graphs using

different features. Afterwards, they propose to find a com-

mon Laplacian matrix for the graphs. Other researchers use

joint matrix factorization to build a unified optimization

algorithm [5]. In [6], the authors formulate a nonnegative

matrix factorization constraint for clustering tasks that penal-

izes solutions without consensus between different features.

Another method uses canonical correlation analysis [7] and

projects the multi-modal data into a low-dimensional space

to eventually work with the projected data. In late fusion

methods, such as [8] and [9], different ranking results

are obtained for different features, and effective rules are

implemented to aggregate them. It is however challenging

to fuse ranks that are obtained using different features,

because top results in different modalities can have only

a few common images or even empty intersections.

At the same time, there is nowadays a growing interest in

graph-based algorithms in supervised, semi-supervised and

unsupervised image clustering, retrieval and classification

tasks [10]. Clustering could be efficiently performed on

graphs using spectral clustering, for example [11]. Tradi-

tionally, image retrieval is based on a search of pairwise

distances of all the images, which translates into finding the

most similar neighbours on graphs. However, in this case,

some important information about the distribution of the

features of all images in the dataset can be lost. Context

properties or data models can help to preserve this global

information. The authors of [12], for example, propose to

improve the result of unsupervised image retrieval using a

manifold structure. A random walk model is used in [10],

which looks for the combination of the initialization of the

graph, the type of the transition matrix, and the definition

of the diffusion process, which gives the best retrieval

result. The method in [13] finally reorders images, using

content features the images that are initially ranked based

of textual information. The authors propose to learn a graph

for every feature individually based on query images. After

that, these graphs are combined into a single graph structure

and the images are reordered accordingly. Graphs also play

an important role in classification. The main assumption in

classification tasks is that similar objects tend to belong to

the same class. A lot of works based on regularization theory

search for the smoothest graph signals [14], [15] for proper

classification. For example, the authors in [14] interpret the

labels as a signal on graphs and classification is performed

by computing a smooth graph signal. However, all these

methods are designed for a single data modality; on the other

hand, we propose an algorithm that effectively combines

data from different sources.

In summary, there are a lot of methods that try to solve the

image retrieval problem. However, the challenging semantic

gap problem is still not fully solved [3]. To tackle the

problem, we propose to use a flexible, sparse multi-layer

graph structure (Fig. 1). The graphs capture information

about the distribution of the images in the database, and

the proper combination of multi-modal data addresses the

semantic gap problem. In particular, we develop a new

framework that permits to effectively handle data that can

be incomplete in some modalities.

III. RANDOM WALK FOR IMAGE RETRIEVAL

A. Multi-layer graphs

Images can be compared with each other using similarity

measures, which can be conveniently represented by sparse

graph structures. A graph (V,E,W ) is defined by a set

of nodes V , edges E and edge weights W . Each node is

associated with one image and each edge represents the

relationship between two images. The weight of the edge

expresses the image similarity that is measured with respect

to some particular features.

Data around us can typically be represented by multi-

modal information, where different kinds of information

complete each other. We therefore propose to use a multi-

layer graph to combine data from different sources into one

single structure. For example, we can construct a multi-

layer graph using textual and image content information.

Assume that the system contains images of a raspberry and

a berry smoothie (Fig. 1). These images are not connected on

textual and content layer because they do not have common

tags and look different. However, these images are related

to each other. A multi-layer graph structure helps to find

this relationship. Let the database contains an image with

a basket of berries connected to a raspberry image at the

content layer (they can have common local-level features)

and to the smoothie image at the textual layer (they have in
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common the tag “berry”). In this case, the multi-layer graph

is able to establish a relationship between a raspberry and a

smoothie, which is reasonable from a semantic viewpoint.

We extract features of a different nature – content features,

features based on tags, meta-data features and so on – and

use these features to construct different layers. Each layer

l of multi-layer graph (V,E1, . . . , EL,W1, . . . ,WL) is a

single graph (V,El,Wl). All layers have the same set of

nodes V but with different edges and edge weights (El,Wl)
in each layer. For example, in Fig. 1, a two-layer graph for an

image dataset is constructed. The images are the same for all

layers, but the relationships between these nodes represent

similarities in terms of different features, namely, textual and

visual content of an image.

B. Random walk on a multi-layer graph

The image retrieval problem can be solved via a random

walk process on the graph [16]. A random walk consists in a

succession of random steps driven by transition probabilities

that depend on edge weights. The most visited nodes get

high rank values in the retrieval result. If the graph is

properly constructed, similar images are connected by strong

edges. This increases the probability of the corresponding

nodes to be visited by the random walk.

We create a random walk process on a multi-layer graph

that is constructed using multimodal information as indicated

above. We suppose that similar images are connected to

each other in one or more layers. For example, sea and lake

images are connected at the texture layer, and images of food

and restaurants are connected at the text layer. Then, we start

a random walk process on the query image. On every step,

the algorithm can walk within a layer of the graph or can

make a transition to another layer of the graph based on

the relative importance of the layers (Fig. 2). This transition

between layers extends the classical random walk process to

multi-layer graphs, in order to benefit from the availability

of multi-modal information.

More formally, we start the algorithm with a vector of

ranking values for all the images nodes r(0) = π, where

π = {π1, π2, . . . , πM} is a fixed distribution with πq = 1
for the query node and 0 for other nodes and where M
is the number of images in the dataset. We then perform a

random walk on the multi-layer graph. At each time step, we

consider two sub-steps. On the first sub-step, we choose the

layer l for the node i to perform the random walk with the

probability αli. Afterwards, we choose the neighbor node j
to perform a random walk step according to the transition

probabilities in layer l. Accordingly, we iteratively update

the rank vector till convergence in the following way:

r(t) = (1−η)π+η(PT
1 Λ1+PT

2 Λ2+· · ·+PT
L ΛL)r

(t−1), (1)

where r(t) is a ranking value on iteration t, 1 − η is the

probability of jumping back to the query vertex, PT
l is a

Figure 2. Example of L-layer graph structure with labeled and unlabeled
nodes in red and blue, respectively. On node 0, we show the transition
probability αl0 to choose layer l to continue the random walk, and, on
node 1, we show the transition probability p1j(l) to make a random walk
step toward the neighbor node j on layer l (best seen in color).

transition matrix for layer l and Λl is a node-specific matrix

that represents the probability to choose the layer l in the

random walk. The transition probability between node i and

node j for layer l is defined as

pi,j(l) =
wi,j(l)∑

j∈Ni(l)
wi,j(l)

, (2)

where wi,j(l) is the weight of the edge between nodes i
and j for layer l, Ni(l) is a set of the vertices that are the

neighbors of vertex i in layer l. The weights wi,j(l) simply

represent the similarity between images i and j based on the

features considered in layer l. These transitional probabilities

pij(l) that form the matrix PT
l can be calculated in a similar

way for all the layers.

Then, the layer transition probability matrices Λl for every

layer l are diagonal matrices Λl = diag(αl1, . . . , αlM ),
where αli is a node-specific probability for jumping to layer

l at node i. Note that the sum of each row across different

layer’s matrices is equal to 1:

L∑
1

αli = 1. (3)

We propose a new method to compute these matrices in the

next section.
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C. Layer transition probabilities

Choosing a layer for the random walk in a multi-layer

graph is a process that has not been studied well. To the

best of our knowledge, a method that uses node-specific

probabilities to combine layers does not exist yet.

We thus propose a method for computing the layer

transition probability Λl. First, we observe that the layer

transition probabilities could be different for different query

images. Thus, we suggest learning node-specific transition

probabilities Λl with respect to a query image.

To calculate these probabilities, we assume that we know

part of the labels in the image dataset. This means that we

know the categories, which some of the images belong to.

Then, the idea is to favor a walk in the layer where most

of the neighbors of the current node belong to the same

category. For this purpose, we consider the labeled nodes in

the neighborhood of a particular node i within a radius dl.
The neighborhood of the node i is a set of nodes, which are

strongly connected to i. Nodes i and j are strongly connected

if the weights Dl(i, j) ≥ dl, where Dl(i, j) is defined as:

Dl(i, j)i,i1,i2...,j = wi,i1(l)wi1,i2(l) . . . wiJ ,j(l), (4)

with {i, i1, i2, . . . , iJ , j} a path in a graph’s layer. If there

are several paths k ∈ K between nodes i and j we choose

the path that gives maximum weight value:

Dl(i, j) = max
k∈K

(Dl(i, j)k). (5)

For example, consider that a graph has strong edges

e(i, i1), e(i1, i2) and a weak edge e(i2, i3). Then for the

node i the algorithm includes the nodes i1 and i2 in a

neighborhood set, and stops to look for deeper neighbors for

the node i. Thus, the neighborhood of each node contains

only relevant neighbors for this node.

To calculate the layer transition probabilities, we then

compute the number of categories in this neighborhood and

the maximum fraction of a certain category:

n(l, i) = max
c∈C

#vli(c)

#vli
, (6)

where C is a set of categories, #vli(c) is the total number of

labeled neighbors for the node i in the layer l that belongs to

the category c, and #vli is the number of labeled neighbors.

After that, since we want to find the images that are

similar to the query node we prefer walking in a layer that

is important for the query node with more probability than

for the other layers. Therefore, the label distribution around

the query image q should also affect the transition proba-

bilities. Thus, we combine probabilities n(l, i) and n(l, q)
and normalize the result so that the transition probabilities

for a given vertex sum up to one. We finally walk with the

node-specific probability α:

αli =
z(l, i)z(l, q)∑
l

(
z(l, q)z(l, i)

) , (7)

where z is a sigmoid function:

z(l, i) =
1

1 + e−a(n(l,i)−n∗) . (8)

The sigmoid function gives higher priority to the proba-

bilities that are larger than a threshold n∗, and lower priority

to others. The coefficient a permits to change the sigmoid

function’s slope. The probability in Eq. (7) is influenced by

both the neighborhood of the node i and the query q, through

z(l, i) and z(l, q) respectively.

To sum up, we propose to calculate the layer transition

probability for each node based on labeled nodes in its

neighborhood. The neighborhood contains only nodes that

have strong connections with each other and can vary from

layer to layer. The algorithm gives more priority to a layer

which contains many nodes from the same category, because

it is an indicator that the features in the layer properly

represent this category.

IV. EXPERIMENTS

We now develop extensive experiments to evaluate the

performance of the proposed algorithm. First of all, we

present the evaluation metrics, the details of the graph

construction and the datasets under consideration. Then we

provide comparative results with state-of-the-art retrieval

algorithms.

A. Experimental settings

1) Evaluation metrics: The objective of our retrieval

algorithm is to obtain a ranking of images, where all images

in the first positions should have a similar category as the

query node. Assume that we know the ground truth image

categories for all our dataset. We can thus measure the qual-

ity of our result using the mean Average Precision function

(mAP) that estimates the quality of ranking for different

queries. The function calculates the average precision (APr)

for all queries from a dataset. More formally, let M denote

the number of images that are relevant to the query image in

a database of N images. Let I(k) be an indicator function,

which is equal to 1 if the item at position k in the image

ranking is a relevant image, and zero otherwise. Let further

Pr(k) be the precision of the top k-rank values. We can

then define APr and mAP as:

APr(q) =

∑N
k=1 Pr(k)I(k)

M
,mAP =

∑
q∈N APr(q)

|N | .

(9)

However, when only a few examples are available (e.g.,

in the dataset [17]) the N-S score is used. It represents the

average number of correct images among top M retrieved

images, where M is the size of the ground truth data set.
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2) Graph construction: For all our experiments we con-

struct undirected graphs where the edge weights are com-

puted using Gaussian kernels to emphasize larger similarity

values. In each layer, we define the edge weight between the

corresponding feature vector xi of image i and the respective

feature vector xj of image j as

wi,j = exp

(−||xi − xj ||2
σ2

)
, (10)

where σ is used to adjust the degree of similarity between

nodes. In order to construct sparse layers, we connect a

node only with its k = 5 nearest neighbors (in terms of

Euclidean distance). We run a 5-Fold cross validation to

select the parameters of our method, and as a result we

set the parameters of the sigmoid function to be a = 10
and n∗ = 0.5, radius parameter β = 0.5, return probability

η = 0.9 in our further experiments.

3) Datasets: To evaluate the effectiveness of our method

we consider Holidays [18] and Ukbench [17] datasets. Each

of them has a ground-truth annotation.

The Holidays dataset contains 1491 images where 500
of them are query images. For every query image there is

a groundtruth list of corresponding relevant images. Then,

the Ukbench dataset is released with 10200 images that

are grouped into 2550 clusters. For every image, three

corresponding images are known and form the groundtruth

information.

For the Holidays and Ukbench datasets we use HSV His-

togram, Convolutional Neural Network, GIST and Random

Projection features from [19]. Each of these features is used

to construct a layer in our multi-view graph.

B. Comparison with other image retrieval methods

In this section, we compare our method and state-of-

the-art algorithms namely [19], which tackles multi-modal

image retrieval problems using a late fusion strategy, and

[20], which uses an early fusion strategy on the Holiday and

Ukbench datasets. In [20], the authors aggregate the layers

of a multi-layer graph into one layer. Notice that our results

can be slightly different from the ones actually reported in

[19], [20], since we do not use the exact same set of features

as these papers due to the high extraction complexity. In our

experiments, we however use the same set of features for all

algorithms under comparison.

We also compare our algorithm with the following base-

line algorithms:

• Baseline 1. Random walk with the equal transition

probabilities αl =
1
L for all graph’s nodes and graph

layers, where L is a number of layers.

• Baseline 2. To justify the node specific probabilities we

compare our method with a random walk with equal

transition probabilities αlq for all graph’s nodes but the

choice of this probability is individual for every query

and layer. These probabilities are calculated in the same

way according to Eq. (7) but only for the query node.

• Baseline 3. We combine all features into one single

vector and sort images according to their distances to

the query image.

We evaluate the performance in a similar way as in

[19]: for the Holiday dataset we use the mean Average

Precision (mAP) value. For the Ukbench dataset we use

the N-S score because it contains only 4 correct images for

each query. Table I shows the results of our experiments.

Our method outperforms all baseline algorithms and the

algorithm in [20]. The result of the proposed method is

further comparable with [19]. However, we use only image

features from the datasets to run our algorithm, unlike

the state-of-the-art method [19], which uses a large Flickr

dataset to train the feature distributions. Also, it is worth

noting that both datasets under consideration contain only a

few ground truth examples for every query. It gives further

advantages to the algorithm in [19], which calculates feature

weights to get a final result based on information about a

specific query image.

For the Holiday dataset, our method outperforms Baseline

1, Baseline 3 and [20]. It shows that we can achieve

improvement using labeled data. Also, our method gives

better result than Baseline 2, which has access to labeled

data. It shows that the combination of different layers using

the neighborhood of every node is more effective than using

information about the query node alone. The algorithm in

[19], which is an unsupervised method, works slightly better,

however they use information about the feature distribution

from a large Flickr collection. The algorithm in [19] com-

bines features with the same weight for all nodes in one

layer. This strategy is similar to the Baseline 2.

For the Ukbench dataset we use k = 3 to construct

our kNN graph, because we know that every image in the

dataset has only four corresponding images. Our method

outperforms the baseline and the state-of-the-art methods.

Baseline 1 and Baseline 2 have the same N-S score, which

is better than Baseline 3. It happens because the actual

distribution of the features is important for this dataset.

The graph methods give an opportunity to capture this

distribution.

In summary Table I shows that our method and [19]

achieve top results and outperform [20] on Holiday dataset.

For Ukbench dataset our method produces the best result

with respect to the state-of-the-art methods. The results

further show the influence of the neighbors nodes to the

query image in choosing the right transition probabilities or

equivalently in properly modeling the feature distribution. A

more extensive experimental evaluation along with retrieval

examples can be found in [21], where we show that our

method achieves a better ranking than competitors [22].
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Retrieval algorithm Holidays,mAP% Ukbench,N-S score
Baseline 1 0.7151 3.5835
Baseline 2 0.7214 3.5835
Baseline 3 0.7193 3.5485
[19] 0.7580 3.5864
[20] 0.6593 3.2625
Proposed method 0.7435 3.5899

Table I
COMPARISON OF OUR AND STATE-OF-THE-ART ALGORITHMS ON THE

HOLIDAY AND THE UKBENCH DATASETS.

V. CONCLUSION

This work is dedicated to the timely but challenging

problem of image retrieval. It tries to mitigate the issues

induced by the so-called semantic gap by properly com-

bining multimodal features for image ranking. Currently,

researchers use very complicated techniques to solve this

problem in image retrieval. We rather show in this paper

that combining features of different modalities in a proper

way with a multi-layer graph permits to achieve effective

retrieval with a simple random walk algorithm. In partic-

ular, the proposed solution achieves good image retrieval

performance compared to the state-of-the-art methods.

We firmly believe that flexible structures like graphs offer

promising solutions to capture the underlying geometry of

multi-view data. This is confirmed by the performance of

our algorithm.
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