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a b s t r a c t

We present a novel nonparametric methodology for modeling and forecasting multivari-
ate realized volatilities using customized graph neural networks to incorporate spillover
effects across stocks. The proposed model offers the benefits of incorporating spillover
effects from multi-hop neighbors, capturing nonlinear relationships, and flexible training
with different loss functions. The empirical findings suggest that incorporating spillover
effects from multi-hop neighbors alone does not yield a clear advantage in terms of
predictive accuracy. Furthermore, modeling nonlinear spillover effects enhances the
forecasting accuracy of realized volatilities, particularly for short-term horizons of up
to one week. More importantly, our results consistently indicate that training with the
quasi-likelihood loss leads to substantial improvements in model performance compared
to the commonly used mean squared error, primarily due to its superior handling
of heteroskedasticity. A comprehensive series of empirical evaluations in alternative
settings confirm the robustness of our results.

© 2024 International Institute of Forecasters. Published by Elsevier B.V. All rights are
reserved, including those for text and datamining, AI training, and similar technologies.
1. Introduction

Modeling and forecasting stock return volatility plays
crucial role in the theory and practice of finance. Exten-
ive attention has been devoted to this subject within the
iterature, encompassing numerous ARCH, GARCH, and
tochastic volatility models. Due to the availability of
igh-frequency data, realized volatility (RV), calculated
rom the sum of squared intraday returns, has gained
opularity in recent years. For example, Corsi (2009) put

✩ An earlier version of this article circulated under the title ‘‘Graph
Neural Networks for Forecasting Realized Volatility with (Nonlinear)
Spillover Effects’’.
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169-2070/© 2024 International Institute of Forecasters. Published by Elsevier
I training, and similar technologies.
forward the heterogeneous autoregressive (HAR) model
for predicting daily RVs using various lagged RV compo-
nents over different time horizons. While these methods
provided valuable insights into the dynamic dependence
of volatilities, they neglected the volatility spillover effect
among assets, as highlighted by Bollerslev, Hood, et al.
(2018).

The volatility spillover effect refers to the phenomenon
that certain big shocks of a specific asset (or market)
may have an influence on the volatilities of other as-
sets (or markets). Essentially, the discovery of volatility
spillover effects is expected to benefit the understanding
and forecasting of volatilities. For example, Buncic and
Gisler (2016) documented that the VIX of the U.S. market
plays an important role in forecasting the volatilities of
other global assets markets. Degiannakis and Filis (2017)
examined the cross-asset spillover effects from stocks,
currencies, and commodities to improve RV predictions
B.V. All rights are reserved, including those for text and data mining,
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Fig. 1. Illustration of multi-hop and nonlinear volatility spillover.
Note: The target node represents the volatility of IBM. The connections are only for illustration, and hence not necessarily consistent with our
experiments.
of crude oil. Bollerslev, Hood, et al. (2018), Li and Tang
(2021) utilized the commonality in risk structures to im-
prove the forecasting of future volatility. Basturk et al.
(2022), Zhang et al. (2024) applied neural networks to
predict volatility, finding that cross-sectional data pooling
enhances forecasting accuracy.

There are a number of studies dedicated to incorporat-
ng the spillover effect into volatility modeling, e.g. BEKK-
ARCH (Engle & Kroner, 1995) and VAR-GARCH (Ling &
cAleer, 2003). In terms of modeling RV, Wilms et al.

2021) employed vector autoregression (VAR) to obtain
he multivariate volatility forecasts for stock market in-
ices. However, in high-dimensional scenarios, the afore-
entioned models may deliver poor out-of-sample fore-
asts due to the curse of dimensionality, as emphasized
y Callot et al. (2017). Hecq et al. (2023) studied volatil-
ty spillovers using Granger causality analysis with VARs
ased on penalized least squares estimations. Most re-
ently, Zhang et al. (2022) introduced graph-based meth-
ds to capture volatility spillover effects, and proposed a
arsimonious model to augment HAR via neighborhood
ggregation on a graph that represents a financial net-
ork, denoted graph HAR (or GHAR). In these graphs,
ach asset is modeled as a node, and an edge connecting
wo nodes encodes the existence of the spillover effect
etween their volatilities.
One natural question following GHAR is whether there

xists any spillover effect between nodes that are beyond
ne step, also known as multi-hop neighbors (see the
etailed definitions in Section 2.1). For example, as illus-
rated in Fig. 1, for the target node (i.e. IBM), in addition to
he spillover effect of one-hop neighbors (i.e. JPM and GS),
e are also interested in whether there is any spillover
ffect from two-hop neighbors (i.e. AXP, CVX, and BA).
o the best of our knowledge, the exploration of spillover
ffects frommulti-hop neighbors has not been extensively
ddressed in the literature on volatility modeling.2
In addition to multi-hop effects, another interesting

question is whether the volatility spillover is nonlin-
ear. Choudhry et al. (2016) documented the existence of

2 Two-hop connections have been studied in the context of cascad-
ing effects of financial networks, e.g. Acemoglu et al. (2010), where the
shocks that occur to an individual firm would propagate through the
rest of the economy. Consequently, downstream firms more than one
hop away may also suffer from the impact.
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significant nonlinear spillover effects among four major
markets—the U.S., Canada, Japan, and the U.K.—via a non-
linear causality test proposed by Bai et al. (2010). Wang
et al. (2018) attempted to capture the nonlinear rela-
tionship between the volatilities of stocks and crude oil
by incorporating the asymmetric effect of oil prices and
regime shifts. While the existence of nonlinear volatil-
ity spillover effects has been documented and examined
in previous studies, in this paper, we employ a deep
learning approach (a graph neural network) to unveil non-
parametric evidence about the existence of a nonlinear
mechanism between cross-sectional volatilities, without
explicitly assuming the presence of asymmetric effects or
regime shifts in the pairwise interactions.

From a machine learning perspective, the incorpora-
tion of multi-hop neighbors expands the set of features,
and the potential presence of nonlinear spillover effects
introduces new functional forms to describe volatility dy-
namics. It is also worth emphasizing that the choice of es-
timation criterion (EC) plays a crucial role, as it represents
the objective function for estimating model parameters.
Traditional econometric models, such as GARCH, com-
monly employ conditional quasi-likelihood (QL) based
on normal distributions for parameter estimation. Con-
versely, models focused on forecasting realized volatili-
ties, such as HAR, utilize the mean squared error (MSE)
as their EC. Therefore, an important question arises as to
whether a preferred EC exists (Cipollini et al., 2020), espe-
cially when combined with the aforementioned aspects,
namely the effect of multi-hop neighbors and non-linear
relationships.

In the present work, we explore these three ques-
tions using graph neural networks (GNNs). GNNs are a
class of deep learning models designed for performing
inferences on graphs and graph-structured data. They are
capable of learning node and graph-level representations
that are useful for a wide range of tasks involving graph
analysis, such as node classification, node regression, and
graph clustering. GNNs have demonstrated successful ap-
plications in various financial domains, including stock
movement prediction (Chen et al., 2018; Sawhney et al.,
2020), credit risk prediction (Liang et al., 2021; Wang
et al., 2019), and payment fraud detection (Liu et al., 2019,
2018). A recent study by Chen and Robert (2022) uti-
lized a graph transformer network for intraday volatility
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forecasting. However, it is worth mentioning that their
approach had some limitations, particularly in terms of in-
terpretability and benchmarking. In addition, they did not
thoroughly investigate factors such as multi-hop neigh-
bors, nonlinearity, or the impact of estimation criteria,
which are the focus of our current study.

In particular, we design a GNN-based framework to
odel volatility spillover effects and enhance volatility
redictions. By replacing the linear neighborhood aggre-
ation in the GHAR of Zhang et al. (2022) with a non-
inear operation, the proposed model is able to auto-
atically learn the nonlinear spillover effects. Further-
ore, the multi-layer setting of GNNs allows us to explore

his nonlinearity in the multi-hop setting, i.e. spillover to
eighbors that are more than one hop away in the finan-
ial network. Another notable advantage of our model lies
n its flexibility to accommodate various ECs during the
raining phase.3 It should be emphasized that the goal
ere is not only to extend the original HAR model with
eighborhood information but also to provide new per-
pectives from GNNs for the nonparametric modeling of
olatility spillover effects, further improving the volatility
orecasts.

The main contributions of our work are summarized as
ollows. First, we examine the spillover effect from multi-
op neighbors in the financial graph, and observe that
he multi-hop spillover effect is not necessary, as long as
ero-hop and one-hop neighbors are included. Second, we
stablish that the proposed GNN model with nonlinear
perations significantly improves the forecasting perfor-
ance of GHAR, indicating the existence of nonlinear
pillover effects on one-hop neighbors. Third, compared
o MSE-trained models, models employing QL as the EC
enerally achieve substantial improvements in predic-
ive accuracy. With a further endeavor, we establish a
atural link between QL-trained models and the mul-
iplicative error model (Engle, 2002), highlighting their
uperior handling of error heteroskedasticity by assigning
ifferent degrees of importance to observations. Overall,
ur proposed GNN model trained with QL exhibits an
verage forecast error in MSE (resp. QL) approximately
3% (resp. 4%) lower than that of the standard HAR model.
dditionally, we examine the robustness of our proposed
odels across various market conditions, an alternative
ata-splitting scheme, and an alternative universe, con-
istently observing enhanced prediction accuracy across
ll experimental settings.
The remainder of this paper is organized as follows.

ection 2 contains preliminaries on the mathematical def-
nitions of graphs, a brief review of GNN models, and
wo baseline models (HAR and GHAR). In Section 3, we
ntroduce the proposed model (GNNHAR), evaluation cri-
erion, and forecast evaluation approaches. Section 4 out-
ines the experimental setup and provides the key out-
f-sample results across various forecast horizons and
arket regimes. Furthermore, in Section 5, we conduct
n extensive analysis concerning the impact of QL, non-
inearity, and multi-hop neighbors. In Section 6, we per-
orm several robustness tests. We conclude our work and
ighlight future research directions in Section 7.

3 Note that the adaptability in selecting ECs is not exclusive to GNN
models and can be applied to various ML models.
 a
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2. Preliminaries

In this section, we summarize the preliminary con-
cepts and models. In particular, we provide the mathe-
matical definitions of graphs and multi-hop neighbors in
Section 2.1. In Section 2.2, we briefly review two popular
graph neural networks that inspired our work. Section 2.3
revisits the baseline model HAR for forecasting realized
volatilities, while Section 2.4 reviews another baseline
model GHAR. Throughout this paper, capital bold letters
indicate matrices, lowercase bold letters indicate vectors,
and plain letters indicate scalars.

2.1. Graph definitions

Definition 2.1 (Graphs). A graph G is defined as G =

{V, E}, where V = {v1, . . . , vN} is a set of N nodes and
E is a set of edges, where eij =

(
vi, vj

)
∈ E denotes an

edge connecting node vi and node vj.

Definition 2.2 (Adjacency Matrix). An adjacency matrix A
is a square matrix whose dimension is N×N , where A[i, j]
represents the connection between vi and vj in the graph
G. If A[i, j] ∈ {0, 1}, ∀i, j, the graph is a binary graph.4
The diagonal elements of A are all zero, since edges from
a node to itself are typically not considered in graphs.
In this article, we mainly consider binary graphs without
self-connections.

Definition 2.3 (K-hop Neighbors). Following Feng et al.
(2022), we use the K -hop neighbors of node v to represent
all the neighbors that have distance from node v less
than or equal to K , based on the shortest path distance
(SPD) kernel. In contrast, k-hop neighbors represent the
neighbors with exact distance k from node v. Finally, we
denote Q K

v,G as the set of K -hop neighbors of node v in
graph G.

Example 1 (A Graph with 5 Nodes). In Fig. 2(a), we plot an
example graph with five nodes and five undirected edges,
where the node v1 is colored as a target node. Nodes
v2 and v4 are the one-hop and two-hop neighbors of v1,
respectively. Fig. 2(b) shows its adjacency matrix.

2.2. A brief review of GNNs

Graph neural networks (GNNs) are a class of deep
learning models designed for performing inferences on
graphs. The main idea is to learn a vector representation
for every node defined on a graph while preserving both
the graph topology structure and node content infor-
mation (Wu et al., 2020). The node representations, for
example, can be further applied to node classification or
regression. To this end, many GNN variants utilize the
idea of neighborhood aggregation to develop the layer-
wise forward propagation rules. In essence, neighborhood

4 An adjacency matrix can be weighted, where A[i, j] ≥ 0, ∀i, j
epresents the strength/intensity of the connection between nodes vi
nd v .
j



C. Zhang, X. Pu, M. Cucuringu et al. International Journal of Forecasting 41 (2025) 377–397

t
t
w
t
G
e
i
e
o
g
(
G
g
t
v

d
g
g

H

a
r
t
R

Fig. 2. Illustration of a graph and its corresponding adjacency matrix.
aggregation effectively generates a node v’s representa-
ion by aggregating its own feature vector hv ∈ RD and
he feature vectors of its connected nodes hu ∈ RD,
here u ∈ Q 1

v,G . Common examples of aggregation func-
ions include sum, mean, and maximum. Early attempts at
NNs—regarding which, see Dai et al. (2018) and Scarselli
t al. (2008)—update node representations by aggregat-
ng neighborhood information recursively until a stable
quilibrium is reached. More efficiently, a novel notion
f a convolution operator can be defined on irregular
raphs to process neighborhood aggregation in parallel
so-called graph convolution).5 A considerable number of
NN variants and architectures are built from different
raph convolution operators. We provide a brief introduc-
ion to a specific GNN architecture that is relevant to our
olatility forecasting models.
The graph convolutional network (GCN) was intro-

uced by Kipf and Welling (2017). It approximates the
raph convolution with the following layer-wise propa-
ation rule6:

(l+1)
= σ

(
Õ

−
1
2 ÃÕ

−
1
2 H (l)Θ (l)

)
, (1)

where Ã = A + IN is the adjacency matrix of the graph G
with added self-connections, and Õ is a diagonal matrix
with Õii =

∑
j Ãij. A is the regular adjacency matrix

of one-hop neighbors. Õ
−

1
2 ÃÕ

−
1
2 is the normalized adja-

cency matrix, introduced to stabilize the training of the
GNN models. Θ (l)

∈ RD(l)
×D(l+1)

is the layer-specific train-
ble weight matrix. H (l)

∈ RN×D(l)
is the matrix of node

epresentations at the lth layer. H (0) is the input node fea-
ures. σ (·) denotes a nonlinear activation function, such as
eLU(·) = max(0, ·).

5 Convolution operations have been widely applied to regular
grid data, e.g. image pixels. Recently, they have been extended to
graph-structured data. More details can be found in Shuman et al.
(2013).
6 The GCN propagation rule approximates the graph convolution

with the first-order Chebyshev spectral polynomials (ChebyNet). It
alleviates gradient vanishing/exploding and stabilizes the training in
ChebyNet by introducing a normalization step on A. More details about
ChebyNet can be found in Defferrard et al. (2016).
380
When addressing various research problems, the above
GNN layers can be combined with other deep learning
layers in an end-to-end learning framework. Additionally,
the exploration of multi-hop effects can be achieved by
straightforwardly stacking multiple GNN layers within a
model. A model that incorporates K -layer GNN layers is
commonly referred to as a K -layer GNN model.

Definition 2.4 (Receptive Field). In a GNN model, the re-
ceptive field of a target node is the set of nodes of the
graph that determine its representations; see Alon and
Yahav (2020) and Feng et al. (2022).

Proposition 2.1. After K layers of graph convolution in a
GNN model, every node representation is determined by the
information from the nodes within K hops; see Feng et al.
(2022).

The above proposition states that the size of the re-
ceptive field of every node is associated with the number
of layers in a GNN model. Alon and Yahav (2020) found
that when K is unnecessarily large, any two nodes could
easily have highly overlapping receptive fields, and conse-
quently attain highly similar node representations, which
leads to the problem of over-smoothing (see Chen et al.,
2020; Li et al., 2018). Therefore, a large K does not always
help, and on the contrary, it may lead to indistinguishable
node representations and thus weaken the forecasting or
classification accuracy.

2.3. Forecasting RV with HAR

Assume the price process Pi,s of a financial asset i
follows

d log Pi,s = µids + σi,sdW i
s, (2)

where µi is the drift, σi,s is the instantaneous volatility,
and W i

s is the standard Brownian motion. The integrated
variance (IV) of asset i at day t is defined as IV i,t =∫ t
t−1 σ 2

i,sds.
Andersen et al. (2001) and Barndorff-Nielsen and Shep-

hard (2002) showed that the sum of squared intraday
returns is a consistent estimator of the unobserved IVi,t .
The daily RV for a particular asset i at day t is defined
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as RV i,t =
∑M

l=1 r
2
i,t(l), where ri,t(l) is the lth ∆-min log

returns during day t , i.e. ri,t(l) = log pi,t(l∆) − log pi,t((l−1)∆),
and pi,t(l∆) is the price at time l∆ at day t . We refer to vt =

(RV 1,t , . . . , RVN,t )′ as the vector of cross-sectional realized
volatilities. Here, we consider five-minute windows in a
trading day, following Liu et al. (2015).7

Corsi (2009) proposed a heterogeneous autoregres-
sive regression (HAR) model for modeling and forecasting
RV where the lagged daily, weekly, and monthly volatil-
ity components are incorporated as features. Bollerslev,
Hood, et al. (2018) recommended using pooled panel data
instead of time-series data to improve the accuracy of
RV forecasts. We adopt this approach to make the most
of cross-sectional information. As a result, we model the
cross-sectional RV for day t as follows:

HAR : E(vt |Ft−1) = α + βdvt−1 + βwvt−5:t−2

+ βmvt−22:t−6,

= α + V :t−1β,

(3)

where Ft−1 is the information set consisting of all rele-
vant information up to and including t − 1. vt−5:t−2 =
1
4

∑5
k=2 vt−k and vt−22:t−6 =

1
17

∑22
k=6 vt−k denote the

weekly and monthly lagged RV, respectively,8 and V :t−1 =

[vt−1, vt−5:t−2, vt−22:t−6] ∈ RN×3. The choice of a daily,
weekly, and monthly lag aims to capture the long-memory
dynamic dependencies observed in most RV series.

2.4. Graph HAR (GHAR)

Zhang et al. (2022) augmented the HAR model to cap-
ture the volatility spillover effect via linear neighborhood
aggregation on graphs.9 GHAR is defined as

GHAR(A) : E(vt |Ft−1) = α + βdvt−1 + βwvt−5:t−2

+ βmvt−22:t−6

+ γdW · vt−1 + γwW
· vt−5:t−2 + γmW · vt−22:t−6,

= α + V :t−1β + WV :t−1γ,

(4)

where α ∈ RN , β, γ ∈ R3 are parameters to be estimated.
W = O−

1
2 AO−

1
2 is the normalized adjacency matrix

without self-connections, where O = diag {n1, . . . , nN}

and ni =
∑

j A[i, j], ∀i.10

7 We also adopt the subsampling averaging method (see Andersen
et al., 2011; Sheppard, 2010; Varneskov & Voev, 2013) to improve
the above RV estimation, which uses all ∆-minute returns, not just
non-overlapping ones.
8 Compared to the original definition in Corsi (2009), the current

definition, in line with Cipollini et al. (2021) and Patton and Sheppard
(2015), aims to isolate the impact of individual past components
more distinctly. In the context of linear models, both definitions yield
equivalent outcomes, except for the coefficients.
9 A related model is the spatial autoregressive/lag model, which

operates as a simultaneous spatial model but does not account for
temporal dependency (Anselin, 2022; LeSage, 1999).
10 It is worth noting that for GHAR, the normalization of W does
not impact the forecasting performance directly. However, it does assist
with evaluating the relative effect of zero-hop neighbors in comparison
to one-hop neighbors.
381
W ·vt−1 represents the neighborhood aggregation over
daily horizons, and similarly for weekly and monthly hori-
zons. γd, γw , and γm represent the effects of connected
eighbors over different horizons. If we employ an empty
raph, i.e. the elements of A are all zeros, (4) reduces to

(3). When the off-diagonal elements of A are all ones, i.e. a
complete graph, W · vt−1 represents the global volatility,
as studied by Bollerslev, Hood, et al. (2018).

3. Proposed methodology

To investigate the presence of multi-hop and nonlin-
ear effects in modeling volatility spillovers, we propose
a new class of forecasting models based on the GNNs
in Section 3.1. Furthermore, Section 3.2 highlights the
significance of using various criteria to estimate model
coefficients. In Section 3.3, we introduce the forecast eval-
uation methods and emphasize the differences between
estimation criteria and forecast evaluations.

3.1. GNN-enhanced HAR (GNNHAR)

As introduced in (4), GHAR in Zhang et al. (2022)
assumes a linear relationship between the volatilities of
two connected assets. However, if the spillover effect is
nonlinear, linear models are misspecified and are likely to
generate less accurate forecasts. Additionally, GHAR con-
siders only the zero-hop and one-hop neighbors, and this
lack of consideration for multi-hop neighbors may lead
to incomplete information and less accurate predictions.
In light of the abilities of GNNs discussed in Section 2,
we propose the following GNN architecture for modeling
the volatility spillover effect, allowing for nonlinearity and
multi-hop neighbors to improve the prediction accuracy.

GNN(H (l),A) : H (l+1)
= ReLU

(
O−

1
2 AO−

1
2 H (l)Θ (l)

)
, (5)

where W = O−
1
2 AO−

1
2 is the normalized adjacency ma-

trix, used to avoid numerical instabilities and explod-
ing/vanishing gradients during the training phrase. Note
that H (0)

= V :t−1 ∈ RN×3, which is the matrix composed
of the past daily, weekly, and monthly volatilities. H (l)

∈

RN×D(l)
is a matrix of node representations at the lth

layer of the GNN, where D(l) is the dimension of node
representations. Θ (l)

∈ RD(l)
×D(l+1)

is a matrix of trainable
parameters (see Fig. 3).

In contrast to the GCN architecture shown in (1), our
proposed GNN propagation rule does not include self-
connections; i.e. the diagonal elements in A are zeros. We
conjecture that the mechanism of an individual stock’s
past volatility on its future volatility differs from the
spillover effect. As a result, we apply the above GNN prop-
agation in (5) solely to model the spillover effect, while
the impact of a stock’s own past volatility is modeled
using the same linear model as in HAR.11 This allows for a
clear and straightforward explanation of the performance
gain of our proposed model compared to the baseline
models, HAR and GHAR.

11 In this paper, our primary focus is on investigating spillover
effects. However, for a more comprehensive understanding of the
nonlinearity between a stock’s past volatility and its future volatility,
we refer to Bucci (2020), Li and Tang (2021) and Zhang et al. (2024).
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Fig. 3. Illustration of the GNNHAR model.
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We introduce a GNN-enhanced HAR model, referred to
s GNNHAR1L in (6), by replacing the linear neighborhood
ggregation in GHAR (i.e. the term WV :t−1γ in (4)) with
he proposed GNN layer in (5). It is worth noting that
he main difference between GNNHAR1L and GHAR is
hat GNNHAR1L uses a graph convolutional layer with a
onlinear activation function, in the form of

H (1)
= GNN(V :t−1, A),

NNHAR1L(A) : E(vt |Ft−1) = α + V :t−1β + H (1)γ .
(6)

As introduced in Section 2, the nonlinear multi-hop
ffects can be explored by stacking multiple layers of the
NN. We denote the two-layer and three-layer models as
NNHAR2L and GNNHAR3L, respectively.12 Specifically,

H (2)
= GNN(H (1), A),

NNHAR2L(A) : E(vt |Ft−1) = α + V :t−1β + H (2)γ .
(7)

H (3)
= GNN(H (2), A),

NNHAR3L(A) : E(vt |Ft−1) = α + V :t−1β + H (3)γ .
(8)

Our empirical analysis (deferred to Appendix A) indi-
ates that each node in the volatility spillover graphs for
he components of the DJIA 30 index, chosen by GLASSO
see 3.1.1), is connected to other nodes within a maximum
f three steps (i.e. the graph has a diameter of length
hree, which is the size of the longest shortest pairwise
ath distance in the graph).
Consequently, by employing a three-layer GNN, we can

uarantee that the volatility representation of each asset
ncompasses information from all other assets. Hence,
here is no requirement to investigate beyond a three-
ayer GNN. Nevertheless, it is worth noting that for differ-
nt universes or graphs, the number of GNN layers may
eed to be re-evaluated according to the distribution of
PDs.

.1.1. Graph construction
Before training the GNN models or GHAR, it is essen-

ial to predefine the adjacency matrix or graph struc-

12 Furthermore, we introduce a linear model that incorporates multi-
hop neighbors for volatility forecasting. Additional results regarding
this model can be found in Appendix E.
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ture. In much of the GNN literature, the graph structure,
such as a citation network, is explicitly defined. Unlike
these applications, financial graphs require estimation,
typically from time series analyses of price-based eco-
nomic variables. For example, Diebold and Yılmaz (2014)
studied the connectedness built from variance decompo-
sitions, while Karpman et al. (2023) leveraged random
forests alongside high-frequency trading data to infer
edge relationships. Zhang et al. (2022) constructed dif-
ferent types of graphs for volatility modeling and con-
cluded that adjacency matrices obtained through graph-
ical LASSO (GLASSO) effectively capture the relationships
between individual volatilities, thereby enhancing fore-
casting accuracy.

GLASSO was proposed by Friedman et al. (2008) as
a sparsity-penalized maximum likelihood estimator for
the precision matrix Θ (i.e. the inverse of the covariance
matrix). It assumes that the input N-dim vector is drawn
from a multivariate Gaussian distribution N (0,Σ ), where
Σ = Θ−1.13 A principal advantage of GLASSO is its
capacity to reveal the conditional independence between
variables, here the assets, through the estimated precision
matrix. If the ij-th entry of the precision matrix is zero,
the ith asset and jth asset are conditionally independent.
Therefore, the adjacency matrix A obtained by applying
GLASSO to multivariate daily returns is defined as A[i, j] =

1 if Θ[i, j] ̸= 0; otherwise A[i, j] = 0. Based on these
ompelling results of GLASSO, we adopt it to construct the
djacency matrix for graph-based models throughout this
aper.14

13 The Gaussian assumption might seem overly simplistic given the
complex and often non-Gaussian nature of financial returns, which can
exhibit heavy tails and skewness. However, GLASSO serves as a starting
point for estimating the conditional dependencies of financial assets.
One interesting direction of future work would be to explore models
that can accommodate these unique characteristics of financial returns,
like Liu et al. (2009) and Voorman et al. (2014).
14 Note that the hyperparameter that determines the sparsity
of GLASSO graphs is chosen by k-fold cross-validation. This train-
ing/validation setup aligns with the GNN model training/validation
setup detailed in Section 4.1.
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3.2. Estimation criterion

The standard HAR model described in (3) is often
stimated via ordinary least squares (OLS). In other words,
he estimation criterion (EC) for its in-sample training
s the MSE. When the errors in (3) are independent,
omoscedastic, and normally (Gaussian) distributed, the
LS estimator is consistent under the asymptotic sense.
onetheless, given the stylized facts of RV (such as het-
roskedasticity and so on), the OLS estimator may not be
n ideal choice and a better estimator may be available.
or example, Hansen and Dumitrescu (2022) proved that
he likelihood-based estimator is asymptotically efficient,
lthough the likelihood-based estimator can also be vastly
nferior if the underlying statistical model is misspeci-
ied. Clements and Preve (2021) empirically compared
arious estimation criteria on HAR and found that simple
eighted least squares can yield substantial improve-
ents to the predictive ability of the standard HAR.
Meanwhile, QL has served as a commonly employed

etric for estimating traditional econometric models, in-
luding GARCH. Fan et al. (2014) and Hall and Yao (2003)
emonstrated that the conditional Gaussian QL estimator
s always consistent, even when the error term deviates
rom a normal distribution.

Utilizing the flexibility of neural networks and stochas-
ic gradient descent algorithms, we are able to investigate
hether different estimation criteria would result in dis-
arate model predictions. Specifically, our primary focus
evolves around the following estimation criteria: MSE
nd QL, defined as follows:

• MSE:

1
N

N∑
i=1

1
#Ttrain

∑
t∈Ttrain

(
RV i,t − R̂V

(F )
i,t

)2
, (9)

• QL:

1
N

N∑
i=1

1
#Ttrain

∑
t∈Ttrain

[
RV i,t

R̂V
(F )
i,t

− log

(
RV i,t

R̂V
(F )
i,t

)
− 1

]
,

(10)

where R̂V
(F )
i,t represents the predicted value of RV i,t by

a specific model F , N is the number of stocks in our
universe, Ttrain is the training period, and #Ttrain is the
length of the training period.

Lower values are preferred for both measures. For
clarity, we use FM (FQ ) to denote model F trained with
MSE (QL). To the best of our knowledge, adopting QL
as the estimation criterion to optimize volatility models,
especially those grounded on neural networks, has not yet
drawn considerable attention in the literature. An excep-
tion can be found in the work of Cipollini et al. (2020),
who conducted an empirical assessment of the impact
of various error criteria on linear HAR models. They ob-
served that using QL led to slightly improved forecasts,
though without offering further theoretical explanations.

In Appendix B, we show that the models trained with
QL are linked to the multiplicative error model (MEM)
383
by Engle (2002). Hence, the comparison between models
trained with MSE and QL essentially boils down to the
comparison between additive models and multiplicative
models (see below). According to Cipollini et al. (2021),
those additive models have issues related to the het-
eroskedasticity of errors (ut ). However, when consider-
ing multiplicative models, the errors (zt ) tend to be ho-
moskedastic.

RVt =

{
E (RVt |Ft−1) + ut , ut zero mean
E (RVt |Ft−1) × zt , zt unit mean.

From an empirical perspective, Clements and Preve
(2021), Patton and Sheppard (2015) and Reisenhofer et al.
(2022) estimated their models using different schemes
of weighted least squares (WLS) to assign less impor-
tance during estimation to periods where volatility is less
precisely estimated.

Next, we examine the weighting scheme implicitly
employed in QL-trained HAR models. Fig. 4 first displays
the aforementioned EC for different forecasts R̂V when
RV = 1. Notably, the QL function exhibits asymmetry
and imposes a higher penalty on under-predictions. This
feature becomes particularly significant during turbulent
periods, as the volatility forecasts tend to be smaller than
the actual shocks. By placing emphasis on those under-
predictions, models trained with QL have the potential to
achieve improved prediction accuracy during such turbu-
lent periods.

Proposition 3.1. The optimization of HAR models trained
with QL can be achieved through iteratively reweighted least
squares (IRLS), employing weights wk−1,t = 1/R̂V

2
k−1,t at

iteration k. Here, R̂V k−1,t represents the fitted value from
the preceding iteration (with the initial iteration performed
using OLS).

This proposition further validates the observation that
models trained with QL give greater emphasis to under-
predictions. Its proof is provided in Appendix C. In line
with Cipollini et al. (2021) and Clements and Preve (2021),
we are not asserting the optimality of the weighting
scheme in QL-trained models. Additionally, our analysis,
limited to comparing two statistical loss functions for
realized volatility, may not comprehensively justify the
superiority of QL across various applications in finance.15
Nonetheless, they could serve as valuable benchmarks,
due to their natural relations with the MEM and WLS, and
their desirable theoretical properties.16

3.3. Forecast evaluation approaches

Regarding the performance of forecasts in out-of-
sample tests, we continue to employ MSE and QL as our

15 For example, Goyenko et al. (2024) proposed an economic
loss for comparing volume forecasts within a mean-variance port-
folio framework that trades off tracking error versus net-of-cost
performance.
16 The estimator obtained through maximum likelihood exhibits
desirable properties, such as consistency and asymptotic theory
(see Bauwens et al., 2012; Caporin et al., 2017).
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Fig. 4. Comparison of the MSE and QL loss functions.
valuation methods. However, it is important to distin-
uish between the concept of forecast loss (FL) and the
stimation criterion (EC), as they serve distinct purposes.
L assesses the performance of RV forecasts during out-
f-sample testing, while the EC is utilized for model
stimation within the in-sample period (Cipollini et al.,
020).
In order to determine the significance of the perfor-

ance improvement compared to the baseline models,
e employ two commonly used statistical tests found

n the literature. As suggested by Patton and Sheppard
2009), QL demonstrates greater statistical power than
SE in the Diebold–Mariano (DM) test. Consequently,
ur focus in the analysis of the out-of-sample results is
rimarily on QL.

• The model confidence set (MCS) was proposed by
Hansen et al. (2011) to identify a subset of models
with significantly superior performance from model
candidates at a given level of confidence. The MCS
procedure renders it possible to make statements
about the statistical significance from multiple pair-
wise comparisons. For additional details, we refer to
the studies of Hansen et al. (2003, 2011).

• The Diebold–Mariano (DM) test was proposed by
Diebold and Mariano (1995) to examine whether
there are significant differences between two time-
series forecasts. The DM test was further modified
by Harvey et al. (1997) to account for serial depen-
dence in forecasts. In addition to comparing errors
for each individual stock, we also follow Gu et al.
(2020) to compare the cross-sectional average of
prediction errors from two models. Further details
on the DM test are available in Diebold and Mariano
(1995).

. Empirical analysis

In this section, we first introduce the data and provide
etails regarding the implementation. Subsequently, we
resent the main findings and conduct a stratified anal-
sis to evaluate the performance across different market
egimes.
384
4.1. Setup

The intraday data of Dow Jones Industrial Average
(DJIA) components are obtained from the LOBSTER
database.17 The time period under consideration is from
July 1, 2007 to Jun 30, 2021.18 Following Bollerslev et al.
(2016), we include only those stocks among the DJIA com-
ponents that traded continuously throughout the entire
period. As a result, 27 stocks are included in the final sam-
ple. Their ticker symbols are listed in Appendix A, where
we also present summary statistics for the volatility es-
timates. Additionally, for robustness checks, we consider
a larger universe of S&P 100 components. Further details
regarding this analysis can be found in Section 6.2.

Our out-of-sample forecast comparisons are based on
the RV forecasts for the set of models introduced in Sec-
tions 2 and 3. All models are recalibrated every month
based on a rolling sample window of the past 1000 days,
following Bollerslev et al. (2016), Bollerslev, Patton, and
Quaedvlieg (2018), Symitsi et al. (2018) and Pascalau and
Poirier (2021). Specifically, we use 36-month data for
model training, and the recent 12-month data as the
validation set to tune the hyperparameters and prevent
overfitting.19 Finally, testing data are the samples in the
following month; they are out-of-sample in order to pro-
vide objective assessments of the model performance. To
this end, in aggregate, we obtain a 10-year out-of-sample
period, that is, from July 1, 2011 to June 30, 2021.

The parameters in HARM and GHARM are estimated
by OLS using both the training and validation data, as
there is no requirement for hyperparameter tuning. To
estimate the parameters in the proposed GNNHARs, we

17 https://lobsterdata.com/
18 The LOBSTER database contains data from June 27, 2007 up to the
day before yesterday.
19 To examine the impact of the validation dataset, we perform a
robustness check for GNNHAR models in Section 6.1, and we conclude
that the other choice of validation data does not significantly alter our
findings.

https://lobsterdata.com/
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adopt the Adam optimizer (Kingma & Ba, 2014).20 When
QL is chosen as the EC, there are no available estimators in
closed form. Therefore, we also employ Adam to optimize
HARQ and GHARQ using both the training and validation
data. Given the stochastic nature of the optimizer,21 we
mploy an ensemble approach to enhance the robustness
f GNNHAR models and QL-trained linear models (see Gu
t al., 2020; Zhang et al., 2024). We train multiple models
ith random initialization and obtain final predictions
y averaging the outputs of all networks. For further
etails on the hyperparameter choices in GNNHAR, refer
o Appendix D.

One-day forecasting is not the only time horizon of
nterest to practitioners. Following the convention es-
ablished in the literature (Symitsi et al., 2018; Zhang
t al., 2022), we also examine whether the proposed
ethods can be applied to various forecasting horizons,
.g. one week or one month. The weekly and monthly
arget volatilities are defined as vt:t+h =

∑h
k=0 vt+k, where

h = 4 and h = 21, respectively.

4.2. Main results

We begin our empirical analysis by comparing the out-
of-sample performance of the competing models under
consideration. Table 1 presents the ratio of forecast losses
for each model relative to the HARM model (i.e. HAR
estimated by OLS).

Table 1 first highlights the consistent improvement of
the GHAR model over the standard HAR model in terms
of forecast loss (FL), implying the importance of graph
information. Furthermore, the first two columns of Ta-
ble 1, which represent the results for the one-day horizon,
demonstrate that our proposed GNNHAR model with a
single hidden layer (GNNHAR1LM ) further improves the
performance of the linear model GHARM . This finding
underscores the significance of incorporating nonlinearity
when modeling the spillover effect. However, it is worth
noting that the performance starts to decline when ad-
ditional GNN layers are added, particularly with three
layers.

When considering models trained with QL, the results
for the one-day horizon reveal that HARQ achieves better
forecasts than its counterpart HARM . GNNHAR1LQ fur-
ther improves the predictive accuracy of GNNHAR1LM and
yields the best (resp. second-best) out-of-sample perfor-
mance in terms of MSE (resp. QL). Specifically, at the daily
forecast horizon, GNNHAR1LQ has about 13% (resp. 4%)
lower average forecast error in MSE (resp. QL) compared
to the standard HARM model. In addition, the MCS test
indicates that both GNNHAR1LQ and GNNHAR2LQ are in-
cluded in the subset of best models, based on the QL
forecast loss. Interestingly, GNNHAR3LQ delivers worse
out-of-sample performance than GNNs with one or two
layers, yet still outperforms its counterpart trained with

20 Adam is a popular stochastic optimization algorithm for deep
learning models and is very efficient at finding the local minimum,
especially with those non-convex and less smooth loss functions.
21 The stochastic optimization algorithms might end up with
different local minima with different initial values.
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Table 1
Out-of-sample forecast losses.

One day One week One month

MSE QL MSE QL MSE QL

HARM 1.000 1.000 1.000 1.000 1.000 1.000
GHARM 0.927 0.983 0.904 0.987 0.975* 1.036
GNNHAR1LM 0.907 0.979 0.940 0.943 1.021 0.968
GNNHAR2LM 0.967 0.977 1.034 0.953 1.134 1.032
GNNHAR3LM 1.210 0.982 1.014 0.961 1.046 0.958
HARQ 0.927 0.981 0.939 0.945 1.069 0.986
GHARQ 0.886 0.983 0.842* 0.936 1.151 0.954*
GNNHAR1LQ 0.867* 0.961* 0.855 0.913* 1.179 0.965
GNNHAR2LQ 0.879 0.959* 0.873 0.920 1.736 0.947*
GNNHAR3LQ 0.894 0.963 1.185 0.942 1.502 0.971

Note: The table reports the ratios of forecast losses of various models
compared to the standard HARM model over the one-day, one-week,
and one-month horizons. For each horizon, the model with the best
out-of-sample performance in MSE (QL) is highlighted in red (blue).
* Asterisk indicates models that yield as accurate forecasts as the best
model at the 5% significance level based on the MCS test.

MSE. These findings suggest that QL might serve as a more
effective in-sample estimation criterion than MSE. In the
subsequent sections, we provide further analysis to delve
into these results.

The results for weekly and monthly horizons presented
in Table 1 demonstrate that models incorporating graph
information (including GHAR and various GNNHAR mod-
els) exhibit significantly superior forecast accuracy com-
pared to the HAR model over longer horizons, up to one
week. Specifically, when examining the QL loss for the
one-week forecast horizon, we observe that GNNHAR1LQ
achieves the best out-of-sample performance. However,
as the prediction horizon extends, the ratios approach or
even exceed one, particularly for MSE. This suggests that
longer-term forecasting becomes less sensitive to graph
information. Additionally, we notice that the discrepancy
between the ratios based on MSE and QL becomes more
pronounced over longer horizons. One possible expla-
nation is that the QL loss is generally less affected by
extreme observations in the testing samples (see Patton,
2011). This is particularly relevant considering that such
extreme observations may occur more frequently over
longer horizons.

4.3. Market regimes

To assess the stability of performance across different
market regimes, we perform a stratified out-of-sample
analysis on two sub-samples: relatively calm periods
when the RV of the S&P 500 ETF index is below the
90% quantile of its entire sample distribution, and the
turbulent periods when the RV is above its 90% quantile
(see Pascalau & Poirier, 2021; Zhang et al., 2022).

The results presented in Table 2 demonstrate that the
enhancements achieved through the introduction of non-
linearity and the selection of QL as the EC are generally
consistent across different market regimes. Specifically,
when considering calm days and the daily forecast hori-
zon, the models GNNHAR1LM and GNNHAR2LM appear
o be the most effective based on the MSE loss. On the
ther hand, when evaluating accuracy in terms of QL,
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the models GNNHAR1LQ and GNNHAR2LQ provide the
most precise forecasts. This outcome is expected since
the volatility process tends to be more stable during calm
periods. Consequently, if the forecast user has a specific
preference for a particular loss function, it would be ad-
visable to optimize the model parameters accordingly. In
other words, for stationary time series, the alignment of
the training loss (i.e. EC) and the testing loss (i.e. FL) may
produce improved forecasts.

Nevertheless, when examining turbulent days and the
daily forecast horizon, models trained with QL exhibit
greater percentage improvements compared to those
trained with MSE across both losses. For instance, the
average forecast MSE (QL) loss of GNNHAR1LQ is ap-
proximately 13% (2%) lower than GNNHAR1LM . This sug-
gests that models trained with QL may possess unique
characteristics distinct from their MSE-trained counter-
parts during turbulent periods. This intriguing discovery
is explored and analyzed in the subsequent section.

In addition, when considering longer forecast hori-
zons and periods of calmness, GNNHAR1LM produces sig-
nificantly more accurate out-of-sample forecasts relative
to other models in terms of MSE. Regarding the QL ac-
curacy, GNNHAR1LQ outperforms other models for the
weekly horizon, while GNNHAR2LM emerges as the top-
performing model for the monthly horizon. When tran-
sitioning to the volatile periods, we continue to observe
the superiority of QL-trained models (especially GHARQ )
over MSE-trained models, with the exception being the
monthly forecast horizon and considering MSE as the FL.

5. Discussion

The objective of this section is to examine the rea-
sons behind the superior performance of our proposed
GNNHAR models trained with QL. Our analysis begins
by investigating the impact of the choice of EC on the
predictive accuracy of the models. We then delve into
exploring the influence of model nonlinearity, followed
by an examination of the predictive information obtained
from multi-hop neighbors.

5.1. Impact of evaluation criterion

As mentioned above, QL deals with over- and under-
predictions differently, which may account for the overall
better performance of QL-trained models compared to
MSE-trained models. In light of this observation, we ex-
amine the forecast errors (R̂V

(F )
i,t −RV i,t ) and forecast ratios

(R̂V
(F )
i,t /RV i,t ) over the entire testing period and various

sub-periods.22
Fig. 5 presents boxplots for forecast errors and ratios

of various models. From subplots (a) and (b), we observe
that in general, all models tend to exhibit a bias towards
over-predictions (i.e. positive errors or ratios greater than
one) rather than under-predictions, aligning with the

22 It is worth noting that the MSE loss is solely dependent on the
forecast error, while QL exclusively relies on the forecast ratio, as
corroborated by Patton (2011).
386
Table 2
Stratified out-of-sample forecast losses.

One day One week One month

MSE QL MSE QL MSE QL

Panel A: Bottom 90%

HARM 1.000 1.000 1.000 1.000 1.000 1.000
GHARM 0.961 0.998 0.949 1.001 0.967 1.027
GNNHAR1LM 0.943* 0.998 0.883* 0.960* 0.923* 0.924*
GNNHAR2LM 0.944* 0.990 0.901 0.954* 0.946* 0.921*
GNNHAR3LM 0.957 0.987 0.911 0.965 0.937* 0.930*
HARQ 1.010 0.984 1.005 0.955* 1.159 0.942*
GHARQ 0.989 1.007 1.076 1.001 1.257 1.084
GNNHAR1LQ 0.967 0.978* 0.944 0.943* 1.478 0.977
GNNHAR2LQ 0.976 0.979* 0.985 0.947* 1.433 0.973
GNNHAR3LQ 0.970 0.980* 1.062 0.957 1.662 0.969

Panel B: Top 10%

HARM 1.000 1.000 1.000 1.000 1.000 1.000
GHARM 0.916 0.910 0.897 0.959 0.976* 1.043
GNNHAR1LM 0.895 0.903 0.949 0.908 1.033 1.007
GNNHAR2LM 1.102 0.915 1.056 0.951 1.157 1.131
GNNHAR3LM 1.293 0.958 1.030 0.952 1.059 0.982
HARQ 0.900 0.965 0.928 0.925 1.059 1.024
GHARQ 0.852 0.867* 0.804* 0.799* 1.149 0.841*
GNNHAR1LQ 0.834* 0.879 0.841 0.848 1.143 0.955
GNNHAR2LQ 0.848 0.862* 0.924 0.861 1.773 0.886
GNNHAR3LQ 0.868 0.882 1.205 0.909 1.483 0.973

Note: The table reports stratified losses during trading days with the
bottom 90% (Panel A) and the top 10% (Panel B) RV of the S&P 500
ETF index over the one-day, one-week, and one-month horizons. For
each horizon, the model with the best out-of-sample performance in
MSE (QL) is highlighted in red (blue).
* Asterisk indicates models that yield as accurate forecasts as the best
model at the 5% significance level based on the MCS test.

findings of Clements and Preve (2021). Subplots (c) and
(d) further unveil that this over-prediction tendency is
primarily observed during calm periods. Conversely, sub-
plots (e) and (f) indicate that these models are more
inclined to under-predict volatilities during turbulent pe-
riods. This observation is not surprising, as the models do
not explicitly incorporate any exogenous variables to aid
in detecting changes in market conditions.

Furthermore, subplots (a) and (b) demonstrate that
the bulk of the forecast errors (resp. ratios) of QL-trained
models are generally closer to zero (resp. one) com-
pared to MSE-trained models. Specifically, subplots (c)
and (d) reveal that QL-trained models exhibit a reduced
tendency to over-predict during calm periods, while sub-
plots (e) and (f) suggest that they are less prone to ex-
cessive under-prediction during turbulent periods, when
compared to the MSE-trained models.

5.2. Impact of nonlinearity

To examine the necessity of nonlinear relations, we
provide the following analysis to shed light on the com-
petitive performance of these models, particularly during
volatile periods. Inspired by Chinco et al. (2019), we in-
troduce, for each day t , the following metric to evaluate
the fraction of variance of model F which is unexplained
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Fig. 5. Grouped boxplots for models trained with MSE or QL.
Note: This figure presents boxplots illustrating three summary statistics: the median, and the Q1 and Q3 quantiles. Each group consists of two sets
of boxplots, with the top (resp. bottom) set representing models utilizing QL (resp. MSE) as EC. (a)–(b) Forecast errors or ratios over the entire
testing period. (c)–(d) Forecast errors or ratios over calm periods. (e)–(f) Forecast errors or ratios over turbulent periods.

387
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Table 3
FVUs compared to HARM .

One day One week One month

Calm Turb Calm Turb Calm Turb

HARM 0.000 0.000 0.000 0.000 0.000 0.000
GHARM 0.044 0.061 0.054 0.099 0.066 0.092
GNNHAR1LM 0.077 0.165 0.117 0.244 0.178 0.300
GNNHAR2LM 0.080 0.205 0.114 0.304 0.207 0.441
GNNHAR3LM 0.079 0.300 0.130 0.246 0.218 0.272
HARQ 0.033 0.056 0.068 0.139 0.184 0.263
GHARQ 0.077 0.128 0.108 0.216 0.228 0.779
GNNHAR1LQ 0.060 0.134 0.102 0.244 0.216 0.886
GNNHAR2LQ 0.060 0.184 0.118 0.379 0.283 1.391
GNNHAR3LQ 0.070 0.212 0.163 0.764 0.292 1.236

Note: The table reports the fractions of variance unexplained (FVUs) of
multiple models compared by the baseline HAR, across different market
regimes.

(FVU) by the standard HARM model23:

VUt =

∑N
i=1

(
R̂V

(F )
i,t − R̂V

(HARM )
i,t

)2
∑N

i=1

(
R̂V

(F )
i,t − RV

(F )
t

)2 , (11)

here RV
(F )
t is the average forecast RV of model F across

stocks on day t . At one extreme, FVUt = 0 means that
the HARM ’s RV forecasts explain all of the variation in
the predicted RVs provided by F , whereas, at the other
extreme, FVUt = 1 denotes that HARM explains none of
this variation.

Table 3 displays the FVUs of each model in comparison
to HARM . It is worth noting that nonlinear models, partic-
ularly those with multiple hidden layers, exhibit higher
FVU values, as anticipated. In addition, the results for one-
week and one-month horizons in Table 3 suggest that the
nonlinearity in volatility models seems to strengthen as
the forecasting horizons increase. It is important to men-
tion that the distinction between GHAR and GNNHAR1L
lies in the presence of an additional hidden layer with
a nonlinear activation function in GNNHAR1L. Conse-
quently, the extra FVUs observed in GNNHAR1L can be
considered as a measure of the degree of nonlinearity.

By comparing the first column and second column in
Table 3, we observe higher FVU scores during turbulent
days, regardless of the choice of EC. This suggests that
nonlinear spillover effects are most likely to exist in tur-
bulent periods, rather than in calm periods. In light of
the results in Table 2, it can be inferred that a suitable
level of model nonlinearity, such as that exhibited by
GNNHAR1L, leads to improved predictive power during
turbulent days. However, we find that overly complex
models, such as GNNHAR3L, are unable to outperform
the linear baseline. As a result, GNNHAR1L shows signifi-
cant promise as a model for capturing nonlinearity while
avoiding the overfitting problem.

23 In fact, FVUt = 1− R2(R̂V
(F )
i,t , R̂V

(HARM )
i,t ), where R2 is the coefficient

of determination between the predicted RVs from the target model and
the baseline model.
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5.3. Impact of multi-hop neighbors

We utilize the DM test to evaluate the statistical sig-
nificance of two-hop neighbors by comparing the per-
formance of GNNHAR2L and GNNHAR1L. Here, a positive
(resp. negative) DM test value indicates the superiority
of the GNNHAR1L (resp. GNNHAR2L) model. A p-value
less than a given significance level a rejects the null hy-
pothesis that GNNHAR2L and GNNHAR1L have the same
forecasting power at the 1 − a confidence level.24

Fig. 6 illustrates the main results from the above hy-
pothesis test. In terms of individual stocks, GNNHAR2LM is
only superior to GNNHAR1LM in forecasting AXP’s volatil-
ities, at the 5% confidence level. When considering the
cross-sectional performance, the p-value is around 75%,
from which we cannot reject the null hypothesis. This
suggests that once the impact from itself and its one-
hop neighbors has been taken into account, two-hop
neighbors are not deemed necessary. The comparison
between GNNHAR2LQ and GNNHAR1LQ indeed supports
these findings.

GNNs are known to suffer from the problem of over-
smoothing, which is defined as the high similarity of node
representations obtained at the output layer of GNNs;
see Li et al. (2018). Such high similarity is often observed
when stacking with multiple GNN layers that are more
than necessary. With K layers, every node receives infor-
mation from its K -hop neighbors.25 When K is large, node
representations obtained from GNN information propaga-
tion become indistinguishable and weaken the forecasting
accuracy.

Following the convention in the GNN literature (e.g.
Chen et al., 2020), we use the mean average distance
(MAD) to measure the similarity of node representations
and identify whether there is any sign of over-smoothing
in our GNNHAR models. The MAD takes as input the node
representations H ∈ RN×D obtained at the final layer of
the GNN, that is H = GNN(V :t−1,A) in (6). It is defined as
follows26:

MAD =

∑N
i=1 d̄i∑N

i=1 1d̄i>0

, where d̄i =

∑N
j=1 D̄ij∑N

j=1 1D̄ij>0

. (12)

Here, D̄ is the masked cosine distance matrix, i.e. D̄ =

D ◦ A, where ◦ denotes the Hadamard product (element-
ise multiplication), and Dij = 1 −

H[i,:]·H[j,:]
∥H[i,:]∥∥H[j,:]∥ . In the

above definition, d̄i is the average distance between the
representations of node i and its connected nodes. Overall,
MAD represents an average level of how a node represen-
tation is similar to the representations of its connected
neighbors in a graph.

In Fig. 7, three boxes represent GNNHAR models with
one, two, and three GNN layers trained with MSE.27 Each

24 We also conducted the same test to compare linear multi-hop
graph models, i.e. GHAR and GHAR2Hop (see Appendix E) and the
conclusions were similar.
25 This is also known as the receptive field of a GNN. Details are
provided in Section 2.
26 H is the (unweighted) average of the hidden representations
obtained from GNNHARs in our ensemble set.
27 Similar results (unreported) were observed for GNNHARs trained
with QL.
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Fig. 6. DM test between GNNHAR2L and GNNHAR1L.
Note: A positive (negative) number indicates superiority for the GNNHAR1L (GNNHAR2L) model. The y-axis represents the DM test values based on a
QL between GNNHAR2L and GNNHAR1L, while the x-axis lists the stock symbols. Stars indicate the p-value, with orange, green, and blue representing
significance at the 1%, 5%, and 10% levels, respectively. The horizon line represents the cross-sectional DM test value and its corresponding p-value.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Smoothness of GNNHARs.
Note: A small mean average distance (MAD) value indicates high similarity between node representations at the output layer of the GNN.
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Table 4
Out-of-sample forecast losses under a smaller validation dataset.

One day One week One month

MSE QL MSE QL MSE QL

HARM 1.000 1.000 1.000 1.000 1.000 1.000
GHARM 0.927 0.983 0.904 0.987 0.975* 1.031
GNNHAR1LM 0.942 0.978 0.931 0.945 1.008 0.975
GNNHAR2LM 0.984 0.984 1.005 0.956 1.138 1.033
GNNHAR3LM 1.078 1.002 1.035 0.954 1.068 0.958
HARQ 0.936 0.986 0.945 0.944 1.218 0.959
GHARQ 0.942 0.982 0.993 0.945 1.174 0.954
GNNHAR1LQ 0.889* 0.967* 0.875* 0.912 1.226 0.961
GNNHAR2LQ 0.896 0.968* 0.861* 0.907* 1.510 0.925*
GNNHAR3LQ 1.152 0.981 1.060 0.929 1.572 0.972

Note: The table reports the out-of-sample losses of various mod-
ls using 47 months as training data and the most recent one
onth as validation data. For each horizon, the model with the best
ut-of-sample performance in MSE (QL) is highlighted in red (blue).
Asterisk indicates models that yield as accurate forecasts as the best
odel at the 5% significance level based on the MCS test.

ox corresponds to the MAD values on a logarithmic
cale, calculated across all out-of-sample samples. As the
umber of GNN layers increases, there is a decrease in
og MAD that corresponds to an increase in smoothness.
he three-layer GNNHAR has the lowest MAD score, sug-
esting potential over-smoothing of node representations.
pecifically, the rows of GNN(V :t−1,A) from GNNHAR3L

in (6) become too similar to provide any node-specific
predictive information. This partially explains the inferior
performance of GNNHAR3L, as shown in Table 1.

6. Robustness tests

After presenting the main empirical results and an-
alyzing the model performance across different market
periods, we shift our focus to evaluating the robustness
of the proposed models by considering two aspects: (i) an
alternative validation set size, and (ii) a larger universe.

6.1. Alternative validation set size

Our main analysis is based on rolling samples of four
years, using the first approximately three years as train-
ing data, and the recent year as validation data. Using a
smaller validation dataset, such as one month, does not
significantly alter our findings, as shown in Table 4.

6.2. Larger universe

To further assess the robustness of our findings and
ascertain that they are not specific to the stocks under
current consideration, we repeat the out-of-sample anal-
ysis using a larger dataset, including the components of
the S&P 100 index.28 The experimental setups and the
hyperparameter choices in GNNHAR remain the same
as those described in Section 4.1. As illustrated in Ta-
ble A.2, in the volatility spillover graphs for the S&P 100
index components, each node is connected to other nodes

28 Details about the data are provided in Appendix A.
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Table 5
Out-of-sample forecast losses on S&P 100.

One day One week One month

MSE QL MSE QL MSE QL

HARM 1.000 1.000 1.000 1.000 1.000 1.000
GHAR1LM 0.948 0.988 0.909 0.994 0.972* 0.986
GNNHAR1LM 0.963 0.986 0.951 0.944 1.027 1.092
GNNHAR2LM 1.072 0.988 1.031 0.954 1.092 1.000
GNNHAR3LM 1.061 0.986 1.029 0.959 0.992 0.967
GNNHAR4LM 1.047 0.992 1.042 0.975 1.079 0.978
GNNHAR5LM 1.090 0.997 1.057 0.986 1.109 1.038
HARQ 0.949 0.983 0.937 0.947 1.171 0.991
GHARQ 0.919 0.984 0.850* 0.922 1.154 0.939*
GNNHAR1LQ 0.917* 0.969 0.858 0.916 1.231 1.017
GNNHAR2LQ 0.915* 0.969 0.909 0.915* 1.206 0.941*
GNNHAR3LQ 0.938 0.966* 1.178 0.968 1.523 0.946
GNNHAR4LQ 0.985 0.970 1.165 0.972 1.563 0.971
GNNHAR5LQ 0.951 0.968 1.193 0.975 1.741 0.989

Note: The table reports the ratios of forecast losses of various models
compared to the standard HARM model over one-day, one-week,
and one-month horizons. For each horizon, the model with the best
out-of-sample performance in MSE (QL) is highlighted in red (blue).
* Asterisk indicates models that yield as accurate forecasts as the best
model at the 5% significance level based on the MCS test.

within a maximum of five steps. Consequently, we extend
our analysis to include four- and five-layer versions of the
GNNHAR model.

The out-of-sample forecasting performance on the
volatilities of S&P 100 components is presented in Table 5.
Firstly, we observe that GHAR consistently enhances fore-
casting accuracy compared to the traditional HAR model.
Additionally, the nonlinear variant, GNNHAR1L, further
improves upon the performance of GHAR over the one-
day horizon. Generally, as we increase the number of
layers in the GNNHAR models, their forecasting perfor-
mance tends to decline. Nevertheless, we still observe the
benefits of training models with the QL loss function. In
summary, the findings presented in Table 5 align closely
with those observed for the DJIA 30, providing consistent
results across both datasets.

7. Conclusion

In this article, we proposed a novel methodology,
GNNHAR, for modeling and forecasting RV while taking
into account volatility spillover effects in the U.S. equity
market. Our analysis suggests that the information from
the multi-hop neighbors in the financial graph does not
offer a clear advantage in predicting the volatility of any
target stock. However, nonlinear spillover effects help
improve the forecasting accuracy of the RV. Moreover,
we found that utilizing QL as the training loss function
leads to more accurate volatility forecasts than using
the conventional MSE. Additionally, QL-trained nonlinear
models demonstrated greater resilience during turbulent
periods compared to calmer market conditions, unlike
standard linear models which struggle in such regimes.
Our comprehensive evaluation tests in alternative set-
tings confirmed the robustness and effectiveness of our

proposed methodology.
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Table A.1
Summary statistics of realized volatility.
Ticker Mean Std Min 25% 50% 75% Max DJIA S&P 100

AAPL 2.30 3.39 0.07 0.70 1.25 2.46 38.30 ✓ ✓
ABT 1.41 1.95 0.12 0.57 0.89 1.50 34.32 ✓
ACN 1.72 2.79 0.14 0.58 0.92 1.76 54.88 ✓
ADBE 2.53 3.34 0.16 0.93 1.54 2.76 45.55 ✓
ADP 1.41 2.51 0.10 0.49 0.78 1.39 44.36 ✓
AMGN 1.91 2.34 0.16 0.82 1.27 2.14 33.44 ✓ ✓
AMT 2.16 3.83 0.19 0.68 1.11 2.10 53.19 ✓
AMZN 3.22 4.48 0.11 1.02 1.84 3.59 62.14 ✓
AXP 3.19 6.32 0.12 0.64 1.15 2.67 91.45 ✓ ✓
BA 2.69 5.00 0.13 0.78 1.35 2.60 90.65 ✓ ✓
BAC 4.93 11.48 0.10 1.01 1.81 3.68 135.30 ✓
BDX 1.37 1.84 0.13 0.54 0.86 1.48 28.52 ✓
BMY 1.77 2.20 0.08 0.72 1.14 1.93 30.75 ✓
BSX 3.15 4.39 0.20 1.14 1.92 3.35 55.28 ✓
C 5.48 14.6 0.15 0.99 1.82 3.94 257.34 ✓
CAT 2.79 4.00 0.15 0.94 1.58 2.89 45.26 ✓ ✓
CB 1.82 3.66 0.07 0.44 0.75 1.62 61.54 ✓
CI 3.65 6.92 0.19 1.01 1.75 3.28 164.21 ✓
CMCSA 2.35 3.57 0.13 0.78 1.29 2.47 43.26 ✓
CME 3.07 5.49 0.18 0.84 1.38 2.72 68.79 ✓
COP 3.12 5.18 0.16 0.98 1.71 3.26 75.84 ✓
COST 1.44 2.11 0.0 0.51 0.79 1.44 26.30 ✓
CRM 4.00 4.93 0.22 1.44 2.41 4.64 61.67 ✓ ✓
CSCO 1.98 2.92 0.14 0.70 1.13 2.09 43.74 ✓ ✓
CVS 1.99 3.15 0.13 0.70 1.17 2.03 53.28 ✓
CVX 2.03 3.51 0.13 0.61 1.07 2.04 48.07 ✓ ✓
D 1.44 2.56 0.1 0.56 0.85 1.40 40.39 ✓
DHR 1.6 2.41 0.14 0.54 0.95 1.67 29.78 ✓
DIS 1.89 3.04 0.12 0.60 1.01 1.88 40.56 ✓ ✓
DUK 1.32 2.20 0.06 0.50 0.78 1.32 36.07 ✓
FIS 1.89 3.48 0.15 0.59 0.97 1.74 62.40 ✓
FISV 1.71 2.82 0.15 0.58 0.93 1.69 53.36 ✓
GE 3.08 5.54 0.09 0.68 1.43 3.05 77.33 ✓
GILD 2.36 2.67 0.23 1.03 1.55 2.64 33.62 ✓
GOOG 1.94 2.72 0.11 0.64 1.08 2.07 30.36 ✓
GS 3.24 6.27 0.19 0.92 1.49 2.81 112.41 ✓ ✓
HD 2.11 3.59 0.15 0.62 1.02 2.01 48.22 ✓ ✓
HON 1.85 3.25 0.1 0.52 0.97 1.84 49.64 ✓ ✓
IBM 1.38 2.33 0.11 0.47 0.75 1.34 30.22 ✓ ✓
INTC 2.29 3.12 0.14 0.86 1.39 2.44 42.90 ✓ ✓
INTU 2.00 2.81 0.15 0.75 1.22 2.15 38.91 ✓

Ticker Mean Std Min 25% 50% 75% Max DJIA S&P 100

ISRG 3.19 4.31 0.22 1.10 1.81 3.38 46.66 ✓
JNJ 0.92 1.56 0.06 0.35 0.54 0.90 24.74 ✓ ✓
JPM 3.46 7.04 0.15 0.74 1.36 2.82 108.17 ✓ ✓
KO 0.99 1.68 0.07 0.37 0.58 1.00 25.00 ✓ ✓
LLY 1.59 2.29 0.13 0.61 0.98 1.70 35.90 ✓
LMT 1.64 2.59 0.12 0.56 0.94 1.64 35.79 ✓
LOW 2.71 4.20 0.17 0.88 1.45 2.77 73.32 ✓
MA 2.86 4.60 0.13 0.73 1.31 2.79 52.20 ✓
MCD 1.17 2.15 0.08 0.39 0.61 1.13 37.57 ✓ ✓
MDT 1.5 2.19 0.13 0.59 0.93 1.57 36.66 ✓
MMM 1.43 2.25 0.08 0.46 0.81 1.49 31.11 ✓ ✓
MO 1.41 2.25 0.06 0.52 0.84 1.43 39.67 ✓
MRK 1.65 2.45 0.12 0.58 0.92 1.74 30.99 ✓ ✓
MS 5.74 14.30 0.20 1.25 2.18 4.33 286.91 ✓
MSFT 1.82 2.51 0.11 0.67 1.09 1.92 30.64 ✓ ✓
NFLX 5.53 5.69 0.36 2.14 3.78 6.75 72.86 ✓
NKE 2.03 3.00 0.14 0.74 1.15 2.02 47.87 ✓ ✓
NVDA 5.14 6.03 0.40 1.83 3.2 5.96 72.25 ✓
ORCL 1.90 2.84 0.08 0.66 1.14 2.05 44.23 ✓
PEP 1.02 1.78 0.06 0.37 0.58 1.01 28.18 ✓
PFE 1.55 2.07 0.14 0.59 0.95 1.67 26.54 ✓
PG 1.00 1.76 0.09 0.38 0.58 0.98 31.60 ✓ ✓
PNC 3.64 7.52 0.16 0.79 1.38 3.04 141.27 ✓
QCOM 2.46 3.39 0.10 0.81 1.49 2.77 42.15 ✓

(continued on next page)
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Table A.1 (continued).
Ticker Mean Std Min 25% 50% 75% Max DJIA S&P 100

SBUX 2.45 3.90 0.18 0.71 1.24 2.48 63.45 ✓
SO 1.19 1.98 0.12 0.47 0.72 1.22 36.40 ✓
SYK 1.67 2.61 0.08 0.62 0.98 1.76 49.51 ✓
T 1.49 2.55 0.08 0.47 0.76 1.39 32.03 ✓
TGT 2.46 4.02 0.11 0.76 1.24 2.34 53.02 ✓
TJX 2.33 3.34 0.16 0.76 1.24 2.53 55.49 ✓
TMO 1.89 2.74 0.16 0.71 1.14 1.99 40.82 ✓
TRV 2.04 4.09 0.11 0.49 0.81 1.76 57.95 ✓
TXN 2.33 3.02 0.16 0.84 1.41 2.57 48.68 ✓
UNH 2.70 4.34 0.16 0.78 1.35 2.57 52.54 ✓ ✓
UNP 2.53 3.94 0.14 0.83 1.39 2.52 45.94 ✓
UPS 1.58 2.35 0.10 0.51 0.88 1.72 31.67 ✓
USB 3.20 6.88 0.13 0.62 1.16 2.64 95.38 ✓
VZ 1.40 2.36 0.10 0.50 0.77 1.33 34.19 ✓ ✓
WFC 4.05 8.89 0.11 0.73 1.39 3.24 106.81 ✓
WMT 1.18 1.76 0.11 0.45 0.67 1.18 27.18 ✓ ✓

Note: The table reports summary statistics for the daily realized volatility of stocks in the DJIA 30 or S&P 100. The statistics are averaged across
ach trading day.
s,

y

y

H
o
a

An intriguing avenue for future exploration involves
xpanding the predictor set to incorporate additional in-
ormation sources, such as limit order books, options, and
ews (Li & Tang, 2021). Another interesting direction to
xplore is the robustness of the proposed methods when
pplied to different approaches to constructing financial
raphs, such as those based on supply chains (Herskovic
t al., 2020) and analyst co-coverage (Ali & Hirshleifer,
020). It would be valuable to investigate whether these
raphs provide unique information content and have the
otential to enhance performance.
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Table A.2
Frequency (in percentage) of the shortest path distance.
SPD 1 2 3 4 5

DJIA 57.7 41.8 0.5 0.0 0.0
S&P 100 24.3 61.2 12.0 2.2 0.3

Note: For example, in the case of the S&P 100, 12% of pairs of nodes
have their shortest path distance of size three.
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Appendix A. Data statistics

See Tables A.1 and A.2.

Appendix B. QL-trained models and MEM

Let yt be a non-negative random variable, such as RVt .
t follows an MEM model if it can be expressed as

t = νtzt , νt = g (θ;Ft−1) , zt
i.i.d.
∼ D+

(
1, σ 2) . (13)

ere, the term νt represents the non-negative expectation
f yt conditional on the information set Ft−1 available
t time t − 1, and νt is determined by a function g

with parameters θ . zt is a conditionally unpredictable ho-
moskedastic component, with non-negative support and
unit expected value. The standard MEM aligns with the
autoregressive structure of the well-known GARCH(1,1)
for νt . In this paper, we utilize GNNs as g to model νt .

Supposing zt is gamma-distributed29 with scale 1 and
shape 1, the density of yt is

fy(yt ) ∝
1
νt

e−
yt
νt .

29 In the univariate case, there are other distributions satisfying these
characteristics, such as log-normal, beta, etc.

https://lobsterdata.com/
https://github.com/chaozhang-ox/GNNHAR
https://github.com/chaozhang-ox/GNNHAR
https://github.com/chaozhang-ox/GNNHAR
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Subsequently, the negative log likelihood, after omitting
constants, can be expressed as follows30:

L(θ ) =

T∑
t=1

[
log (νt) +

yt
νt

]
. (14)

his is equivalent to (10) if we substitute νt with R̂V
(F )
t

nd yt with RV t , up to a constant factor.

ppendix C. Training HAR via QL

Denote β = (α, βd, βw, βm)′ ∈ R4, xt =

1, RV t−1, RV t−5:t−2, RV t−22:t−6)
′
∈ R4, and X = (x23, . . . ,

xT )′ ∈ R(T−22)×4. The QL loss of the HAR model for a single
time series is

LQ =

∑
t

[
RV t

β′xt
− log

RV t

β′xt
− 1

]
. (15)

Then score function is given by
∂LQ

∂β
=

∑
t

−RV t

(β′xt )2
xt +

1
β′xt

xt

=

∑
t

β′xt − RV t

(β′xt )2
xt

=

∑
t

wβ,t (β′xt − RV t )xt

= X ′W β(Xβ − Y )

(16)

here wβ,t =
1

(β′xt )2
and W β = diag

{
. . . wβ,t . . .

}
.

his leads to the first-order condition X ′W β(Xβ − Y ) =

0.31 The optimal solution β appears in the weights W β .
teratively reweighted least squares (IRLS) is therefore
ecommended:

1. Select initial estimates β0, such as the OLS.
2. At each iteration k, calculate the predictions R̂V k−1,t

= β′

k−1xt from the previous iteration, and the as-
sociated weights wk−1,t = 1/R̂V

2
k−1,t and W k−1 =

diag
{
. . . wk−1,t . . .

}
.

3. Solve for new WLS estimates

βk =
[
X ′W k−1X

]−1 X ′W k−1Y . (17)

4. Steps 2 and 3 are repeated until the estimated
coefficients converge.

To gain further insights into the impact of the EC, we
present the trajectories of βd in the HAR models estimated
using MSE or QL in Fig. C.1. As anticipated, there are
substantial temporal variations in the rolling estimates
of both models. In general, the estimates of βd in HARQ
exhibit greater variability compared to those in HARM ,
which can be attributed to the stochastic nature of the
optimization algorithm employed in HARQ . However, the

30 Bauwens et al. (2012) documented that the solution by maxi-
mum likelihood does not depend on the dispersion parameter a in
amma(a, 1/a).
31 Note that the OLS estimator (i.e. trained with MSE) satisfies
′(Xβ − Y ) = 0.
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stimates of βd in HARM reveal two prominent changes
ccurring during December 2015 to February 2016 and
arch 2020 to April 2020, albeit in different directions.32
n the other hand, the βd in HARQ exhibits an increasing
rend during turbulent periods. This suggests that QL-
rained models have the ability to swiftly adapt to market
hanges and assign greater importance to observations
ssociated with recent significant events. Future studies
xploring the relationship between different estimators of
AR are therefore recommended.

ppendix D. Hyperparameter tuning

Following the convention of stochastic optimization
Kingma & Ba, 2014), we set the batch size to 32.33 The
earning rate for Adam is set to 10−3. We stop the training
rocedure early if there is a sign of overfitting, that is,
f the training loss keeps dropping but validation loss
ncreases beyond a tolerance level.

To a large extent, the dimension of hidden represen-
ations or the number of hidden neurons in the lth layer,
.e. D(l) in (5), reflects the complexity of our models. Inad-
quate dimensions may lack the capability to effectively
apture the underlying data structure, while excessively
arge dimensions could lead to overfitting and poor gen-
ralization performance. To mitigate this issue, we use
grid search over D(l)

∈ {3, 6, 9, 16, 32} on validation
datasets. Fig. D.1 shows that a hidden dimension of nine
in a one-layer GNNHAR model leads to the smallest MSE
and QL on the validation data. The same conclusion holds
true for the QL-trained models as well. When multiple
GNN layers are utilized, we maintain the same D(l) value
as determined in the one-layer model.

Appendix E. GHAR with multi-hop (GHAR2Hop)

It is important to highlight that HAR can be interpreted
as a model that only considers the zero-hop neighbors,
i.e. the target node itself, while the GHAR takes into ac-
count both the zero-hop and one-hop neighbors. In order
to explore the potential benefits of multi-hop neighbors
for enhancing volatility forecasting, we delve into the in-
vestigation of whether they provide additional predictive
power. To address this novel question, we consider the
following model:

GHAR2Hop(A) : RV t = α + V :t−1β + WV :t−1γ

+ Hop2(A)V :t−1δ + ut , (18)

here Hop2(A) maps the raw adjacent matrix (for one-
op neighbors) to the adjacent matrix of two-hop neigh-
ors. Specifically, Hop2(A) = XOR(A2

∧ (¬A), IN ). A2
[i, j]

as a non-zero if it is possible to go from node i to
ode j in two or fewer steps, ¬A excludes the one-hop
eighbors, and XOR confirms the diagonal of the two-hop
djacent matrix to be zero. For a visual representation

32 These two periods correspond to significant market changes,
namely the Chinese stock market turbulence and the Covid-19
pandemic, respectively.
33 Mini-batch training is believed to improve generalization
performance; see Masters and Luschi (2018).
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Fig. C.1. Trajectories of βd in HAR trained with different losses.
ote: The left y-axis represents the estimated values of βd every month, while the right y-axis represents the daily RV of the S&P 500 ETF shown
n bar charts.
Fig. D.1. Validation performance under different dimensions of hidden representations in GNNHAR1LM .
Note: Each box is obtained from 10 replicated experiments with different random initial parameters.
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and further details, we refer the reader to Example 1
and Fig. 2. In our experiments, we used the normalized
adjacent matrix of two-hop neighbors and estimated (18)
through OLS.

The DM test results between GHAR2Hop and GHAR are
presented in Fig. E.1. The cross-sectional DM test value
is approximately −1, with a corresponding p-value of
approximately 35%. These results reinforce the primary
findings regarding the role of multi-hop neighbors, indi-
cating that including two-hop neighbors may not provide
substantial additional predictive power.

In Fig. E.2, we conduct a detailed examination of the
coefficients associated with K -hop neighbors across dif-
ferent forecasting horizons. Based on the given defini-
tions, the zero-hop coefficients for the daily (resp. weekly
and monthly) horizon represent βd (resp. βw and βm),
the one-hop coefficients correspond to γ (resp. γ and
d w m
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γm), and the two-hop coefficients denote δd (resp. δw and
δm). Fig. E.2 reveals that the coefficients at zero hops are
positive over three horizons (i.e. βd, βw, βm > 0), consis-
tent with previous literature (Bollerslev, Patton, & Quaed-
vlieg, 2018). We also observe that the daily coefficients
are positive on average but rapidly decay with distance
(i.e. βd > γd > δd). Specifically, the daily coefficient
ssociated with two-hop neighbors is approximately one-
ighth (one-sixteenth) relative to the coefficient of their
ne-hop (zero-hop) counterparts. Another interesting ob-
ervation is that the weekly and monthly coefficients are
egative, potentially due to high collinearity, as high-
ighted by Zhang et al. (2022). Nonetheless, the magnitude
f these coefficients diminishes as the distance increases,
uggesting that the influence of the two-hop neighbors
ay be negligible.
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Fig. E.1. DM test between GHAR2Hop and GHAR.
ote: A positive (negative) number indicates superiority for the GHAR (GHAR2Hop) model. The y-axis represents the DM test values based on QLs

between GHAR2Hop and GHAR, while the x-axis lists the stock symbols. Stars indicate the p-values, with orange, green, and blue representing
significance at the 1%, 5%, and 10% levels, respectively. The horizon line represents the cross-sectional DM test value and its corresponding p-value.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. E.2. Coefficients in GHAR2Hop. Note: This figure describes the average coefficients of different hop neighborhoods over multiple horizons.
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