
DRew: Dynamically Rewired Message Passing with Delay

Benjamin Gutteridge 1 Xiaowen Dong 1 Michael Bronstein 2 Francesco Di Giovanni 3 4

Abstract
Message passing neural networks (MPNNs) have
been shown to suffer from the phenomenon of
over-squashing that causes poor performance for
tasks relying on long-range interactions. This
can be largely attributed to message passing only
occurring locally, over a node’s immediate neigh-
bours. Rewiring approaches attempting to make
graphs ‘more connected’, and supposedly better
suited to long-range tasks, often lose the inductive
bias provided by distance on the graph since they
make distant nodes communicate instantly at ev-
ery layer. In this paper we propose a framework,
applicable to any MPNN architecture, that per-
forms a layer-dependent rewiring to ensure grad-
ual densification of the graph. We also propose
a delay mechanism that permits skip connections
between nodes depending on the layer and their
mutual distance. We validate our approach on sev-
eral long-range tasks and show that it outperforms
graph Transformers and multi-hop MPNNs.

1. Introduction
Graph Neural Networks (GNNs) (Sperduti, 1993; Gori et al.,
2005; Scarselli et al., 2008; Bruna et al., 2014), deep learn-
ing architectures that operate on graph-structured data, are
significantly represented by the message-passing paradigm
(Gilmer et al., 2017), in which layers consisting of a local
neighbourhood aggregation are stacked to form Message
Passing Neural Networks (MPNNs). The most commonly
used MPNNs (henceforth referred to as ‘classical’), perform
only local aggregation, with information being shared at
each layer only between nodes that are immediate neigh-
bours (i.e., directly connected by an edge). Accordingly,

1Department of Engineering Science, University of Ox-
ford 2Department of Computer Science, University of Oxford
3Department of Computer Science and Technology, University of
Cambridge 4Faculty of Informatics, University of Lugano. Corre-
spondence to: Benjamin Gutteridge <beng@robots.ox.ac.uk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

for nodes that are distant from one another to share infor-
mation, that information must ‘flow’ through the graph at
a rate of one edge per layer, necessitating appropriately
deep networks when such ‘long-range interactions’ are re-
quired for solving the task at hand (Barceló et al., 2019).
Unfortunately, this often leads to poor model performance,
as deep MPNNs are particularly prone to the phenomena
of over-squashing (Alon & Yahav, 2021; Topping et al.,
2022; Di Giovanni et al., 2023) and over-smoothing (Nt &
Maehara, 2019; Oono & Suzuki, 2020).

In this paper, we introduce Dynamically Rewired Message
Passing (DRew), a novel framework for layer-dependent,
multi-hop message passing that takes a principled approach
to information flow, is robust to over-squashing, and can be
applied to any MPNN for deep learning on graphs.

Contributions. First, we formalize DRew, a new frame-
work of aggregating information over distant nodes that
goes beyond the limitations of classical MPNNs, but re-
spects the inductive bias provided by the graph: nodes that
are closer should interact earlier in the architecture. Sec-
ond, we introduce the concept of delay for message passing,
controlled by a tunable parameter ν, and generalize DRew
to account for delay in order to alleviate issues such as over-
smoothing arising from deep MPNN-architectures; we call
this framework νDRew. 1 Third, we present a theoretical
analysis that proves that our proposed frameworks can miti-
gate over-squashing. Lastly, we experimentally evaluate our
framework on both synthetic and real-world datasets.2 Our
experiments demonstrate the robustness of DRew and the
effectiveness of delayed propagation when applied to deep
MPNN architectures or long-range tasks.

2. Message Passing Neural Networks
In this section we introduce the class of Message Passing
Neural Networks and discuss some of its main limitations.
We first review some important notions concerning graphs.

2.1. Preliminaries

Let G = (V,E) be a graph consisting of nodes V and edges
E. We assume that G is undirected and connected. The

1Pronounced ‘Andrew’.
2https://github.com/BenGutteridge/DRew

1

https://github.com/BenGutteridge/DRew

DRew: Dynamically Rewired Message Passing with Delay

(a) Classical MPNN (b) DRew (c) νDRew

Figure 1. Illustration of the graph across three layers ℓ ∈ {0, 1, 2} for (a) a classical MPNN, (b) DRew and (c) νDRew. We choose a
source node (coloured blue) on which to focus and demonstrate information flow from this node at each layer. We use arrows to denote
direction of information transfer and specify hop-connection distance. In the classicical MPNN setting, at every layer information only
travels from a node to its immediate neighbours. In DRew, the graph changes based on the layer, with newly added edges connecting
nodes at distance r from layer r − 1 onward. Finally, in νDRew, we also introduce a delay mechanism equivalent to skip-connections
between different nodes based on their mutual distance (see Section 3.3).

structure of the graph is encoded in the adjacency matrix
A ⊂ Rn×n, with number of nodes n = |V |. The simplest
quantity measuring the connectivity of a node is the degree,
which can be computed as di =

∑
j Aij , for i ∈ V . The

notion of ‘locality’ in G is induced by the shortest walk (or
geodesic) distance dG : V × V → R≥0, which assigns the
length of the minimal walk connecting any given pair of
nodes. If we fix a node i, the distance allows us to partition
the graph into level sets of dG(i, ·) which we refer to as
k-hop (or k-neighbourhood) and denote by

Nk(i) := {j ∈ V : dG(i, j) = k}.

N1(i) is the set of immediate (or 1-hop) neighbours of node
i. We stress that in our notations, the k-hop of a node i
represents the nodes at distance exactly k — a subset of the
nodes that can be reached by a walk of length k.

The MPNN class. Consider a graph G with node features
{hi ∈ Rd, i ∈ V } and assume we are interested in predict-
ing a quantity (or label) yGi . Typically a GNN processes
both the topological data G and the feature information
H ∈ Rn×d via a sequence of layers, before applying a read-
out map to output a final prediction hG. The most studied
GNN paradigm is MPNNs (Gilmer et al., 2017), where the
layer update is given by

a
(ℓ)
i = AGG(ℓ)

(
{h(ℓ)

j : j ∈ N1(i)}
)
,

h
(ℓ+1)
i = UP(ℓ)

(
h
(ℓ)
i , a

(ℓ)
i

)
,

(1)

for learnable update and aggregation maps UP and AGG.
While the choice of the maps UP and AGG may change

across specific architectures (Bresson & Laurent, 2017;
Hamilton et al., 2017; Kipf & Welling, 2017; Veličković
et al., 2018), in all MPNNs messages travel from one node
to its 1-hop neighbours at each layer. Accordingly, for a
node i to exchange information with node j ∈ Nk(i), we
need to stack at least k layers. In Section 3, we discuss how
the interaction between two node representations should, in
fact, change based on both their mutual distance and their
state in time (i.e. the layer of the network). We argue that it
is important not simply how two node states interact with
each other, but also when that happens.

2.2. Long-range dependencies and network depth

A task exhibits long-range interactions if, to be solved, there
exists some node i whose representation needs to account
for the information contained at a node j with dG(i, j) ≫ 1
(Dwivedi et al., 2022). MPNNs rely on 1-hop message prop-
agation, so to capture such non-local interactions, multiple
layers must be stacked; however, this leads to undesirable
phenomena with increasing network depth. We focus on
one such problem, known as over-squashing, below.

Over-squashing. In a graph, the number of nodes in the
receptive field of a node i often expands exponentially with
hop distance k. Accordingly, for i to exchange informa-
tion with its k-hop neighbours, an exponential volume of
messages must pass through fixed-size node representations,
which may ultimately lead to a loss of information (Alon
& Yahav, 2021). This problem is known as over-squashing,
and has been characterized via sensitivity analysis (Topping
et al., 2022). Methods to address the over-squashing prob-
lem typically resort to some form of graph rewiring, in the

2

DRew: Dynamically Rewired Message Passing with Delay

sense that the graph used for message passing is (partly) de-
coupled from the input one. A ‘local’ form of graph rewiring
consists in aggregating over multiple hops at each layer
layer (Abu-El-Haija et al., 2019; 2020; Zhang & Li, 2021;
Abboud et al., 2022). A ‘global’ form of graph rewiring
is taken to the extreme in graph Transformers (Dwivedi
& Bresson, 2020; Ying et al., 2021; Kreuzer et al., 2021;
Rampášek et al., 2022), which replace the input graph with
a complete graph where every pair of nodes is connected
by an attention-weighted edge. Transformers, however, are
computationally expensive and tend to throw away informa-
tion afforded by the graph topology. Since all nodes can
interact in a single layer, any notion of locality induced by
distance dG is discarded and must be rediscovered implicitly
via positional and structural encoding.

Over-smoothing and other phenomena. The use of deep
MPNNs gives rise to other issues beyond over-squashing.
A well-known problem is over-smoothing, where, in the
limit of many layers, features become indistinguishable (Nt
& Maehara, 2019; Oono & Suzuki, 2020). While over-
smoothing is now fairly understood and has been formally
characterized in recent works (Bodnar et al., 2022; Cai &
Wang, 2020; Di Giovanni et al., 2022; Rusch et al., 2022),
it is unclear whether the often observed degradation in per-
formance with increasing depth is mainly caused by over-
smoothing, over-squashing, or more classical vanishing gra-
dient problem (Di Giovanni et al., 2023). It is hence gener-
ally desirable to propose frameworks that are not just robust
to depth, but can actually adapt to the underlying task, either
by ‘fast’ exploration of the graph in fewer layers or by ‘slow’
aggregation through multiple layers. We introduce a new
framework for message-passing that can accomplish this
thanks to two principles: (i) dynamically rewired message
passing and (ii) a delay mechanism.

3. Dynamically Rewired MPNNs
In this section we introduce our framework to handle the ag-
gregation of messages in MPNNs. We discuss how MPNNs
present a ‘static’ way of collecting messages at each layer
which is ultimately responsible for over-squashing. By re-
moving such static inductive bias, we unlock a physics-
inspired way for MPNNs to exchange information that is
more suited to handle long-range interactions.

Information flow in MPNNs. Consider two nodes i, j ∈
V at distance r. In a classic MPNN, these two nodes start
interacting at layer r, meaning that

min
{
ℓ :

∂h
(ℓ)
i

∂h
(0)
j

̸= 0
}
≥ dG(i, j). (2)

In fact, since the aggregation at each layer is computed

using the same graph G, one can bound such interaction
with powers of the adjacency A as used in Topping et al.
(2022) ∣∣∣∣∣∂h(r)

i

∂h
(0)
j

∣∣∣∣∣ ≤ c (Ar)ij , (3)

with constant c depending only on the Lipschitz-regularity
of the MPNN and independent of the graph topology. We
see that communication between i and j must be filtered
by intermediate nodes that are traversed along each path
connecting i to j. This, in a nutshell, is the reason behind
over-squashing; indeed, the bound in Eq. (3) may decay
exponentially with the distance r whenever A is degree-
normalized. By the same argument, in an MPNN two nodes
at distance r always interact with a latency or delay of ex-
actly r, meaning that for any intermediate state ℓ0 we have

min
{
ℓ :

∂h
(ℓ)
i

∂h
(ℓ0)
j

̸= 0
}
≥ ℓ0 + dG(i, j), (4)

and similar Jacobian bounds apply in this case. Accordingly,
in a classic MPNN we have two problems:

(i) Distant nodes can only communicate by exchanging
information with their neighbours.

(ii) Distant nodes always interact with a fixed delay given
by their distance.

Information flow in multi-hop MPNNs. The first issue
can, in principle, be easily addressed by rewiring the graph
via a process where any pair of nodes within a certain thresh-
old are connected via an edge, and which can generally be
given its own encoding or weight (Abboud et al., 2022;
Brüel-Gabrielsson et al., 2022; Rampášek et al., 2022). In
this way, distant nodes can now exchange information di-
rectly; this avoids iterating messages through powers of the
adjacency and hence mitigates over-squashing by reducing
the exponent in Eq. (3). However, this process brings about
two phenomena which could lead to undesirable effects: (i)
the computational graph is much denser — with implica-
tions for efficiency — and (ii) most of the inductive bias
afforded by the graph distance information is thrown away,
given that nodes i, j at distance r are now able to interact at
each layer of the architecture, without any form of latency.
In particular, this static rewiring, where the computational
graph is densely ‘filled’ from the first MPNN layer, prevents
messages from being sent first among nodes that are closer
together in the input graph.

3.1. A new framework: (ν)DRew message passing

Dynamic rewiring. We start by addressing the limitation
of MPNNs that nodes can only communicate through inter-
mediate neighbours. To motivate our framework, take two

3

DRew: Dynamically Rewired Message Passing with Delay

nodes i, j ∈ V at distance r > 1. For classical MPNNs, we
must wait for r layers (i.e. time units with respect to the
architecture) before i and j can interact with each other. As
argued above, this preserves information about locality and
distance induced by the input graph, since nodes that are
closer communicate earlier; however, since the two nodes
have waited ‘long enough’, we argue that they should inter-
act directly without necessarily relaying messages to their
neighbours first. Accordingly, given update and aggregation
functions as per the MPNN paradigm in Eq. (1), we define
the update in a Dynamically Rewired (DRew-)MPNN by:

a
(ℓ)
i,k = AGG

(ℓ)
k

(
{h(ℓ)

j : j ∈ Nk(i)}
)
, 1 ≤ k ≤ ℓ+ 1

h
(ℓ+1)
i = UP

(ℓ)
k

(
h
(ℓ)
i , a

(ℓ)
i,1 , . . . , a

(ℓ)
i,ℓ+1

)
. (5)

Some important comments: first, if AGGk = I for each
k > 1, this reduces to the classical MPNN setting. Sec-
ond, unlike augmented MPNNs, the sets over which we
compute aggregation differ depending on the layer, with
the hop Nk(i) only being added from the k-th layer on. So,
while this framework shares similarities with other multi-
hop MPNN architectures like Abboud et al. (2022), it fea-
tures a novel mechanism: dynamic rewiring of the graph at
each layer ℓ to include aggregation from each k-hop within
distance ℓ + 1. For example, at the first layer, ℓ = 0, our
DRew layer is identical to the base MPNN represented by
the choice of UP and AGG, but at each subsequent layer
the receptive field of node i expands by 1 hop. This allows
distant nodes to exchange information without intermedi-
ate steps, hence solving one of the problems of the MPNN
paradigm, but also preserving the inductive bias afforded by
the topology since the graph is filled gradually according to
distance rather than treating each layer in the same way.

DRew-MPNN explores the middle ground between classical
MPNNs and methods like graph Transformers that consider
all pairwise interactions at once.

The delay mechanism. Next, we generalize DRew-
MPNN to also account for whether nodes should interact
with fixed (if any) delay. Currently, we have two opposing
scenarios: in MPNNs, nodes interact with a constant delay
given by their distance – leading to the same lag of infor-
mation – while in DRew, nodes interact only from a certain
depth of the architecture, but without any delay. For DRew,
two nodes i, j at distance r communicate directly after r
layers, since information has now been able to travel from j
to i. But what if we consider the state of j as it was when the
information ‘left’ to flow towards i? We account for an extra
degree of freedom τ representing the delay of messages ex-
changed among nodes at distance r in DRew. If τ = 0, then
nodes at distance k interact at the k-th layer without delay,
i.e instantly as per Eq. (5), otherwise node i ‘sees’ the state
of j at the k-th layer but delayed by τ := k − ν, for some

ν. We formalize this by introducing τν(k) = max(0, k− ν)
and generalize DRew as

a
(ℓ)
i,k = AGG

(ℓ)
k

(
{h(ℓ−τν(k))

j : j ∈ Nk(i)}
)
, 1 ≤ k ≤ ℓ+ 1

h
(ℓ+1)
i = UP

(ℓ)
k

(
h
(ℓ)
i , a

(ℓ)
i,1 , . . . , a

(ℓ)
i,ℓ+1

)
. (6)

If there is no delay, i.e. ν = ∞, then we recover Eq. (5).
The opposite case is given by ν = 1, so that at layer ℓ and for
any j at distance k, node i receives ‘delayed’ representation
h
(ℓ−τ1(k))
j , i.e. the state of j as it was k−1 layers ago. From

now on, we refer to Eq. (6) as νDRew. We also note that in
our experiments we treat ν as a tunable hyperparameter.

Delay allows for expressive control of information flow. No
delay means that messages travel faster, with distant nodes
interacting instantly once an edge is added; conversely, the
more delay, the slower the information flow, with distant
nodes accessing past states when an edge is added.

Our framework generalizes any MPNN since it acts on the
computational graph (which nodes exchange information
and when) and does not govern the architecture (see Sec-
tion 3.3). We describe three instances of νDRew below.

3.2. Instances of our framework

In this section we provide examples for the νDRew-MPNN
template in Eq. (6) for three classical MPNNs: GCN (Kipf
& Welling, 2017), GIN (Xu et al., 2019) and GatedGCN
(Bresson & Laurent, 2017). We will use these variants for
our experiments in Section 5. For νDRew-GCN, we write
the layer-update as

h
(ℓ+1)
i = h

(ℓ)
i + σ

ℓ+1∑
k=1

∑
j∈Nk(i)

W
(ℓ)
k γk

ijh
(ℓ−τν(k))
j

 ,

(7)
where σ is a pointwise nonlinearity, W(ℓ)

k are learnable
channel-mixing matrices for the convolution at layer ℓ on
the k-neighbourhood, and Γk ⊂ Rn×n are matrices with
elements

γk
ij =

{
1√
didj

, if dG(i, j) = k

0, otherwise.
(8)

We note again that if j ∈ Nk(i), then i, j only communicate
from layer k onward, while ν determines the communication
delay. The choice of degree normalization for Γk is to
provide a consistent normalization for all terms.

We define νDRew-GIN in a similar fashion, as per Eq. (6);
the layer update used below is inspired by Brockschmidt

4

DRew: Dynamically Rewired Message Passing with Delay

(2020) and Abboud et al. (2022):

h
(ℓ+1)
i = (1 + ϵ)MLP(ℓ)

s (h
(ℓ)
i)

+

ℓ+1∑
k=1

∑
j∈Nk(i)

MLP
(ℓ)
k (h

(ℓ−τν(k))
j),

(9)

where an MLP is one or more linear layers separated by
ReLU activation and ϵ is a weight parameter. MLP(ℓ)

s is the
self-loop (or residual) aggregation while MLP(ℓ)

k operates
on the k-neighbourhood at layer ℓ.

Lastly, we define νDRew-GatedGCN as follows:

h
(ℓ+1)
i = W

(ℓ)
1 h

(ℓ)
i +

ℓ+1∑
k=1

∑
j∈Nk(i)

ηki,j ⊙W
(ℓ)
2 h

(ℓ−τν(k))
j ,

ηki,j =
η̂ki,j∑

j∈Nk(i)
(η̂ki,j) + ϵ

,

η̂ki,j = σ
(
W

(ℓ)
3 h

(ℓ)
i +W

(ℓ)
4 h

(ℓ−τν(k))
j

)
,

(10)

where σ is the sigmoid function, ⊙ is the element-wise prod-
uct, ϵ is a small fixed constant for numerical stability and
Wℓ

1,W
ℓ
2,W

ℓ
3,W

ℓ
4 are learned channel-mixing matrices.

We note that in Eq. (10), unlike Eq. (7) and Eq. (9), weight
matrices are shared between k-hop neighbourhoods. We
do this because k-neighbourhood weight sharing achieves
comparably strong results with non-weight-shared DRew-
GatedGCN (see Section 5) while maintaining a lower param-
eter count, whereas we see performance drops when using
weight sharing for DRew-GCN and -GIN. This can be ex-
plained by the edge gates ηki,j serving as a soft-attention
mechanism (Dwivedi et al., 2020) not present in GCN and
GIN, affording shared weights more flexibility to model
relationships between nodes at varying hop distances.

3.3. The graph-rewiring perspective: νDRew as
distance-aware skip-connections

We conclude this section by providing an alternative expla-
nation of νDRew from a graph-rewiring perspective. Given
an underlying MPNN, we study how information travels in
the graph at each layer. Referring to Figure 1 to illustrate our
explanation, we say that messages travel horizontally when
they move inside a layer (slice), and that they move verti-
cally when they travel across different layers (slices). In a
classical MPNN, the graph adopted at each layer coincides
with the input graph G; information can only travel hori-
zontally from a node to its 1-hop neighbours. In the DRew
setting — which we recall to be the version of νDRew with-
out delay (i.e. ν = ∞) — the graph changes depending on
the layer: this amounts to a dynamic rewiring where G is re-
placed with a sequence {Rk(G)}, where at each layer ℓ we

add edges between any node i and Nℓ+1(i). Messages only
travel horizontally as before, but the graph is progressively
filled with each layer. Finally, in the delayed version of
Eq. (6), messages can travel both horizontally and vertically,
meaning that we are also ‘rewiring’ the graph along the time
(layer) axis. Residual connections can also be thought of as
allowing information to move ‘vertically’, though such con-
nections are only made between the same node i at different
layers; typically ℓ, ℓ+1. From this perspective, the νDRew
framework is equivalent to adding geometric skip connec-
tions among different nodes based on their distance. This
is a powerful mechanism that combines skip-connections, a
key tool in architecture design, with metric information pro-
vided by the geometry of the data; in this case the distances
between vertices in a graph G.

4. Why νDRew Improves Information
Processing

Mitigating over-squashing. In this section we discuss
why the νDRew framework mitigates over-squashing and
is hence more suited to handle long-range interactions in
a graph. We focus on the case of maximal delay ν = 1.
We also restrict our discussion to Eq. (7): νDRew-GCN,
though the conclusion extends easily to any νDRew-MPNN.
Consider nodes i, j ∈ V at distance r. For a traditional
MPNN, i, j first exchange information at layer r, meaning
that Eq. (2) is satisfied; however, a crucial difference from
the MPNN paradigm is given by the addition of distance-
aware skip connections between i, j as in Eq. (6). One can
extend the approach from Topping et al. (2022) and derive∣∣∣∣∣∂h(r)

i

∂h
(0)
j

∣∣∣∣∣ ≤ C
(∑

k1+···+kℓ=r

(∏
k1,...,kℓ

(γk)ij

))
,

recalling that matrices Γk are defined in Eq. (8). We see how,
differently from the standard MPNN formalism, nodes at
distance r can now interact via products of message-passing
matrices containing fewer than r factors. In fact, the right-
hand side also accounts for a direct interaction between
i, j via the matrix Γr. Topping et al. (2022) showed that
over-squashing arises precisely due to the entries ij of Ar

decaying to zero exponentially with the distance, r, for
(normalized) message-passing matrices A; on the other
hand, using matrices like Γr, which are not powers of the
same adjacency matrix, mitigates over-squashing.

Interpreting delay as local smoothing. We comment
here on a slightly different perspective from which to under-
stand the role of delay in νDRew. As usual, we consider
nodes i, j at distance r. In our framework, node i starts
collecting messages from j starting from the r-th layer. A
larger delay (i.e. smaller value of ν), means that i aggregates
the features from j before they are (significantly) ‘smoothed’

5

DRew: Dynamically Rewired Message Passing with Delay

Table 1. Classical MPNN benchmarks vs their DRew variants (without positional encoding) across four LRGB tasks: (from left to right)
graph classification, graph regression, link prediction and node classification. All results are for the given metric on test data.

Model Peptides-func Peptides-struct PCQM-Contact PascalVOC-SP
AP ↑ MAE ↓ MRR ↑ F1 ↑

GCN 0.5930±0.0023 0.3496±0.0013 0.3234±0.0006 0.1268±0.0060
+DRew 0.6996±0.0076 0.2781±0.0028 0.3444±0.0017 0.1848±0.0107

GINE 0.5498±0.0079 0.3547±0.0045 0.3180±0.0027 0.1265±0.0076
+DRew 0.6940±0.0074 0.2882±0.0025 0.3300±0.0007 0.2719±0.0043

GatedGCN 0.5864±0.0077 0.3420±0.0013 0.3218±0.0011 0.2873±0.0219
+DRew 0.6733±0.0094 0.2699±0.0018 0.3293±0.0005 0.3214±0.0021

by repeated message passing. Conversely, a smaller delay
(i.e. larger value of ν), implies that when i communicates
with j, it also leverages the structure around j which has
been encoded in the representation of j via the earlier layers.
Therefore, we see how beyond mitigating over-squashing,
the delay offers an extra degree of freedom to our frame-
work, which can be used to adapt to the underlying task and
how quickly the graph topological information needs to be
mixed across different regions.

Expressivity. As multi-hop aggregations used in νDRew
are based on shortest path distances, they are able to distin-
guish any pair of graphs distinguished by the shortest path
kernel (Abboud et al., 2022; Borgwardt & Kriegel, 2005).
Shortest path can distinguish disconnected graphs, a task at
which 1-WL (Weisfeiler & Leman, 1968), which bounds the
expressiveness of classical MPNNs (Xu et al., 2019), fails.
We can therefore state that, at minimum, (ν)DRew is more
expressive than 1-WL and, therefore, classical MPNNs. We
leave more detailed expressivity analysis for future work.

5. Empirical Analysis
In this section we focus on two strengths of our model. First,
we validate performance in comparison with benchmark
models, including vanilla and multi-hop MPNNs and graph
Transformers, over five real-world tasks spanning graph-,
node- and edge-level tasks. Second, we validate the ro-
bustness of νDRew for long-range-dependent tasks and
increased-depth architectures, using a synthetic task and a
real-world molecular dataset. All code to reproduce exper-
imental results is available at https://github.com/
BenGutteridge/DRew.

Parameter scaling. We note here that many of the DRew-
MPNNs used in our experiments exhibit parameter scal-
ing of approximately L2/2 for network depth L, whereas
MPNNs scale with L. For fair comparison, a fixed param-
eter budget is maintained for all performance experiments
across all network depths via suitable adjustment of hidden

dimension d, for both MPNNs and Transformers – we re-
serve the exploration of optimal sharing of weights for future
work. We discuss space-time complexity in Appendix A.

5.1. Long-range graph benchmark

The Long Range Graph Benchmark (LRGB; Dwivedi et al.
(2022)) is a set of GNN benchmarks involving long-range
interactions. We provide experiments for three datasets from
this benchmark (two molecular property prediction, one
image segmentation) spanning the full range of tasks associ-
ated with GNNs: graph regression (Peptides-func),
graph classification (Peptides-struct), link pre-
diction (PCQM-Contact) and node classification
(PascalVOC-SP). The tasks presented by LRGB are
characterised as possessing long-range dependencies
according to the criteria of (a) graph size (i.e. having
a large number of nodes), (b) requiring a long range of
interaction, and (c) output sensitivity to global graph
structure. We compare our DRew-MPNN variants from
Section 3.2 against classical MPNN benchmarks in Table 1,
and against a range of models in Table 2, including classical
and DRew MPNN variants, graph Transformers (Dwivedi
et al., 2022; Rampášek et al., 2022), a multi-hop baseline
(MixHop-GCN; Abu-El-Haija et al. (2019)) and a static
graph rewiring benchmark (DIGL; Klicpera et al. (2019)).

Experimental details. All experiments are averaged over
three runs and were allowed to train for 300 epochs or
until convergence. Classical MPNN and graph Trans-
former results are reproduced from Dwivedi et al. (2022),
except GraphGPS which is reproduced from Rampášek
et al. (2022). DRew-MPNN, DIGL and MixHopGCN mod-
els were trained using similar hyperparameterisations to
their classical MPNN counterparts (see Appendix B. Some
models include positional encoding (PE), either Laplacian
(LapPE; Dwivedi et al. (2020)) or Random Walk (RWSE;
Dwivedi et al. (2021)), as this improves performance and
is necessary to induce a notion of locality in Transformers.
We provide the performance of the best-case νDRew model

6

https://github.com/BenGutteridge/DRew
https://github.com/BenGutteridge/DRew

DRew: Dynamically Rewired Message Passing with Delay

Table 2. Performance of various classical, multi-hop and static rewiring MPNN and graph Transformer benchmarks against DRew-
MPNNs across four LRGB tasks. The first-, second- and third-best results for each task are colour-coded; models whose performance
are within a standard deviation of one another are considered equal.

Model Peptides-func Peptides-struct PCQM-Contact PascalVOC-SP
AP ↑ MAE ↓ MRR ↑ F1 ↑

GCN 0.5930±0.0023 0.3496±0.0013 0.3234±0.0006 0.1268±0.0060
GINE 0.5498±0.0079 0.3547±0.0045 0.3180±0.0027 0.1265±0.0076
GatedGCN 0.5864±0.0077 0.3420±0.0013 0.3218±0.0011 0.2873±0.0219
GatedGCN+PE 0.6069±0.0035 0.3357±0.0006 0.3242±0.0008 0.2860±0.0085

DIGL+MPNN 0.6469±0.0019 0.3173±0.0007 0.1656±0.0029 0.2824±0.0039
DIGL+MPNN+LapPE 0.6830±0.0026 0.2616±0.0018 0.1707±0.0021 0.2921±0.0038
MixHop-GCN 0.6592±0.0036 0.2921±0.0023 0.3183±0.0009 0.2506±0.0133
MixHop-GCN+LapPE 0.6843±0.0049 0.2614±0.0023 0.3250±0.0010 0.2218±0.0174

Transformer+LapPE 0.6326±0.0126 0.2529±0.0016 0.3174±0.0020 0.2694±0.0098
SAN+LapPE 0.6384±0.0121 0.2683±0.0043 0.3350±0.0003 0.3230±0.0039
GraphGPS+LapPE 0.6535±0.0041 0.2500±0.0005 0.3337±0.0006 0.3748±0.0109

DRew-GCN 0.6996±0.0076 0.2781±0.0028 0.3444±0.0017 0.1848±0.0107
DRew-GCN+LapPE 0.7150±0.0044 0.2536±0.0015 0.3442±0.0006 0.1851±0.0092
DRew-GIN 0.6940±0.0074 0.2799±0.0016 0.3300±0.0007 0.2719±0.0043
DRew-GIN+LapPE 0.7126±0.0045 0.2606±0.0014 0.3403±0.0035 0.2692±0.0059
DRew-GatedGCN 0.6733±0.0094 0.2699±0.0018 0.3293±0.0005 0.3214±0.0021
DRew-GatedGCN+LapPE 0.6977±0.0026 0.2539±0.0007 0.3324±0.0014 0.3314±0.0024

with respect to ν ∈ {1,∞} and network depth L for both
the PE and non-PE cases. Hyperparameters and other exper-
imental details are available in Appendix B. As in Dwivedi
et al. (2022), we use a fixed ∼500k parameter budget.

Discussion. As shown in Table 1, νDRew-MPNNs sub-
stantially outperform their classical counterparts across all
four tasks. We particularly emphasise this result for GINE
and GatedGCN, as both models utilise edge features, un-
like their DRew counterparts. Furthermore, DRew out-
performs the static rewiring and multi-hop benchmarks in
all tasks, and at least one DRew-MPNN model matches
or beats the best ‘classical’ graph Transformer baseline
from Dwivedi et al. (2022) in all four tasks. GraphGPS
(Rampášek et al., 2022) outperforms the best DRew model
in the PascalVOC-SP and and Peptides-struct
tasks, but we stress that GraphGPS is a much more so-
phisticated architecture that combines dense Transformers
with message passing, and therefore supports our claim
that pure global attention throws away important induc-
tive bias afforded by MPNN approaches. Even so, DRew
still surpasses GraphGPS in the Peptides-func and
PCQM-Contact tasks.

5.2. QM9

QM9 (Ramakrishnan et al., 2014) is a molecular multi-task
graph regression benchmark dataset of ∼130,000 graphs

with ∼18 nodes each and a maximum graph diameter of 10.
We compare νDRew-GIN against a number of benchmark
MPNNs and a GIN-based multi-hop MPNN: shortest path
network (SPN; Abboud et al. (2022)), which is similar to
our work in that it uses a multi-hop aggregation based on
shortest path distances, but differs crucially in the lack of
dynamic, per-layer rewiring or delay. Experimental results
for all regression targets are given in Table 3.

Experimental details. Our experimental setup is based
on Brockschmidt (2020) and uses the same fixed data splits.
We use the overall-best-performing SPN parameterisation
with a ‘max distance’ of kmax = 10, referring to the k-hop
neighbourhood aggregated over at each layer. This allows
every node to interact with every other node at each layer
when applied to a small-graph dataset like QM9, amounting
to a dense static rewiring. DRew-GIN and SPN models use
a parameter budget of ∼800,000, use 8 layers and train for
300 epochs; results are averaged over three runs. Neither
SPN or DRew-GIN use relational edge features (denoted
‘R-’; Schlichtkrull et al. (2018); Brockschmidt (2020)) as its
impact is minimal (see Appendix B). Other results are re-
produced from their respective works (Brockschmidt, 2020;
Alon & Yahav, 2021); several of these include a final fully
adjacent layer (+FA) which we include rather than the base
models as they afford improved performance overall.

Discussion. DRew demonstrates improvement over the

7

DRew: Dynamically Rewired Message Passing with Delay

Table 3. Performance of νDRew compared with MPNN benchmarks on QM9. Scores reported are test MAE, i.e. lower is better.

Property R-GIN+FA R-GAT+FA R-GatedGNN+FA GNN-FiLM SPN DRew-GIN ν1DRew-GIN

mu 2.54±0.09 2.73±0.07 3.53±0.13 2.38±0.13 2.32±0.28 1.93±0.06 2.00±0.05
alpha 2.28±0.04 2.32±0.16 2.72±0.12 3.75±0.11 1.77±0.09 1.63±0.03 1.63±0.05
HOMO 1.26±0.02 1.43±0.02 1.45±0.04 1.22±0.07 1.26±0.09 1.16±0.01 1.17±0.02
LUMO 1.34±0.04 1.41±0.03 1.63±0.06 1.30±0.05 1.19±0.05 1.13±0.02 1.15±0.02
gap 1.96±0.04 2.08±0.05 2.30±0.05 1.96±0.06 1.89±0.11 1.74±0.02 1.74±0.03
R2 12.61±0.37 15.76±1.17 14.33±0.47 15.59±1.38 10.66±0.40 9.39±0.13 9.94±0.07
ZPVE 5.03±0.36 5.98±0.43 5.24±0.30 11.00±0.74 2.77±0.17 2.73±0.19 2.90±0.30
U0 2.21±0.12 2.19±0.25 3.35±1.68 5.43±0.96 1.12±0.13 1.01±0.09 1.00±0.07
U 2.32±0.18 2.11±0.10 2.49±0.34 5.95±0.46 1.03±0.09 0.99±0.08 0.97±0.04
H 2.26±0.19 2.27±0.29 2.31±0.15 5.59±0.57 1.05±0.04 1.06±0.09 1.02±0.09
G 2.04±0.24 2.07±0.07 2.17±0.29 5.17±1.13 0.97±0.06 1.06±0.14 1.01±0.05
Cv 1.86±0.03 2.03±0.14 2.25±0.20 3.46±0.21 1.36±0.06 1.24±0.02 1.25±0.03
Omega 0.80±0.04 0.73±0.04 0.87±0.09 0.98±0.06 0.57±0.04 0.55±0.01 0.60±0.03

classical and multi-hop MPNN benchmarks, beating or
matching the next-best model, SPN, for 12 out of 13 re-
gression targets. We note that, overall, the best average
performance across targets is achieved by DRew without
delay (ν = ∞). This is as we might expect, as L-layer mod-
els with ‘slow’ information flow such as classical GCNs
and ν1DRew cannot guarantee direct interaction between
all node pairs on graphs with maximum diameter > L.

5.3. Validating robustness

In this section we demonstrate the robustness properties,
rather than raw performance, of νDRew with increasing
network depth for long-range tasks.

5.3.1. RINGTRANSFER

RingTransfer is a synthetic task for empirically vali-
dating the ability of a GNN to capture long-range node
dependencies (Bodnar et al., 2021). The dataset consists of
N ring graphs (chordless cycles) of length k. Each graph
has a single source node and a single target node that are
always ⌊k

2 ⌋ hops apart. Source node features are one-hot
class label vectors of length C; all other nodes features are
uniform. The task is for the target node to output the cor-
rect class label at the source. We compare (ν)DRew-GCN
againt a GCN and SP-GCN, an instance of the SPN frame-
work (Abboud et al., 2022). Results are given in Figure
2 where the number of layers L = ⌊k

2 ⌋ is the minimum
required depth for source-target interaction.

Discussion. RingTransfer demonstrates the power of
νDRew in mitigating MPNN performance issues brought
on by increased depth. While the classical GCN fails after
fewer than 10 layers, ν1DRew achieves strong performance
for 30 or more. These results also allow us to directly as-
sess the impact of delay. The ‘full-delay’ ν1DRew-GCN

20 40 60
0.2

0.4

0.6

0.8

1

Figure 2. Performance on RingTransfer task for models with
varying k, L. Accuracy of 0.2 corresponds to a random guess.

consistently achieves perfect accuracy for 30+ layers with
no drop in performance. We can attribute this to the di-
rect interaction between the target and delayed source node.
SP-GCN, however, with its static rewiring and dense com-
putational graph, improves on the classical GCN, likely due
to increased expressivity, but still fails at much shallower L
than νDRew, with or without delay.

5.3.2. LAYERWISE PERFORMANCE ON PEPTIDES-FUNC

In this section we strip back our experiments on
Peptides-func to demonstrate the robustness of
νDRew for increasing network depth L, as well as the
impact of ν, the parameter denoting rate of information
flow during message passing. For these experiments we
fix the hidden dimension to 64. In Figure 3 we plot model
performance against L for three different parameterisations
of νDRew-GCN: the non-delay version ν = ∞ (which
reduces to DRew), the full-delay version ν = 1, and a
midpoint, where we set ν = L/2.

Discussion. Figure 3 demonstrates a crucial contribution
of our framework: the ability to tune ν to suit the task.
It is evident that using νDRew with delay ensures more
robust training when using a deeper architecture; in fact,
the more delay used (i.e. the lower the value of ν), the

8

DRew: Dynamically Rewired Message Passing with Delay

5 10 15 20
0.5

0.55

0.6

0.65

0.7

Figure 3. Comparing three parameterizations of νDRew plus a
classical residual GCN on Peptides-func over varying L.

better the performance for large L, whereas using less
delay (high ν) ensures faster filling of the computational
graph and greater density of connections after fewer layers.
This means that, when using lower L, non-delay DRew
often performs better, especially when combined with PE.
Conversely, more delay ‘slows down’ the densification of
node connections, yielding stronger long-term performance
with L. Figure 3 demonstrates this with a long-range task:
ν1DRew consistently improves with more layers.

6. Related Work
Various methods have been developed to improve learning
on graphs and avoid issues such as over-squashing. Many
of these are broadly classified as ‘graph rewiring’ methods;
one such family involves sampling of nodes and/or edges of
the graph based on some sort of performance or topological
metric. Examples include sparsification (Hamilton et al.,
2017), node (edge) dropout (Rong et al., 2019; Papp et al.,
2021), rewiring based on graph diffusion (Klicpera et al.,
2019), Cayley graphs (Deac et al., 2022), commute times,
spectral gap or Ricci curvature to combat over-squashing
(Arnaiz-Rodrı́guez et al., 2022; Topping et al., 2022; Black
et al., 2023). Most of these methods remove supposedly
irrelevant elements from the graph to make it more amenable
to analysis, though many methods also add elements to
increase connectivity. This might be a global node (Battaglia
et al., 2016; Gilmer et al., 2017), or global layer, such as
positional/structural encoding (Dwivedi et al., 2020; 2021;
Rampášek et al., 2022; Wang et al., 2022), or adding a
fully adjacent layer after message passing (Alon & Yahav,
2021). It may also take the form of multiple-hop rewiring, in
which aggregations occur over nodes at >1-hop distance at
each layer; we distinguish these into ‘local’ graph rewiring,
also known as multi-hop MPNNs (Abboud et al., 2022;
Abu-El-Haija et al., 2019; 2020; Nikolentzos et al., 2020;
Zhang & Li, 2021), and ‘global’ methods such as graph
Transformers (Dwivedi et al., 2022; Kreuzer et al., 2021;
Rampášek et al., 2022; Ying et al., 2021; Yun et al., 2019),
which fully connect the input graph.

Unlike all of these methods, the rewiring used in DRew is
layer-dependent, i.e. it is adaptive rather than static. Our
method is also unique in its ability to control the rate of
information flow by tuning the delay parameter ν. Our use
of delay is loosely inspired by delay differential equations
(DDEs), which have also inspired architectures which lever-
age delay in the wider deep learning space (Anumasa &
PK, 2021; Zhu et al., 2021; 2022) based on neural ordi-
nary differential equations (Chen et al., 2018), but we know
of no DDE-inspired works in the graph machine learning
space. The idea of accessing previous node states resonates
with Xu et al. (2018) and Strathmann et al. (2021). Faber
& Wattenhofer (2022) use a form of delay to create node
identifiers as a means to allow nodes to ignore irrelevant
messages from their neighbours, but all of these works bear
little relation to DRew, which treats dynamic rewiring and
delay from the perspective of distance on graphs.

7. Conclusion and Future Work
We have introduced an adaptive MPNN framework based on
a layer-dependent dynamic rewiring that can be adapted to
any MPNN. We have also proposed a delay mechanism per-
mitting local skip-connections among different nodes based
on their mutual distance. Investigating the expressive power
of this framework represents a promising future avenue to
compare static and dynamic rewiring approaches, as well as
the impact of distance-aware skip-connections.

Limitations. Our framework is expected to be useful for
tasks with long-range interactions or, more generally, when
one requires very deep GNN models, as confirmed by our ex-
periments. Accordingly, we do not expect our framework to
be advantageous when applied to (for example) homophilic
node classification tasks where shallow GNNs acting as
low-pass filters are sufficient to perform strongly. This may
partly explain why DRew is outperformed by GraphGPS
for PascalVOC-SP (see Table 2), as this dataset presents
an image segmentation task which likely displays a reason-
able degree of homophily. As a result, the extent to which
long-range interactions are truly present is uncertain.

Acknowledgements. We are grateful for anonymous re-
viewer feedback. We acknowledge the use of the University
of Oxford Advanced Research Computing (ARC) facility in
carrying out this work (Richards, 2015) , as well as the JADE
HPC facility. B.G. acknowledges support from the EPSRC
Centre for Doctoral Training in AIMS (EP/S024050/1). X.D.
acknowledges support from the Oxford-Man Institute of
Quantitative Finance and the EPSRC (EP/T023333/1). M.B.
is supported in-part by ERC Consolidator Grant No. 274228
(LEMAN) and Intel AI Grant.

9

DRew: Dynamically Rewired Message Passing with Delay

References
Abboud, R., Dimitrov, R., and Ceylan, İ. İ. Shortest path

networks for graph property prediction. arXiv preprint
arXiv:2206.01003, 2022.

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,
Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In in-
ternational conference on machine learning, pp. 21–29.
PMLR, 2019.

Abu-El-Haija, S., Kapoor, A., Perozzi, B., and Lee, J. N-
GCN: Multi-scale graph convolution for semi-supervised
node classification. In uncertainty in artificial intelli-
gence, pp. 841–851. PMLR, 2020.

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
Süsstrunk, S. SLIC superpixels compared to state-of-the-
art superpixel methods. IEEE transactions on pattern
analysis and machine intelligence, 34(11):2274–2282,
2012.

Alon, U. and Yahav, E. On the bottleneck of graph
neural networks and its practical implications. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=i80OPhOCVH2.

Anumasa, S. and PK, S. Delay differential neural networks.
In 2021 6th International Conference on Machine Learn-
ing Technologies, pp. 117–121, 2021.

Arnaiz-Rodrı́guez, A., Begga, A., Escolano, F., and Oliver,
N. Diffwire: Inductive graph rewiring via the Lovász
bound. arXiv preprint arXiv:2206.07369, 2022.

Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter,
J., and Silva, J. P. The logical expressiveness of graph
neural networks. In ICLR, 2019.

Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D.,
et al. Interaction networks for learning about objects,
relations and physics. Advances in neural information
processing systems, 29, 2016.

Black, M., Nayyeri, A., Wan, Z., and Wang, Y. Understand-
ing oversquashing in gnns through the lens of effective
resistance. arXiv preprint arXiv:2302.06835, 2023.

Bodnar, C., Frasca, F., Otter, N., Wang, Y., Lio, P., Montufar,
G. F., and Bronstein, M. Weisfeiler and Lehman go
cellular: CW networks. Advances in Neural Information
Processing Systems, 34:2625–2640, 2021.

Bodnar, C., Di Giovanni, F., Chamberlain, B. P., Liò, P., and
Bronstein, M. M. Neural sheaf diffusion: A topological
perspective on heterophily and oversmoothing in GNNs.
arXiv preprint arXiv:2202.04579, 2022.

Borgwardt, K. M. and Kriegel, H.-P. Shortest-path kernels
on graphs. In Fifth IEEE international conference on
data mining (ICDM’05), pp. 8–pp. IEEE, 2005.

Bresson, X. and Laurent, T. Residual gated graph ConvNets.
arXiv preprint arXiv:1711.07553, 2017.

Brockschmidt, M. GNN-FiLM: Graph neural networks with
feature-wise linear modulation. In International Confer-
ence on Machine Learning, pp. 1144–1152. PMLR, 2020.

Brüel-Gabrielsson, R., Yurochkin, M., and Solomon, J.
Rewiring with positional encodings for graph neural net-
works. arXiv preprint arXiv:2201.12674, 2022.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and locally connected networks on graphs. In
2nd International Conference on Learning Representa-
tions, ICLR 2014, 2014.

Cai, C. and Wang, Y. A note on over-smoothing for graph
neural networks. arXiv preprint arXiv:2006.13318, 2020.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Deac, A., Lackenby, M., and Veličković, P. Expander graph
propagation. arXiv preprint arXiv:2210.02997, 2022.

Di Giovanni, F., Rowbottom, J., Chamberlain, B. P.,
Markovich, T., and Bronstein, M. M. Graph neu-
ral networks as gradient flows. arXiv preprint
arXiv:2206.10991, 2022.

Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Lio,
P., and Bronstein, M. On over-squashing in message
passing neural networks: The impact of width, depth, and
topology. arXiv preprint arXiv:2302.02941, 2023.

Dwivedi, V. P. and Bresson, X. A generalization
of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. arXiv
preprint arXiv:2003.00982, 2020.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and
Bresson, X. Graph neural networks with learnable
structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Long range graph bench-
mark. arXiv preprint arXiv:2206.08164, 2022.

Faber, L. and Wattenhofer, R. Asynchronous neu-
ral networks for learning in graphs. arXiv preprint
arXiv:2205.12245, 2022.

10

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2

DRew: Dynamically Rewired Message Passing with Delay

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
pp. 1263–1272. PMLR, 2017.

Gori, M., Monfardini, G., and Scarselli, F. A new model
for learning in graph domains. In Proc. 2005 IEEE In-
ternational Joint Conference on Neural Networks, 2005.,
volume 2, pp. 729–734. IEEE, 2005.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In Conference
on Neural Information Processing Systems (NeurIPS), pp.
1025–1035, 2017.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133,
2020.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y.,
and Leskovec, J. OGB-LSC: A large-scale chal-
lenge for machine learning on graphs. arXiv preprint
arXiv:2103.09430, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. Proc. of Int. Conference on Learning
Representations (ICLR), San Diego, CA, USA, May 2015.

Kipf, T. N. and Welling, M. Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In Pro-
ceedings of the 5th International Conference on Learn-
ing Representations, ICLR ’17, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Klicpera, J., Weissenberger, S., and Günnemann, S. Dif-
fusion improves graph learning. In Proceedings of the
33rd International Conference on Neural Information
Processing Systems, 2019.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph Transformers with spectral
attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Nikolentzos, G., Dasoulas, G., and Vazirgiannis, M. k-hop
graph neural networks. Neural Networks, 130:195–205,
2020.

Nt, H. and Maehara, T. Revisiting graph neural net-
works: All we have is low-pass filters. arXiv preprint
arXiv:1905.09550, 2019.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. In
International Conference on Learning Representations,
2020.

Papp, P. A., Martinkus, K., Faber, L., and Wattenhofer, R.
DropGNN: Random dropouts increase the expressiveness
of graph neural networks. Advances in Neural Informa-
tion Processing Systems, 34:21997–22009, 2021.

Ramakrishnan, R., Dral, P., Rupp, M., and Von Lilienfeld,
O. Quantum chemistry structures and properties of 134
kilo molecules. Scientific data, 1(1):1–7, 2014.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. arXiv preprint arXiv:2205.12454,
2022.

Richards, A. University of Oxford Advanced Re-
search Computing. http://dx.doi.org/10.
5281/zenodo.22558, 2015.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node clas-
sification. arXiv preprint arXiv:1907.10903, 2019.

Rusch, T. K., Chamberlain, B. P., Mahoney, M. W., Bron-
stein, M. M., and Mishra, S. Gradient gating for
deep multi-rate learning on graphs. arXiv preprint
arXiv:2210.00513, 2022.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, R. v. d.,
Titov, I., and Welling, M. Modeling relational data with
graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Sperduti, A. Encoding labeled graphs by labeling RAAM.
Advances in Neural Information Processing Systems, 6,
1993.

Strathmann, H., Barekatain, M., Blundell, C., and
Veličković, P. Persistent message passing. arXiv preprint
arXiv:2103.01043, 2021.

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong,
X., and Bronstein, M. M. Understanding over-squashing
and bottlenecks on graphs via curvature. International
Conference on Learning Representations, 2022.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

11

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://dx.doi.org/10.5281/zenodo.22558
http://dx.doi.org/10.5281/zenodo.22558
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

DRew: Dynamically Rewired Message Passing with Delay

Wang, H., Yin, H., Zhang, M., and Li, P. Equivariant and
stable positional encoding for more powerful graph neural
networks. arXiv preprint arXiv:2203.00199, 2022.

Weisfeiler, B. and Leman, A. The reduction of a graph to
canonical form and the algebra which appears therein.
NTI, Series, 2(9):12–16, 1968.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-
i., and Jegelka, S. Representation learning on graphs
with jumping knowledge networks. In International Con-
ference on Machine Learning, pp. 5453–5462. PMLR,
2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How pow-
erful are graph neural networks? In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?
id=ryGs6iA5Km.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y.,
and Liu, T.-Y. Do Transformers really perform badly for
graph representation? Advances in Neural Information
Processing Systems, 34:28877–28888, 2021.

Yun, S., Jeong, M., Kim, R., Kang, J., and Kim, H. J. Graph
transformer networks, 2019. Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2019.

Zhang, M. and Li, P. Nested graph neural networks. Ad-
vances in Neural Information Processing Systems, 34:
15734–15747, 2021.

Zhu, Q., Guo, Y., and Lin, W. Neural delay differential
equations. arXiv preprint arXiv:2102.10801, 2021.

Zhu, Q., Shen, Y., Li, D., and Lin, W. Neural piecewise-
constant delay differential equations. arXiv preprint
arXiv:2201.00960, 2022.

12

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

DRew: Dynamically Rewired Message Passing with Delay

A. Time and Space Complexity
Time complexity. DRew relies on the shortest path and therefore requires up-to k-hop adjacency information for layer k.
This can be pre-computed in worst-case time O(|V ||E|) using the same breadth-first search method of Abboud et al. (2022),
but once computed it can be re-used for all runs.

In the worst case — when ℓ is greater than the max diameter of the graph — DRew performs aggregation over O(V 2)
elements, i.e. all node pairs. However, each k-neighbourhood aggregation can be computed in parallel, so this is not a
serious concern in practice, and as DRew gradually builds the computational graph at each layer, it is faster than comparable
multi-hop MPNNs or Transformers that aggregate over the entire graph, or a fixed hop distance, at every layer.

Space complexity. As we use delayed representations of nodes, we must store ℓ representations of the node features at
layer ℓ for a given mini-batch; i.e. linear scaling in network depth L. This has not proved to be a bottleneck in practice, and
could be addressed if need be by reducing batch size.

B. Further Experimental Details
In this section we provide further details about our experiments, as well as further results on Peptides-func.

B.1. Hardware

All experiments were run on server nodes using a single GPU. A mixture of P100, V100, A100, Titan V and RTX GPUs
were used, as well as a mixture of Broadwell, Haswell and Cacade Lake CPUs.

B.2. Long range graph benchmark

All results in Tables 1 and 2 use similar experimental setups and identical data train–val–test splits to their classical MPNN
counterparts in Dwivedi et al. (2022). We use a fixed parameter budget of ∼500,000, which is controlled for by appropriate
tuning of hidden dimension when using different network depths L. Significant hyperparameter differences for experiments
are given in Table 4; other experimental details are itemised below:

• For all experiments we train for 300 epochs or until convergence and average results over three seeds.

• All results use the AdamW optimizer (Kingma & Ba; Loshchilov & Hutter, 2017) with base learning rate lr=0.001

(except PascalVOC-SP, which uses 0.0005), lr decay=0.1 , min lr=1e-5 , momentum=0.9 , and a reduce-
on-plateau scheduler with reduce factor=0.5 , schedule patience=10 (20 for Peptides).

• All Peptides, PCQM-Contact and PascalVOC-SP experiments use batch sizes of 128, 256 and 32 respectively.

• All experiments use batch normalisation with eps=1e-5 , momentum=0.1 and post-layer L2 normalisation.

• Peptides and PCQM-Contact use the ‘Atom’ node encoder (Hu et al., 2020; 2021), whereas PascalVOC-SP
uses a node encoder which is a single linear layer with a fixed output dimension of 14.

• None of the experiments in Table 2 use edge encoding or edge features.

• Superpixel nodes in PascalVOC-SP are extracted using a SLIC compactness of 30 for the SLIC algorithm (Achanta
et al., 2012).

• We do not use dropout.

• All Laplacian PE uses hidden dimension of 16 and 2 layers.

• For PCQM-Contact, all experiments (except for DIGL) use convex combination with equal weights for aggregation;
i.e. each of M channel-mixing matrices per k-neighbourhood aggregation is multiplied by 1/M . Other tasks do not
use any matrix weights.

• Experiments for MixHop-GCN, a a multi-hop MPNN, are parameterised by maxP , where integer powers of the adja-
cency matrix are aggregated up to maxP , with equal-size weight matrices per adjacency power. The hyperparameters
in Table 4 were determiend by best performance after hyperparameter search over maxP and network depth L.

13

DRew: Dynamically Rewired Message Passing with Delay

• We perform DIGL rewiring using the default settings from the Graph Diffusion Convolution transform from
torch geometric.transforms using PPR diffusion with α = 0.2 and threshold sparsification with average

degree davg given in Table 4.

• All DIGL+MPNN runs use GCN as the base MPNN except for PascalVOC-SP which uses GatedGCN instead for
fair comparison, as other classical MPNNs perform poorly on this task

• Peptides-func results in Figures 3, 4 and 5 use the same experimental setup as described above.

• The reported results for GatedGCN+PE in Table 2 use LapPE for PascalVOC-SPand RWSE for all other tasks.

Table 4. Parameter counts (#Ps) and significant hyperparameters (HPs) for for all DIGL, MixHop-GCN and (ν)DRew-MPNN experiments
in Table 2. Hyperparameterisation details for reproduced results are available in their respective works.

Model Peptides-func Peptides-struct PCQM-Contact PascalVOC-SP
#Ps HPs #Ps HPs #Ps HPs #Ps HPs

DIGL+MPNN 499k
davg = 6
L = 13

496k
davg = 6
L = 5

497k
davg = 2
L = 5

502k
davg = 14

L = 8

DIGL+MPNLapPE 493k
davg = 6
L = 5

496k
davg = 6
L = 7

495k
davg = 2
L = 5

502k
davg = 14

L = 8

MixHop-GCN 513k
maxP = 5

L = 17
510k

maxP = 7
L = 17

523k
maxP = 3

L = 5
511k

maxP = 5
L = 8

MixHop-GCN+LapPE 518k
maxP = 7

L = 14
490k

maxP = 7
L = 11

521k
maxP = 3

L = 5
512k

maxP = 5
L = 8

DRew-GCN 518k
ν = 1

L = 23
498k

ν = ∞
L = 13

515k
ν = ∞
L = 20

498k
ν = 1
L = 8

DRew-GCN+LapPE 502k
ν = ∞
L = 7

495k
ν = ∞
L = 5

498k
ν = ∞
L = 10

498k
ν = 1
L = 8

DRew-GIN 514k
ν = 1

L = 17
505k

ν = ∞
L = 15

507k
ν = ∞
L = 20

506k
ν = 1
L = 8

DRew-GIN+LapPE 502k
ν = 1

L = 15
497k

ν = ∞
L = 5

506k
ν = ∞
L = 10

506k
ν = 1
L = 8

DRew-GatedGCN 495k
ν = 1

L = 17
497k

ν = ∞
L = 13

506k
ν = ∞
L = 20

502k
ν = 1
L = 8

DRew-GatedGCN+LapPE 495k
ν = ∞
L = 7

494k
ν = ∞
L = 5

494k
ν = ∞
L = 10

502k
ν = 1
L = 8

B.3. QM9

Performance experiments use a fixed parameter budget of 800k, controlled for by appropriate tuning of the hidden dimension
when using different network depth L. We mostly follow the experimental setup of (Abboud et al., 2022), using a fixed
learning rate of 0.001, mean pooling and no dropout. We use batch normalization, train for 300 epochs averaging over 3
runs, and use data splits from (Brockschmidt, 2020).

Many of the benchmarks we compare against in Table 3 are Relational MPNNs (R-MPNN; Schlichtkrull et al. (2018);
Brockschmidt (2020)) which incorporate edge labels by assigning separate weights for each edge type in the 1-hop
neighbourhood, and aggregating over each type separately. For our SPN and DRew-GIN experiments, however, we do not
incorporate edge features, as (a) DRew demonstrates strong performance even without this information, and (b) we expect
the improvement obtained through using R-GIN to be slight given that over 92% of all graph edges in QM9 are of only one
type.

14

DRew: Dynamically Rewired Message Passing with Delay

B.4. RingTransfer

For synthetic RingTransfer (Bodnar et al., 2021) experiments we use a dataset of size N = 2000 with C = 5 classes
and a corresponding node feature dimension. GCN and SP-GCN runs use a hidden dimension of 256, and for fair comparison
DRew-GCN runs use a varying hidden dimension to ensure the same parameter count as GCN/SP-GCN for each ring length
k (and therefore model depth L). All runs use batch normalization, no dropout, and Adam optimization with learning rate
0.01. We train for 50 epochs and average over three experiments, using the accuracy of predicting the source node label
from the readout of the source node representation as a metric. We use an 80:10:10 split for train, test and validation.

SP-GCN We define SP-GCN as an instance of the SP-MPNN framework (Abboud et al., 2022):

h
(ℓ+1)
i = h

(ℓ)
i + σ

kmax∑
k=1

∑
j∈Nk

α
(ℓ)
k W(ℓ)γk

ijh
(ℓ)
j

 , (11)

where kmax is the max distance parameter that determines the number of hops to aggregate over at each layer and α(ℓ) ⊂ Rkmax

are learned weight vectors,
∑kmax

k α
(ℓ)
k = 1. γk

ij is as in Eq. (8).

B.5. Ablation on Peptides-func

In this section we provide additional experimental results on Peptides-func using our 500k parameter budget setup from
Section 5.1. We train a number of varying-depth GCN, residual GCN and νDRew-GCN models with three parameterizations
of ν: 1, L/2 and ∞. We provide separate results with and without Laplacian PE (Dwivedi et al., 2020) in Figures 5 and 4
respectively. For reference, on both figures we also mark the best-performing Transformer, SAN with random walk encoding
(Kreuzer et al., 2021; Dwivedi et al., 2021), reproduced from Dwivedi et al. (2022) and denoted with a dashed black line.

Discussion From Figures 4 and 5 we can see that more delay leads to stronger performance at greater network depths,
even as the hidden dimension decreases severely. We see that low L, low/no delay νDRew and high L, high delay νDRew
outperform GCNs and the best-performing Transformer, with or without positional encoding.

We note that the poor performance of low-delay νDRew at high L and vice-versa is as expected. As Peptides-func is
a long-range task, strong performance requires interaction between distant nodes. Though it uses more powerful multi-hop
aggregations, ν1DRew maintains the same ‘rate’ of information flow as classical MPNNs, i.e. r-distant nodes are able to
interact from the rth layer; therefore small L does not give ν1DRew sufficient layers to enable long-range interactions, and
performance is comparable to classical MPNNs. As our framework is more robust, however, ν1DRew continues to increase
in performance as L increases — as we would hope — while the classical MPNNs GCN and ResGCN succumb to the usual
issues that affect MPNNs, and degrade.

Conversely, the low delay parameterizations, {νL/2, ν∞}DRew-GCN, perform strongly for low L and worsen as the
network becomes very deep. Again, this is expected: low delay affords fast (or instantaneous) communication between
distant nodes after sufficient layers, and therefore has a rate of information flow that is faster than ν1DRew or classical
MPNNs (though still slower than multi-hop MPNNs or Transformers). This means that, for a long-range task such as
Peptides-func, performance is stronger for fewer layers, once long-range interactions have been facilitated but before
the computational graph becomes too dense, causing performance drop. These experiments further demonstrate the impact
and usefulness of the delay parameter as a means of tuning the model to suit the task.

Referring to Figure 5, we note that the addition of PE exacerbates the behaviours described above, and indeed accelerates
the rate of information flow by preceding the message-passing with a global layer.

Positional encoding. As a final point, we consider the overall impact of PE, particularly Laplacian PE, on this task. We
posit that, for Peptides, the characterization of Transformers as the strongest long-range models (Dwivedi et al., 2022) is
due primarily to PE, rather than the Transformer architecture. As evidence we point to the performance of vanilla GCN,
the simplest MPNN, on func when LapPE is used; it outperforms SAN with only five layers. We reiterate that νDRew
outperforms MPNN and Transformer+PE benchmarks with or without using PE itself.

15

DRew: Dynamically Rewired Message Passing with Delay

5 10 15 20

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Figure 4. Peptides-func experiments over varying L with fixed 500k parameter count using no positional encoding.

5 10 15 20

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Figure 5. Peptides-func experiments over varying L with fixed 500k parameter count using Laplacian positional encoding.

16

