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Abstract
Graph-structured data arise in a variety of real-
world context ranging from sensor and transporta-
tion to biological and social networks. As a ubiq-
uitous tool to process graph-structured data, spec-
tral graph filters have been used to solve com-
mon tasks such as denoising and anomaly detec-
tion, as well as design deep learning architectures
such as graph neural networks. Despite being an
important tool, there is a lack of theoretical un-
derstanding of the stability properties of spectral
graph filters, which are important for designing
robust machine learning models. In this paper,
we study filter stability and provide a novel and
interpretable upper bound on the change of filter
output, where the bound is expressed in terms
of the endpoint degrees of the deleted and newly
added edges, as well as the spatial proximity of
those edges. This upper bound allows us to rea-
son, in terms of structural properties of the graph,
when a spectral graph filter will be stable. We
further perform extensive experiments to verify
intuition that can be gained from the bound.

1. Introduction
A graph is a general-purpose data structure that uses edges
to model pairwise interactions between entities, which are
modelled as the nodes of the graph. Many types of data
in the real-world reside on graph domains, such as those
collected in sensor, biological, and social networks. This
has sparked a major interest in recent years in developing
machine learning models for graph-structured data (Chami
et al., 2020), leading to the fast-growing fields of graph
signal processing (Shuman et al., 2013; Ortega et al., 2018)
and geometric deep learning (Bronstein et al., 2017).

Spectral graph filters, generalisation of classical filters to the
graph domain via spectral graph theory (Chung, 1997), are
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a ubiquitous tool designed to process graph-structured data.
In addition to various signal processing tasks (Shuman et al.,
2013; Ortega et al., 2018), graph filters are becoming an
important tool for machine learning tasks defined on graphs
(Dong et al., 2020). For example, they have been used
to define convolution on graphs and design graph neural
networks, which lead to state-of-the-art performance in both
node and graph classification (Bruna et al., 2014; Defferrard
et al., 2016; Kipf & Welling, 2017; Levie et al., 2019; Wu
et al., 2019; Rossi et al., 2020; Balcilar et al., 2020).

Despite the surge of research proposing new graph-based
machine learning models, significantly less attention has
been paid to the understanding of theoretical properties,
such as stability, of existing models, in particular graph
filters. Informally, a filter is considered to be stable against
a perturbation if, after being applied to a signal, it does not
lead to large changes in the filter output. In the context of
graph-structured data, stability can be defined with respect
to perturbation to the signal or the underlying topology. We
focus on the latter in this work as graph filters are typically
through a function of the graph topology.

Stability is important mainly for two reasons. First, real-
world graph-structured data often come with perturbations,
either due to measurement error or inaccuracy in the graph
construction. Second, when these data are used in machine
learning tasks, stability of the graph filters is important to
designing learning algorithms that are robust to small pertur-
bations. As a practical example, graph filters are often used
to extract spatio-temporal predictive features from fMRI
signals realised as signals on a structural brain network.
The underlying structural brain network is typically an ap-
proximation of the true brain connectivity and therefore the
topology will inherently be noisy. Nevertheless, we would
desire the predictions, and thus the filtering process, to be
robust to the noise inherent in this data.

There has only been a handful of papers considering the
stability of spectral graph filters. Among the existing works
(Levie et al., 2019; Kenlay et al., 2020b; Gama et al., 2020)
which address this, most provide an upper bound on the
change of the filter output. These upper bounds are in terms
of the magnitude of perturbation and lack interpretation in
terms of how the structure of the graph has changed, for
example the degree of the nodes. This limitation hampers
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the design of strategies that could defend efficiently against
potential adversaries. A notable exception in the literature is
the recent work of Kenlay et al. (2020a); however, this work
only considers degree preserving edge rewiring which is a
stringent assumption that does not cover many perturbations
observed in practical scenarios.

In this work, we provide a novel upper bound for the output
change of spectral graph filters under topological perturba-
tion, i.e., edge deletions and additions, of an unweighted
and undirected graph. Unlike previous works, our bound
is interpretable in the sense that it is expressed in terms of
the structural properties of the graph and the perturbation.
The bound helps us understand sufficient conditions under
which a spectral graph filter will be stable. Specifically, we
show that, when edges are deleted and added to a graph
to obtain the perturbed graph, the filter will be stable if 1)
the endpoints of these edges have sufficiently high degree,
and 2) the perturbation is not concentrated spatially around
any one node. We further verify the intuition behind our
theoretical results using synthetic experiments.

Our study has two main contributions. First, to the best
of our knowledge, our theoretical analysis is one of the
first that provides sufficient conditions for a graph filter
to be robust to the perturbation, where the conditions are
in terms of the structural properties rather than the magni-
tude of change. Second, unlike previous theoretical studies,
we perform extensive experiments to validate the intuition
gained from the bound. In particular, we examine how the
filter output changes for a range of perturbation strategies
including random strategies, an adversarial attack strategy
and a robust strategy which is derived from insight that the
bound provides. Furthermore, we experiment with a range
of random graph models as well as real-world data sets,
and examine how different properties of these graphs, for
example the degree distribution, have an effect on the filter
stability. Overall, we believe this study fills an important
gap in our understanding of spectral graph filters, and future
work based on these ideas can have broad implications for
understanding and designing robust graph-based machine
learning models that utilise graph filters, most notably a
wide range of designs of graph neural networks (Balcilar
et al., 2020).

2. Related work
2.1. Stability of graph filters

Stability of graph filters has been mainly studied by charac-
terising the magnitude of perturbation caused by changes to
a graph shift operator (GSO) under the operator norm. One
such effort is the work of Levie et al. (2019), where filters
are shown to be stable in the Cayley smoothness space, with
the output change being linearly bounded. The main limita-

tions of this result is that the constant which depends on the
filter is not easily interpretable and the bound is only valid
for sufficiently small perturbation. In a similar vein, Ken-
lay et al. (2020b) proves that polynomial graph filters are
linearly bounded under changes to the shifted normalised
Laplacian matrix by applying Taylor’s theorem for matrix
functions (Deadman & Relton, 2016). We build upon this
work by giving a tighter bound for a larger class of filters,
and providing theoretical basis for how the magnitude of
change in the Laplacian matrix relates to change in the struc-
tural properties of the graph such as the degree of the nodes
and the distribution of the perturbed edges.

Studying perturbation with respect to operator norm does
not provide invariance to relabelling of nodes. The authors
in Gama et al. (2020) address this issue by proposing the
Relative Perturbation Modulo Permutation, that considers
all permutations of the perturbed GSO. This measure is
at least as hard to compute as the graph isomorphism test
for which no polynomial time algorithm is known (Babai,
2016). We believe that incorporating permutations may be
beneficial in certain cases but not others. For example, the
node labelling in polygon meshes is arbitrary and so the
distance should be invariant to the labelling. On the other
hand, node labelling in social networks corresponds to a
user ID and therefore should remain fixed when measuring
the change in the graph.

The work most related to ours is by Kenlay et al. (2020a)
as it provides structurally interpretable bound. The authors
show that under degree preserving edge rewiring the change
of spectral graph filters applied to the augmented adjacency
matrix depends on the locality of edge rewiring and the
degree of the endpoints of the edges being rewired. However,
they only consider a specific type of perturbation, which
greatly simplifies but at the same time limits the analysis.
We consider more general perturbations in this work and
derive a similar result as a special case.

2.2. Adversarial attack and defence

Adversarial attacks are an optimisation based data-driven
approach to finding perturbations for which graph-based
models are not robust. In particular, it has been shown that
the output of graph neural networks can change drastically
even under small changes to the input generated from ad-
versarial examples (Zügner et al., 2018; Sun et al., 2018).
As our bound necessarily covers worst-case scenarios, ad-
versarial attacks provide insight into the tightness of our
bound.

Complimentary to this line of work, adversarial defence
is concerned with the design of models robust to adver-
sarial attacks. In the context of adversarial defence, our
work is tangentially related to certified robustness, whose
goal is to theoretically guarantee that some nodes will re-
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main correctly classified, e.g., in a semi-supervised node
classification task, under small but arbitrary perturbation
(Bojchevski & Günnemann, 2019). We are instead inter-
ested in certifying what kind of perturbation will lead to
small changes in the output of a fixed graph filter.

3. Preliminaries and problem formulation
We define a graph G = (V, E) where V is a set of n vertices
and E a set of edges. We write u ∼ v if node u is connected
to v and u 6∼ v otherwise. By fixing a labelling on the
nodes we can encode G into a binary adjacency matrix A ∈
{0, 1}n×n. The degree du of a node u indicates the number
of nodes connected to u and we define the degree matrix as
D = diag(d1, . . . , dn). A node u is said to be isolated if it
has degree zero. The normalised Laplacian matrix is defined
as L = In−D−1/2AD−1/2 where In is the identity matrix
of dimension n and conventionally the entry D

−1/2
uu is set

to zero if the node u is isolated. The entries of L can be
explicitly written as

Luv =





1 if u = v
−1√
dudv

if u ∼ v and u 6= v

0 otherwise

. (1)

The normalised Laplacian matrix is an example of a GSO, a
generalisation of the shift operator from classical signal pro-
cessing which can be used as a building block to construct
a graph signal processing framework (Ortega et al., 2018).
The matrix L is real and symmetric, and thus has an eigen-
decomposition L = UΛUT where Λ = diag(λ1 . . . λn)
are the eigenvalues such that 0 = λ1 ≤ . . . ≤ λn ≤ 2 and
U is the matrix where the columns are the corresponding
unit norm eigenvectors.

We can define a graph signal x : V → R as an assign-
ment of each node to a scalar value; this can be com-
pactly represented by a vector x such that xi = x(i).
The graph Fourier transform can be defined as x̂ = UTx
and the inverse graph Fourier transform is then given by
x = Ux̂. With a notion of frequency, filtering signals
on graphs amounts to amplifying and attenuating the fre-
quency components in the graph Fourier domain, i.e., y =
U diag(g(λ1), . . . , g(λn))UTx = Ug(Λ)UTx = g(L)x,
where g(·) is a function over the range of eigenvalues that
corresponds to the characteristics of the filter. We will abuse
notation by evaluating g : R → R on the domain Rn×n
using this definition of matrix-valued functions1.

We are primarily concerned with the stability of spectral
graph filters where the filter parameters are fixed. This
scenario is relevant to hand-tuned filters or during inference
of a pre-trained model. An adversarial attack in this setting

1This is one of a few equivalent ways used to define matrix-
valued functions (Higham, 2008)

is known as an evasion attack. Specifically, we consider
edge deletions and additions to the graph to give a perturbed
graph Gp and use Lp to denote the normalised Laplacian
of Gp. We consider the magnitude of the error matrix, i.e.,
‖E‖2 = ‖Lp − L‖2, which we call the error norm where
‖·‖2 is the operator norm when applied to matrices and the
`2-norm when applied to vectors. We will also consider the
matrix one norm ‖E‖1 = maxi

∑
j |Eij | and the matrix

infinity norm ‖E‖∞ = maxj
∑
i |Eij |. If we denote Eu

as the row corresponding to node u of E we can write the
matrix one norm as ‖E‖1 = maxu‖Eu‖1 where ‖·‖1 is the
Manhattan or `1-norm when applied to vectors.

The goal of this study is two-fold: 1) understand how the
relative output of a filter changes when we perturb the topol-
ogy of the underlying graph; 2) what is the impact of the
structural properties of the perturbation on filter stability.
In particular, the structural properties we consider are the
degree of the nodes before and after perturbation and how
much the perturbation is concentrated around each node.
We address the first goal in Section 4 and the second in
Section 5. We experimentally validate the insights gained
by our bound in Section 6.

4. Linearly stable filters
Our notion of stability is based on relative output distance
defined as

‖g(∆)x− g(∆p)x‖2
‖x‖2

, (2)

where g is a spectral graph filter, x is an input graph signal
and ∆ is the GSO of the graph G (similarly ∆p is the GSO
of Gp). If we assume x has unit norm then the above is
equivalent to absolute output distance. We can bound this
quantity by what we call the filter distance which measures
the largest possible relative output change of the filter over
non-zero signals:

‖g(∆)x− g(∆p)x‖2
‖x‖2

≤ max
x6=0

‖g(∆)x− g(∆p)x‖2
‖x‖2

def
= ‖g(∆)− g(∆p)‖2. (3)

In Kenlay et al. (2020b), the authors bound the filter distance
of a graph filter g where g is a polynomial. The bound is
given by some constant times the error norm ‖E‖2, where
the constant depends on the filter. When a filter satisfies
this property we say it is linearly stable which we define as
follows.

Definition 1. A spectral graph filter g : R → R is said
to be linearly stable with respect to a type of graph shift
operators, if for any graph shift operators ∆ and ∆p of this
type, we have that

‖g(∆)− g(∆p)‖2 ≤ C‖E‖2 (4)
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for some positive constant C ∈ R. The positive constant C
is referred to as the stability constant.

Two types of filters of particular interest are the polyno-
mial filters, i.e., g(λ) =

∑K
k=0 θkλ

k, where {θk}Kk=0 are
the polynomial coefficients, and the low-pass filters, i.e.,
g(λ) = (1 + αλ)−1, where α > 0 is some constant. Poly-
nomial filters are used in a variety of graph-based machine
learning. We list some of them in Table 1. It was recently
proved that polynomial filters are linearly stable with respect
to the shifted normalised Laplacian matrix L− In (Kenlay
et al., 2020b). A simpler proof with a tighter bound (smaller
stability constant) was given to show linear stability with
respect to the augmented adjacency matrix D̃−1/2ÃD̃−1/2

where Ã = A+ In and D̃ = D+ In (Kenlay et al., 2020a).
In addition, the following more general result holds.

Proposition 1. Polynomial filters g(λ) =
∑K
k=0 θkλ

k are
linearly stable with respect to any GSO where the spec-
trum lies in [−1, 1]. The stability constant is given by
C =

∑K
k=1 k|θk|.

Proof: See Supplementary Material. Another important
class of filters are low-pass filters, which are linearly stable
with respect to the normalised Laplacian matrix.

Proposition 2. The low-pass filter g(λ) = (1 + αλ)−1 is
linearly stable with respect to the normalised Laplacian
matrix. The constant is given by C = α.

Proof: See Supplementary Material. A thorough character-
isation of linearly stable filters is beyond the scope of this
work. Instead, this section serves to motivate why we are
interested in analysing the magnitude of ‖E‖2: some com-
mon types of filters are stable to small perturbation when the
perturbation is measured by the error norm ‖E‖2. Although
this is an intuitive choice, it is not immediately clear how
‖E‖2 is related to the characteristics of the structural prop-
erties of the perturbation. This motivates us to provide an
upper bound on ‖E‖2 in Section 5 in terms of interpretable
characteristics in the structural domain.

5. Interpretable bound on filter output change
In this section we bound ‖E‖2 by interpretable properties
relating to the structural change. Given a perturbation and
a node u we denote Au, Du, andRu as the set of adjacent
nodes for newly added edges, deleted edges, and remaining
edges around u, respectively. We denote ∆+

u = |Au| and
∆−u = |Du| < du the number of edges added and deleted
around u, respectively, and ∆u = ∆+

u −∆−u as the change
of degree. We denote d′u = du + ∆u as the degree of
node u in Gp. We define αu = maxv∈Nu∪{u}|∆v|/dv,
where Nu is the 1-hop neighbourhood of node u, as the
maximum relative change in degree among a node u and its
neighbours. In addition, we define δu = minv∈Nu dv as the

smallest degree of the nodes neighbouring node u, and δ′u
as the same quantity in the perturbed graph. We assume that
both the graph G and the perturbed graph Gp do not contain
isolated nodes.

Our approach to upper bounding ‖E‖2 relies on the inequal-
ity ‖E‖22 ≤ ‖E‖1‖E‖∞ (Higham, 2002, Section 6.3). As E
is Hermitian, ‖E‖1 = ‖E‖∞ thus simplifying this inequal-
ity to become ‖E‖2 ≤ ‖E‖1. There may exist strategies
which give tighter bounds, but the benefit of this approach is
that ‖E‖1 leads to an interpretation in the structural domain.
Thus, we are making use of the following inequality

‖E‖2 ≤ ‖E‖1 = max
u∈V
‖Eu‖1. (5)

By considering how the entries of L in Eq. (1) change, we
have the following closed-form expression for ‖Eu‖1:

‖Eu‖1 =
∑

v∈Du

1√
dudv

+
∑

v∈Au

1√
d′ud
′
v

+
∑

v∈Ru

| 1√
dudv

− 1√
d′ud
′
v

|. (6)

The results of this section bound the three terms in this
expression, leading to an overall bound to ‖Eu‖1 hence to
‖E‖1 and ‖E‖2. We proceed by bounding each of the terms
in Eq. (6).

5.1. Bounding the error norm

Recall that δu is the smallest degree in the neighbourhood
of a node u, allowing us to bound the first term in Eq. (6)
by replacing dv with δu ≤ dv in the denominator to give:

∑

v∈Du

1√
dudv

≤
∑

v∈Du

1√
duδu

=
∆−u√
duδu

. (7)

Similarly, we can bound the second term in Eq. (6) as:

∑

v∈Au

1√
d′ud
′
v

≤
∑

v∈Au

1√
d′uδu

=
∆+
u√
d′uδ
′
u

. (8)

To bound the third term in Eq. (6), we first introduce the
following lemma.

Lemma 1. Let αu ∈ [0, 1). Then the following holds:

∑

v∈Ru

| 1√
dudv

− 1√
d′ud
′
v

| ≤
∑

v∈Ru

(
αu

1− αu

)
1√
dudv

≤
(

αu
1− αu

)
du −∆−u√
duδu

. (9)

Proof: See Supplementary Material. The assumption on
αu can be interpreted as follows. If αu = 0 then the de-
gree of u and that of all nodes in the neighbourhood of u
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Table 1. Examples of linearly stable graph filters used for machine learning.

Filter Functional form GSO Stability constant C Use

Polynomial filter
∑K
k=0 θkλ

k 2L
λmax

− In
∑K
k=1 k|θk| Chebynet (Defferrard et al., 2016)

Low-pass filter (1 + αλ)−1 L α Low-pass filtering (Ramakrishna et al., 2020)

Monomial λK D̃−1/2ÃD̃−1/2 K Simple GCN (Wu et al., 2019)
Identity λ D̃−1/2ÃD̃−1/2 1 GCN (Kipf & Welling, 2017)

are unchanged, so the third term in Eq. (6) becomes zero.
If αu ≥ 1, then for some node v in Nu ∪ {u} we have
|∆v|/dv ≥ 1. Notice that for all nodes we have ∆v > −dv ,
since the degree after perturbation δ′v is strictly positive (re-
call that we do not allow isolated nodes). Therefore, we
must instead have ∆v ≥ dv which implies d′v ≥ 2dv. In
other words, the assumption αu < 1 means that for all nodes
v in Nu ∪ {u} we have d′v < 2dv . This limits large amount
of change around low degree nodes. It can be noted that
if a perturbation does not alter the degree distribution then
αu = 0 for all nodes and the third term in Eq. (6) vanishes.
We will consider a particular case of degree preserving per-
turbation in Section 5.2.

By combining the bounds in Eq. (7) and Eq. (8) with Lemma
1, we can further bound Eq. (6):

‖Eu‖1 ≤
∆−u√
duδu

+
∆+
u√
d′uδ
′
u

+

(
αu

1− αu

)
du −∆−u√
duδu

.

(10)

By further combining this bound with Eq. (5), we arrive at
our main result.

Theorem 1. Assume that αu ∈ [0, 1) holds for all nodes
u ∈ V . Then the following holds:

‖E‖2 ≤ max
u∈V

{
∆−u√
duδu

+
∆+
u√
d′uδ
′
u

+

(
αu

1− αu

)
du −∆−u√
duδu

}

(11)

Proof: See Supplementary Material. We will explore the
looseness of the bound given in Eq. (10) and Eq. (11) in
Section 6. In practice, the bound might be loose but it
provides insight into when we expect filters to be stable.
We will discuss this insight in Section 5.4. In the following
subsection, we will consider a special case where we can
produce a bound that is tighter in practice.

5.2. Bounding the error norm under edge rewiring

Degree preserving rewiring is a type of edge rewiring such
that the perturbation does not change the original degree
distribution (Kenlay et al., 2020a). Given two edges u ∼ v
and u′ ∼ v′ such that u 6∼ v′, u 6∼ u′, v 6∼ v′ and v 6∼ u′,
the double edge rewiring operation deletes the two edges
and introduces the edges u ∼ u′ and v ∼ v′ (see Fig. S2

for an illustration). The perturbation consists of two edge
deletions and two edge additions and does not change the
degree of any nodes involved. This model of perturbation
approximately arises in practical applications, where the
capacity of a node is fixed and remains at full load such as
in communication networks (Bienstock & Günlük, 1994).
In this specific scenario, αu = 0, δu = δ′u and du = d′u.
Furthermore, we know that ∆−u = ∆+

u = ru where we
define ru as the number of rewiring operations involved
around a node u. Using Theorem 1 we get the following
corollary.

Corollary 1. If the perturbation consists of only double
edge rewiring operations then:

‖E‖2 ≤ max
u∈V

2ru√
duδu

. (12)

A similar bound has been recently derived to bound the
change in feature representations of certain graph neural
network architectures (Kenlay et al., 2020a).

5.3. Bounding filter output change

To obtain a full bound on filter output change, we combine
together bounds that are developed in previous sections.
Consider a spectral graph filter g which is linearly stable
with respect to the normalised Laplacian matrix. We then
have the following bound for the filter output change:

‖gθ(L)x− gθ(Lp)x‖2
‖x‖2

≤ ‖gθ(L)− gθ(Lp)‖2 ≤ C‖E‖2

≤ C max
u∈V

{
∆−u√
duδu

+
∆+
u√
d′uδ
′
u

+

(
αu

1− αu

)
du −∆−u√
duδu

}
.

(13)

The first inequality is introduced in Eq. (3) which relates
relative output distance and filter distance. The second
inequality comes from our assumption that the graph filter is
linearly stable (Eq. (4)) with a stability constant C. Finally,
we can make use of Eq. (11) to establish the third inequality,
which provides a structurally interpretable bound on the
relative output distance. We discuss interpretations of this
result in the following subsection.
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5.4. Interpretation of the bound

The bounds given in this section let us reason about suffi-
cient conditions under which a perturbation leads to small
change in graph filter output. We can conclude from Eq. (5)
that perturbations which cause small changes to ‖Eu‖1 over
all nodes u guarantee small change in terms of ‖E‖2. When
would ‖Eu‖1 be small for a particular node? If αu is small
(αu ≈ 0), then αu/(1−αu) ≈ 0 and 1−αu/(1−αu) ≈ 1.
Therefore the right hand side of Eq. (10) becomes approxi-
mately:

‖Eu‖1 ≈
∆+
u√
d′uδ
′
u

+
∆−u√
duδu

. (14)

This approximation holds, which in turn leads to a small
‖Eu‖1, if we add and delete edges only between nodes with
large degrees. The approximation becomes equality in the
case when the degree distribution is preserved such as in
Section 5.2. When would ‖Eu‖1 be small for all nodes? In-
tuitively, this requires perturbations to be distributed across
the graph, i.e., not concentrated around any one node. There-
fore, spectral graph filters are most robust when we a) add
or delete edges between high degree nodes, and b) do not
perturb too much around any one node. In the next section,
we empirically verify the looseness of each of the bounds
and the intuition it provides.

6. Experiments
We empirically verify the looseness of the bounds derived in
the previous section. We perform an extensive study of the
looseness of these bounds by considering a variety of exper-
imental conditions in terms of different graph types (both
random graph models and real-world graph data) and pertur-
bation strategies. Clearly, as the overall bound in Eq. (13)
is obtained from a chain of inequalities, its looseness is af-
fected by the looseness of each individual bound (Eqs. (3),
(4), (5), (10), (11)). For completeness, the looseness of the
inequalities relating the relative output distance and the filter
distance (Eq. (3)) is illustrated in Fig. S3, and that of the
inequality relating the filter distance and the constant times
the error norm (Eq. (4)) in Fig. S4.

6.1. Experimental setup

We generate synthetic graphs on 100 nodes, using different
random graph models. With the exception of the stochastic
block model and the real-world data, we generate features
on the nodes of the graph by taking a random convex com-
bination of the first 10 eigenvectors of the normalised graph
Laplacian. The latter results in relatively smooth signals
on the graph. For the stochastic block model, we generate
graphs with three equal-size communities generating each
community’s features using a Gaussian with means 2, 0, and
−2 respectively and unit variance. For the real-world data

we select a continuous feature channel and normalise by
subtracting the mean and dividing by the standard deviation.
Gaussian noise is then added to generate noisy signals at
a signal-to-noise ratio of 0 dB (equal levels of signal and
noise).

For the sake of simplicity, we focus in this paper on a fixed
low-pass filter g(λ) = (1 + λ)−1, which has been widely
used for signal denoising (Ramakrishna et al., 2020) and
semi-supervised learning (Belkin et al., 2004) tasks. This
filter has stability constant C = 1 and thus satisfies the
inequality ‖g(L)− g(Lp)‖2 ≤ ‖E‖2, due to Proposition 2.
We note though that the experiments may be extended to any
type of linearly stable graph filter. We compare the filtering
outcome before and after perturbation to the graph topology
in a signal denoising task. To this end, we are interested in
bounding the relative output distance between the denoised
signal before and after perturbation, for different random
graph models and perturbation strategies. The magnitude
of the perturbation is set at b10% · |E|c edge edits. Each
experiment is repeated 100 times using different random
seeds. We consider varying the experimental settings such
as the size of the graphs, amount of the perturbation and
level of noise in Supplementary Material.

We note that in some experiments the assumption of
Lemma 1 is not satisfied, i.e., for some node u it holds
that αu ≥ 1. We call an experiment valid if the assump-
tion holds for all nodes. The validity of an experiment
depends on both the strategy of perturbation and the type
of graph used (Table S2). We only report results from valid
experiments for plots directly related to the bounds given in
Lemma 1 or Theorem 1. We discuss this further in Supple-
mentary Material.

We use a variety of random graph models including the
Erdős-Rényi model (ER), Barabási–Albert model (BA),
Watts–Strogatz model (WS), K-regular graphs (K-Reg),
Stochastic Block Model (SBM), and assortative graphs (As-
sortative) (Barabási, 2013, Chapter 7). The random graph
models include graphs with low variance (WS and K-Reg)
and high variance (SBM, ER, Assortative and BA) in de-
gree distribution. We also consider two real-world data sets,
namely PROTEINS full and ENZYMES. To control for
graph size we used 100 graphs with n from 40 to 50 for EN-
ZYMES and 50 to 75 for PROTEINS full. The standard de-
viation of the node degrees averaged across the 100 graphs
were 1.01 for ENZYMES and 1.03 for PROTEINS full,
similar to synthetic graphs with low degree variance. The
standard deviation of the degree distribution averaged over
each graph type is given in Table S1. Further details of the
random graph models are found in Supplementary Material.

The perturbation strategies under consideration, for a fixed
budget, are as follows: 1) randomly selecting edges to delete
(Delete); 2) randomly selecting edges to add (Add); 3) us-
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Figure 1. Looseness of the bound given in Eq. (10).

ing half the budget to randomly add and half to randomly
delete (Add/Delete); 4) using degree preserving double edge
rewiring as described in Section 5.2 (Rewire), which is a
special case of Add/Delete (we consider a single double
edge rewiring to be four edits, i.e., two deletions and two
additions); 5) projected gradient descent (PGD), which is
used to find adversarial examples by perturbing the graphs
similarly to that described in Xu et al. (2019); and 6) se-
quentially deleting or adding edges in a greedy manner to
minimise ‖E‖1 (Robust). Further details of the perturbation
strategies are described in Supplementary Material.

6.2. How tight is the bound ||E||2 ≤ ||E||1?

We upper bound ‖E‖2 using the inequality given in Eq. (5).
In order to quantify the tightness of the bound, we compare
in Fig. S5 the values of ‖E‖1 and ‖E‖2 for different pertur-
bation strategies, by illustrating their correlation. We note
that Robust leads to the smallest values of ‖E‖2 among all
perturbation strategies. This is expected as Eq. (5) tells us
that small values of ‖E‖1, which are achieved with the Ro-
bust perturbation strategy, guarantee small values of ‖E‖2.
As a matter of fact, we observe experimentally that the two
norms are correlated (r = 0.90), confirming that in practice
if we observe ‖E‖2 to be small then ‖E‖1 is likely to be
small too.

We show in Fig. S6 the looseness of the bound given in
Eq. (5) among the different perturbation strategies and graph
models2. We see that the bound is tightest for Robust and
Rewire. It is interesting to observe that Rewire sometimes
gives a tight bound for the graphs with low variance in
degree distribution.

6.3. How tight are the bounds on ||E||1 and ||E||2?

We now turn our attention to the bound given in Section 5.
As well as calculating the overall value of ||Eu||1 we can

2We do not display outliers for figures that appear in main text
to make the rest of the data easier to visualise.
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Figure 2. Looseness of the bound given in Eq. (11).

also compute the contributions of the three terms in Eq. (6).
This allows us to evaluate the looseness of each term as well
as the overall looseness of Eq. (10). For each experiment
we selected the node u such that u = arg max‖Eu‖1 and
calculated the terms and bounds for this node. The results
for each term are shown in Fig. S7 and that for the overall
looseness in Fig. 1.

As one can see from Fig. S7, the bounds for particular terms
are tight in certain scenarios. For example, the inequality in
Eq. (7) becomes equality when dv = δu for all neighbouring
nodes v of u, which is the case for 3-Reg graphs. The
inequality in Eq. (7) and Eq. (8) is loosest when δu � dv
for many neighbouring nodes v. This is likely to occur when
the degree distribution has high variance, explaining why
the bound for the first and second term are looser for graphs
with higher variance in degree distribution. The bound on
the third term is the loosest in practice. From Fig. 1, the
overall bound is tightest for the Rewire strategy, and this is
because both the third term and the bound for it are zero in
this case.

Fig. 2 shows the looseness of the bound on ||E||2 in Eq. (11).
The overall pattern is similar to that in Fig. 1, where the
bound is tight in some rewiring experiments. In general
the bound performs poorly on BA graphs, likely due to the
skewed degree distribution.

6.4. When are filters robust?

In this section we take a holistic view of the bound in
Eq. (13), considering how the relative output distance is
affected by the perturbation strategy, graph model, and the
statistics that appear throughout our chain of inequalities.
We use insight from our bounds to demonstrate scenarios
where a filter is robust. Fig. 3 shows how the different graphs
and strategies effect each of the quantities that appear in our
bounds. In many cases, Robust gives overall the smallest
values where PGD gives the largest, which is expected due
to the nature of these strategies. It is interesting to note that
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Figure 3. How different statistics vary across experimental setups.

the Robust strategy gives smallest relative output distance
for synthetic graphs with high degree variance (ER, Assor-
tative, BA and SBM), as well as the real-world data sets, but
not for those with low degree variance (WS, 3-Reg). When
the degree distribution is flat the strategies perturb edges
with similar endpoint degrees due to the lack of choice. On
the other hand, the PGD strategy gives larger changes to
graphs with higher variance in degree distribution, suggest-
ing the existence of low degree nodes or non-uniform degree
distributions that are more vulnerable to adversarial attacks.

In summary, our bounds suggest that filters are robust when
we modify edges where the endpoint degrees are high and
that the perturbation is distributed across the graph. BA
graphs of n nodes have a small diameter that grows asymp-
totically O(log n/ log log n) (Bollobás & Riordan, 2004).
Consequentially, in our experiments on small BA graphs,
most edges that are added and deleted are in close proximity.
Furthermore, BA graphs have a power-law degree distribu-
tions. This type of graph model allows us to control for the
distribution of the perturbation and observe instead how the
endpoint degrees change across strategies. One can see how
PGD tends to target small-degree nodes whereas Robust
targets edges connected to the large-degree hubs (Fig. 4).

We finally control for the degree distribution by consider-
ing K-regular graphs. In Fig. 5 we can see that Robust

PGD

Edge addition
Edge deletion

Robust

Figure 4. Perturbations of BA graphs (n = 50). The original and
both perturbed graphs have a diameter of 5. The size of the node
is proportional to the node degree.

PGD

Edge addition
Edge deletion

Robust

Figure 5. Perturbations of 3-regular graphs (n = 50).
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deletes and adds edges between nodes in a distributed man-
ner, whereas PGD tends to add edges that are adjacent to
each other. This verifies the insight from the bound in terms
of robustness with respect to spatial distribution of perturba-
tion.

7. Discussion
In this work, we develop novel interpretable bounds to help
elucidate certain types of perturbations against which spec-
tral graph filters are robust. We show that filters are robust
when we modify edges where the endpoint degrees are high,
and the perturbation is distributed across the graph. Al-
though these bounds are likely to be loose in practice, they
provide qualitative insight which we validate through exten-
sive experiments.

We believe that our work can be used in future research
to investigate further the stability of graph-based machine
learning algorithms. Studying additional perturbation mod-
els beyond edge deletion/addition, relaxing the assumption
on αu, allowing nodes to become isolated, and considering
perturbation to node features, may all increase the appli-
cability of the framework to practical scenarios. Further
statistical investigation into how much the role of degree
and edge locality effect stability is an important future di-
rection. Considering weighted graphs is another natural
extension of the proposed bounds. Our study is limited to
a single fixed filter operating on a particular class of graph
shift operator. Extension to a wide range of graph-based ma-
chine learning models that might contain multiple spectral
graph filters as building blocks is a clear avenue for future
research. One such example are graph neural networks,
where understanding the stability with respect to perturba-
tions might have positive implications for designing more
robust architectures.
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