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Abstract
Individuals, or organizations, cooperate with or
compete against one another in a wide range of
practical situations. Such strategic interactions
are often modeled as games played on networks,
where an individual’s payoff depends not only on
her action but also on that of her neighbors. The
current literature has largely focused on analyzing
the characteristics of network games in the sce-
nario where the structure of the network, which is
represented by a graph, is known beforehand. It
is often the case, however, that the actions of the
players are readily observable while the underly-
ing interaction network remains hidden. In this
paper, we propose two novel frameworks for learn-
ing, from the observations on individual actions,
network games with linear-quadratic payoffs, and
in particular the structure of the interaction net-
work. Our frameworks are based on the Nash
equilibrium of such games and involve solving a
joint optimization problem for the graph structure
and the individual marginal benefits. Both syn-
thetic and real-world experiments demonstrate the
effectiveness of the proposed frameworks, which
have theoretical as well as practical implications
for understanding strategic interactions in a net-
work environment.

1. Introduction
We live in an increasingly connected society. First studied
by the American sociologist Stanley Milgram via his 1960s
experiments and later popularized by John Guare’s 1990
eponymous play, the theory of "six degrees of separation"
has been recently re-analyzed on the social networking site
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Facebook, only to find out that any pair of Facebook users
can actually be connected via approximately three and a half
other ones (Backstrom et al., 2012). Individuals, unsurpris-
ingly, are not merely connected; their decisions and actions
often influence the ones around them. Indeed, Christakis
and Fowler (Christakis & Fowler, 2009) have found in a
series of studies that, one’s emotion, health habit, and po-
litical opinion can affect individuals who are as far as three
degrees of separation in her social circle. Furthermore, such
influence on the decision-making process may take place
via either explicit (Aral et al., 2009; Leng et al., 2018) or
implicit interactions (Bandura & McClelland, 1977; Dong
et al., 2018).

To study the decision-making of a group of interacting
agents, recent literature in economics has increasingly fo-
cused on the modeling of such interactions as games played
on networks (Jackson & Zenou, 2014; Bramoullé & Kran-
ton, 2016). The underlying assumption in this setting is
that, in a game played by a group of players who form a
social network, the payoff of a player depends on her action,
e.g., an effort made to achieve a specific task, as well as
that of her neighbors in the network. Two types of actions
have been studied in the literature, i.e., strategic comple-
ments and strategic substitutes. In the former case, one’s
action increases her neighbors’ incentives for action, e.g.,
students putting an effort together into a joint assignment
or firms working on a collaborative research project (Goyal
& Moraga-Gonzaléz, 2001). In the latter case, however,
the situation is the opposite, such as the scenarios of firms
competing on market prices or individuals on local public
goods (Bramoullé & Kranton, 2007).

In a network game, the underlying structure of the network
carries critical information and dictates the behavior and
actions of the players. Typically, graphs are used as math-
ematical tools to represent the structure of these networks,
and the current literature in this area has predominately fo-
cused on studying the characteristics of games on known or
predefined graphs (Ballester et al., 2006; Bramoullé et al.,
2014; Galeotti et al., 2017). However, it is increasingly
common that while ample observations on the actions of
the agents are available, the underlying complex relation-
ships among them, which may be captured by an interaction
network, remain mostly hidden due to cost in observation
or privacy concern. In this case, the network needs to be
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estimated to better understand the present and predict the
future actions of these agents. The primary goal of this pa-
per is, therefore, to study the problem of learning, given the
observations on the actions of the agents, a graph structure
that best explains the observed actions in the setting of a
network game.

Such a problem, generally speaking, may be thought of as
an instance of the ones of learning relationships, often in the
form of graph structures, from observations made on a set of
data entities. Classical approaches from the machine learn-
ing and signal processing communities tackle this problem
by building statistical models (e.g., probabilistic graphical
models (Koller & Friedman, 2009; Friedman et al., 2008)),
physically-motivated models (e.g., diffusion processes on
networks (Gomez-Rodriguez et al., 2010; Gomez-Rodriguez
et al., 2011)), or more recently signal processing models
(Dong et al., 2019; Mateos et al., 2019). These approaches,
however, do not take into account the game-theoretic aspect
of the decision-making of players in a network environment.

In the computer science literature, network games are known
as graphical games (Kearns et al., 2001), and there have
been a few studies recently on learning the games from ob-
served action data. For example, the works in Irfan & Ortiz
(2014); Honorio & Ortiz (2015); Ghoshal & Honorio (2016;
2017) have proposed to learn graphical games by observing
actions from linear influence games with linear influence
functions, where Ghoshal & Honorio (2018) has considered
polymatrix games with pairwise matrix payoff functions.
The work in Garg & Jaakkola (2016) has proposed to learn
potential games on tree-structured networks of symmetric
interactions. These conditions have been relaxed in Garg &
Jaakkola (2017) where the authors have studied aggregative
games where a player’s payoff is convex and Lipschitz in
an aggregate of their neighbors’ actions defined via a local
aggregator function. All these works, however, either con-
sider a binary or a finite discrete action space, which may be
restrictive in certain practical scenarios where actions take
continuous values. Very recently, Barik & Honorio (2019)
has considered learning continuous-action graphical games,
which is similar in spirit to our study albeit under a slightly
different action (which is budgeted) and payoff setting.

In this study, we focus on learning games with linear-
quadratic payoffs (Ballester et al., 2006; Bramoullé et al.,
2014; Acemoglu et al., 2015; Galeotti et al., 2017). We
propose a learning framework where, given the Nash equi-
librium action of the games, we jointly infer the graph struc-
ture that represents the interaction network as well as the
individual marginal benefits. We further develop a second
framework by considering the homophilous effect of indi-
vidual marginal benefits in the interaction network. The first
framework involves solving a convex optimization problem,
while the second leads to a non-convex one for which we

develop an algorithm based on alternating minimization.
We test the performance of the proposed algorithms in in-
ferring graph structures for network games and show that it
is superior to the baseline approaches of sample correlation
and regularized graphical Lasso (Lake & Tenenbaum, 2010),
albeit developed for slightly different learning settings.

The main contributions of the paper are as follows. First,
the proposed learning frameworks, to the best of our knowl-
edge, are the first to address the problem of learning the
graph structure of the broad class of network games with
linear-quadratic payoffs and continuous actions. Second,
our framework also allows for the inference of marginal
benefits of the players which permits a range of applica-
tions such as target interventions. Third, we analyze several
factors in the quadratic games that affect the learning per-
formance, such as the strength of strategic complements or
substitutes, the topological characteristics of the networks,
and the homophilous effect of individual marginal benefits.
Overall, our paper constitutes a theoretical contribution to
the studies of network games and may shed light on the
understanding of strategic interactions in a wide range of
practical scenarios, including business, education, gover-
nance, and technology adoption.

2. Network Games of Linear-Quadratic
Payoffs

Consider a weighted network of N individuals represented
by a graph G(V, E), where V and E denote the node and
edge sets, respectively. For any pair of individuals i and j,
Gij = Gji > 0 if (i, j) ∈ E and Gij = Gji = 0 otherwise,
where Gij is the ij-th entry of the adjacency matrix G. In
a network game of linear-quadratic payoffs, an individual i
chooses her action ai to maximize her payoff, ui, which has
the following form (Ballester et al., 2006; Bramoullé et al.,
2014; Galeotti et al., 2017; Acemoglu et al., 2015):

ui = biai −
1

2
a2i + βai

∑
j∈V

Gijaj . (1)

In Eq. (1), the first term is contributed by i’s own action
where the parameter bi is called the marginal benefit, and
the third term comes from the peer effect weighted by the
actions of her neighbors. The parameter β captures the
nature and the strength of such peer effect: if β > 0, actions
are called strategic complements; and if β < 0, actions are
called strategic substitutes.

The quadratic game with payoff function in Eq. (1) rep-
resents a broad class of games that have been extensively
studied in the literature, and has a number of desirable prop-
erties. First, it naturally allows for continuous actions (i.e.,
ai is considered to be continuous); second, it can be used for
modelling games of both strategic complements and substi-
tutes, i.e., positive and negative spillover effect; third, it may
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also be used to approximate games with complex non-linear
payoffs. For these reasons, games of linear-quadratic pay-
offs have been used to analyse crime activity, educational
outcome, firm cooperation, and urban dynamics just to name
a few (Jackson & Zenou, 2014).

One important advantage of the game in Eq. (1) is that it
allows for an explicit solution for equilibrium behavior as a
function of the network. To see this, let us define the vecto-
rial forms a = [a1, a2, · · · , aN ]T , b = [b1, b2, · · · , bN ]T ,
and u = [u1, u2, · · · , uN ]T , where we use the convention
that the subscript i indicates the i-th entry of the vector. Tak-
ing the first-order derivative of the payoff ui with respect to
the action ai in Eq. (1), we have:

∂ui
∂ai

= bi − ai + β(Ga)i. (2)

Combining Eq. (2) for all i, it is clear that the following
relationship holds, as pointed out in Ballester et al. (2006),
for any (pure strategy) Nash equilibrium action a:

(I− βG) a = b, (3)

hence
a = (I− βG)

−1
b, (4)

where I ∈ RN×N is the identity matrix. We adopt the
critical assumption that the spectral radius of the matrix
βG, denoted by ρ(βG), is less than 1, which guarantees
the inversion of Eq. (4). Furthermore, as proved in Ballester
et al. (2006), this assumption also ensures the uniqueness
and stability of the Nash equilibrium action a.

The equilibrium action a can be rewritten as a =∑∞
p=0 β

pGpb, and therefore has the following interpre-
tations. If b is the all-one vector, then each entry of a is the
Katz-Bonacich centrality (Katz, 1953; Bonacich, 1987) of
the corresponding node, i.e., the number of walks of any
length p originated from that node discounted exponentially
by β. As pointed out in Jackson & Zenou (2014), interest-
ingly, this means despite the local neighborhood relationship
in Eq. (1) the payoff interdependency actually spreads in-
directly throughout the network. On the other hand, the
formulation of Eq. (4) can also be interpreted as computing
steady-state opinions in studying opinion dynamics under a
linear DeGroot model (DeGroot, 1974) and has been used
in works on social network sensing (Wai et al., 2016).

From a different perspective, notice that G is a real and sym-
metric matrix hence has the following eigendecomposition:
G = χΛχT . Plugging this into Eq. (4), the equilibrium
action a can then be rewritten as a = χ(I − βΛ)−1χTb.
Treating the marginal benefit b as a signal defined on the
node set of the graph, the operation χTb can be interpreted
as a Fourier-like transform for b according to the graph sig-
nal processing literature (Ortega et al., 2018). Given that the

eigenvector associated with the largest/smallest eigenvalue
of G is the most smooth/non-smooth hence corresponds to
low-/high-frequency signal on the graph, the action a can
thus be interpreted as a low-pass filtered version of b for
β > 0, and a high-pass filtered version of it for β < 0. This
matches our intuition that equilibrium action tends to be
smooth on the interaction network for the case of strategic
complements, and non-smooth for strategic substitutes.

3. Learning Games with Independent
Marginal Benefits

Given the graph with an adjacency matrix G, the marginal
benefits b, and the parameter β, Eq. (4) provides a way of
computing a, the Nash equilibrium action of the players.
The graph structure, in many cases, can be naturally chosen
from the application domain, such as a social or business
network. However, these natural choices of graphs may not
necessarily describe well the strategic interactions between
the players, and a natural graph might not be easy to define
at all in some applications. Compared to the underlying
relationships captured by G, it is often easier to observe the
individual actions a, such as the amount of effort committed
by students in a joint course project, or the strategic moves
made by firms in an industrial setting. In these cases, given
the actions and the dependencies described in Eq. (1), it is
therefore of considerable interest to infer the structure of
the graph on which the game is played, hence revealing the
hidden relationships between the players.

3.1. Learning Framework

We consider N players, connected by a fixed interaction net-
work G, playingK different and independent games in each
of which their payoffs depend not only on their own actions
but also that of their neighbors1. Let us define the marginal
benefits for these K games as B = [b(1),b(2), · · · ,b(k)] ∈
RN×K , where each column of B is the marginal benefit
vector for one game, and the corresponding actions of the
players as A = [a(1),a(2), · · · ,a(K)] ∈ RN×K . We first
consider in this section the case where, for each game, the
marginal benefits of individual players follow independent
and identical Gaussian distributions, and then address in
Section 4 the dependent case. The parameter that captures
the strength of the network effect, β, can be either positive
or negative, corresponding to strategic complements and
strategic substitutes, respectively. Notice that we assume a
fixed beta for all games in the current setting, which implies
that: 1) the relationship between a player and her neighbors
remains the same for all players (either complements or sub-

1The setting of K games of scalar actions could also be inter-
preted as one game with aK-dimensional action, in which case the
assumption is that each dimension of the player’s action satisfies
the equilibrium condition.
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stitutes); 2) the contribution to the individual payoff from
the neighbors is scaled by a beta for all players. A more
flexible setting for the β parameter could be an interesting
future direction.

Given the observed actions A and the parameter β, the
goal is to infer a graph structure G as well as the marginal
benefits B, which best explain A in terms of the relationship
in Eq. (3). To this end, we propose the following joint
optimization problem of G and B:

min
G,B

f(G,B)

=||(I− βG)A−B||2F + θ1||G||2F + θ2||B||2F ,
s.t. Gij = Gji, Gij ≥ 0, Gii = 0 for ∀i, j ∈ V,
||G||1 = N,

(5)

where || · ||F and || · ||1 denote the Frobenius norm and
element-wise L1-norm of a matrix, respectively, and θ1 and
θ2 are two non-negative regularization parameters. The first
line of constraints ensures that G is a valid adjacency matrix,
and the second constraint (the constraint on the L1-norm)
fixes the volume of the graph and permits to avoid trivial
solutions. Without loss of generality the volume is chosen
to be N . It is clear that, in the problem of Eq. (5), we aim at
a joint inference of the graph structure G and the marginal
benefits B, such that the observed actions A are close to the
Nash Equilibria of the K games played on the graph. The
Frobenius norm on G is added as a penalty term to control
the distribution of the edge weights of the learned graph (the
off-diagonal entries of G)2, which, together with the L1-
norm constraint, bears similarity to the linear combination
of L1 and L2 penalties in an elastic net regularization (Zou
& Hastie, 2005).

The effectiveness of the formulation in Eq. (5) depends on
ρ(βG). To see this, notice that under the assumption that b
is IID Gaussian, the equilibrium action a follows a Gaussian
distribution with covariance (I− βG)−2. If ρ(βG) is close
to zero, then a is almost independent from G, and it would
be difficult to infer G from a in this scenario. On the other
hand, if ρ(βG) is close to one, the covariance is dominated
by the eigenvector associated with the largest (when β > 0)
or smallest (when β < 0) eigenvalue of G. In this case,
the action a clearly contains information about G which
facilitates learning.

It can be seen from Eq. (5) that, comparing to the work in
Barik & Honorio (2019) which learns the neighbors for each
player separately via a regression framework, our approach
learns the network at once by solving a single optimization
problem. This difference is analogous to that between the
neighborhood selection of Meinshausen et al. (2006) and
the graphical Lasso of Friedman et al. (2008) in the context

2Similar constraints have been adopted in Hu et al. (2015);
Dong et al. (2016) for graph inference.

of covariance estimation.

3.2. Learning Algorithm

Given the non-negativity of Gij , we can re-write the con-
straint: ||G||1 = 1TG1 = N , where 1 ∈ RN is the all-one
vector. The constraints in Eq. (5) therefore form a convex
set. The problem of Eq. (5) is thus a quadratic program
jointly convex in B and G, and can be solved efficiently via
the interior point methods (Boyd & Vandenberghe, 2004).
In our experiments, we solve the problem of Eq. (5) using
the Python software package CVXOPT (Andersen et al.,
Version 1.2.0. Available at cvxopt.org, 2018). In case of
graphs of very large number of vertices, we can instead
use operator splitting methods, e.g., alternating direction
method of multipliers (ADMM) (Boyd et al., 2011), to find
a solution. The algorithm is summarized in Algorithm 1.

Algorithm 1 Learning Games with Independent Marginal
Benefits

Input: Actions A ∈ RN×K for K games, β, θ1, θ2
Output: Network G ∈ RN×N , marginal benefits B ∈
RN×K for K games
Solve for G and B in Eq. (5)
return: G, B

4. Learning Games with Homophilous
Marginal Benefits

A large number of studies in the literature of social sci-
ences and economics have analyzed the phenomenon of ho-
mophily in social networks, which describes that individuals
tend to associate and form ties with those that are similar to
themselves (McPherson et al., 2001; Jackson, 2010). Since
the marginal benefit vector b in each game can be thought
of as the individual preferences toward a particular action,
they may contribute, in the presence of the homophily effect,
to the formation of the interaction network on which the
game is played. The second formulation in our paper is,
therefore, to address the problem of learning games with
such homophilous marginal benefits.

4.1. Learning Framework

The homophily effect that is present in the marginal benefit
vector b implies that b as a signal defined on the graph is
relatively smooth, in the sense that nodes that are connected
share similar marginal benefits. This may be quantified by
the so-called Laplacian quadratic form on the graph:

bTLb =
1

2

∑
i,j∈V

Gij (bi − bj)2 , (6)

where L = diag(
∑

j∈V Gij)−G is the unnormalized (com-
binatorial) graph Laplacian matrix (Chung, 1997). We there-
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fore propose to replace the norm on B with this measure in
the objective function of Eq. (5) to promote homophilous
marginal benefits. This essentially assumes that the marginal
benefits follow a multivariate Gaussian distribution with the
precision matrix being the graph Laplacian. This leads to
the following optimization problem:

min
G,B

h(G,B)

=||(I− βG)A−B||2F + θ1||G||2F + θ2 tr(BTLB),

s.t. Gij = Gji, Gij ≥ 0, Gii = 0 for ∀i, j ∈ V,
||G||1 = N,

L = diag(
∑
j∈V

Gij)−G,

(7)

where tr(·) denotes the trace operator. The third term in
the objective is the sum of the Laplacian quadratic form for
all the columns in B, and the third constraint comes from
the definition of the graph Laplacian L. Like in Eq. (5),
θ1 and θ2 are two non-negative regularization parameters.
The problem of Eq. (7) is similar to that of Eq. (5), but
with a different assumption that there exists the effect of
homophily in the marginal benefits b, whose strength is
controlled by the regularization parameter θ2, i.e., a larger
θ2 favors a stronger homophily effect, and vice versa.

4.2. Learning Algorithm

Unlike the problem of Eq. (5), the problem of Eq. (7) is
not jointly convex in G and B due to the third term in
the objective function. We, therefore, adopt an alternating
minimization scheme to optimize for the graph structure G
and the marginal benefits B where, at each step, we solve
for one variable while fixing the other.

Given B, we first solve for G in Eq. (7). The constraints on
G in Eq. (7) are the same as that in Eq. (5) and thus convex.
Since θ1 ≥ 0 and θ2 ≥ 0, fixing B and solving for G re-
sults in a strongly convex objective, and consequently the
problem admits a unique solution. We again solve this con-
vex quadratic program using the package CVXOPT. Next,
we fix G and solve for B in Eq. (7). By fixing G, Eq. (7)
becomes an unconstrained convex quadratic program, and
thus admits a closed-form solution which can be obtained
by setting the derivative to zero:

∂h(G,B)

∂B
= −2

(
(I− βG)A−B

)
+ 2θ2LB = 0, (8)

hence
B = (I + θ2L)−1(I− βG)A. (9)

We iterative between the two steps until either the change
in the objective h(G,B) is smaller than 10−4, or a maxi-
mum number of iterations has been reached. This strategy is

called block coordinate descent (BCD) and, since both sub-
problems are strongly convex, is guaranteed to converge to a
local minimum (see Proposition 2.7.1 in Bertsekas (1995)).
The complete algorithm is summarized in Algorithm 2.

Algorithm 2 Learning Games with Homophilous Marginal
Benefits

Input: Actions A ∈ RN×K for K games, β, θ1, θ2
Output: Network G ∈ RN×N , marginal benefits B ∈
RN×K for K games
Initialize: B0(:, k) ∼ N (0, I) for k = 1, · · · ,K, t = 1,
∆ = 1
if ∆ ≥ 10−4 and t ≤ # iterations then

Solve for Gt in Eq. (7) given Bt−1
Compute Lt using Gt

Bt = (I + θ2Lt)
−1(I− βGt)A

∆ = |h(Gt,Bt)− h(Gt−1,Bt−1)| (for t > 1)
t = t+ 1

end if
return: G = Gt,B = Bt.

5. Experiments on Synthetic Data
In this section, we evaluate the performance of the proposed
learning frameworks on synthetic networks that follow three
types of random graph models, i.e., the Erdős–Rényi (ER),
the Watts-Strogatz (WS), and the Barabási-Albert (BA) mod-
els. In the ER graph, an edge is created with a probability
of p = 0.2 independently from all other possible edges. In
the WS graph, we set the average degree of the vertices to
be k = blog2(N)c, with a probability of p = 0.2 for the
random rewiring process. Finally, in the BA graph, we add
m = 1 new node at each time by connecting it to an existing
node in the graph via preferential attachment. All the graphs
have N = 20 vertices in our experiments. Once the graphs
are constructed, we compute β > 0 such that the spectral
radius, ρ(βG), varies between 0 and 1 hence satisfying the
assumption in Section 2.

We adopt two different settings, one for generating the in-
dependent marginal benefits b and the other for the ho-
mophilous b. In the independent case of Section 3, for each
game, we generate realizations by considering b ∼ N (0, I).
In the homophilous setting of Section 4, we generate realiza-
tions by considering b ∼ N (0,L†), where L† is the Moore-
Penrose pseudoinverse of the groundtruth graph Laplacian L.
In both cases we further add Gaussian noise ε ∼ N (0, 1

10I)
to the simulated marginal benefits. Now, given b and β, we
compute the players’ Nash equilibrium action a according
to Eq. (4). We consider K = 50 games for each of which
we generate the action a.

We apply Algorithm 1 and Algorithm 2 to the respective
settings to infer graph structures and compare against the
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groundtruth ones in a scenario of binary classification, i.e.,
either there exists an edge between i and j (positive case),
or not (negative case). Since the ratio of positive cases
is small for all the three types of graphs, we use the area
under the curve (AUC) for the evaluation of the learning
performance. We compare our algorithms with two baseline
methods for inferring graph structures given data observa-
tions: the sample correlation and the regularized graphical
Lasso in Lake & Tenenbaum (2010). In the former case we
consider the correlations between each pair of variables as
"edge weights" in a learned graph, while in the latter case a
graph adjacency matrix is computed as in our algorithms.

Notice that in the synthetic experiments, we focus on the
case of strategic complements, i.e., β > 0, to facilitate a fair
comparison with the two baselines that only apply to this
case. Our methods therefore also have the unique advantage
of dealing with the case of strategic substitutes, i.e., β < 0.

5.1. Comparison of Learning Performance

The performance of the three methods in comparison is
shown in Fig. 1 (top) for the case of independent marginal
benefits. For Algorithm 1 and regularized graphical Lasso,
we report the results using the parameter values that give
the best average performance over 20 randomly generated
graph instances3. First, we see that the performance of all
the three methods increases with the spectral radius ρ(βG)
for the majority of the cases. This pattern indicates that
stronger strategic dependencies between actions of potential
neighbors reveal more information about the existence of the
corresponding links. Indeed, as ρ(βG) increases, the action
matrix A contains more information about the graph struc-
ture as explained in Section 3.1. Second, the performance
of the proposed Algorithm 1 generally outperforms the two
baselines in terms of recovering the locations of the edges of
the groundtruth. Notice that for regularized graphical Lasso,
the performance drops with a larger value for ρ(βG). One
possible explanation is that, as ρ(βG) becomes close to 1,
the smallest eigenvalue of I− βG approaches 0 resulting
in a large ratio between the smallest and the largest eigen-
values of the empirical covariance of a, which may lead to
inaccurate estimation of the precision matrix in the graph-
ical Lasso. In comparison, our method does not seem to
be affected by such phenomenon. Finally, the performance
of all the methods for the WS and BA graphs is generally
better than that of the ER graphs, possibly because there
exists more structural information in the former models than
the latter.

The same results for the case of homophilous marginal
benefits are shown in Fig. 1 (bottom). We observe the
same increase in performance as ρ(βG) increases for all the

3Analysis of robustness of performance against regularization
parameters is presented in Supplementary Material.

three methods, as well as the drop in performance towards
large ρ(βG) for regularized graphical Lasso. The proposed
Algorithm 2 generally achieves superior performance in this
scenario, which is expected due to the way the observations
A are generated taking into account the regularization term
in the objective in Eq. (7) that enforces homophily.

5.2. Learning Performance with Respect to Different
Factors in Network Games

We now examine the performance of Algorithm 2 with re-
spect to a number of factors, including the number of games,
the noise intensity, the structure of the groundtruth network,
and the strength of the homophily effect in marginal ben-
efits (in Supplementary Material). The same results for
Algorithm 1 are presented in Supplementary Material.

Number of games. We are first interested in understanding
the influence of the number of games K on the learning per-
formance. In the following and all subsequent analyses, we
choose ρ(βG) = 0.6, and fix the parameters in Algorithm 2
to be the ones that lead to the best learning performance. In
Fig. S3 (top), we vary the number of games and evaluate
its effect on the performance. We see that in general, the
performance of the algorithm increases, as more observa-
tions become available. The benefit is least obvious for the
ER graph, suggesting that adding more observations does
not help as much in improving the performance in this case
when the edges in the graph appear more randomly.

Noise intensity in the marginal benefits. We now analyze
the robustness of the result against noise intensity in the
marginal benefits. With more noise in the marginal benefits,
the observed actions A becomes noisier as well, hence
possibly affecting the learning performance. As shown
in Fig. S3 (bottom), the learning performance generally
decays as the intensity of noise increases, which is expected.
The performance of the model is relatively stable until the
standard deviation of the noise becomes larger than 1.

Network structure. The random graphs used in our experi-
ments have parameters that may affect the performance of
the proposed algorithms. We, therefore, analyze the effect
of p in the ER, k in the WS, and m in the BA graphs on
the learning performance of the proposed algorithm. The
larger these parameters, the higher the edge density in these
random graph models. As shown in Fig. 2, the density of
edges has a substantial effect on the learning performance
for all the networks, i.e., the denser the edges, the worse the
performance. One possible explanation is that, in a sparse
network the correlations between individuals’ actions might
contain more accurate information about the existence of
dependencies hence edges between them, while in a dense
network the influence from one neighbor is often mingled
with that from another, which makes it more challenging to
uncover pairwise dependencies.
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Figure 1: Performance of the proposed algorithm and baselines in the setting of independent (top) and homophilous (bottom)
marginal benefits. The red triangle, the middle line, lower and upper boundaries of the box (interquartile range or IQR)
correspond to mean, median, and 25/75 percentile of the data, respectively. The lower and upper whiskers extend maximally
1.5 times of IQR from 25 percentile downwards and 75 percentile upwards, respectively.

Figure 2: Performance of Algorithm 2 versus structural properties of the network.

5.3. Learning the Marginal Benefits

In our framework, we jointly infer the graph structure and
the marginal benefits of the players. This is one of the
main advantages of our algorithms, since the inference of
marginal benefits can be critical for targeting strategies and
interventions (Galeotti et al., 2017). To test the performance
of learning marginal benefits, for each random graph model,
we generate a network with 20 nodes and simulate 50 games
with ρ(βG) = 0.6, for both independent and homophilous
marginal benefits. We repeat this process for 30 times, and
report the average performance of learning the marginal
benefits in Table 1. The performance is measured in terms
of the coefficients of determination (R2), by treating the
groundtruth and learned marginal benefits (both in vector-
ized form) as dependent and independent variables, respec-

tively. As we can see, in both cases the R2 values are above
0.9, which indicates that the learned marginal benefits are
very similar to the groundtrith ones.

Table 1: Performance (R2) of learning marginal benefits.

Algorithm 1 Algorithm 2
mean std mean std

ER graph 0.959 0.005 0.982 0.002
WS graph 0.955 0.007 0.921 0.010
BA graph 0.937 0.008 0.909 0.010

6. Experiments on Real-World Data
The strategic interactions between players in real-world
situations may follow the formulation of network games.
Given this broad assumption, we present three examples
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of inferring the network structure in quadratic games in
practical scenarios, e.g., the inference of social, trade, and
political networks.

6.1. Social Network

We first consider inferring a social network between house-
holds in a village in rural India (Banerjee et al., 2013). In
particular, following the setting in Banerjee et al. (2013),
we consider the actions of each household as choosing the
number of rooms, beds, and other facilities in their houses.
The assumption is that there may exist strategic interactions
between these households regarding constructing such fa-
cilities. In particular, when deciding to adopt new technolo-
gies or innovations, people have an incentive to conform
to the social norms they perceive (Young, 2009; Monta-
nari & Saberi, 2010), which are formed by the decisions
made by their neighbors. For example, if neighbors adopt
a specific facility, villagers tend to gain higher payoff after
adopting the same facility by complying with social norms
(i.e., strategic complements).

We consider each action as a strategy in a quadratic game,
and we have 31 games with discrete actions made by 182
households. We then apply the proposed algorithms to infer
the relationships between these households, and compare
against a groundtruth network of self-reported friendship.
Since we do not observe β, we treat it as a hyperparameter,
and tune it within the range of β ∈ [−3, 3]. It can be seen
from Table 2 that both of the proposed methods outperform
regularized graphical Lasso by about 2.5% and sample cor-
relation by about 10.7%4, indicating that they can recover a
social network structure closer to the groundtruth.

6.2. Trade Network

We next consider inferring a global trade network. Specifi-
cally, we consider the overall trading activities of 235 coun-
tries on 96 export products and 96 import products in the
year 2008 as our observed actions5. This leads to 192 games
(for both import and export actions) played by 235 agents
(countries). By applying the proposed algorithms, we infer
the relationships among nations regarding their strategic
trading decisions and compare against a groundtruth, which

4The improvement is calculated by the absolute improvement
in AUC normalized by the room for improvement. The best per-
formance of Algorithm 1 is obtained with β = 0.1, θ1 = 2−8.5,
and θ2 = 21, while that of Algorithm 2 is obtained with β = 2.6,
θ1 = 27, and θ2 = 2−5.5. The positive sign of β in both cases indi-
cates a strategic complement relationship between the households,
which is consistent with our hypothesis.

5Data can be accessed via https://atlas.media.mit.
edu/en/resources/data/. The trading activities are classi-
fied by the 2002 edition of the HS (Harmonized System).

is the trading network in year 20026. In constructing the
groundtruth, we consider the edge weight between each pair
of nations as the logarithmic of the total amount of trades
(import plus export) between the two nations.

In the groundtruth trade network, each nation is connected
with the ones with which it traded in 2002. This implies that
the nation has different demand and supply compared to its
neighbors, and their import and export actions tend to be
different in the near future. Therefore, we expect a strategic
substitute relationship between the nations when looking at
their import and export activities in 2008.

We tune β within the range of β ∈ [−1, 1]. Table 2 shows
that Algorithm 1 and Algorithms 2 outperform regularized
graphical Lasso by 12.09% and 24.85%, respectively7. The
larger performance gain in this case is due to the fact that
both sample correlation and regularized graphical Lasso
are suitable only for strategic complement and not strategic
substitute relationships. Furthermore, Algorithm 2 performs
better than Algorithm 1 in this example, which implies a
homophilous distribution of marginal benefits across neigh-
boring nations.

Table 2: Performance (AUC) of learning the structure of the
social network and the trade network.

Social network Trade network
Sample correlation 0.525 0.523
Regularized graphical Lasso 0.564 0.570
Algorithm 1 0.575 0.622
Algorithm 2 0.576 0.677

6.3. Political Network

The third real-world example we considered is the inference
of the relationship between the cantons in Switzerland in
terms of their political preference. To this end, we consider
voting statistics from the national referendums for 37 federal
initiatives in Switzerland between 2008 and 20128. Specifi-
cally, we consider the percentage of voters supporting each
initiative in the 26 Swiss cantons as the observed actions.
This leads to 37 games (initiatives) played by 26 agents
(cantons). By applying the proposed algorithms, we infer
a network that captures the strategic political relationship

6The trading network from previous years provides a founda-
tion for nations to make decisions and thus can be thought of as
a groundtruth. The year 2002 is the latest year before 2008 for
which trading data are available.

7The best performance of Algorithm 1 is obtained with β =
−0.6, θ1 = 21, and θ2 = 2−10, and that of Algorithm 2 is
obtained with β = −0.7, θ1 = 211.5, and θ2 = 2−15.5. The
negative sign of β in both cases indicates a strategic substitute
relationship between the nations, which is consistent with our
hypothesis.

8The voting statistics were obtained via http://www.
swissvotes.ch.

https://atlas.media.mit.edu/en/resources/data/
https://atlas.media.mit.edu/en/resources/data/
http://www.swissvotes.ch.
http://www.swissvotes.ch.
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Figure 3: Clustering of Swiss cantons based on the political network learned by Algorithm 1 (left) and Algorithm 2 (right).

between these cantons reflected by their votes in the national
referendums9.

Unlike the previous examples, it is more difficult to define
a groundtruth network in this case. Instead, we apply spec-
tral clustering (von Luxburg, 2007) to the learned network
and interpret the obtained clusters of cantons. The three-
cluster partition of the networks learned by Algorithm 1
and Algorithm 2 are presented in Fig. 3. As we can see,
the clusters obtained in the two cases are largely consistent,
with the blue and yellow clusters generally corresponding
to the French-speaking and German-speaking cantons, re-
spectively. The red cluster, in both cases, contains the five
cantons of Uri, Schwyz, Nidwalden, Obwalden and Appen-
zell Innerrhoden, which are all considered among the most
conservative ones in Switzerland. This demonstrates that
the learned networks are able to capture the strategic depen-
dence between cantons within the same cluster, which tend
to vote similarly in national referendums.

7. Discussion
In this paper, we have proposed two novel learning frame-
works for joint inference of graph structure and individ-
ual marginal benefits for a broad class of network games,
i.e., games with linear-quadratic payoffs. We believe that
the present paper may shed light on the understanding of
network games (in particular those with linear-quadratic
payoffs), and contribute to the vibrant literature of learning
hidden relationships from data observations.

The proposed approaches can benefit a wide range of prac-

9We tune β within the range of [−1, 1]. For Algorithm 1 we
report results with β = 0.6, θ1 = 2−6.2, and θ3 = 2−1.65. For
Algorithm 2 we report results with β = 0.67, θ1 = 22, and
θ2 = 23. The positive sign of β in both cases indicates a strategic
complement relationship between the cantons.

tical scenarios. For instance, the learned graph, which cap-
tures the strategic interactions between the players, may be
used for detecting communities formed by the players (For-
tunato, 2010). This can, in turn, be used for purposes such
as stratification. Another use case is to compute centrality
measures of the nodes in the network, which may help in de-
signing efficient targeting strategies in marketing scenarios
(Leng et al., 2020). Finally, the joint inference of the graph
and the marginal benefits can help a central planner who
wishes to design intervention mechanisms achieve specific
planning objectives. One such objective could be the max-
imization of the total payoffs of all players, which can be
done by adjusting, according to the network topology, the
marginal benefits via incentivization (Galeotti et al., 2017).
Another objective could be the reduction of inequality be-
tween the players in terms of their payoffs, which can be
done by adjusting network topology via encouraging the
formation of certain new relationships.

There remain many interesting directions to explore. For
example, building upon the promising empirical results pre-
sented in this paper, it would be important to study the theo-
retical guarantees of the proposed algorithms in recovering
the graph structure. It would also be interesting to consider
graph inference given partial or incomplete observations
of the actions, especially in the case where it is costly to
observe the actions of all the network players, or consider
a setting where the underlying relationships between the
players may evolve over time, which can be modeled by
dynamic graph topologies. Finally, the inference framework
might need to be adapted accordingly for network games of
different payoff functions. In this sense, it would be very in-
teresting to investigate the possibility of inferring the graph
structure in a purely date-driven fashion via a neural net-
work, without the explicit knowledge of the payoff function.
We leave these studies as future work.
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Vandergheynst, P. Graph signal processing: Overview,
challenges and applications. Proceedings of the IEEE,
106(5):808–828, 2018.

von Luxburg, U. A tutorial on spectral clustering. Statistics
and Computing, 17(4):395–416, 2007.

Wai, H.-T., Scaglione, A., and Leshem, A. Active sensing
of social networks. IEEE Transactions on Signal and
Information Processing over Networks, 2(3):406–419,
2016.

Young, H. P. Innovation diffusion in heterogeneous popu-
lations: Contagion, social influence, and social learning.
American economic review, 99(5):1899–1924, 2009.

Zou, H. and Hastie, T. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society,
Series B, 67(2):301–320, 2005.


	Introduction
	Network Games of Linear-Quadratic Payoffs
	Learning Games with Independent Marginal Benefits
	Learning Framework
	Learning Algorithm

	Learning Games with Homophilous Marginal Benefits
	Learning Framework
	Learning Algorithm

	Experiments on Synthetic Data
	Comparison of Learning Performance
	Learning Performance with Respect to Different Factors in Network Games
	Learning the Marginal Benefits

	Experiments on Real-World Data
	Social Network
	Trade Network
	Political Network

	Discussion



