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ABSTRACT

Graph neural networks are experiencing a surge of popularity within
the machine learning community due to their ability to adapt to non-
Euclidean domains and instil inductive biases. Despite this, their
stability, i.e., their robustness to small perturbations in the input, is
not yet well understood. Although there exists some results showing
the stability of graph neural networks, most take the form of an up-
per bound on the magnitude of change due to a perturbation in the
graph topology. However, the change in the graph topology captured
in existing bounds tend not to be expressed in terms of structural
properties, limiting our understanding of the model robustness prop-
erties. In this work, we develop an interpretable upper bound elu-
cidating that graph neural networks are stable to rewiring between
high degree nodes. This bound and further research in bounds of
similar type provide further understanding of the stability properties
of graph neural networks.

Index Terms— Graph signal processing, graph convolutional
neural networks, spectral graph filters, stability.

1. INTRODUCTION

Recently, there has been an increasing amount of research on the
use of machine learning models which operate on graph-structured
data [1, 2]. Graphs encode pairwise interactions and can help model
non-Euclidean data such as social networks and molecules as well as
impart inductive biases [3]. Graph signal processing (GSP), for ex-
ample, generalises traditional signal processing to network domains
allowing us to transfer many of the existing tools such as filtering and
sampling [4, 5]. GSP also allows us to generalise convolutions pro-
viding a framework to design graph convolutional neural networks
(GCNNs) where the convolutional layers are filter banks of spectral
graph filters [6, 7, 8]. To date, much of the research has focused on
the predictive performance of these models with far fewer studies
looking at their theoretical properties.

Like their Euclidean counterparts, GCNNs are susceptible to ad-
versarial attacks [9, 10, 11]. An adversarial attack is a small but tar-
geted perturbation of the input which causes large changes in the out-
put [12]. In the case of GCNNs, the modification of a few edges in
the input graph can change significantly the learned node representa-
tions so that the prediction in the downstream task, typically node or
graph classification, switches from a correct to incorrect prediction.
One approach to understanding the vulnerability of these models to
adversarial attacks is to consider their robustness against perturba-
tion. Robustness is an important property for reliable deployment
of machine learning models in the real world, especially in domains
where adversaries are common (e.g., on the web).

This work was supported by the EPSRC Centre for Doctoral Training in
Autonomous Intelligent Machines and Systems EP/L015897/1.

Existing literature has shown that large functional classes of
spectral graph filters, a key component of GCNNs, are bounded by
the magnitude of the change in the input graph. The main drawback
of these approaches is that the bounds involved in quantifying stabil-
ity to specific changes in the topology do not have natural structural
interpretations. For example, if we delete just a single edge, it is un-
clear how loose the bound on the output change will be even if we
know the statistical properties about the edge and endpoint nodes.

Our main goal is to extend bounds found in the existing liter-
ature so that they have an interpretation in terms of the structural
properties of the existing and perturbed graphs. To do this, we focus
on polynomial graph filters, and build on our previous work [13],
by providing a new bound that is tighter and generalises to the fam-
ily of normalised augmented adjacency matrices. We then bound
the change in normalised augmented adjacency matrix by consider-
ing the largest change around each node where the change admits
a structural interpretation. As a specific example, we consider per-
turbations that do not modify the degree distribution of the graph
(i.e., double edge rewiring, illustrated in Fig. 1). We then discuss
under which scenarios, deleting and adding edges between nodes,
guarantee the filter to be robust to perturbations. To demonstrate
how these theoretical results can be combined, we bound the change
in the representations learned by two well-known GCNN architec-
tures. Specifically, we consider simple graph convolutional networks
[14] and multilayered graph convolutional network [15] for scenar-
ios where the graph topology is perturbed using edge rewiring.

2. RELATED WORK

One of the earlier works on stability was by Levie et al [16]. In this
work, the authors give an upper bound of change which grows lin-
early in the distance between the graph shift operators before and af-
ter perturbation for a large class of spectral graph filters. The bound
is based on analysis in the Cayley smoothness space. Related to
this work, [13] also provides a linear bound for polynomial spec-
tral filters, where the bound is based on Taylor expansion for matrix
functions. In Sec. 4 we give a tighter bound for polynomial spectral
filters via a much simpler proof.

Gama et al. prove that a class of spectral graph filters are sta-
ble to changes in the graph topology [17]. Furthermore, GCNNs
using filters in this class as filter banks and ReLU nonlinearities are
also stable. The main difference between this work and the work
presented in this paper is on how the magnitude of perturbation is
measured. In [17] the authors posit that simple additive error as a
measure does not reflect the fact that the distance between isomor-
phic graphs can be non-zero. To address this concern they consider a
relative measure of perturbation and consider all node permutations
for the perturbed graph. We believe that the additive error approach
of [13, 16] and this work, which does not consider node permuta-
tions, and the approach of [17] are both useful. For example, if the
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graph represents a polygon mesh, then the node labelling in the per-
turbed graph does not have any meaningful interpretation, as they
are just used to construct matrix representations. In this case, con-
sidering permutations is appropriate. However, in a social network,
the node labelling will typically correspond to the identification of a
user, in which case it makes sense to consider the labelling as fixed
between the original and perturbed graph.

Beyond the notion of stability adopted in the aforementioned
studies, there are efforts to quantify alternative notions of stability
for graph-based models. An input to a classification model is certifi-
ably robust if for any perturbation, under a given perturbation model,
the predicted label will not change. Methods for generating robust-
ness certificates for nodes in semi-supervised learning tasks have re-
cently been proposed for graph neural networks [18, 19]. One can
also measure the stability of graph-based models by considering the
graph topology and signal as random variables and considering the
statistical properties of the model. For example, [20] proves that in
stochastic time-evolving graphs, the output of the filter behaves the
same as the deterministic filter in expectation. In [21], the authors
show how to deal with uncertainties in the graph topology to approx-
imate the original filtering process. In [22] stochastic graph neural
networks are proposed to account for training on a stochastic graph.
Unlike the existing approaches outlined in this section, to the best
of our knowledge, our work is one of the first to provide sufficient
conditions for stability that come with a structural interpretation.

3. PROBLEM FORMULATION

We consider unweighted and undirected graphs G = (V, E) where
V is a finite set of nodes and E is the edge set. The adjacency matrix
A encodes connections between nodes with Auv = 1 if there is an
edge between nodes u and v and zero otherwise. The degree du of a
node u is the number of nodes that u is connected to. A graph signal
is a function x : V → R that assigns a scalar value to each node.
By fixing a labelling of the nodes we can represent this as a vector
x ∈ Rn where xi is the function value of node i and n = |V| is
the number of nodes in the graph. We will be concerned with the
normalised augmented adjacency matrix ∆γ = D

−1/2
γ AγD

−1/2
γ

where Aγ = A + γI and Dγ = D + γI with γ ≥ 0. When γ = 0
this matrix is the normalised adjacency matrix. For simplicity, we
drop the γ subscript when the context is clear or the specific value of
γ is unimportant. We can write ∆ in terms of its entries as

∆uv =


γ

du+γ
if u = v

1√
(du+γ)(dv+γ)

if Auv = 1 and u 6= v

0 otherwise

. (1)

Normalised augmented adjacency matrices admit an eigende-
composition ∆ = UΛUᵀ where the columns of U are the or-
thonormal eigenvectors, and Λ = diag(λ1, . . . λn) where λ1 ≤
, . . . ,≤ λn is the diagonal matrix of eigenvalues. The graph Fourier
transform of a signal x is given by x̂ = Uᵀx, with the inverse graph
Fourier transform defined as x = Ux̂. With a notion of Fourier ba-
sis, a spectral graph filter is defined as a function g : R → R which
amplifies and attenuates specific frequencies. We can filter a sig-
nal by applying the filter to the graph shift operator (in this case ∆)
directly: U diag(g(λ1), . . . g(λn))U

ᵀx = Ug(Λ)Uᵀx = g(∆)x.
In this work ‖·‖2 represents the Euclidean norm when applied

to vectors and the operator norm when applied to matrices. We will
also consider the Frobenius norm ‖A‖2F =

∑
i,j A2

i,j , the matrix
one norm ‖A‖1 = maxi

∑
j |Aij | and the matrix infinity norm

‖A‖∞ = maxj
∑
i|Aij |. The eigenvalues of the normalised aug-

mented adjacency matrix lie in the interval [−1, 1]. Furthermore, 1
is always an eigenvalue so ‖∆‖2 = 1.

Given a graph G and a perturbed graph Gp with normalised
augmented adjacency matrices ∆ and ∆p respectively, our goal is
twofold. First, we want to understand the stability of spectral graph
filters in terms of structural perturbation, by providing bounds that
quantify the change in the output. Second, we want to find suffi-
cient conditions for this change to be small, by using interpretable
structural properties of the graphs and the perturbation. We address
the first goal in Sec. 4 and the second in Sec. 5. Furthermore, we
demonstrate how these theoretical contributions can be combined to
give insight into the stability of GCNNs. In Sec. 6, we combine the
results of Sec. 4 and Sec. 5 to show how we can provide sufficient
conditions for the stability of two popular GCNN architectures.

4. STABILITY OF POLYNOMIAL FILTERS

Our notion of stability is based on relative output distance which is
bounded by the filter distance

‖g(∆)x− g(∆p)x‖2
‖x‖2

≤ max
x6=0

‖g(∆)x− g(∆p)x‖2
‖x‖2

def
= ‖g(∆)− g(∆p)‖2. (2)

In [13] we bounded the filter distance of polynomial filters by some
constant times the error ‖E‖2, where the constant depends on the
filter and the error is the magnitude of the difference between nor-
malised Laplacian matrices. We say that by satisfying this condition
the filters are stable. Although the focus of this paper is not on tight
bounds, we improve this bound by finding a smaller constant for
polynomial filters. To do so we will use the following Lemma.

Lemma 1 (Lemma 3, [16]). Suppose B,D,E ∈ CN×N are Her-
mitian matrices satisfying B = D + E, and ‖B‖2, ‖D‖2 ≤ C for
some C > 0. Then for every l ≥ 0∥∥∥Bl −Dl

∥∥∥
2
≤ lCl−1‖E‖2.

From here on in we will write E = ∆p−∆ to be the difference
of normalised augmented adjacency matrices between a graph G and
a perturbed version of the graph Gp. The smaller constant is given
by the following proposition.

Proposition 1. Let ∆ and ∆p be the normalised augmented ad-
jacency matrix for G and Gp. Consider a polynomial graph filter
gθ(λ) =

∑K
k=0 θkλ

k. Then

‖gθ(∆)− gθ(∆p)‖2 ≤
K∑
k=1

k|θk|‖E‖2.

Proof. Using the triangle inequality followed by an application of
Lemma 1 with constant C = 1 we get

‖gθ(∆)− gθ(∆p)‖2 =

∥∥∥∥∥
K∑
k=1

θk(∆
k −∆k

p)

∥∥∥∥∥
2

≤
K∑
k=1

|θk|
∥∥∥∆k −∆k

p

∥∥∥
2
≤

K∑
k=1

k|θk|‖E‖2.
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In this work, we assume that the parameters of the model are
fixed before and after perturbation. In the adversarial learning liter-
ature, an attack that modifies the input to cause large changes in the
output whilst the model parameters are fixed is known as an evasion
attack [11]. Robust models in the context of our work are those that
are robust to evasion attacks with respect to the graph structure.

5. ROBUSTNESS TO EDGE REWIRING PERTURBATIONS

In this section we bound the error term ‖E‖2 by interpretable prop-
erties relating to the structural change. Consider a graph G which we
perturb to arrive at Gp. Our approach to upper bounding ‖E‖2 relies
on the inequality ‖E‖22 ≤ ‖E‖1‖E‖∞ [23, Section 6.3]. As E is
symmetric ‖E‖1 = ‖E‖∞ giving ‖E‖2 ≤ ‖E‖1. There may exist
strategies which give tighter bounds, but the benefit of this approach
to bounding the error term is that ‖E‖1 leads to an interpretation in
the structural domain. For a matrix E we write Eu as the uth col-
umn of E so Eᵀ

u is the uth row. The row Eᵀ
u corresponds to the

node u in the graph. By definition ‖E‖1 = maxu∈V‖Eᵀ
u‖1 where

‖Eᵀ
u‖1 =

∑
v|Euv| is the Manhattan norm of the row. Perturba-

tions which cause small changes to ‖Eᵀ
u‖1 over all nodes u guaran-

tee small change in terms of ‖E‖2.
The focus of this section is on developing an interpretable upper

bound on ‖E‖2. Before establishing an upper bound, we briefly
mention the following lower bound to the error term

max
i,j
|Eij |

def
= ‖E‖max ≤ ‖E‖2.

This lower bound gives us sufficient conditions for large values of
the error term. For example, deleting or adding an edge such that√

(du + γ)(dv + γ) is small (e.g., if both degrees are small) will
cause ‖E‖2 to be large. In these cases, our bound will be loose and
cannot provide guarantees about the filter robustness.

We aim to understand what type of perturbations spectral graph
filters may be robust to. As a specific example consider perturba-
tions that preserve the degree of the nodes. For this scenario we
can consider how the entries change from ∆ to ∆p by considering
Eq. (1) to write a closed-form for ‖Eᵀ

u‖1. We will write Au to be
the set of edges added around a node u andDu to be the set of edges
deleted around a node u. The diagonal entries of ∆ and ∆p remain
unchanged, and each edge deletion flips the entry from zero to the
second case of Eq. (1), whilst edge addition flips the entry the other
way. This insight lets us write ‖Eᵀ

u‖1 in closed-form as

‖Eᵀ
u‖1 =

∑
v∈Du

1√
(du + γ)(dv + γ)

+
∑
v∈Au

1√
(du + γ)(dv + γ)

=
1√

du + γ

(∑
v∈Du

1√
dv + γ

+
∑
v∈Au

1√
dv + γ

)
(3)

One such perturbation is edge rewiring that preserves degree dis-
tribution. We define double edge rewiring as a function of two edges
(u, v) and (u′, v′) such that u is not connected to u′ or v′ and simi-
larly v is not connected to u′ and v′. The operation consists of delet-
ing edges (u, v) and (u′, v′) and adding edges (u, u′) and (v, v′).
This operation is depicted graphically in Fig. 1. Although the pre-
cise definition of rewiring in this work is slightly different, the idea
of rewiring has been proposed as a strategy to make modifications
imperceptible in the context of topological adversarial attacks [24].
Approximately preserving the degree distribution has also been a cri-
terion used to define imperceptibility [9]. Beyond the adversarial at-
tack literature, double edge rewiring has been used to model changes

u

v

u′

v′

(a) Before rewiring

u

v

u′

v′

(b) After rewiring

Fig. 1: In the rewiring operation the red edges are deleted and the
blue edges are added. The degree of each node remains the same.

in a network where the capacity of a node is fixed and remains at full
load such as in communication networks [25].

We will write Ru to be the number of rewiring operations in-
volving u and write δu to be the smallest degree amongst either the
nodes u disconnects with or is now connected to. Each rewiring
causes a single edge deletion and edge addition for each node in-
volved so that the number of terms in each sum, the cardinality of
sets Du and Au, is Ru. Using this we can bound Eq. (3) to get that

‖Eᵀ
u‖1 ≤

1√
du + γ

(∑
v∈Du

1√
δu + γ

+
∑
v∈Au

1√
δu + γ

)

=
2Ru√

(du + γ)(δu + γ)
.

The largest possible value for the right hand side of the above
equation over all nodes u provides an upper bound for ‖E‖2. From
this, we can draw some conclusions as to when the filter will be
robust to rewiring operations. The first is that one should not rewire
around one node significantly as this will increaseRu. To keep ‖E‖1
small, and thus ‖E‖2 small, we must keep ‖Eᵀ

u‖1 small for all nodes
u suggesting the perturbation should be distributed across the graph.
Related to this observation, in [13] it was numerically demonstrated
that the locality of perturbations can play a role in the magnitude
of the error. The second strategy to ensure robustness is to rewire
between high degree nodes. This will cause du to be large and there-
fore ‖Eᵀ

u‖1 will be small. Finally, using a normalised augmented
adjacency matrix with larger values of γ can cause smaller changes.

6. STABILITY OF GCNN MODELS

We make use of results in previous sections to analyse the stability
of two popular GCNN models, i.e., the simple graph convolutional
networks (SGCN) [14] and the multilayered graph convolutional net-
work (GCN) [15].

6.1. SGCN

The SGCN model is motivated by considering a multilayered GCN
with the activation functions removed. By removing the activation
functions the model boils down to a fixed monomial filter of order
K followed by applying a fully connected layer and a softmax layer
to the node features.

Let the input data be given by the matrix X ∈ Rn×d where d
is the dimension of the features associated with each node. We can
consider X as d stacked graph signals which we will call feature
maps. We will assume that each column (feature map) of X has
unit norm. The output is a matrix Y ∈ Rn×c, representing class
probabilities for each node. The SGCN model is defined as Y =
softmax(∆̃KXΘ) where softmax(x)i = exp(xi)/

∑
i exp(xi)
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normalises the rows to be probability distributions. We write ∆̃
def
=

∆1 as the normalised augmented adjacency matrix with γ = 1. In
this subsection, we will analyse how the logits, the node represen-
tations before the softmax is applied, change. The softmax function
has a Lipschitz constant of 1 so any bound on the logits can trivially
be applied to the model outputs [26][Proposition 4]. We begin by
stating the following Lemma.

Lemma 2. Let B ∈ Rm×r and C ∈ Rr×n then

‖BC‖F ≤ ‖B‖F ‖C‖2.

Proof. By decomposing BC in terms of the rows bᵀ
k of B we get

‖BC‖2F =

m∑
k=1

‖bᵀ
kC‖

2
2
≤

m∑
k=1

‖bᵀ
k‖

2
2
‖C‖22 = ‖B‖2F ‖C‖

2
2. (4)

The inequality follows from the observation that ‖bᵀC‖2 =
‖(bᵀC)ᵀ‖2 = ‖Cᵀb‖2 ≤ ‖Cᵀ‖2‖b‖2 = ‖b‖2‖C‖2. Taking
the square root of both sides of Eq. (4) gives the result.

Using this we can provide a bound on how much the logits can
change under the Frobenius norm. To motivate why we are interested
in the Frobenius norm here, consider taking the Euclidean norm of
each node output to measure the amount of change in node represen-
tation. Taking the mean squared error of these distances amounts to
taking the Frobenius norm of the logits matrix.

Proposition 2. The distance of the logits is bounded like so∥∥∥∆̃KXΘ− ∆̃K
p XΘ

∥∥∥
F
≤
√
dK‖E‖2‖Θ‖2

Proof. We first note that ‖X‖F =
√
d. Using this, two applications

of Lemma 2, and an application of Proposition 1 we get∥∥∥∆̃KXΘ− ∆̃K
p XΘ

∥∥∥
F
≤
∥∥∥∆̃KX− ∆̃K

p X
∥∥∥
F
‖Θ‖2

≤
∥∥∥∆̃K − ∆̃K

p

∥∥∥
2
‖X‖F ‖Θ‖2.

≤
√
dK‖E‖2‖Θ‖2.

6.2. Multilayer GCN

We now consider a multilayered GCN model. We again consider the
logits of a model which this time consists of multiple GCN layers
with pointwise non-linearities giving the lth layer representation as
X(l) = σ(∆̃X(l−1)Θ(l)), where σ is the ReLU activation function
and Θ(l) are the layer parameters. We will consider the number of
feature maps to be the same throughout the model.

Proposition 3. Let X(l) = σ(∆̃X(l−1)Θ(l)) where X(0) ∈ Rn×d

is the input feature maps, Θ(l) ∈ Rd×d are the weight matrices and
L is the number of layers so XL is the output features. Then∥∥∥X(L) −X(L)

p

∥∥∥
F
≤
√
dL‖E‖2

L∏
l=1

∥∥∥Θ(l)
∥∥∥
2
.

Proof. We prove this by induction. The base case L = 1 follows
immediately from Proposition 2. Consider a more general L. Then∥∥∥X(L) −X(L)

p

∥∥∥
F
=
∥∥∥σ(∆̃X(l−1)Θ(l))− σ(∆̃pX

(l−1)
p Θ(l))

∥∥∥
F

≤
∥∥∥∆̃X(l−1)Θ(l) − ∆̃pX

(l−1)
p Θ(l)

∥∥∥
F

≤
∥∥∥∆̃X(l−1) − ∆̃pX

(l−1)
p

∥∥∥
F

∥∥∥Θ(l)
∥∥∥
2
,

where the first inequality comes from ReLU having unit Lipschitz
constant and the second being an application of Lemma 2. By using
triangle inequality we bound the following term∥∥∥∆̃X(l−1) − ∆̃pX

(l−1)
p

∥∥∥
F

=
∥∥∥∆̃X(l−1) − ∆̃pX

(l−1) + ∆̃pX
(l−1) − ∆̃pX

(l−1)
p

∥∥∥
F

≤
∥∥∥∆̃X(l−1) − ∆̃pX

(l−1)
∥∥∥
F
+
∥∥∥∆̃pX

(l−1) − ∆̃pX
(l−1)
p

∥∥∥
F

≤ ‖E‖2
∥∥∥X(l−1)

∥∥∥
F
+
∥∥∥X(l−1) −X(l−1)

p

∥∥∥
F
.

Note that ‖X(l)‖F = ‖σ(∆̃X(l−1)Θ(l))‖F ≤ ‖X(l−1)‖F ‖Θ(l)‖2
so by recursivity we get that ‖X(l)‖F ≤ ‖X(0)‖F ‖Θ(1)‖2 . . . ‖Θ(l)‖2.
Recall that ‖X(0)‖F =

√
d. Using this observation and the induc-

tive assumption we get that(
‖E‖2

∥∥∥X(l−1)
∥∥∥
F
+
∥∥∥X(l−1) −X(l−1)

p

∥∥∥
F

)∥∥∥Θ(l)
∥∥∥
2

≤
√
d‖E‖2

L∏
l=1

∥∥∥Θ(l)
∥∥∥
2
+
√
d(L− 1)‖E‖2

L∏
l=1

∥∥∥Θ(l)
∥∥∥
2

=
√
dL‖E‖2

L∏
l=1

∥∥∥Θ(l)
∥∥∥
2
.

We finish this section by combining Proposition 3 with the re-
sults from Sec. 5 to give the following.

Corollary 1. Consider the GCN outputs X(L) and X
(L)
p for a graph

G and a perturbed graph Gp where the perturbed graph is a result
of double edge rewiring. Let ∆̃ and ∆̃p be the corresponding nor-
malised augmented adjacency matrices. Define du, δu and Ru as in
Sec. 5, then the following holds

∥∥∥X(L) −X(L)
p

∥∥∥
F
≤
√
dL

L∏
l=1

∥∥∥Θ(l)
∥∥∥
2
max
u∈V

2Ru√
(du + 1)(δu + 1)

.

A similar result holds for SGCN by combining Proposition 2
with the results from Sec. 5. We suspect these bounds will likely
be loose in practice; nevertheless, they provide conceptional insights
into the factors that may be related to the robustness of the GCN and
SGCN models. In particular, we can reason when this bound will be
small as in the final paragraph of Sec. 5, which relates interpretable
structural perturbation to the robustness of these models.

7. DISCUSSION

In this work, we bound the change in output of spectral graph filters
under a specific form of topological perturbation, i.e., edge rewiring,
where the bound involves terms which have a structural interpreta-
tion. We then demonstrate a practical application of this bound by
applying it to the SGCN and GCN models. Future directions include
proving that the change in output of other models scales proportional
to ‖E‖2 and providing further interpretable bounds to ‖E‖2 to pro-
vide an understanding of stability for graph-based models. Further-
more, the SGCN and GCN models we consider both apply low-pass
filters, and exploring models with other filtering characteristics is
an interesting future direction. Finally, extensions of the framework
presented in this work such as considering a more general perturba-
tion model or extending it to weighted graphs will benefit its utility
for practical applications.
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