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ABSTRACT

We propose a method for learning dictionaries towards sparse ap-
proximation of signals defined on vertices of arbitrary graphs. Dic-
tionaries are expected to describe effectively the main spatial and
spectral components of the signals of interest, so that their structure
is dependent on the graph information and its spectral representa-
tion. We first show how operators can be defined for capturing dif-
ferent spectral components of signals on graphs. We then propose
a dictionary learning algorithm built on a sparse approximation step
and a dictionary update function, which iteratively leads to adapting
the structured dictionary to the class of target signals. Experimental
results on synthetic and natural signals on graphs demonstrate the
efficiency of the proposed algorithm both in terms of sparse approx-
imation and support recovery performance.

Index Terms— dictionary learning, signal processing on
graphs, sparse approximations

1. INTRODUCTION

Traditional signal processing techniques deal mostly with signals re-
siding in Euclidean space, such as the real line, where not much
information could be extracted from their supports. Nowadays, how-
ever, we are increasingly interested in signals that are defined in ir-
regular domains, such as graphs. Typical examples include signals
defined in a traffic network or a social network. In these situations,
the structure of the underlying graph contains useful information,
and the support of the signals depends on the graph characteristics.
We are interested in finding sparse representations for these signals
where a few significant components are sufficient to describe the
most relevant information in the data. Sparsity is often key in the
construction of effective signal analysis or compression applications.

A signal on graph G with a vertex set V is defined as a func-
tion f : V → R, which assigns a real value to each vertex of the
graph. The core idea is to analyze these signals through both the sig-
nal and spectrum domain representations, which are analogous to the
time and frequency domain representations in classical signal pro-
cessing literature. In the signal domain, each signal is a vector with
its entries corresponding to the vertices of the graph. At the same
time, the spectrum domain representation is dependent on the un-
derlying graph structure and can be defined through some isotropic
linear operators on graphs via Spectral Graph Theory. For example,
the authors in [1] introduce the Spectral Graph Wavelet Transform
(SGWT) for signals on graphs where the spectral representation of
the signals is defined through the Graph Fourier Transform. The key
observation is that we could define the scaling operation in the graph
spectrum domain, which relates to the notion of scaling of signals on
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graphs. Another work that extends wavelets to graphs and manifolds
is the Diffusion Wavelets (DW) [2], where the authors use powers of
a diffusion operator as smoothing and scaling tools to define wavelet
transforms on graphs. The powers of the diffusion operator act as
dilation operators applied to the signals, which again enables an im-
plicit definition of scaling of signals on graphs. These wavelet-based
representations, however, do not guarantee the sparse representation
of specific classes of signals on graphs.

Dictionary learning has been proposed as an attractive approach
in the construction of sparse signal approximations. In this paper, we
propose a dictionary learning method for the sparse representation of
signals on graphs, where the graph Laplacian operator is used to ex-
plore the spectrum domain characteristics of the signals. We design
a dictionary that is a concatenation of sub-dictionaries with a fixed
structure driven by the graph. The structure corresponds to a kernel
construction of each sub-dictionary by learning a set of associated
variables in the graph spectrum domain. Our dictionary learning ob-
jective is two-fold: (1) we would like to have sparse representations
for a class of signals as linear expansions of elements from the dic-
tionary; (2) we look for an algorithm that is robust to the presence of
noise in the signals. The proposed algorithm is built on two iterative
steps, namely, sparse approximation and dictionary updating. We
use Orthogonal Matching Pursuit [3] to obtain sparse coefficients
for a fixed dictionary in the sparse approximation step. The dictio-
nary is then updated by solving a convex optimization problem. We
show by experiments that the proposed dictionary learning solution
is effective in terms of signal support recovery and sparse approxi-
mation performance. To our knowledge, this paper is the first study
about the dictionary learning problem on graphs.

This paper is organized as follows. In Section 2, we propose
the structured dictionary for dictionary learning on graphs. In Sec-
tion 3, we present the two-step optimization scheme, and introduce
an algorithm for dictionary updating. We show simulation results
in Section 4 with both synthetic and real world data. Finally, we
conclude the paper in Section 5.

2. STRUCTURED DICTIONARY ON GRAPHS

In this section, we first recall the definition of the Graph Fourier
Transform introduced in [1], and then propose a structure for the
design of our dictionaries.

2.1. Graph Fourier Transform

Consider a weighted and undirected graph G = (V,E,w) with N
vertices, where V and E represent the vertex and edge set of the
graph and w gives a positive real weight to each edge of the graph.
We assume that the graph is connected. Recall that the complex ex-
ponentials eiωx are eigenfunctions of the one-dimensional Laplace
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operator − d2

dx2 . They constitute an orthogonal basis in L2 space,
and the classical Fourier transform is defined as scalar products of
signals in L2 and these complex exponentials. The Graph Fourier
Transform can be defined in a similar way. For a graph G, the graph
Laplacian operator L is defined as

L = Δ−W (1)

where W is the adjacency matrix and Δ is the degree matrix con-
taining the degree of the vertices along diagonal. Since L is a real
symmetric matrix, it has the following eigen-decomposition:

L = χΣχ
T (2)

where χ is the eigenbasis and Σ is the matrix containing the discrete
spectrum (eigenvalues) along diagonal. Based on χ, we define the
Graph Fourier Transform as the following:

Definition 1 (Graph Fourier Transform [1]). For any function y ∈
R

N defined on the vertices of a graph G, the Graph Fourier Trans-
form (GFT) ŷ is defined as

ŷ(j) = 〈χj ,y〉 =
N∑

n=1

χj(n)y(n). (3)

Similarly, the Inverse Graph Fourier Transform (IGFT) is defined as

y(n) =
N∑

j=1

ŷ(j)χj(n). (4)

By applying the graph Laplacian operator L to the signal y, we have
Ly = χΣχ

Ty. Notice that ŷ = χ
Ty is the GFT of y, and χ(Σŷ)

is the IGFT of ŷ filtered by Σ in the graph spectrum domain.

2.2. Structured dictionary

We have seen above that we can build filtering operators in the graph
spectrum domain. This is exactly the property that we exploit for
learning dictionaries that are able to capture meaningful spectral
components of signals on graphs. Since an appropriate design of
Σ permits to implement filtering of the signals in the spectrum do-
main, we propose to define a structured over-complete dictionary
that includes several filtering functions to capture the different spec-
tral components of the signal. We thus consider dictionaries that are
defined as

D = [D1,D2, . . . ,DS ] (5)

= [χΛ1χ
T ,χΛ2χ

T , . . . ,χΛSχ
T ] (6)

where {Di}Si=1 are S sub-dictionaries with a certain structure
and {Λi}Si=1 are some diagonal and positive semidefinite matrices
(Λi � 0).

As one can see here, the set of matrices {Λi}Si=1 plays an impor-
tant role for filtering in the spectrum domain. Another interpretation
is that we embed each vertex into S different scalar product spaces
with dimension N . In the k-th such space, a vertex vi is mapped to
(χ1,i, χ2,i, . . . , χN,i) where the metric tensor gk = Λk is learned
to promote features leading to sparsity. Dk can then be considered
as a kernel (covariance matrix) in the embedded space measuring
the similarity of the embedded vertices. As remarks, we also noticed
that the Spectral Graph Wavelets and Diffusion Wavelets (before or-
thogonalization) share a similar structure as that in (6).

3. DICTIONARY LEARNING ON GRAPHS

Adopting the proposed structure, we need to properly design
{Λi}Si=1 such that the resulting dictionary D ∈ R

N×K could well
represent the signals {yj}Mj=1 ∈ R

N as linear combinations of its el-
ements (K = NS where S is the number of sub-dictionaries). Here
D is overcomplete (i.e., K > N ) and each column {dj}Kj=1 ∈ R

N

is called an atom. Dictionary learning can be formulated as the
following optimization problem:

min
D,X

‖Y −DX‖2F subject to ‖xj‖0 ≤ T0, ∀j (7)

where Y = [y1,y2, . . . ,yM ] are the training signals, X =
[x1,x2, . . . ,xM ] are the sparse coefficients, and ‖ · ‖0 denotes
the l0 pseudo-norm counting the non-zero entries of a vector. Such
a problem is unfortunately quite complex to solve directly. One pos-
sible approximate solution relies on a two-step optimization scheme
where a sparse approximation step and a dictionary updating step are
performed iteratively. In the sparse approximation step, we find xj

under a fixed D; in the dictionary updating step, we update D while
fixing xj . We describe these two steps in the rest of this section.

3.1. Sparse approximation

The sparse approximation step aims at finding approximation of
training signals with a few atoms of a fixed dictionary. We use Or-
thogonal Matching Pursuit (OMP) to find sparse representations of
the training signals Y with respect to the fixed dictionary D. OMP
employs a greedy optimization strategy where atoms are picked
successively in order to best approximate the signals. We further
normalize each atom in the dictionary so that they all have a unit l2

norm before running OMP.

3.2. Dictionary updating

Based on the proposed structure, the update of the dictionary is
equivalent to computing the operators {Λi}Si=1. Since a change of
any entry inΛi affects all atoms in the corresponding sub-dictionary,
we update one sub-dictionary at a time. Specifically, we update each
Dk while fixing all other sub-dictionaries, with the aim of finding
a better Λk that minimizes the approximation error. Suppose that,
after the sparse approximation step, we have obtained a sparse co-
efficient matrix X ∈ R

K×M for training signals Y ∈ R
N×M . For

each sub-dictionary Dk in the dictionary D, the corresponding coef-
ficients are denoted by Xk ∈ R

N×M . Therefore, the approximation
error due to the dictionary Dk can be written as

‖Y −DX‖2F = ‖Y −
S∑

s=1

DsXs‖2F = ‖Ek −DkXk‖2F

=‖Ek −χΛkχ
T
Xk‖2F (8)

where Ek = Y −∑S

s=1,s�=k DsXs is the approximation error that
does not depend on Dk. Rewriting the Frobenius norm in a trace
form and removing terms that are constant with respect to Λk, the
minimization of the approximation error becomes equivalent to

min
Λk

‖Ek − χΛkχ
T
Xk‖2F

=min
Λk

Tr[ET
kEk −E

T
k χΛkχ

T
Xk

− (ET
k χΛkχ

T
Xk)

T +X
T
kχΛ

2

kχ
T
Xk]

≡min
Λk

Tr[−2χT
XkE

T
k χΛk + χ

T
XkX

T
k χΛ

2

k] (9)
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where Tr(·) denotes the trace of a matrix. Since Λk lies on a dif-
ferential manifold, we could take derivatives directly. The second
derivative of the objective function in (9) turns out to be positive
semidefinite indicating that the optimization problem (9) is convex
with respect to Λk. Therefore, we need to solve the following con-
vex optimization problem to update Λk:

min
Λk

Tr[−2χT
XkE

T
k χΛk + χ

T
XkX

T
k χΛ

2

k]

subject to ∀k = 1, 2, . . . , S

Λk is diagonal and Λk � 0.

(10)

Taking derivative with respect to Λk for the objective, we have:

∂Tr[−2χTXkE
T
k χΛk +χ

TXkX
T
kχΛ

2

k]

∂Λk

=− 2[(χT
XkE

T
kχ) ◦ I] + 2Λk[(χ

T
XkX

T
kχ) ◦ I] (11)

where ◦ denotes the Hadamard product and I is the identity ma-
trix. We then write χ

TXkE
T
kχ = diag(a1, a2, . . . , aN) and

χ
TXkX

T
kχ = diag(b1, b2, . . . , bN), and the solution to (10) is

thus

λk,i =

{
max(0, ai

bi
) bi �= 0

λk,i bi = 0.
(12)

Based on the two steps described above, the complete dictionary
learning algorithm is given in Algorithm 1.

Algorithm 1 Structured Dictionary Learning

INITIALIZATION: Set λk,j randomly in D from Half-normal
distribution.
repeat

1. Sparse Approximation Step:
a. Normalize each atom in D;
b. Use OMP to compute the coefficients matrix X for Y under
the current dictionary D;
c. Rescale the coefficients and atoms to recover the structure;
2. Dictionary Updating Step:
for k = 1 → S do

Compute the overall approximation error matrix Ek as

Ek = Y −
S∑

s=1,s�=k

DsXs

diag(b1, b2, . . . , bN) = χ
TXkX

T
kχ

diag(a1, a2, . . . , aN ) = χ
TXkE

T
k χ

Update Dk through the following loop
for i = 1 → N do

if bi �= 0 then

λk,i = max(0,
ai

bi
)

else
λk,i unchanged

end if
end for

end for
until the maximum number of iterations is reached

4. EXPERIMENTAL RESULTS

4.1. Synthetic signals on graphs

We first evaluate the performance of the dictionary learning algo-
rithm on synthetic signals and show that it is able to recover the
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Fig. 1: Percentage of atoms recovered for different graph sizes
N and different numbers of training signals M (100 runs, S=5,
SNR=20dB).
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Fig. 2: Percentage of atoms recovered for different graph sizes N
and different levels of SNR (100 runs, S=5, M=8K).

main components of the signals of interest. Our goal is to recover a
synthetic dictionary Dt from noisy signals built as linear combina-
tions of its elements. We examined the influence of the graph size,
the number of training signals, and the noise on the performance of
our algorithm. The graph consists of N vertices, each of which has
logN incident edges on average with weights being uniformly dis-
tributed in the unit interval. After obtaining χ from the graph Lapla-
cian, Dt of K = NS atoms are generated by setting S = 5 and
initializing {Λt

i}Si=1 as Half-normal random variables. The spar-
sity level is chosen as L = �(1 +

√
N)/2� and the training signals

are generated by randomly combining L atoms in Dt with normally
distributed coefficients. In each scenario, the learned dictionary D is
compared with Dt to show the average percentage of original atoms
that are recovered by the learning algorithms, over 100 runs. The
comparison is done by first normalizing all atoms in D and Dt and
then matching an atom di in D to one atom dt

j in Dt under the
criteria 1 − did

t
j < 0.01. The number of iterations for the sparse

approximation and dictionary updating steps is limited to 100.
We initially study the impact of the graph size N and the num-

ber of training signals M on the learned dictionary. We add White
Gaussian Noise (WGN) to the training signals with Signal to Noise
Ratio (SNR) 20dB. The experiments are performed for graphs of
size N = 16, 32, 64, 128. For each N , the number of training sig-
nals M is chosen as K/2, 3/4K,K, 3/2K, 2K, 3K, 4K, 6K, 8K.
In Fig. 1, X-axis indicates the number of training signals available
and Y-axis is the corresponding percentage of atoms recovered. As
we can see, the algorithm performed quite well with over 90% of the
atoms being recovered on average when the number of training sig-
nals exceeds 4K. This shows that, empirically, our algorithm con-
verged and recovered most atoms with Ω(K) training signals which
is only linearly proportional to K. We also notice that the larger the
graph, the better the support recovery performance in general. This
can be explained by the fact that we generate Dt randomly and larger
graphs tend to lead to less correlation among atoms in this case.

Next, we investigate the impact of the noise for different
graph sizes. We choose N = 16, 32, 64, 128, SNR(dB) =
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Fig. 3: Comparison of Structured Dictionary with SGWT in terms
of approximation error (100 runs, S=5, N=20, L=3, M=8K).
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Fig. 4: Comparison of Structured Dictionary Learning with K-SVD
and SGWT in terms of approximation error in the Twitter simulation
(100 runs, S=4, N=63, M=4032).

0, 5, 10, 20,+∞ and M = 8K. The result is shown in Fig. 2 where
it can be seen that our algorithm is also robust to the noise contam-
ination as the performance is reasonably stable when SNR ≥ 5dB.
This is easy to explain as random noise does not match the graphs.
Thus, our algorithm seems to be capable of distinguishing the sig-
nals from the added random noise thanks to the utilization of the
graph information.

Finally, we compare our learned dictionary with SGWT. Dt is
used to generate both training signals and testing signals. We set
S = 5, N = 20, L = 3 and add WGN only to the training signals
with SNR 20dB. The number of training signals and that of testing
signals are 8K. We use our learned dictionary and SGWT to rep-
resent testing signals under different sparsity levels and the compar-
ison is purely based on the average approximation error per signal.
From Fig. 3 we can see that our algorithm achieves a smaller error
than SGWT under the same sparsity level, which demonstrates the
benefit of the learning process. Notice that when sparsity exceeds 3,
our algorithm is able to recover almost all atoms in Dt, and the ap-
proximation error is due to the failure of recovering the exact atoms
used to generate some of the testing signals. The two main reasons
are: (1) OMP used in the sparse approximation step is a very greedy
algorithm; (2) the correlation among atoms might be high when N
is relatively small in view of the randomized way of creating Dt.

4.2. Real world data

We now compare our learned dictionary with the one learned by K-
SVD [4] and SGWT using real world data. In K-SVD, the dictio-
nary is learned only from the training signals, while in SGWT the
wavelets are predefined without any learning process involved. All
three dictionaries are of the same size and S is chosen to be 4. The
comparison is based on the approximation errors under fixed sparsity
level. For each sparsity level, we first obtain the dictionaries, and
then apply OMP to the testing signals to calculate the approximation
errors between the testing signals and the approximated signals.

In our simulation, we generate a small social network of 63 Twit-
ter users. The graph is directly constructed from the social relation-

ship between these users on Twitter. Specifically, if user A follows
user B or vice versa, we add an edge between them with weight 1.
We collect 50 signals on this graph, each of which counts the number
of tweets containing predefined keywords that each user has posted
during a fixed time window. Due to the limited number of signals,
we randomly pick up 25 out of the 50 signals to generate 4032 train-
ing signals by linear combinations with normally distributed coef-
ficients. The number of signals used for the linear combinations is
5. In exactly the same manner, the remaining 25 signals are used to
generate the testing signals. We also add noise to all signals such
that the SNR is 20dB. We run the simulation 100 times and average
the errors.

The result is shown in Fig. 4. X-axis is indexed by sparsity
level and Y-axis is the corresponding error per signal. Compared
to SGWT, our algorithm always achieves lower approximation er-
rors, which again demonstrates the benefit of the learning process on
the graph. In terms of comparison with K-SVD which is blind to
the graph information, our algorithm shows a faster error declining
rate by creating more patterns in the dictionary. When sparsity is be-
low 4, K-SVD outperformed with relatively large error. It indicates
that the tolerance of large error offsets the benefits contributed by
the graph. Moreover, as we have seen in our synthetic simulations,
our algorithm can efficiently distinguish the signals from the noise.
The error for our algorithm showing up here thus contains the noise
added to the testing signals, which degraded its performance. Our
method starts to outperform K-SVD when sparsity exceeds 3, which
shows the advantage of the utilization of the graph information. Af-
ter the sparsity reaches 13, another transition point occurs where
SGWT beats K-SVD, which again illustrates the significance of the
graph in representing these signals. We also notice that K-SVD only
tends to sparsely represent the training signals rather than extract-
ing the common features of the class of signals on graphs, inevitably
leading to overfitting the training signals, which is a major drawback
of K-SVD. By contrast, the structure in our dictionary imposed by
the graph prevents the algorithm from overfitting. Therefore, we be-
lieve that this is another reason for our algorithm to perform better
than K-SVD in approximating the testing signals.

5. CONCLUSION

In this paper, we have proposed a method for dictionary learning on
graphs. We make use of the graph Laplacian operator to exploit the
spectral representation of signals on graphs. The learned dictionary
is able to capture the spectral features of the signals, in return provid-
ing sparse representations for the signals on graphs. The simulation
results demonstrate that our algorithm is able to efficiently exploit
the graph information and that it is robust to noise in the training
setup.
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