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Abstract—Relationships between entities in datasets are often of
multiple types, which can naturally be modeled by a multi-layer graph;
a common vertex set represents the entities and the edges on different
layers capture different types of relationships between the entities. In
this paper, we address the problem of analyzing multi-layer graphs and
propose methods for clustering the vertices by efficiently merging the
information provided by the multiple modalities. We propose to combine
the characteristics of individual graph layers using tools from subspace
analysis on a Grassmann manifold. The resulting combination can then
be viewed as a low dimensional representation of the original data
which preserves the most important information from diverse types of
relationships between entities. We use this information in new clustering
methods and test our algorithm on several synthetic and real world
datasets to demonstrate its efficiency.

Index Terms—Multi-layer graphs, subspace representation, Grassmann
manifold, clustering.

I. INTRODUCTION

Graphs are powerful mathematical tools for modeling pairwise
relationships among sets of entities. A graph traditionally captures
a single form of relationships between entities. However, numerous
emerging applications rely on different forms of such relationships,
which can naturally be represented by a multi-layer graph whose
layers share a common set of vertices but with different edge weights,
depending on the type of information in each layer. Assuming that
all the graph layers are informative, they are likely to provide
complementary information and thus to offer richer information than
any single layer taken in isolation. We thus expect that a proper
combination of the information contained in the different graph layers
leads to an improved understanding of the structure of the data.

In this paper, we consider a M -layer graph G with individual
graph layers Gi = {V,Ei}, i = 1, . . . ,M , where V represents
the common vertex set and Ei represents the edge set in the i-
th individual graph Gi, which corresponds to an adjacency matrix
Wi. An example of a three-layer graph is shown in Fig. 1 (a)
(we assume unitary edge weights). Clearly, different graph layers
capture different types of relationships between the vertices. Our
objective is to find a method that properly combines the information
in these different layers. We first adopt a subspace representation
for the information provided by the individual graph layers; by
modeling each graph layer as a subspace on a Grassmann manifold,
the problem of combining multiple graph layers is then transformed
into the problem of efficiently merging different subspaces into a
representative one on a Grassmann manifold. Specifically, we study
the distances between the subspaces and develop a new framework
where the overall distance between the representative subspace and
the individual subspaces is minimized. The proposed method leads to
a summarization of the information contained in the multiple graph
layers, which reveals the intrinsic relationships between the vertices.

(a) (b)

Fig. 1. (a) An illustration for a three-layer graph G, whose three layers
{Gi}3i=1 share the same set of vertices but with different edges. (b) A
potential unified clustering {Ck}3k=1 of the vertices based on the information
provided by the three layers.

Finally, we study the clustering problem as an application of our
framework: we want to find a unified clustering of the vertices (as
illustrated in Fig. 1 (b)) by utilizing the representative subspace,
which is better than the clustering achieved on any of the graph layers
Gi independently. We show that our clustering method achieves
competitive performance compared to baseline and state-of-the-art
techniques in various synthetic and real world datasets.

Learning multi-view data have attracted a large amount of interest
in the learning research communities, with representative techniques
including unified matrix factorizations [1], [2], Canonical Correlation
Analysis [3], co-training and co-regularization [4], [5], and graph
regularization [6], to name a few. Compared to the related work, the
main contributions of the paper are three-fold: First, we present a
fundamental and intuitive mathematical framework for the learning
problems on multi-layer graphs, which is somehow lacking in the
literature. Second, we show the link between the projection distance
on the Grassmann manifold and the empirical estimate of the Hilbert-
Schmidt Independence Criterion (HSIC) [7]. Finally, we provide a
simple yet competitive solution to the problem of clustering on multi-
layer graphs using the construction of a proper representative layer.

II. PRELIMINARIES

A. Layer subspace representation

In this section, we introduce a subspace representation for the infor-
mation contained in a single graph. Such a representation is inspired
by spectral clustering [8][9][10], which is a technique that studies
the spectral properties of the graph Laplacian matrix for partitioning
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the vertex set into several subsets. Without loss of generality, we
consider a connected graph G that has an adjacency matrix W . The
degree matrix D is defined as the diagonal matrix containing the
degrees of the vertices along the diagonal. The normalized graph
Laplacian matrix L is then defined as: L = D−

1
2 (D − W )D−

1
2 .

The spectral clustering algorithm proposed in [9] solves the following
trace minimization problem:

min
U∈Rn×k

tr(U ′LU), s.t. U ′U = I. (1)

where n is the number of vertices in the graph, and k is the target
number of clusters. The solution to the problem of Eq. (1) contains the
first k eigenvectors (which correspond to the k smallest eigenvalues)
as columns. The final clustering is then achieved by applying the
k-means algorithm to the normalized row vectors of U .

As we can see, the low dimensional matrix U consists of k
orthonormal eigenvectors as columns, and each row of U (after
normalization) can be viewed as the coordinates of the corresponding
vertex in the k-dimensional space. Therefore, this defines a subspace
representation of the original vertices in the spectral domain. This
subspace representation contains the information on the connectivity
of the vertices in the original graph, hence it can be used for clustering
purposes. We adopt the same subspace representation for each layer
of the multi-layer graph in our framework. Then, we gather the
different subspaces on a Grassmann manifold, as explained below.

B. Multi-layer manifold representation

By definition, a Grassmann manifold G(k, n) is the set of k-
dimensional linear subspaces in Rn, where each unique subspace
is mapped to a unique point on the manifold. This provides a
natural representation for our problem: the subspaces representing the
individual graph layers can be considered as different points on the
Grassmann manifold; it thus permits to use efficient tools to study the
distances between points on the manifold, namely, distances between
different subspaces.

Mathematically speaking, each point on G(k, n) can be represented
by an orthonormal matrix Y ∈ Rn×k whose columns span the
corresponding k-dimensional subspace in Rn; it is thus denoted as
span(Y ). The distance between two points on the manifold, or
between two subspaces span(Y1) and span(Y2), is then defined
based on a set of principal angles {θi}ki=1 between these subspaces
[11]. These principal angles, which measure how the subspaces are
geometrically close, are the fundamental measures used to define
various distances on the Grassmann manifold, such as the Riemannian
(geodesic) distance or the projection distance [12], [13]. In this
paper, we use the projection distance as a metric, which is defined
as: dproj(Y1, Y2) = (

∑k
i=1 sin2θi)

1
2 , where Y1 and Y2 are the or-

thonormal matrices representing the two subspaces under comparison.
The reason for choosing the projection distance is two-fold: (i) the
projection distance is an unbiased definition since it uses all the
principal angles; (ii) it can be interpreted using a one-to-one mapping
that preserves distinctness: span(Y )→ Y Y ′ ∈ Rn×n. Note that the
squared projection distance can be rewritten as:

d2proj(Y1, Y2) =
1

2
||Y1Y1

′ − Y2Y2
′||2F = k − tr(Y1Y1

′Y2Y2
′). (2)

Therefore, the projection distance can be related to the Frobenius
norm of the difference between the mappings of two subspaces
span(Y1) and span(Y2) in Rn×n. Moreover, the second equality of
Eq. (2) provides an explicit way of computing the projection distance
between two subspaces from their matrix representations Y1 and Y2.

We are going to use it in developing the generic merging framework
in the following section.

III. FRAMEWORK FOR MERGING SUBSPACES AND CLUSTERING

We now present the proposed framework for combining multiple
graph layers by merging multiple subspaces, as well as its application
to clustering on multi-layer graphs.

A. Layer merging framework

Equipped with the subspace representation for individual graphs
and with a distance measure to compare different subspaces on the
Grassmann manifold, we present now our generic framework for
merging the information from multiple graph layers. Our philosophy
is to find a representative subspace span(U) that is close to all the
individual subspaces span(Ui); at the same time the representation
U should preserve the vertex connectivity in each graph layer. For
notational convenience, in the rest of the paper we simply refer to
the matrix representations U and respectively Ui as the corresponding
subspaces, unless indicated differently.

We can generalize the squared projection distance defined in
Eq. (2) to the case of multiple subspaces, by defining the squared
projection distance between the target representative subspace U and
the M individual subspaces {Ui}Mi=1 as the sum of squared projection
distances between U and each individual subspace given by Ui:

d2proj(U, {Ui}Mi=1) =

M∑
i=1

d2p(U,Ui) = kM −
M∑
i=1

tr(UU ′UiUi
′).

(3)
The minimization of the distance measure in Eq. (3) enforces the
representative subspace U to be close to all the individual subspaces
{Ui}Mi=1 in terms of the projection distance on the Grassmann
manifold. At the same time, we want U to preserve the vertex
connectivity in each graph layer. This can be achieved by minimizing
the Laplacian quadratic form evaluated on the columns of U , as also
indicated by the objective function in Eq. (1) for spectral clustering.
Therefore, we finally propose to merge multiple subspaces by solving
the following optimization problem that combines Eq. (1) and Eq. (3):

min
U∈Rn×k

M∑
i=1

tr(U ′LiU) + α[kM −
M∑
i=1

tr(UU ′UiUi
′)],

s.t. U ′U = I,

(4)

where Li and Ui are the graph Laplacian and the subspace represen-
tation for Gi, respectively. The regularization parameter α trades-off
the two terms in the objective function. By ignoring the constant
terms and rearranging the trace form in the second term of the
objective function, Eq. (4) can be rewritten as

min
U∈Rn×k

tr[U ′(

M∑
i=1

Li − α
M∑
i=1

UiUi
′)U ], s.t. U ′U = I. (5)

This is the same trace minimization problem as in Eq. (1), but
with a “modified” Laplacian: Lmod =

∑M
i=1 Li − α

∑M
i=1 UiUi

′.
Therefore, the solution to the problem of Eq. (5) is given by the
first k eigenvectors of the modified Laplacian Lmod, which can be
computed using efficient algorithms for eigenvalue problems [14],
[15].

B. Discussion of the merging framework

Interestingly, the choice of projection distance as a similarity
measure between subspaces can be well justified from information-
theoretic and statistical learning points of view. First, Hamm et al.
[16] have shown that the squared projection distance is consistent
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with the Kullback-Leibler (K-L) divergence [17] by taking a proba-
bilistic viewpoint of the subspace representation. Second, we show
that it is also consistent with the Hilbert-Schmidt Independence Cri-
terion (HSIC) [7], which measures the statistical dependence between
two random variables. Specifically, given KX1 ,KX2 ∈ Rn×n that are
the centered Gram matrices of some kernel functions defined over
two random variables X1 and X2, the empirical estimate of HSIC
is given by: dHSIC(X1,X2) = tr(KX1KX2). In our case, we can
consider the rows of the individual subspace representations Ui and
Uj as two particular sets of sample points in Rk, which are drawn
from two probability distributions governed by the information on
vertex connectivity in Gi and Gj , respectively. In other words, the
sets of rows of Ui and Uj can be seen as realizations of two random
variables Xi and Xj . Therefore, we can define the Gram matrices
of linear kernels on Xi and Xj as KXi = (Ui

′)
′
(Ui
′) = UiUi

′ and
KXj = (Uj

′)
′
(Uj
′) = UjUj

′. We see that:

dHSIC(Xi,Xj) = tr(KXiKXj ) = tr(UiUi
′UjUj

′) = k−d2proj(Ui, Uj).

This shows that the projection distance between subspaces Ui and
Uj can be interpreted as the negative dependence between Xi and
Xj , which reflects the information provided by the two individual
graph layers Gi and Gj . In other words, the smaller the projection
distance, the larger the dependence (or consistency) between Gi

and Gj . Therefore, from both information-theoretic and statistical
learning points of view, the smaller the projection distance between
two subspace representations Ui and Uj , the more similar the
information in the respective graphs that they represent. As a result,
the representative subspace (the solution U to the problem of Eq. (4))
can be considered as a subspace representation that “summarizes” the
information from the individual graph layers, and at the same time
captures the intrinsic relationships between the vertices in the graph.

C. Clustering on multi-layer graphs

The merging framework proposed in the previous section leads to
a natural solution to the clustering problem on multi-layer graphs.
In more details, similarly to the spectral embedding matrix in the
spectral clustering algorithm, which is a subspace representation for
one individual graph, our merging framework provides a represen-
tative subspace that contains the information from multiple graph
layers. Using this representative subspace, we can then follow the
same steps as spectral clustering [9] to achieve the final clustering
of the vertices. The proposed clustering algorithm is summarized in
Algorithm 1.

IV. EXPERIMENTAL RESULTS

We now study the performance of our clustering algorithm on
one synthetic and two real world datasets with multi-layer graph
representations. The first dataset is a synthetic dataset, where we
have three point clouds in R2 forming the English letters “N”, “R”
and “C” (shown in Fig. 2). Each point cloud is generated from
a five-component Gaussian mixture model, where each component
represents a class of 500 points with specific color. A 5-nearest
neighbor graph is then constructed for each point cloud by assigning
the weight of the edges as the reciprocal of the Euclidean distance
between vertex pairs. This gives us a 3-layer graph of 2500 vertices.
The second dataset contains the mobile phone data of 136 users living
and working in the Lake Léman region in Switzerland [18], which
are grouped into eight clusters by their email affiliations. Considering
the users as vertices in the graph, we construct three graphs by
measuring the proximities between these users in terms of GPS
locations, Bluetooth scanning activities and phone communication.

Algorithm 1 Spectral Clustering on Multi-Layer graphs (SC-ML)
1: Input:
{Wi}Mi=1: n×n weighted adjacency matrices of individual graph
layers {Gi}Mi=1

k: target number of clusters
α: regularization parameter

2: Compute the normalized Laplacian matrix Li and the subspace
representation Ui for each Gi.

3: Compute the modified Laplacian matrix Lmod =
∑M

i=1 Li −
α
∑M

i=1 UiUi
′.

4: Compute U ∈ Rn×k that is the matrix containing the first k
eigenvectors u1, . . . , uk of Lmod. Normalize each row of U to
get Unorm.

5: Let yj ∈ Rk (j = 1, . . . , n) be the j-th row of Unorm.
6: Cluster yj in Rk into C1, . . . , Ck using the k-means algorithm.
7: Output:
C1, . . . , Ck: The cluster assignment

For GPS locations and Bluetooth scans, we measure how many times
two users are sufficiently close geographically and how many times
two users’ devices have detected the same bluetooth devices. For
phone communication, we measure the number of calls between any
pair of two users. This forms a 3-layer graph of 136 vertices. The
third dataset is a subset of the Cora bibliographic dataset1, which
contains 292 research papers from three different fields. Considering
papers as vertices in the graph, we construct the first two graphs by
measuring the similarities among the title and the abstract of these
papers, in terms of cosine similarities using the Term Frequency-
Inverse Document Frequency (TF-IDF) [19] weighting scheme. We
add a third graph that reflects the citation relationships among the
papers. This results in a 3-layer graph of 292 vertices.

We adopt three baseline algorithms as well as a state-of-the-art
technique, namely the co-regularization approach (denoted as SC-
CoR) introduced in [5], in our clustering performance comparison.
The three baseline comparative algorithms work as follows:
• SC-Single: Spectral Clustering [9] applied on a single graph

layer, where the graph is chosen to be the one that leads to the
best clustering results.

• SC-Sum: Spectral clustering applied on a global matrix W that
is the summation of the normalized adjacency matrices of the
individual layers: W =

∑M
i=1D

− 1
2

i WiD
− 1

2
i .

• SC-KSum: Spectral clustering applied on the summation K
of the spectral kernels [1] of the adjacency matrices: K =∑M

i=1Ki with Ki =
∑d

m=1 uimuim
′, where n is the num-

ber of vertices, d � n is the number of eigenvectors used in
the definition of the spectral kernels Ki, and uim represents the
m-th eigenvector of the Laplacian Li for the graph Gi.

In the implementation of SC-ML and SC-CoR, we choose the value
of the corresponding parameters α through multiple empirical trials
and report the best clustering performance. More details about the
selection of the parameters are provided in [20].

We evaluate the performance of the different clustering algorithms
with three different criteria, namely Purity, Normalized Mutual
Information (NMI) and Rand Index (RI) [19]. The results are sum-
marized in Table I (a), (b) and (c) for the synthetic, NRC and Cora
dataset, respectively. It is clear that SC-ML and SC-CoR generally
outperform the baseline approaches for the three datasets. Note that

1Available online at “http://people.cs.umass.edu/∼mccallum/data.html” un-
der category “Cora Research Paper Classification”.
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Fig. 2. Three five-class point clouds in R2 forming English letters “N”, “R”
and “C”.

SC-CoR also uses the projection distance, however it involves a
different alternating optimization scheme that optimizes, at each step,
one subspace representation, while fixing the others. This differs from
SC-ML mainly in the following aspects. First, SC-CoR requires a
sensible initialization; then, it does not guarantee that all the subspace
representations converge to one point on the Grassmann manifold2.
In contrast, SC-ML directly finds a single representation without
the need for alternating optimization steps and careful initializations.
These are possibly the reasons why SC-ML performs slightly better
than SC-CoR for the synthetic and NRC datasets. Second, from a
computational point of view, the iterative nature of SC-CoR requires
solving an eigenvalue problem for MN times, where M and N are
the number of individual graphs and the number of iterations needed
for the algorithm to converge, respectively. In contrast, SC-ML needs
to solve an eigenvalue problem only once.

V. CONCLUSIONS

In this paper, we provide a framework for analyzing information
in multi-layer graphs and for clustering vertices of graphs in rich
datasets. Our generic approach is based on the transformation of the
information contained in the individual graph layers into subspaces on
a Grassmann manifold. The estimation of a representative subspace
can then be essentially considered as the problem of finding a good
summarization of multiple subspaces using distance analysis on the
Grassmann manifold. Our framework is well motivated by analyses
from information-theoretic and statistical learning points of views. We
show that it can be applied to the clustering problem on multi-layer
graphs and that it provides an efficient solution that is competitive
with the state-of-the-art techniques.
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