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Abstract
Understanding stock market instability is a key question in financial management as
practitioners seek to forecast breakdowns in long-run asset co-movement patterns
which expose portfolios to rapid and devastating collapses in value. These disruptions
are linked to changes in the structure of market wide stock correlations which
increase the risk of high volatility shocks. The structure of these co-movements can be
described as a network where companies are represented by nodes while edges
capture correlations between their price movements. Co-movement breakdowns
then manifest as abrupt changes in the topological structure of this network.
Measuring the scale of this change and learning a timely indicator of breakdowns is
central in understanding both financial stability and volatility forecasting. We propose
to use the edge reconstruction accuracy of a graph auto-encoder as an indicator for
how homogeneous connections between assets are, which we use, based on the
literature of financial network analysis, as a proxy to infer market volatility. We show,
through our experiments on the Standard and Poor’s index over the 2015-2022
period, that the reconstruction errors from our model correlate with volatility spikes
and can be used to improve out-of-sample autoregressive modeling of volatility. Our
results demonstrate that market instability can be predicted by changes in the
homogeneity in connections of the financial network which expands the
understanding of instability in the stock market. We discuss the implications of this
graph machine learning-based volatility estimation for policy targeted at ensuring
financial market stability.

Keywords: Financial networks; Financial instability; Systemic risk; Graph machine
learning; Graph auto-encoders; Auto-encoders

1 Introduction
Financial market instability has long interested investors, as, during financial crises, pre-
viously uncorrelated companies collapse in value together, which exposes the market to a
systemic level of risk that goes beyond the level of the company and requires a more global
outlook [1]. Understanding this market-wide systemic risk driven by asset co-movement
requires framing connections between firms as formed by evolving ‘complex adaptive net-
works’ [2]. This turns instability detection into a network analysis task. These networks
are usually constructed by transforming and filtering correlation matrices of price returns
[3]. They capture key structures of the correlation matrices, and, at the same time they
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avoid potentially noisy features derived from correlations directly [4]. Changes in topo-
logical features of the resulting financial graphs, such as shorter diameters [3], higher av-
erage clustering coefficient [3, 5], or higher average Ricci curvature [6, 7], are shown to be
positively linked to measures of market instability such as higher volatility.

This suggests that higher market instability correlates with breakdowns to previously
homogeneous patterns of network connection. Homogeneity is defined here as regular
connection patterns across the entire network [8]. In financial networks, homogeneous
patterns mean connections are more likely to exist between companies of the same indus-
try sectors and with similar returns [9]. Homogeneity-disturbing shocks may arise from
new information in the form of news announcements about financial events or assets, and
they affects assets co-movement by modifying the way investors form opinions about how
companies are related and how they will co-evolve [10–12]. From this perspective, mar-
ket instability can be associated with a modified underlying mechanism through which
inter-company connectivity structures appear. Increase in heterogeneity in financial net-
works indicate higher instability [9] and has been shown to granger-cause increases in the
Chicago volatility index (VIX see Abbreviations list at the end of the article) [13]. In that
situation, any shock could be transmitted across the entire market and not be limited to a
single sector [14, 15].

It is worth noting that the studies mentioned above all adopt a “network-only” approach,
where the measure of homogeneity only concerns the network topology. However, this
may not fully capture the effect of node type or node features on the formation of links
across the network. Indeed, once network measures are constructed, they do not make fur-
ther use of any form of node features. This means existing studies implicitly assume that
all information about company nodes is captured by their connectivity. This discounts
information from the underlying price returns which traditional models like multivari-
ate GARCH [16] or HEAVY [17] successfully use in forecasting volatility. We address the
open question of how to measure market instability using financial networks together with
company characteristics such as returns.

The graph machine learning literature has provided tools for the joint learning of net-
work and node level features [18]. However, their applications to financial networks re-
main mostly limited to individual stock level return forecasting, with very few works look-
ing more globally at market wide volatility [19]. Other graph machine learning based ap-
proaches often primarily focus on directly forecasting and there is a lack of use of unsuper-
vised models which can learn representations of market states as well as being usable for
forecasting [20]. We propose to use a graph auto-encoder (GAE) [21] to capture both con-
nectivity and node feature information as part of an edge reconstruction task. We propose
to use the signal generated by the performance of this reconstruction task as an indicator
to forecast out-of-sample volatility.

Our results show that the signal generated by our method increases the performance of
a volatility forecasting model by at least 4% across 3 different volatility forecasting models.
Based on our results, the performance of the GAE-based indicator is a useful tool to im-
prove volatility forecasting models. As we present in Sect. 5, in this work, we train a GAE
on a edge-reconstruction task at time period t and use it to reconstruct the connections at
the next time period (t + 1). We are interested in seeing how informative the out of sample
reconstruction score of the GAE is for volatility forecasting. The GAE performance metric
we use is the area under receiver operand curve, a performance measure used in evaluating
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the edge-reconstruction ability in the graph machine learning literature [21, 22]. This met-
ric helps us define good GAE performance by measuring how well is able to reconstruct an
unseen set of connections between firms using patterns learnt from prior market connec-
tivity. We train the GAE on an in-sample semi-supervised task of reconstructing a subset
of unobserved edges from timestep t, before we apply the trained model on reconstructing
the edges of time t + 1. We find the average in sample area under receiver operand curve
reconstruction quality is 0.874 across our sample. This suggests that the model is able
to reconstruct the in-sample connectivity patterns well and is sufficiently trained making
its’ out of sample performance meaningful. We analyse the predictive results for volatility
forecasting of the out of sample GAE performance indicator in Sect. 3. Good GAE perfor-
mance on reconstructing the unobserved network at the next time step would indicate a
more stable and homogeneous market as homogeneity in edge connectivity helps recon-
struction performance. However if the GAE performs poorly in reconstructing structures
of financial graphs of future time steps, we argue this indicates a shift in the way connec-
tions are formed in the future network. A worse reconstruction performance would then
be correlated with the presence of a non-homogeneous, unstable network (hence market)
defined in literature [5, 8, 9]. We present and analyse pre and post-volatility spike net-
works in 6 and 4 to illustrate what a low and high volatility network looks like as well as to
make the case that a GAE model trained on the patterns of the pre-spike (low volatility)
network will see a marked decrease in performance when applied to reconstruct the edge
patterns in the high-volatility network. Overall, our research investigates the ability of an
unsupervised node-embedding model to provide warning signals for increases in market
instability.

2 Problem setting
We consider the financial market as a financial network represented by a graph G = {E ,V},
with nodes representing firms and edges the similarities or correlations between firm
prices. In addition, we consider a matrix X where each row represents company-specific
features - in our case stock returns. We calculate the return volatility at time y (RVt+Δt

t )
that is used throughout the following sections as a proxy for instability. This is a measure
of the variance of the returns of the average price returns r over Δt periods (see Sect. 5.1
for details of how returns are calculated). Our goal is to develop a predictive measure of
the out-of-sample instability - as represented by market volatility - of the financial mar-
ket given G and X. We forecast out-of-sample volatility at the hourly frequency as it is a
frequency of interest for industry practitioners [1, 5, 11].

In order to jointly account for information contained in the features of the company re-
turns X and the structure of the network used in prior studies [5, 6], we utilise the GAE
[21]. This model learns vector representations of nodes using both topological informa-
tion in G and feature information in X (see Sect. 5.2 for detailed description of the GAE
model). We train the GAE on a binary edge reconstruction task described in Sect. 5.2.
A low reconstruction error on this task would indicate that the GAE is able to learn an
accurate representation of the structure of the network and node features. As the GAE
performs better in proportion to the homogeneity of connections in a network, we inter-
pret good GAE performance in edge-reconstruction as indicative of a more homogeneous
pattern of edge formation across the network.

Homogeneous connectivity patterns are usually observed in low volatility periods where
companies in related sectors are often exposed to similar fluctuations and overall more
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connected to each other than to companies outside their industries [9]. On the other hand,
more volatile markets are characterised by highly perturbed correlation structures leading
to networks with connection structures which are highly dissimilar from their company-
level features reflected in their returns. As such we seek to detect when such a high het-
erogeneity situation occurs as it can be used as a good metric for instability increases.

With this understanding, we frame our task as building a time-dependent indicator for
market volatility by finding a good proxy for heterogeneity in the connection patterns of
G between different time periods. Using the information encoding properties of a GAE on
a binary edge reconstruction task, we calculate St+1, which we define St+1 as the generali-
sation ability at the next time period - i.e. t + 1 of a GAE model trained on data from time
t when applied to a network from time t + 1 and use it as a proxy for market volatility. In
order to validate the usefulness of St+1 as an indicator we test it’s performance at forecast-
ing volatility in an out-of-sample setting. To prevent leakage of information between St+1

and the volatility at the same time period RVt+1
t , we look at log(RVt+2

t ), the volatility at the
following period for our out-of-sample assessment.

3 Results
3.1 Negative correlation between market volatility and GAE reconstruction

overtime
Using the reconstruction accuracy of a GAE, we generate St+1 which measures how much
change in the homogeneity of the connection patterns of the financial networks from one
time period t to the next one t + 1. See Sect. 5.2 for an in depth description of the network
processing and machine learning steps we follow to produce this reconstruction measure.
Figure 1 presents the variation in market volatility (top) and in St+1 overtime measure
computed for a seven-year period from 2015 to 2022. The six grey bands in the Fig. 1
plot highlight periods of market instability over our sample. These are in chronological
order: the August 2015 ‘flash crash’, the market reactions to the announcement (February
2016) and result (June 2016) of the Brexit referendum, the high volatility periods of the
beginning and end of 2018 and lastly the 2020 pandemic stock market collapse.

We can see that the two time series comove strongly overtime as their peaks and troughs
are seem to occur at similar times. They are also similar in their values overtime as the
peaks in volatility are reflected in plunges of the same relative shape in the GAE recon-
struction time series. St+1 is high in periods of relative market stability where volatility
is lower and sharply falls during high-volatility markets periods, usually associated with

Figure 1 Time series of market volatility (top) and GAE reconstruction performance St+1 (below)
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Figure 2 Case study on the co-movement of the volatility and reconstruction accuracy during the covid-19
stock market crash

market-wide downturns. Figure 1 also shows the sharp troughs in St+1 coinciding with
market downturns depicted in grey. Highlighting these periods of market instability al-
lows us to remark that the St+1 seems to dip slightly before the band identifying a volatility
upswing. This effect is noticeable especially for the bands identifying the 2016 Brexit an-
nouncement and the 2020 Covid-19 market upheaval.

Figure 2 highlights the strong co-movement between the GAE reconstruction accuracy
in purple and the volatility in red during the 2020 Covid stockmarket contraction. This
period saw an intense selloff by investors accross all asset classes associated with the arrival
of Covid-19 in the us which resulted in an intense spike in volatility. The market network
during this crisis displays similar behaviour as what can be observed in Fig. 6: a regular
network with high segmentation between industries during the pre-crisis period up to
February 18th indicated in green in our plot and a very tightly clustered network during
the high volatility period indicated as a grey band. The peak of the volatility on March 16th
indicated in blue coincides with the trough of the AUC indicator. Moreover, as suggested
by the overall timeseries comparison in Fig. 1, the purple line begins to dip very quickly
after the start of the crisis.

We interpret the co-movement between these two time series based on the discussion
above and on the literature that suggests the link between highly heterogeneous con-
nection patterns and increases in volatility [9]. The synchronised variations between the
two time series suggest that the GAE model is sensitive to the volatility in the market.
A high value of St+1 (purple) signifies that our GAE model’s reconstruction performance
on the t + 1 state of the network is high and the network is homogeneous. Conversely, a
low value indicates a low reconstruction performance and a lower network homogeneity.
This suggests that the volatility in the network disrupts the homogeneity of the network.
This observation is reinforced by the simultaneity between troughs in St+1 and market-
wide crashes. It provides further evidence for our hypothesis of the GAE’s reconstruction
performance acting as an indicator of market disruption. The slight dip ahead of certain
crashes also suggests a potentially useful application of St+1 in look-ahead forecasting of
volatility. We further investigate this potential use of St+1 in out of sample forecasting in
the following sections. We interpret the behaviour of the AUC during the Covid-19 stock-
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Figure 3 Kernel Density Estimation of St+1 compared to volatility

market crash as further indication of the strong negative relationship between market
instability and the reconstruction ability of the model. The correlation between these two
timeseries over this smaller period is –0.72, which is even higher than the overall long-run
correlation coefficient displayed in Fig. 3, suggesting that the link between volatility and
reconstruction ability is particularly strong during this crisis event. The AUC time series
is below it’s long-run average of 0.84 for a majority of the crisis period suggesting it could
serve as a good crisis indicator when it ‘dips’ below this value.

Figure 3 shows the kernel density estimation (KDE) and spearman’s rank correlation
between log of the volatility and the St+1. We can observe from Fig. 1 a –0.64 negative cor-
relation between market volatility and our GAE based indicator. Furthermore, the KDE
displays a strongly negative slope with increases in St+1 being linked to decreases in volatil-
ity.

We interpret this negative correlation and the KDE as a sign of the mismatch between
the ability of our model to reconstruct the network pattern in the market and the volatility
of the market at time t + 1. As the GAE struggles to learn a uniformly good latent node
representation for a network at the same time period if the connections are not homo-
geneous, the St+1 is strongly negatively correlated with the volatility [8]. The relationship
between log volatility and the St+1 described by the correlation and kernel density plot
in Fig. 3 displays an inverse relation, with a spearman rank correlation of –0.64, between
market volatility and the GAE reconstruction performance. This provides evidence in sup-
port of the expectation that the GAE produces a good measure for market instability as it
encodes graph homogeneity, and drops in St+1 are correlated with increased volatility.

3.2 GAE reconstruction for out-of-sample market volatility forecasting
The correlation observed in the previous section motivates us to investigate the usefulness
of the St+1 in an out-of-sample setting. We use St+1 as an explanatory variable to predict
log(RVt+2

t ), the following period’s volatility. To this end, we fit multiple machine learning
models as baselines following practice in the financial industry for volatility forecasting.
The output variable of these models is log(RVt+2

t ) and the input variables include lagged
averaged values of volatility of the previous period. To compare against the above base-
lines, we consider our variable of interest St+1 as an additional variable (the detailed model
is presented in Sect. 5.2).

Table 1 presents the results of the log-RV forecasting task at time period t + 2 defined in
the Methods section (see Eq. (6) and Eq. (8)). The p-value corresponds to a bootstrapped
estimate of the significance of the difference between the R2 of the prediction in a one-
sided statistical significance test (see Sect. 5.4 for more detail), i.e., whether the R2 of the
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Table 1 Results of log-RV forecasting at the 1-hour frequency

Model R2 with St+1 R2 without St+1 p-value of difference

Linear 0.500∗ 0.452 0.03
Tree 0.510∗ 0.450 0.00
MLP 0.565∗ 0.521 0.001

Note: ∗ indicate p-value < 0.05.

Table 2 Results of log-RV forecasting at the 1-hour frequency for network with ablated feature
information

Models R2 with St+1 R2 without St+1 p-value of difference

Linear 0.463 0.452 0.618
Tree 0.333 0.450 0.687
MLP 0.550∗ 0.521 0.042

Note: ∗ indicate p-value < 0.05.

machine learning forecasting method used with the added St+1 is significantly larger than
the R2 without St+1. We test three different machine learning forecasting strategies this
way: a linear regression referred to as the linear model, a gradient boosted tree refered
and a multi-layer perceptron referred to as the MLP model. The results show a statistically
significant positive effect of the St+1 on the forecasting of hourly volatility at time period
t + 2. The result aligns with the hypothesis of the problem setting and observations of the
previous sections.

We also assess for the importance of node-level and edge-level information by carrying
out an ablation study. This ablation study shows the performance of St+1 as an explanatory
variable for the volatility forecasting task under two settings, one where the information
of the return matrix is absent and one where the information of the adjacency matrix is
absent. We carry out the same experiments as in Table 1 above, while removing infor-
mation from the network used to train the GAE and compute St+1. First, we test for the
importance of node level information by removing the node information in the market
network by replacing the company return matrix X with an identity matrix. Then, we test
for the importance of edge-level features by rewiring the patterns of edge connection of
the market network.

Table 2 presents the result of the log-RV forecasting at time period t + 2 for the three
machine learning models used in Table 1 in the ablation study where the node feature in-
formation was removed from the network. Table 2 shows that St+1 without node feature
information does not show statistically significantly higher R2 scores at the 0.05 signifi-
cance level compared to the linear and gradient boosted tree models. However, the table
shows a statistically significant difference at the 0.05 level for the MLP. Table 3 presents the
results of the ablation study where the edge information was removed from the network.
It shows that the St+1 generated by applying the GAE to the network with randomised
edges performs better than the baseline linear model at the 0.05 significance level. It also
outperforms the MLP model at the 0.05 confidence level. However, it does not show sig-
nificantly higher results from the gradient boosted tree approach at the 0.05 significance
level.

The results from the ablation study show that the St+1 reconstruction measure computed
without using either edge or feature information functions poorly as an out-of-sample
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Table 3 Results of log-RV forecasting at the 1-hour frequency for network with rewired edges

Models R2 with St+1 R2 without St+1 p-value of difference

Linear 0.540∗ 0.452 0.00
Tree 0.444 0.450 0.698
MLP 0.571∗ 0.521 0.001

Note: ∗ indicate p-value < 0.05.

volatility estimator when added to the three machine learning models for volatility fore-
casting. This suggests that the information content present in the edges and the nodes is
jointly important for the downstream out-of-sample performance of the St+1 as a volatil-
ity prediction feature. However, the results for the edge-ablated model do show some im-
provement on average over the classical model. This suggests that the model is able to
retain explanatory power better when deprived of edge-level information than when de-
prived of node level information and that edge-level information is less critical to the good
performance of the out of sample forecasting.

4 Discussion
Our research investigates the link between the encoding ability of an unsupervised node-
embedding model and market instability. The results above support our hypothesis that
the edge reconstruction accuracy of a GAE can serve as a good proxy to detect changes
in the homogeneity of connectivity patterns across a financial network and thus serve
as a good indicator for changes in market volatility. The GAE’s joint encoding of market
returns and connectivity at time step t + 1 is correlated with market instability at the same
time step which we show is useful in forecasting out-of-sample volatility. Moreover, the
results show that the reconstruction accuracy of the GAE can act as a good instability
indicator as evidenced by its’ tendency to plunge before a crisis. As shown by the co-
movement of the time series of the AUC and the volatility during crisis periods in Fig. 1 and
in the case study around the Covid-19 crisis in Fig. 2, the co-movement between volatility
and AUC is particularly strong during crisis events suggesting a potential use of this tool
as specifically a crisis indicator. A quantitative interpretation of the AUC’s performance
as a crisis indicator would be specific to this market and require recalibration. However,
the dips before crisis suggest that defining a threshold at the long-run average of 0.84
reconstruction accuracy could serve as a first step towards building such an indicator. The
out of sample results of the AUC support this interpretation as they suggest as discussed
above that the GAE reconstruction encodes useful information about the instability of the
market which increases during crisis.

The novelty of our contribution lies in underlining the importance of looking at node
features as well as the adjacency matrix when deriving stability indicators from financial
networks. We reinforce this intuition with the results of the ablation study in Table 2 and
3 which show that the combination of edge and feature information plays an important
role in allowing the GAE’s reconstruction ability to act as a good explanatory variable
for volatility and thus for market instability. This combination of features is important to
consider when analysing networked representations of financial markets.

We argue that by showing that homogeneity of graph connections is an important fea-
ture in market stability, this work also opens avenues for future research. With that in
mind we discuss some possible extensions of our work building from strengths of our ap-
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proach. Our approach is flexible and can be applied to other financial networks used in the
literature to describe firm relations. For example, we may apply this approach to graphs
constructed from a news corpus [23, 24], supply chains [25], knowledge graphs [26] or
inter-banking lending markets [27]. These other types of networks capture qualitatively
different connections beyond correlations and we aim to use them to extend our research.
This would allow us to go beyond the statistical correlation between returns and learn
informative features derived from other types of relations, which in turn can be used to
refine the volatility forecasting.

Improving volatility forecasting methods with a GAE model has a diverse array of appli-
cations in financial markets. Financial regulators need to ensure that the financial sector
is robust to ‘stress-tests’ [28] which require realistic forecasting of volatility spikes such
as the one proposed in the current work. The ability of our graph auto-encoder to iden-
tify volatility swings could serve as part of an early warning system in regulator’s financial
policy designed to counteract shocks to the stability of the overall financial system. Mean-
while, volatility forecasting is also needed in estimating the position size, trade timing and
correct pricing of derivatives which are useful tools in modern financial markets used by
portfolio managers to manage risk. For example, formulas to price options such as Black-
Scholes [29] need an estimate of next period volatility in order to correctly estimate the
current fair value of an option. Lastly, asset allocation formulas used in portfolio manage-
ment use a volatility forecasting formula to evaluate the optimal combination of stocks to
put in their portfolios [30]. A stock with a higher expected volatility would then be seen as
carrying more risk and our volatility forecasting could be used to bolster this dimension of
financial activity. Moreover, our work also underlines the importance of shock transmis-
sion channels between firms in explaining volatility. This study using a graph autoencoder
on a network of firm-to-firm relationships could be extended into other markets tied with
overall financial stability, such as inter banking markets leveraging existing research in the
field such as the bank and borrowing firm data used in financial policy research [31]. By
helping forecast future volatility, financial regulators such as central banks can simulate
how portfolios might perform under extreme market conditions, allowing them to assess
and mitigate risks.

We also discuss a set of extensions that address the limitations in our solution as well
as possible strategies to address them. The first tackles a limitation of the current imple-
mentation related to static embeddings: our current approach works with ‘snapshots’ of
network information at subsequent time points. The embeddings the model produces is
thus discontinuous through time and may not reflect the reality of fluctuations on the
stock market. In future work, we would like to explore strategies to make the GAE’s repre-
sentation ‘dynamic’ so that it learns and continuously updates its inner representation of
the market as in DynGAE [32]. Another extension stems from the agreement between our
unsupervised method using graph features and previously observed good performance of
non-GAE models in finance which attempted to reconstruct only returns [11]. For exam-
ple, we aim to extend the current methodology to reconstruct both the network topology
and price returns simultaneously using frameworks such as the GALA architecture [33].

5 Method
5.1 Data and network construction
Our data set consists of 6 years of stock market price data for stocks in the S&P 500 at the
minute-level frequency from 2015 to 2021 obtained from the EOD intra-day data API [34].



Gorduza et al. EPJ Data Science           (2025) 14:13 Page 10 of 16

We had to drop some companies as they had no available data during the whole period
leaving us with 401 companies. From these price movements which we define as p(n, t)
where the nt-th entry is the price for company n at t, we calculate a log return matrix
X ∈R

N×T of N companies over T time periods at frequency Δt:

r(t, n) = log(p(t, n)) – log(p(t – Δt, n)) (1)

Based on this return matrix, we calculate a Pearson correlation matrix based on a rolling
window of length S days. This correlation matrix measures for all stock return pairs the
covariance normalised by the square root of the product of the variances. It represents
the strength of linear relationships between all the stock pairs. Given a return matrix of N
companies over T , this gives us T – S correlation matrices in total. We define an adjacency
matrix A as Auv = 1 if the (u, v) return pair has a correlation higher than 0.7 and otherwise
we set Auv to 0 following the methodology set out in [9]. The 0.7 threshold is selected
to only keep strongly connected pairs and discount correlations of insufficient strengths
[9, 35]. We summarise the way we construct the financial network in Fig. 4 where a series
of stock prices is transformed into a return matrix.

From that return matrix, we calculate the correlation matrix as described above. Lastly,
through a threshold applied to that correlation matrix, we obtain a network of connected
companies. We also calculate the return volatility (RV) that is used throughout the fol-
lowing sections as a proxy for instability according to the formula set out in Eq. (2). It is
a measure of the variance of the returns of the average price returns over Δt periods. Be-
cause of the power law distribution of market volatility with orders of magnitude larger
swings on high-volatility days, volatility is often measured as the natural logarithm of RV
and termed log-RV.

RVt+Δt
t =

t+Δt∑︂

t
(r(t, n)2) (2)

5.2 GAEs
Based on the problem setting and data description in the previous two sections, we now
formally describe our methodology. Given the financial graph G with adjacency matrix A
and node features X defined above, we propose to use the GAE [21] as the edge recon-
struction model whose generalisation ability is used to approximate market instability.
The GAE is an unsupervised representation learning model with an encoder and a de-
coder. The encoder is a function defined in Eq. (3). It describes an operation mapping

Figure 4 Pipeline generating networks from N returns over a window of time S
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Figure 5 Summary of GAE operations

the input X to the latent embedding Z via a 2-layer graph convolutional network (GCN)
encoder [36].

Z = GCN(A, X) = Ã ∗ ReLU(Ã ∗ X ∗ W0) ∗ W1 (3)

With the following definitions:
• Ã = D– 1

2 AD– 1
2 is the normalised adjacency matrix of the graph. Where D = diag(d) is

the diagonal matrix of the graph G where the values on the diagonal correspond to the
degree of the node.

• ReLU(x) = max(x,0) is the non-linear activation function of the GCN.
• W0 and W1 are learnable weight matrices
Once the encoder generates the embedding Z, the decoder in equation Eq. (4) aims to

reconstruct the edges present in the initial adjacency matrix.

∀(u, v) ∈ V ∗ V , Â = σ (zu ∗ zv) =
1

(1 + e–zu∗zv )
(4)

The embedding Z is of “good quality” if the reconstruction Â is close to the initial adja-
cency matrix. The GAE is trained by minimising a binary cross-entropy (BCE) loss defined
in Eq. (5) on training edges Auv:

(Auv, Âuv) = –Auv ∗ log(Âuv) – (1 – Auv) ∗ log(1 – Âuv) (5)

The end-to-end training is done using gradient descent for which we selected a standard
Adam algorithm [37]. Figure 5 summarises how the GAE operates.

5.3 Measuring market instability
We now describe how we make use of the GAE model to derive a measure of market insta-
bility. We first extract the returns data X from a window of length S = 20 days. From those
returns, we generate the corresponding market network Gt with t denoting the last day in
the time window using the methodology described in Sect. 5.1 We selected a span of 20
days as this represents one month of trading data, which is long enough to capture rela-
tions between companies without too much noise from unstable correlations in shorter
windows [9]. Shifting the window by one day, we generate the next day market graph Gt+1.

We train and validate the GAE on Gt , and test its performance by applying the trained
model to reconstruct edges in Gt+1, the market graph of next day t + 1.Given the high av-
erage in sample reconstruction accuracy of 0.84 we observe throughout our sample, we
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assume the GAE is able to reconstruct the edges of a market graph in a stable period. This
also means that, when applied out of sample to reconstruct the edges of the market graph
Gt+1, we can be confident that the reconstruction error will reveal information about the
market state (homogeneous or heterogeneous) rather than about the quality of the train-
ing. Following the reasoning in Sect. 2, once a GAE is trained, it can reconstruct the adja-
cency matrix of an unobserved graph in proportion to how homogeneous the unobserved
graph is [21]. In that light, we define homogeneity in a graph by how easy it is to reconstruct
by a GAE which has been properly trained. Consequently, a low GAE testing accuracy on
Gt+1 can be interpreted as representing an increase in graph heterogeneity. This increased
heterogeneity measures how different the edge formation mechanism in Gt+1 is different
from Gt . The high in-sample reconstruction accuracy of our GAE allows us to be confi-
dent in its’ ability to reconstruct homogeneous edge-connection patterns. It also allows us
to interpret collapses in reconstruction performance in the out of sample setting as good
indicators of market heterogeneity and upcoming volatility spikes. Previous results in the
literature, such as [13] suggest that the change in market network homogeneity, measured
by edit distance of edges between two successive time periods, granger-causes increases
in market volatility. Following that approach, we interpret the difference in edge formation
mechanism between Gt and Gt+1 as resulting from shocks to investor opinion which push
the market towards a more volatile state [11, 12]. Indeed, changes in the financial con-
nectivity of stockmarkets is interpreted as revealing of the speed at which various market
agents process new information about firms, [38] for instance, describes the instability re-
vealing effect of modifications of low-frequency (ie daily or longer) financial connectivity
such as the 21-day correlation windows we use to build our representation of the market.
The link between market instability and changes in financial connectivity patterns has also
been raised by the seminal work of [3] who argues that it is the breakdown of hierarchies
in correlation networks (ie changes in the network structure) is a good pre-spike indicator.
These shocks also form the basis of market instability, and thus we expect this change in
network homogeneity between day t and day t + 1 to correlate with higher volatility on
day t + 2. The reconstruction accuracy measure which we use in our paper to signify the
next day edge reconstruction performance in our binary edge-reconstruction task for any
given test graph Gt+1 is area under receiver operating characteristic curve (St+1).

Figure 6 describes two consecutive graphs in our sample and Table 4 describes graph
statistics of the two respective graphs. The left-hand image corresponds to the 21st of au-
gust 2015 a day of low volatility and the network displays high edge homophily meaning
the edges connect nodes from the same industry 63% of the time, low edge density, low
average clustering and multiple disconnected components. Those are all traits of regular
low-volatility environments described in Sect. 2. Conversely, the right-hand side graph is
the graph of the next trading date, the 24th of august, a day with higher volatility. The
high-volatility date is associated with a market network with lower edge homophily of
18% (meaning edges connect firms in the same industry only 18% of the time), 20 times
higher edge density, 3 times higher average clustering coefficient and 4 times fewer discon-
nected components compared to the previous low volatility date. This is also observable
by comparing the two graphs visually. The low volatility date on the left displays a few
clusters of blue (financials) and light green (utilities) industry-specific stocks with most
stocks forming smaller groupings. Meanwhile the right hand side graph has most of it’s
nodes connected tightly in the center in one large connected component. These differ-
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Figure 6 Network homogeneity before and during high volatility period

Table 4 Network statistic changes

Volatility Edge
homophily

Edge
density

Average clustering
coefficient

Connected
components

Pre-volatility Spike 63.9% 0.0152 0.292 137
Volatility Spike 18.26% 0.203 0.673 31

Figure 7 Process of generating St+1 from model trained at t

ences illustrate the difference between a high-volatility day and a low volatility day in our
sample. This confirms the intuition in [9, 39] that high volatility is associated with changes
in the network property and edge formation mechanisms of the market. Stocks in high-
volatility markets tend to become more correlated even if the increased correlation does
not correspond to any form of economic interdependencies such as supply chains between
industries. As such a reconstruction method such as the GAE which takes as one of its’
inputs the edge information and learns how the edge and node-level information interacts
can help in detecting market

As such, we use the training of the GAE only as a synthetic objective to produce St+1

which serves only as an input variable in the downstream volatility forecasting model.
The process is summarised in Fig. 7, where the shift between data at time point t and t + 1
is shown as a shift of the two time series Xt and Xt+1, with the former being used to train
the GAE and the latter for testing.
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5.4 Volatility forecasting models
To assess the usefulness of the proposed measure, we first look at correlations between
St+1 (the next day GAE reconstruction) and RVt+2

t+1 (the following day’s return volatility).
This comparison is done by observing the variation of the time series of St+1 and market
volatility in Fig. 1, observing the KDE plots and the spearman’s rank correlation of St+1

and RVt+2
t+1 in Fig. 3. We chose the spearman’s rank correlation as it is less vulnerable to

outliers. High correlation between St+1 and RVt+2
t+1 would indicate that changes in Gt+1’s

homogeneity compared with Gt are in sync with market instability.
As a second step, we test the usefulness of St+1 for the forecasting of log(RV) at the fol-

lowing t + 2 time step (log(RVt+2
t )). We perform this forecasting with the HAR model for

log-RV -defined in (6) below- forecasting by [40]. The HAR is a strong and industry recog-
nised benchmark model for volatility forecasting [11]. It uses auto-regressive components
of lower frequency past volatility to predict future volatility. Lower frequency volatility
measurements are weekly and monthly volatility. This model learns a parameter βn for
each previous volatility measure from the past time periods. We look at an 1-hour fre-
quency of forecasting as it is a frequency of interest for industry practitioners [1, 5, 11].
We calculate the R2 of this estimation for three regressions which serve as baseline models.
These are a linear regression model, a XGBoost regression tree and a multi layer percep-
tron (MLP) that use averaged lagged volatility as an explanatory variable as described in
(6). We select hyper parameters for these models by random search and cross-validate
them using a 3-fold cross-validation.

HAR(log(RVt+1
t )) = β1 ∗ log(RVt+1

t ) + β2 ∗ log(RVt+1
t–6) (6)

Using the result in Eq. (6), we use the HAR-RV model for our out-of-sample volatility
forecasting task to calculate the 2 hour ahead volatility log(RVt+2

t+1) as a function of the
autoregressive model applied on all the previous time steps’ volatility information.

log(RVt+2
t+1) = HAR(log(RVt+1

t )) (7)

To assess the usefulness of our GAE-based indicator, we run these same regressions
again under an ‘improved’ setting as described in Eq. (8), by adding the St+1 feature as an
additional explanatory variable on top of averaged lagged volatility captured by the tradi-
tional HAR-RV. We compare the R2 of the baseline models with the R2 of the ‘improved’
models. An increase in the R2 of the forecasting model that uses St+1, the GAE-based sig-
nal, would suggest that the GAE encodes useful information for out-of-sample volatility
forecasting.

log(RVt+2
t+1) ∼ HAR(log(RVt+1

t )) + β3 ∗ St+1 (8)

To test the hypothesis that St+1 encodes useful information, we perform a one sided t-
test of the difference between the R2 of the regular and ‘improved’ approaches by testing
whether the R2 of the proposed method is higher than the regular methods’ R2. The H0

null hypothesis is that the R2 with St+1 is not significantly larger than the one without
while the H1 is that there is a statistically significant increase in R2 when using the St+1 as
an independent variable.
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We also provide an ablation study to verify the usefulness of the GAE reconstruction ac-
curacy in the cases where the GAE learns the node and edge features of a market graph G
from which either the edge information E or the node feature matrix X have been replaced
with uninformative values. In Table 2, we replace the feature matrix with the identity ma-
trix when training and testing the GAE model that generates the reconstruction ROC St+1.
In Table 3, we replace the adjacency matrix with a rewired adjacency matrix - thus main-
taining the initial number of edges but information represented by their connections -
when training and testing the GAE model that generates the reconstruction ROC St+1.
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pair, the task of predicting edge presence (see (5)); Reconstruction accuracy, Proportion of edges accurately
reconstructed; Volatility, Standard deviation of the stockmarket log-returns.

Acknowledgements
The authors acknowledge support from the Oxford-Man Institute of Quantitative Finance. X.D. acknowledges support
from the EPSRC. D.G. acknowledges support from the ESRC.

Author contributions
DG, SZ and XD jointly formulated the research question and designed the methodology. DG performed the experiments.
DG, SZ and XD jointly analysed the results. All authors wrote and reviewed the manuscript. All authors read and approved
the final manuscript.

Funding
The authors acknowledge funding from the Oxford-Man Institute of Quantitative Finance. X.D. acknowledges funding
from the EPSRC (EP/T023333/1). D.G. Acknowledges funding from the ESRC.

Data availability
The dataset for this research is commercially available from the EOD historical intraday API [34] available at: https://
eodhistoricaldata.com/financial-apis/intra-day-historical-data-api/.

Declarations

Ethics approval and consent to participate
This is not pertinent to the current work as it dealt with openly available data.

Competing interests
The authors declare that they have no competing interests.

Received: 6 October 2023 Accepted: 10 January 2025

References
1. Andersen TG, Bollerslev T, Christoffersen PF, Diebold FX (2006) Chap. 15 Volatility and correlation forecasting. In:

Handbook of economic forecasting, vol. 1, pp 777–878. https://doi.org/10.1016/S1574-0706(05)01015-3
2. Haldane A (2009) Rethinking the Financial Network, Speech by Andrew Haldane, Executive Director, Financial

Stability. Network (April), 1–41
3. Mantegna RN (1999) Information and hierarchical structure in financial markets. Comput Phys Commun

121:153–156. https://doi.org/10.1016/S0010-4655(99)00302-1
4. Serur JA, Avellaneda M (2021) Hierarchical PCA and modeling asset correlations. SSRN Electron J. https://doi.org/10.

2139/ssrn.3903460. arXiv:2010.04140
5. Onnela JP, Kaski K, Kertész J (2004) Clustering and information in correlation based financial networks. Eur Phys J B

38(2):353–362. https://doi.org/10.1140/epjb/e2004-00128-7
6. Samal A, Pharasi HK, Ramaia SJ, Kannan H, Saucan E, Jost J, Chakraborti A (2021) Network geometry and market

instability. R Soc Open Sci 8(2):201734. https://doi.org/10.1098/rsos.201734. arXiv:2009.12335
7. Sandhu RS, Georgiou TT, Tannenbaum AR (2016) Ricci curvature: an economic indicator for market fragility and

systemic risk. Sci Adv 2(5):e1501495. https://doi.org/10.1126/sciadv.1501495
8. Xue J, Jiang N, Liang S, Pang Q, Yabe T, Ukkusuri SV, Ma J (2022) Quantifying the spatial homogeneity of urban road

networks via graph neural networks. Nat Mach Intell 4(3):246–257. https://doi.org/10.1038/s42256-022-00462-y.
arXiv:2101.00307

https://eodhistoricaldata.com/financial-apis/intra-day-historical-data-api/
https://eodhistoricaldata.com/financial-apis/intra-day-historical-data-api/
https://doi.org/10.1016/S1574-0706(05)01015-3
https://doi.org/10.1016/S0010-4655(99)00302-1
https://doi.org/10.2139/ssrn.3903460
https://doi.org/10.2139/ssrn.3903460
https://arxiv.org/abs/2010.04140
https://doi.org/10.1140/epjb/e2004-00128-7
https://doi.org/10.1098/rsos.201734
https://arxiv.org/abs/2009.12335
https://doi.org/10.1126/sciadv.1501495
https://doi.org/10.1038/s42256-022-00462-y
https://arxiv.org/abs/2101.00307


Gorduza et al. EPJ Data Science           (2025) 14:13 Page 16 of 16

9. Kukreti V, Pharasi HK, Gupta P, Kumar S (2020) A perspective on correlation-based financial networks and entropy
measures. Front Phys 8:323. https://doi.org/10.3389/fphy.2020.00323. arXiv:2004.09448

10. Campbell R, Koedijk K, Kofman P (2002) Increased correlation in bear markets. Financ Anal J 58(1):87–94. https://doi.
org/10.2469/faj.v58.n1.2512

11. Lim B, Zohren S, Roberts S (2020) Detecting changes in asset co-movement using the autoencoder reconstruction
ratio. SSRN Electron J. https://doi.org/10.2139/ssrn.3524654. arXiv:2002.02008

12. Preis T, Kenett DY, Stanley HE, Helbing D, Ben-Jacob E (2012) Quantifying the behavior of stock correlations under
market stress. Sci Rep 2(1):1–5. https://doi.org/10.1038/srep00752

13. Zhao L, Li W, Cai X (2016) Structure and dynamics of stock market in times of crisis. Phys Lett A 380(5–6):654–666.
https://doi.org/10.1016/J.PHYSLETA.2015.11.015

14. Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Finance 9(3):203–228. https://doi.org/
10.1111/1467-9965.00068

15. Das SR, Kim S, Ostrov DD (2019) Dynamic systemic risk. J Financ Data Sci 1(1):141–158
16. Chandra M (2003) Multivariate GARCH modelling of volatility and comovements in Multivariate GARCH modelling of

volatility and comovements in Asia Pacific markets Asia Pacific markets. Edith Cowan University
17. Noureldin D, Shephard N, Sheppard K (2012) Multivariate high-frequency-based volatility (HEAVY) models. J Appl

Econom 27(6):907–933. https://doi.org/10.1002/jae.1260
18. Chami I, Abu-El-Haija S, Perozzi B, Ré C, Murphy K (2022) Machine learning on graphs: a model and comprehensive

taxonomy. J Mach Learn Res 23(89):1–64. arXiv:2005.03675
19. Saha S, Gao J, Gerlach R (2022) A survey of the application of graph-based approaches in stock market analysis and

prediction. Int J Data Sci Anal 14(1):1–15. https://doi.org/10.1007/s41060-021-00306-9
20. Wang J, Zhang S, Xiao Y, Song R (2022) A review on graph neural network methods in financial applications. J Data

Sci 20(2):111–134. https://doi.org/10.6339/22-jds1047. arXiv:2111.15367
21. Kipf TN, Welling M (2016) Variational graph auto-encoders. arXiv preprint. https://doi.org/10.48550/arxiv.1611.07308.

arXiv:1611.07308
22. Haddad M, Bouguessa M (2021) Exploring the representational power of graph autoencoder. Neurocomputing

457:225–241. https://doi.org/10.1016/j.neucom.2021.06.034. arXiv:2106.12005
23. Heiberger RH (2014) Stock network stability in times of crisis. Phys A, Stat Mech Appl 393:376–381. https://doi.org/10.

1016/j.physa.2013.08.053
24. Wan X, Yang J, Marinov S, Calliess JP, Zohren S, Dong X (2021) Sentiment correlation in financial news networks and

associated market movements. Sci Rep 11(1):1–12. https://doi.org/10.1038/s41598-021-82338-6. arXiv:2011.06430
25. Matsunaga D, Suzumura T, Takahashi T (2019) Exploring Graph Neural Networks for Stock Market Predictions with

Rolling Window Analysis. *Equal contribution. NeurIPS. arXiv:1909.10660
26. Hamilton WL (2020) Graph representation learning Hamilton. Synth Lect Artif Intell Mach Learn 14(3):1–159. https://

doi.org/10.2200/S01045ED1V01Y202009AIM046
27. Acemoglu D, Ozdaglar A, Tahbaz-Salehi A (2015) Systemic risk and stability in financial networks. Am Econ Rev

105(2):564–608. https://doi.org/10.1257/aer.20130456
28. Sorge M (2004) Stress-testing financial systems: an overview of current methodologies
29. Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81(3):637–654
30. Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91. https://doi.org/10.1111/J.1540-6261.1952.TB01525.X
31. Covi G, Brookes J, Raja C (2022). Staff Working Paper No. 983 Measuring Capital at Risk in the UK banking sector:

a microstructural network approach
32. Mahdavi S, Khoshraftar S, An A (2020) Dynamic joint variational graph autoencoders. Commun Comput Inf Sci 1167

CCIS:385–401. arXiv:1910.01963
33. Park J, Lee M, Chang HJ, Lee K, Choi JY (2019) Symmetric graph convolutional autoencoder for unsupervised graph

representation learning. In: Proceedings of the IEEE international conference on computer vision 2019,
pp 6518–6527. https://doi.org/10.1109/ICCV.2019.00662. arXiv:1908.02441

34. Data EH EOD Historical Data. https://eodhistoricaldata.com/financial-apis/intra-day-historical-data-api/. Accessed:
2010-09-30

35. Caccioli F, Barucca P, Kobayashi T (2018) Network models of financial systemic risk: a review. J Comput Soc Sci
1(1):81–114. https://doi.org/10.1007/s42001-017-0008-3. arXiv:1710.11512

36. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: 5th international
conference on learning representations, ICLR 2017 - conference track proceedings. arXiv:1609.02907

37. Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd international conference on learning
representations, ICLR 2015 - conference track proceedings. https://doi.org/10.48550/arxiv.1412.6980. arXiv:1412.6980
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