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Abstract Event detection has been one of the most important research topics in social
media analysis. Most of the traditional approaches detect events based on fixed tem-
poral and spatial resolutions, while in reality events of different scales usually occur
simultaneously, namely, they span different intervals in time and space. In this paper,
we propose a novel approach towards multiscale event detection using social media
data, which takes into account different temporal and spatial scales of events in the
data. Specifically, we explore the properties of the wavelet transform, which is a well-
developed multiscale transform in signal processing, to enable automatic handling of
the interaction between temporal and spatial scales. We then propose a novel algo-
rithm to compute a data similarity graph at appropriate scales and detect events of
different scales simultaneously by a single graph-based clustering process. Further-
more, we present spatiotemporal statistical analysis of the noisy information present
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in the data stream, which allows us to define a novel term-filtering procedure for the
proposed event detection algorithm and helps us study its behavior using simulated
noisy data. Experimental results on both synthetically generated data and real world
data collected from Twitter demonstrate the meaningfulness and effectiveness of the
proposed approach. Our framework further extends to numerous application domains
that involve multiscale and multiresolution data analysis.

Keywords Multiscale event detection · Spatiotemporal analysis · Wavelet
decomposition · Modularity-based clustering

1 Introduction

The last decade has seen rapid development of online social networks and social media
platforms, which leads to an explosion of user-generated data posted on the Internet.
The huge amount of such data enables the study of many research problems, and
event detection is certainly one of the most popular and important topics in this novel
research area. Social media platforms present several advantages for event detection.
First, due to the real-time nature of online social services, the public awareness of real
world happenings could be raised in a much quicker fashion than with the traditional
media. Second, due to the large amount of users posting content online, more complete
pictures of the realworld eventswith descriptions fromdifferent angles are offeredwith
fast and large-scale coverage. These advantages have attracted a significant amount of
interest from the data mining communities in event detection problems. For instance,
the MediaEval Workshop has open research task dedicated to event detection (Reuter
et al. 2013), and numerous event detection approaches have been proposed recently in
the literature (Sayyadi et al. 2009; Becker et al. 2009; Aggarwal and Subbian 2012).

Events in social media platforms can be loosely defined as real world happenings
that occur within similar time periods and geographical locations, and that have been
mentioned by the online users in the forms of images, videos or texts. Different types
of events are usually of different temporal and spatial scales or resolutions,1 meaning
that they span different intervals in time and space. For example, discussions about the
London 2012 Summer Olympic Games would span a temporal period of nearly one
month and a spatial area of all over the world, while those regarding the 2012 concert
of The Stone Roses in the Phoenix Park inDublinmay concentrate only on the date and
at the location of the concert. Similarly, Fig. 1 illustrates discussions on Twitter about
two events of different spatiotemporal scales in NewYork City. In the designs of event
detection algorithms, it is thus important to take into account the different temporal and
spatial scales of various kinds of events. This is challenging in the sense that: (i) Event
detection approaches usually rely on classification or clustering algorithms with fixed
temporal and spatial resolutions; This results in the detected events being of similar
scales; (ii) It is not yet clear howmultiple resolutions in time and in space interact with
each other so that they can be analyzed simultaneously, even if it is relatively easier
to take into account multiple resolutions in only one of these two dimensions; (iii)

1 Throughout the paper, we use “scales” and “resolutions” interchangeably.
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Fig. 1 Two events in New York City that has been discussed on Twitter: a occupy Wall Street protests.
b Katy Perry’s concert at the Madison Square Garden. Each dot on the map represents a tweet. While
discussions about the first event span the middle and lower Manhattan area for more than three hours, the
discussions about the second are concentrated near the concert venue for less than an hour

Data streams from social media platforms usually contain much noisy information
irrelevant to the events of interest. It is thus important to understand how to attenuate
the influence of the noise on detecting events of different scales. Efficient and robust
multiscale event detection for solving the above challenges is exactly the objective of
the present paper.

In this paper, we first introduce a baseline approach that detects events that are of
similar scales and localized in both time and space, which serves as a first step towards
the understanding of multiscale event detection. We then propose a novel approach
towards the detection of events that are of different scales and localized either in
time or in space but not necessarily in both simultaneously. To this end, we study
the relationship between scales in the two dimensions and explore the properties of
the wavelet transform to automatically and explicitly handle the interaction between
different scales in time and space simultaneously.We propose an algorithm to compute
a data similarity graph at appropriate scales, based onwhichwe perform a graph-based
clustering process to detect events of different spatiotemporal scales. Furthermore, we
present spatiotemporal analysis of the distribution of noisy information in data streams,
especially using notions from spatial statistics, which allows us to define a novel
term-filtering procedure for the proposed multiscale event detection algorithm, and
helps us study the behavior of the two approaches in this paper using simulated noisy
data.

We compare the proposed multiscale event detection approach with the baseline
approach on both synthetically generated data and real world data collected from
Twitter. We show experimentally that the proposed approach can effectively detect
events of different temporal and spatial scales. On the one hand, we believe that the
modeling of the relationship and interaction between temporal and spatial scales and
the detection of multiscale events provide new insights into the task of event detection
with social media data. On the other hand, the proposed framework can be further
generalized to other application domains that involve multiscale or multiresolution
data analysis.

123



Multiscale event detection in social media 1377

2 Spatiotemporal detection of events

In this paper, we define an “event” in social media as follows.

Definition Events in social media are real world happenings that are reflected by
data that are concentrated either in both time and space, or in at least one of the two
dimensions.

Events defined as above are usually of different temporal and spatial scales, namely,
they span different intervals in time and space. In addition, there exist data that do not
contain any information about ongoing events. In the case of Twitter, such examples
can be tweets that are like: “At work”, or “It feels great to be home...”. When non-
informative tweets constitute a large part of the input data, the event-relevant tweets
could however be buried in noise. It becomes very difficult in this case to identify
the information of interest. In this paper, we focus on the Twitter data streams and
consider the following objective.

Objective Consider a Twitter data stream that contains temporal, spatial and text
information. Our goal is to design event detection approaches that (i) are able to
identify events that appear at multiple spatiotemporal scales, namely, events that affect
or take place in different temporal and spatial intervals, and (ii) are robust against
the ambiguous and noisy information present in the data.

In this paper, we cast event detection as a graph-based clustering problem, where the
vertices of the graph represent the tweets, and the edges reflect their similarities. The
goal is to group similar tweets into the same cluster such that they correspond to a real
world event. The clustering algorithm utilizes a similaritymeasure between tweets that
takes into account the temporal, spatial, and textual features of a tweet. Intuitively,
two tweets that are generated by users that are participating in the same event should
share a number of common terms and be closely located in time and/or space. In this
paper, we compare two different ways of measuring similarity between tweets, the
first a baseline approach based on spatiotemporal constraints and the second a novel
wavelet-based scheme. Then, in order to effectively handle the noisy information, we
study the spatiotemporal distribution of the noise in the Twitter data, especially using
a homogeneous Poisson process as a statistical model in our analysis. This is helpful
to analyze the behavior of the baseline and the proposed event detection algorithms.

3 Local event detection via spatiotemporal constraints

Events defined as in the previous section can have different localization behavior in
time and space. When the events are localized in both dimensions, event detection can
be effectively implemented by imposing spatiotemporal constraints on the data. In this
section, we first describe a baseline approach for detecting events that are localized
both in time and space, which serves as a first step towards the understanding of
multiscale event detection presented later. We formulate a clustering problem, where
we wish to group together the tweets that correspond to the same real world event. The
similarity measure between different tweets is thus important. In our baseline event
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detection approach, we measure the similarity between every pair of tweets ti and t j

as:

S1(ti , t j ) =
{

stf−idf(ti , t j ) if t (ti , t j ) ≤ Tt and d(ti , t j ) ≤ Td ,

0 otherwise.
(1)

where t (ti , t j ) and d(ti , t j ) are the temporal difference in minutes and the spatial
distance in meters, respectively, between ti and t j . The thresholds Tt and Td enforce
the locality of the events and impose strict spatiotemporal constraints. Under such
constraints, two tweets ti and t j that have a reasonably high text similarity tend to
refer to the same event in real world. The function stf−idf(ti , t j ) represents the text
similarity of ti and t j in terms of the cosine angle between the vector representations of
the two tweets using the term frequency-inverse document frequency (tf–idf)weighting
scheme (Manning et al. 2008).

Given S1(ti , t j ) as the pairwise similarity between tweets, we can create an undi-
rected and weighted graph with adjacency matrix W1:

W1(i, j) =
{

S1(ti , t j ) if i �= j,
0 if i = j,

(2)

where the vertices represent tweets and the edges (along with the associated weights)
are defined by S1(ti , t j ). By partitioning the vertices of the graph into disjoint clusters,
each cluster is then expected to contain tweets that are likely to correspond to the
same event. Furthermore, due to the constraints introduced in Eq. (1), these events
are localized in both time and space. In this paper, we perform graph-based clustering
using the Louvain method (Blondel et al. 2008). This is a greedy optimization method
that first find small communities in a local way bymaximizing themodularity function
(Newman 2006), before repeating the same procedure by considering the communities
found in the previous step as vertices in a new graph, until a maximum of modularity is
attained.2 The Louvain method is suitable for our purpose of event detection because
of the following advantages: (i) Unlike most of the clustering methods, it does not
require prior knowledge about the number of clusters; This is important because we
usually do not know the number of events a priori. (ii) Unlike the popular approach
based on normalized graph cut [such as spectral clustering (von Luxburg 2007)], it
does not necessarily favor a balanced clustering; This enables the detection of small-
scale clusters together with some relatively larger ones. (iii) It is also computationally
very efficient when applied to large scale networks. Specifically, the complexity of the
greedy implementation in Blondel et al. (2008) is empirically observed to be close to
O(n log n) where n is the number of the vertices in the graph.

The graph-based clustering approach described above outputs a set of clusters
that correspond to events localized in both time and space. This can be illustrated
by Fig. 2a, where each cluster corresponds to a particular time-space “cube”. After
clustering, we apply simple post-processing steps to identify those clusters that are
likely to correspond to meaningful events in real world. For example, we consider that
a meaningful event should be observed by a sufficient number of users with sufficient

2 Since we are interested in local clusters, we apply the non-recursive version of the Louvain method which
stops after the first iteration.
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Fig. 2 a Events of similar scales and are localized in both time and space. b Events of different scales and
are not necessarily localized in both time and space

information reflected on Twitter. Therefore, we consider a cluster as a local event if
and only if the number of tweets and distinct Twitter users within the cluster are above
certain thresholds (see Sect. 7 for the implementation details of these post-processing
steps). The algorithm for local event detection is summarized in Algorithm 1.

Obviously, the choices for the values of thresholds Tt and Td in Eq. (1) are critical
in LED. Without prior information we may choose them such that they correspond to
the expected temporal and spatial spans of events to be discovered. By setting Tt and
Td appropriately, the algorithm would then be efficient at detecting events that are of
similar scales and that are sufficiently concentrated in both time and space. For events
of different scales, however, setting the thresholds too low might break down some
event clusters while setting them too high would generally lead to a higher amount of
noisy information in other clusters3 (as we will see in the experimental sections). In
this case, one needs to implement more complex detection schemes to identify events
that appear at multiple spatiotemporal scales. Hence, we introduce in the next section
our novel wavelet-based method for multiscale event detection.

Algorithm 1 Local Event Detection via Locality Constraints (LED)
1: Input:

T : a set of tweets with temporal, spatial, and text information
Tt : temporal threshold
Td : spatial threshold

2: Compute the pairwise similarities S1(ti , t j ) between tweets in T using Eq. (1), and the adjacency matrix
W1 using Eq. (2).

3: Apply the non-recursive Louvain method to W1, and retain the meaningful clusters {ci }m
i=1 after post-

processing steps.
4: Output:

{ci }m
i=1: clusters that correspond to events that are localized in both time and space.

3 One may think of applyingLEDwith small values for Tt and Td before grouping similar clusters together
using a second clustering step. In fact, the second and further iterations of the Louvainmethod already offers
such a grouping. Alternatively, a hierarchical clustering algorithm can be applied to the clusters obtained
by LED. However, such further grouping process does not usually lead to a clear interpretation in terms of
the spatiotemporal scales of the resulting event clusters, and it is often difficult to decide when to stop the
recursive process and output the eventual clusters.
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4 Multiscale event detection using wavelets

In this section, we propose a novel algorithm for multiscale event detection. Specifi-
cally, we first introduce a new model of the relationship and interaction between the
temporal and spatial scales. We then propose a wavelet-based scheme for computing
the pairwise multiscale similarities between tweets.

4.1 Relationship model between temporal and spatial scales

The fundamental question in designing approaches towards multiscale event detection
resides in properly handling events that are of different scales and do not have simulta-
neous temporal and spatial localization. An illustration is shown in Fig. 2b, where three
events are represented by rectangular cuboids that span different time and space inter-
vals. Two of them are only concentrated in one dimension but spread in the other one.
In such cases, we need to compute a similarity score S2(ti , t j ) between pairs of tweets
ti and t j that carefully considers the temporal and spatial scales of different events.
We shall relax the strict constraints in both temporal and spatial dimensions as defined
in Eq. (1), so that S2(ti , t j ) is computed at appropriate scales that actually correspond
to the span of the underlying events. To this end, we propose in this paper to model
the relationship and interaction between the temporal and spatial scales as follows.

Scale relationshipmodelWhen two tweets ti and t j share common terms and are close
in space, we could tolerate a coarser temporal resolution in computing S2(ti , t j ). Vice
versa, when they are close in time, we could tolerate a coarser spatial resolution.

Our scale relationship model essentially says that, for two tweets ti and t j to be consid-
ered similar, they should be similar at a fine resolution in at least one of the temporal
or spatial dimensions, but not necessarily in both simutaneousy. It thus represents a
tradeoff between time and space in the detection of events of different spatiotemporal
scales. This matches the observation that real world events often happen within a small
geographical area but could span longer time intervals (such as a protest at a certain
location in a city), or they take place only within short time intervals but could spread a
larger geographical area (such as a brief power outage across different areas of a city).
Therefore, based on the proposed model, we can relax the strict constraints defined in
Eq. (1) in event detection.

In order to do so, however, we do not compare two tweets ti and t j with large
temporal or spatial distances by simply choosing higher thresholds Tt and Td , since this
would suffer from text ambiguity generally present in the Twitter data stream (the same
word having different meanings depending on context). We do not either incorporate
directly the exact temporal and spatial distances between them into the computation
of the similarity metric S2(ti , t j ), since this might lead to domination of one scale to
the other. These limitations motivate us to propose a more detailed analysis model,
that is, instead of considering the temporal and spatial information of each tweet as a
whole, we now analyze spatiotemporal patterns of the terms (or keywords) contained
in each tweet. More specifically, to compare two tweets ti and t j , we propose to look
at the similarity between the time series of the number of occurrences of the common
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Fig. 3 Two time series of the number of occurrences of a certain term (computed using the temporal
resolution Δt) within two different geographical cells. These geographical cells are defined by discretizing
the geographical area using the spatial resolution Δd

terms shared by them (the occurrence is evaluated in terms of in how many tweets
these terms appear). On the one hand, this enables us to study the interaction between
the temporal and spatial scales when computing the similarity between keyword time
series. On the other hand, this does not affect the clustering-based event detection
framework, as similarities between tweets would eventually be computed based on
similarities between time series of the common terms shared by them.

We build the time series of keywords as follows. We start with initial temporal
resolution Δt and spatial resolution Δd. Next, for each term shared by ti and t j , we
compute using the temporal resolutionΔt two time series of its number of occurrences,
that are based on data corresponding to the two geographical cells to which ti and t j

belong. These geographical cells are defined by discretizing the geographical area
using the spatial resolution Δd. The keyword time series are illustrated in Fig. 3.

4.2 Wavelet-based similarity computation

We now propose to use a wavelet-based method to measure similarities between time
series of keywords. Similarity between time series are often measured by the correla-
tion of their coefficients under the wavelet transform (Daubechies 1992), which is a
well-developed tool in signal processing that leads to a multiresolution representation
of the signals. In this paper, we consider the discrete wavelet transform (DWT) using
the Haar wavelet, since it provides a natural way to handle different temporal scales as
required in our approach. Specifically, due to the properties of the Haar wavelet, the
approximation coefficients of DWT at different levels naturally correspond to aggre-
gating the time series from fine scales (starting with the initial temporal resolution)
into coarse scales, each time by a factor of two. Therefore, to evaluate the similarity
of the time series at a certain temporal scale, we only need to measure the correlation
between a specific set of the DWT coefficients at the corresponding level (see Fig. 4
for an illustration).
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Fig. 4 An illustration of wavelet-based similarity computation for time series of length 16 (zero padding
can be applied when needed if the length of time series is not a power of 2). The dots indicate the DWT
coefficients at the corresponding level that are used for computing correlation, while the dots highlighted by
the rounded rectangle correspond to approximation coefficients at each level. The approximation coefficients
at DWT level k correspond to a time series generated by aggregating every 2k entries in the original time
series (up to a constant)

Our key idea is then to evaluate the similarity between the two time series shown in
Fig. 3 at a properly chosen temporal scale, which is in turn determined by the spatial
distance between the two geographical cells.More specifically, we introduce a number
of predefined spatial scales for the spatial distance. Then, if the spatial scale is coarse,
whichmeans that ti and t j are distant, then we require the time series to be compared at
a finer temporal scale (the finest temporal scale being the initial temporal resolution);
Alternatively, if the spatial scale is fine, which means that ti and t j are close, then
the time series could be compared at a coarser temporal scale. Given the number of
spatial scales specified by the parameter nscale, we define nscale distance ranges using
logarithmical equispacing between the minimum and maximum distances between
two distinct geographical cells (measured based on the center of the cells), which
correspond to these spatial scales.4 According to the scale relationship model, the
temporal scale St is then selected inversely according to the spatial scale:

St = nscale + 1 − Ss . (3)

For instance, if we choose to have nscale = 4 spatial scales Ss ∈ {1, 2, 3, 4}, 1 being
the coarsest and 4 the finest, then we would have St = 4, 3, 2, 1, respectively, that
represent from the finest to the coarsest temporal scale. This in turn means that we
compute the DWT at levels from 1 to 4, respectively. This procedure is illustrated in
Fig. 4.

We can now define a new similarity metric between two tweets ti and t j as follows:

S2(ti , t j ) = stf−idf(ti , t j ) × sst (ti , t j ), (4)

4 When two tweets come from the same geographical cell, they would share the same time series for any
common term. In this case, the correlation of DWT coefficients would always be 1 regardless of the level
at which we compute the transform (or the temporal scale). This special case can be interpreted as only
keeping the spatial constraint in LED but relaxing the temporal constraint.
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where stf−idf(ti , t j ) is the text similarity of ti and t j defined as in Eq. (1). For each
term shared by ti and t j , we can compute a similarity of the corresponding time series;
sst (ti , t j ) is then defined as the maximum such similarity among all the terms shared
by ti and t j . The reasons why we choose the maximum similarity are as follows.
First, social media platforms that are ideal for event detection usually contain short
textual data where two pieces of text, if corresponding to the same event, would share
only a few but informative common terms, such as hashtags in Twitter or tags in
Youtube or Flickr. Second, in Twitter specifically, although many tweets may share
the same popular term, it is less often that there would be a high similarity between the
two keyword time series in terms of their spatiotemporal patterns, especially at fine
temporal scales, after a term-filtering procedure which we propose in the next section
that removes the “noisy” terms that generally spread in time and space. We thus
consider high similarity between time series as a strong indicator that ti and t j may be
related to the same event. Taking the maximum instead of the average similarity helps
us preserve such information and promote a higher recall metric (retrieval of positive
links between tweets) that we favor. In Eq. (4), we consider the overall similarity
between two tweets as a product of their text similarity (stf−idf(ti , t j )) and the similarity
of spatiotemporal patterns of the terms shared by them (sst (ti , t j )). This leads to an
interesting comparison between LED and MED: Both approaches only consider the
text similarity stf−idf(ti , t j ) that is meaningful in event detection; However, while the
former relies on fixed temporal and spatial constraints on ti and t j , the latter looks at
similar spatiotemporal patterns of the common terms, thus offers more flexibility for
events of different scales. Finally, we can use our new similarity metric to construct
an undirected and weighted graph W2:

W2(i, j) =
{

S2(ti , t j ) if i �= j,
0 if i = j,

(5)

Based on this similarity graph, we can again apply the Louvain method to detect event
clusters. The complete algorithm for the proposedmultiscale event detection approach
is summarized in Algorithm 2.

There are a number of parameters in our multiscale event detection approach. First,
the initial resolution parameters Δt and Δd are used for constructing keyword time
series; Compared to Tt and Td in LED, they do not have to adapt to the “true” scales
of various events, thanks to the scale relationship model and the scale adjustment
afterwards using the wavelet-based scheme. In practice, we can simply choose them
to be relatively small, for example, as the expected minimum temporal and spatial
intervals a desired event may span (specific example choices are presented in Sect. 7).
Second, the number of spatial scales nscale can be considered as a choice in the design
of the algorithm. Intuitively, an nscale too small would not take full advantage of the
spatiotemporal scale relationship model, while nscale being too large might lead to
unnecessary increase in computational cost. The choice of this parameter is also influ-
enced by the resolution parameters Δt and Δd. One the one hand, Δd determines
the number of geographical cells ld along one dimension hence the spatial variability
in the data. This implicitly controls the maximum nscale such that the resulting dis-
tance scales are meaningful. On the other hand, given a certain time span of data, the
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Algorithm 2Multiscale Event Detection using Wavelets (MED)
1: Input:

T : a set of tweets with temporal, spatial, and text information
Δt : initial temporal resolution
Δd: initial spatial resolution
nscale: number of spatial scales

2: For every pair of tweets ti and t j in T , extract the common terms {wi }k
i=1.

3: For each wi , compute using Δt the time series of its number of occurrences, that are based on data
corresponding to the two geographical cells (defined using Δd) to which ti and t j belong.

4: Determine using Eq. (3) the temporal scale St using the spatial scale Ss to which the distance between
the two geographical cells corresponds.

5: Apply DWT to the two time series, and compute the similarity between them as the correlation between
a specific set of DWT coefficients at the level corresponding to Ss .

6: Compute sst (ti , t j ) as the maximum time series similarity among {wi }k
i=1. Compute S2(ti , t j ) using

Eq. (4), and the adjacency matrix W2 using Eq. (5).
7: Apply the non-recursive Louvain method to W2, and retain the meaningful clusters {ci }m

i=1 after post-
processing steps.

8: Output:
{ci }m

i=1: clusters that correspond to events of different temporal and spatial scales.

temporal resolution Δt would determine the length of keyword time series lt , which
in turn determines the maximum (meaningful) level of DWT computation using a
Haar wavelet and hence the maximum temporal scale. Because of the relationship in
Eq. (3), the maximum spatial scale is thus determined accordingly. Based on these
two observations, we therefore suggest considering �min(log2ld , log2lt )� as an upper
bound for nscale, where �·� denotes the ceiling of a number. In our experiments, we
choose nscale = 4 to ensure a certain level of spatial variability while respecting this
upper bound.

5 Spatiotemporal analysis of noise in Twitter

One challenge in designing event detection algorithms for Twitter data is that we often
need to deal with a large amount of “noise” tweets that do not provide any information
regarding real world events. Examples can be tweets such as “Could really use a
drink” or “Nachos for lunch”, or discussions between Twitter users about personal
matters. We consider these tweets as noise and event detection algorithms should be
able to discard them and not allow them to influence the event detection result. In the
literature, several works (such as Sakaki et al. 2010) have employed keyword filtering
techniques in order to tackle this problem and derived a working set of tweets that
contain information relevant to the types of events they wish to detect. Since we do
not focus in this paper on specific event types, but rather on events that take place
in specific locations and time intervals, we analyze in this section the spatiotemporal
structure of the noise, namely, the event-irrelevant tweets in the data. This analysis
will allow us to define a novel term-filtering procedure, and to evaluate empirically
the performance of the event detection algorithms in this paper using simulated noisy
data under different space-time parameters.
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5.1 Spatial distribution of noise in Twitter data

In order to get an intuition about the relevant spatial statistics models that can be useful
for analyzing the spatial distribution of the noise, we focus on a set of geo-located
tweets collected from a specific day (22-01-2012) in New York City. In this dataset,
four of the top-ten frequent terms are: nyc contained in 335 tweets (183 of which are
located in middle and lower Manhattan), love contained in 674 tweets (145 of which
are located in middle and lower Manhattan), lol contained in 1080 tweets (110 of
which are located in middle and lower Manhattan), and night contained in 355 tweets
(97 of which are located in middle and lower Manhattan). These terms, albeit being
among the most frequent ones in the daily collection of tweets, do not appear to be
relevant to a specific event of interest. In Fig. 5 we illustrate the locations of the tweets
(in middle and lower Manhattan) that contain these frequent terms. One can observe
that the tweets have a slight, but not strong spatial concentration and appear to be
almost randomly distributed within the Manhattan area. Based on these spatial plots
we seek the appropriate spatial statistics tools to model these distributions.

In the spatial statistics literature (Cressie andWikle 2011), the lack of spatial struc-
ture is commonly assessed using the concept of Complete Spatial Randomness (CSR).
CSR considers that the points on a map (locations of tweets in our context) follow a
homogeneous Poisson point process. This implies that the numbers of tweets in non-
overlapping areas in the map are independent and follow a Poisson distribution with
some intensity parameter λ. More precisely, if we denote the number of tweets within
an area A as N (A), CSR asserts that N (A) follows a Poisson distribution with mean
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Fig. 5 Locations of tweets that contain four specific frequent terms. a “Nyc”. b “Love”. c “Lol”. d “Night”
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λ · V (A), where V (A) denotes the size of the area A. Intuitively, the CSR property
asserts that points are “randomly” scattered in an area and are not concentrated in
specific locations.

We consider the task of assessing the levels of noise in Twitter data (with respect
to the target event detection task) by testing the CSR property for tweets that contain
common terms.5 In particular, we initially select a term (say the most frequent term in
a collection of tweets) and then we test whether the locations of the tweets that contain
this term have the CSR property. In case a term has the CSR property (i.e., the locations
of the tweets that contain this term follow a Poisson point process distribution), the
edges in the twitter similarity graph that are based on these terms can be considered
as noise and may result in the identification of clusters that are not related to events
of interest.

In order to evaluate the CSR property we have employed Ripley’s K -function
(Cressie andWikle 2011),which is a commonlyusedmeasure for assessing theproxim-
ity of a spatial distribution to a homogeneous Poisson point process. The sample-based
estimate of Ripley’s K -function is defined as K̂ (s) = V (A)

∑
i �= j N (di j < s)/n2 for

a given distance value s, where di j denotes the Euclidean distance between two sample
points i and j (two tweets in our context) in the space, N (di j < s) counts the number
of sample pairs that has a distance smaller than s, n is the total number of points, and
V (A) is the size of the area A. It is known that, when a spatial Poisson process is
homogeneous, the values of the K -function are approximately equal to πs2. Thus, the
proximity of K̂ (s) to πs2 can be employed for evaluating how similar our data dis-
tribution is to a homogeneous Poisson process. In this paper, we use the standardized

K -function: L̂(s) =
√

K̂ (s)
π

− s, and the proximity to a homogeneous Poisson process

is measured by the proximity of the values of L̂(s) to 0.
We now assess the spatial distribution of the sets of tweets shown in Fig. 5 (tweets

containing the terms “nyc”, “love”, “lol” and “night”). Specifically, we illustrate in
Fig. 6 the values of their standardized K -function for different values of s (distances) up
to 4km, depicted in the black lines.Moreover,we simulate (2000 times) a homogeneous
Poisson process and compute the maximum and minimum values for L̂(s), depicted
in the blue and red dashed lines, respectively. We can observe that, the values of L̂(s)
obtained using the locations of these tweets are close to, and in several cases within
the ranges of, the values of L̂(s) obtained from the simulated homogeneous Poisson
processes. This indicates that these tweets are slightly more concentrated in space than
what a homogeneous Poisson process would produce (possibly due to the differences
in the concentration of twitter users in different areas in middle and lower Manhattan),
but their spatial distribution is still close to a homogeneous Poisson process.

To further explainwhat wemean by “still close to a homogeneous Poisson process”,
let us consider what appears to be one of the most extreme differences between the

5 The direct usage of the CSR tests for the whole input tweet stream would not be particularly informative
since both of our algorithms construct a similarity graph between tweets where the edge weights (i.e., the
similarities between tweets) are based on the terms that two tweets have in common. In this case, noise
or event-irrelevant tweets would affect the construction of the graph only when two “noise” tweets have
a term in common (i.e., resulting in the formation of an edge that connects event-irrelevant tweets in the
tweet similarity graph).
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Fig. 6 Comparison between the sample-based estimates of the standardized K -function for tweets con-
taining the four specific terms, and the max–min values of this function for simulated homogeneous Poisson
processes. a “Nyc”. b “Love”. c “Lol”. d “Night”

spatial distribution of tweets and a homogeneous Poisson process in Fig. 6, which is
the value L̂(s) = 0.19 that is achieved for a distance value s = 1km for the term “nyc”.
Based on the number of tweets that contain the term “nyc” on 22-01-2012 (in middle
and lower Manhattan), a homogeneous Poisson process would require an intensity
parameter λ = 7.93 per square kilometer to generate the same number of tweets. This
would mean that on average, the number of tweets per square kilometer that contain
the term “nyc” should be 7.93. In our case, the value of L̂(s) = 0.19 for s = 1km
means that, for small distances, the actual concentration of tweets is slightly higher,
with an intensity parameter λ = 11.21 per square kilometer. This shows that, even in
this worst case, the spatial distribution of tweets is still not far from a homogeneous
Poisson process.

In order to evaluate whether our observation for the four specific terms holds for a
larger tweet collection, we analyze all the geo-located tweets from the New York area
for the duration between 01-11-2011 and 01-04-2013. Specifically, for each day, we
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Fig. 7 Boxplot of the values of the standardized K -function for the most frequent terms

have retrieved the top-ten frequent terms, and for each frequent termwe have computed
the sample-based estimates of L̂(s) for s from 0.1 to 1.2km, again focusing on the
middle and lower Manhattan area. To avoid cases where the number of samples is low,
we have computed the values of L̂(s) only when the number of tweets in middle and
lower Manhattan is larger than 100. The results are presented in the boxplot of Fig. 7,
which illustrates the mean, the variance and the range of the values of L̂(s) (around
5000 values in total, ten for each of the ∼500 days), for different values of s. As we
can see, the boxplot in Fig. 7 illustrates that the most frequent terms in our Twitter
data do not have a strong spatial pattern and follow a distribution that is close to a
homogeneous Poisson process, only exhibiting slightly higher tweet concentrations
for small distances.

5.2 Temporal distribution of noise in Twitter data

In order to analyze the temporal pattern of the noise in Twitter data, we have assessed
whether the distribution of the timestamps of event-irrelevant tweets is close to a
uniform distribution. A uniform distribution of the timestamps can serve as a strong
indication that these tweets are not relevant to an event that takes place in a confined
time interval. In order to test this hypothesis, we have collected the timestamps of the
top-ten frequent terms of each day between 01-11-2011 and 01-04-2013. We focus
our analysis on a 6-h interval between 11am and 5pm. For this time interval we tested
whether the timestamps of tweets that contain a specific frequent term follow a uniform
distribution, using the Chi-squared goodness of fit test. Interestingly, we could reject
the null hypothesis that the timestamps are uniformly distributed at a 5% confidence
level only in 27% of the cases. This result suggests that a large number of frequent
terms in our data does not have a strong temporal pattern.

In summary, the spatiotemporal analysis of the distribution of the noise in Twitter
data presented in this section allows us to (i) conduct synthetic experiments with simu-
lated noisy data that help us understand the behavior of the event detection algorithms
under different space-time parameters, and (ii) consider a term-filtering mechanism
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that removes tweets that contain the terms with low values for L̂(s). We will describe
both aspects in more details in the next section.

6 Synthetic experiments

In order to better understand the behavior of the event detection algorithms LED
and MED, and the potential influence of the noise in the data, we present in this
section experimental results based on synthetic data. Specifically, we generate artificial
documents that are considered as “tweets” posted at different time instants and diverse
spatial locations. By creating some artificial “events” in this setting, we are able to
evaluate quantitatively the performances of the proposed methods under different
choices for the parameter values. In what follows, we first explain the experimental
setup, and then present the event detection results.

6.1 Experimental setup

We work with a spatial area of 10 by 10, which are defined by bottom left and top
right coordinates (0, 0) and (10, 10) respectively in a 2-D Euclidean space, and a
temporal interval of (0, 32) on the real line. We then define events that span different
spatial areas and temporal intervals in diverse experimental settings. First, for each
event, we choose a number between 3 and 10 uniformly at random as the number of
tweets related to that event. These event-relevant tweets are uniformly distributed in
the spatial area and temporal interval spanned by that event. We also generate, based
on the spatiotemporal analysis presented in Sect. 5, event-irrelevant tweets, namely,
noise, which follows a 2-D Poisson point process in the whole spatial area and are
distributed uniformly in the whole temporal interval. Next, the content of each tweet
is generated as follows. We take geo-located tweets from New York collected on a
random day (in this case 21-01-2012) as a reference, and choose 59 terms as event-
relevant terms (referred to as signal terms) and consider all the other terms that appear
in the tweets on that day as noise (referred to as noise terms). We select the number of
terms in each event-relevant tweet uniformly at randombetween 5 and 10. In particular,
in each event-relevant tweet, one term is selected uniformly at random from the 59
signal terms, and the rest are randomly chosen from the noise terms with probabilities
that depend on their numbers of occurrences in the actual daily tweets. We also create
event-irrelevant tweets, and the number of terms in each event-irrelevant tweet is
selected uniformly at random between 3 and 10. The terms in each event-irrelevant
tweet are only chosen from the noise terms. We present event detection results in the
following scenarios.

6.2 Event detection results in synthetic data

6.2.1 Events concentrated in both time and space without noise

In a first scenario, we consider 20 events, each of which is concentrated in a 2 by 2
spatial area and a temporal interval of 2. The spatial and temporal locations are chosen
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Fig. 8 Clustering performance in terms of a NMI and b F-measure, on events concentrated in both time
and space without noise

uniformly at random in the whole spatial area and temporal interval. We only consider
event-relevant tweets, where the goal is to detect the 20 clusters that correspond to
the events by clustering the tweets into different subsets. For MED, we focus on
terms that appear in at least 3 tweets. We choose nscale = 4 unless its upper bound
�min(log2ld , log2lt )� goes below 4 due to the increase of resolution parameters. In our
experiments,we take the samevalue for the four parameters in the twomethods, namely
Tt and Td in LED andΔt andΔd inMED, and evaluate the clustering performance in
terms ofNormalized Mutual Information (NMI) and F-measure (Manning et al. 2008).
The F-measure is computed using a choice of β = 2 meaning that it is slightly in favor
of recall,6 as we consider that it is more important to ensure that tweets related to the
same event are grouped into one cluster. The results obtained by averaging 10 test runs
are shown in Fig. 8. Aswe can see, in terms of both evaluation criteria, the performance
of LED with small values of the thresholds Tt and Td is not satisfactory as it is not
able to capture the links between all the tweets within the same event. However, the
performance increases noticeably as the temporal and spatial thresholds are chosen to
be close to or larger than the “true” scales of the events (2 in this case for both time and
space).When the thresholds get too large, the performance drops slightly, as the chance
of grouping two different events together in one cluster increases. Compared to LED,
MED achieves much better performance even when the resolution parameters Δt and
Δd are small. The reason is that, even at very fine initial resolutions, the wavelet-based
representation inMED is able to aggregate the time series appropriately such that the
similarity of the time series is actually computed at a coarser scale. This suggests
that MED is better at capturing the links between tweets corresponding to the same
event, even with suboptimal choices for the value of the parameters. Therefore, the
performance of MED is much less sensitive to parameter selection than that of LED.

6.2.2 Events concentrated in only one dimension without noise

We now consider events that are not necessarily concentrated in both time and space
but only in one of the two dimensions. Specifically, we consider 20 events, where 10

6 F-measure is computed as (1 + β2) · Precision·Recall
(β2·Precision)+Recall

.
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Fig. 9 Clustering performance in terms of a NMI and b F-measure, on events concentrated in only one
dimension without noise

of them are concentrated in a temporal interval of length between 1 to 2 but spread in a
spatial area with a size from 8 by 8 to 16 by 16. The other 10 events are concentrated in
a spatial area with a size from 1 by 1 to 2 by 2 but spread in a temporal interval of length
between 8 to 16. We still consider a noise-free scenario as in the previous experiment.
The clustering results are shown in Fig. 9. We see that, while MED can handle the
scale changes in this scenario with a performance that remains comparable to that in
the previous experiment, the performance of LED drops significantly. Specifically,
due to the lack of a single temporal and spatial scale for all the events, LED only
performs reasonably well when the threshold values for Tt and Td are large enough to
cover the scales of all the events. This experiment highlights the advantage of MED
in handling events of different scales and in the absence of simultaneous temporal and
spatial localization.

6.2.3 Events concentrated in both time and space with noise

We now move to noisy scenarios where we also consider event-irrelevant tweets in
addition to event-relevant tweets. Specifically, we generate event-irrelevant tweets
that follow a 2-D Poisson point process with an intensity parameter λ = 10 within the
whole spatial area of 10 by 10. This generates around 1000 noise tweets in addition
to the tweets that correspond to 20 events generated as in Sect. 6.2.1. The goal is to
detect the events by applying clustering to all the tweets in the dataset. To measure the
clustering quality, we define the groundtruth to be a combination of 20 event clusters
and noise clusters where each noise tweet is considered as a single cluster. The reason
for this setting is that we wish to group tweets that correspond to the same event,
and at the same time we want to ensure that the noise tweets remain as separated
as possible. Based on the analysis in Sect. 5, for MED, we propose to evaluate the
values of the standardized K -function L̂(s) for all the terms that appear in at least
3 tweets for s chosen to be 0.5, 1, 1.5 and 2, and only consider terms that have an
average L̂(s) value no smaller than 1 as valid terms for generating keyword time
series. The clustering results are shown in Fig. 10. In the noisy scenario, we see that
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Fig. 10 Clustering performance in terms of a NMI and b F-measure, on events concentrated in both time
and space with noise

the NMI and F-measure curves show different trends. Specifically, with small values
for the threshold or resolution parameters, the number of links between tweets cre-
ated by both methods is small, and most of the noise clusters remain well-separated.
When the parameter values increase, noise tweets starting formingmore links to event-
relevant tweets as well as to themselves, which penalizes the clustering. Therefore,
we see that the NMI curves show an almost monotonically decreasing trend as the
parameter values increase. In contrast, the F-measure is a weighted combination of
precision and recall, which penalizes both false positives and false negatives. There-
fore, for both methods, we see that the F-measure curves initially increase as the
parameter values increase (where the number of false negatives generally decreases),
and decrease as these parameters become large (where the number of false positives
increases).

We now compare the performance of LED and MED in the same experiment. For
NMI, we see that the performance of LED drops significantly when the thresholds
exceed the “true” scales of the events, as large thresholds in LED tend to increase the
number of event-relevant and noise tweets that are linked to each others. In comparison,
the performance of MED is relatively more stable, which is partly due to the term-
filtering procedure employed. Similarly,we see thatMEDoutperformsLED for a large
range of parameter values in terms of the F-measure. In addition, the performance of
MED is again more stable in the sense that it peaks at a wider range of parameter
values, while LED only performs well when the threshold values are chosen at the
“true” event scales.

6.2.4 Events concentrated in only one dimension with noise

Finally,we show inFig. 11 the experimental results in a noisy scenariowhere the events
are concentrated either in time or space as defined in Sect. 6.2.2.While theNMI curves
are similar to those in Fig. 10, the F-measure curves show that the performance of
both methods drops significantly in this challenging scenario. Still,MED outperforms
LED in terms of both peak performance and stability.
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Fig. 11 Clustering performance in terms of a NMI and b F-measure, on events concentrated in only one
dimension with noise

6.2.5 Influence of parameter settings

We now take a closer look at the parameter settings for the synthetic experiments.
Especially, we investigate how the length of the temporal interval, the size of the
spatial area, and the number of signal terms in each event-relevant tweet, influence the
performance of both algorithms in terms of theF-measure in the scenario of Sect. 6.2.4,
that is, the performance curve in Fig. 11b.

First, given a fixed parameter for the Poisson point process and fixed spatial area of
10 by 10, the total number of noise tweets remains the same. In this case, we observe
that the performance of both algorithms has improved when the temporal interval
increases from 32 to 128 (Fig. 12a), due to decreased noise density in the temporal
dimension hence a higher signal-to-noise-ratio. Such a gain is more dramatic for LED
especially at large parameter values, in which case the performance of this approach
is more sensitive to the density of the noisy information.

Second, given a fixed temporal interval of 32, as the spatial area increases from 10
by 10 to 16 by 16, the total number of noise tweets increases quadratically. In this
case, we see from Fig. 12b that the performance of both algorithms decreases mainly
because of that, as the total number of noise tweets increases, generally more links
are formed between noise tweets.

Finally, we have investigated the influence of the number of signal terms in each
event-relevant tweet on the performance of the algorithms. Specifically, we increase
the number of signal terms from 1 to 3 in each event-relevant tweet and repeat the
same experiments.We have observed performance gain in Fig. 12c for both algorithms
which matches the intuition that a higher signal-to-noise-ratio generally leads to better
performance.

In summary, the synthetic experiments suggest that LED is efficient at detecting
events that are concentrated in both time and space, provided that these events are of
similar scales and that the correct temporal and spatial thresholds are chosen in the
algorithm. In comparison, althoughwe employed a term-filtering procedure inMED in
the noisy scenarios, the results on synthetic data generally suggest that MED is better
than LED at detecting events of different scales and in the absence of simultaneous
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Fig. 12 Clustering performance in terms of F-measure on events concentrated in only one dimension
with noise. a The same setting as Sect. 6.2.4 but with a temporal interval of 128. b The same setting as
Sect. 6.2.4 but with a spatial area of 16 by 16. c The same setting as Sect. 6.2.4 but with 3 signal terms in
each event-relevant tweet

temporal and spatial localization. MED is also less sensitive to parameter selection
and leads to more robust and stable event detection performance.

7 Real world experiments

Wenow test the performance of LED andMED in real world event detection tasks.We
focus in this section on the comparison between these two event detection methods,
since (i) such a comparison would highlight the difference between LED andMED in
detecting real world events of various temporal and spatial scales, and (ii) to the best
of our knowledge, there is no other multiscale method in the literature that is dedicated
to event detection. We first describe the data and some implementation details, and
then present the event detection results. Finally, we discuss about the scalability of the
proposed algorithm.

7.1 Data description

We have collected geotagged public tweets in the New York area, which corresponds
to a geographical bounding box with bottom left GPS coordinates pair (40.4957,
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−74.2557) and top right coordinates pair (40.9176, −73.6895), from November 2011
to March 2013. The streams of public tweets are retrieved using Twitter’s official
Streaming API with the “locations” request parameter.7 After the initial retrieval,
we filter out those tweets that have no geotags or have geotags outside the predefined
bounding box. This results in 16449769 geotagged tweets in total. As a pre-processing
step, we remove those tweets that contain a clear location indicator, such as the ones
corresponding to Foursquare check-ins, which we do not consider as events of interest.

7.2 Implementation details

We implement both event detection algorithms LED and MED on a daily basis, that
is, we aim at detecting events from each day. The tf–idf weighting scheme in the vector
space model is implemented using the Text to Matrix Generator (TMG) MATLAB
toolbox (Zeimpekis and Gallopoulos 2006), where we also remove a list of stop words
provided by the toolbox (with an additional one “http”), and set the minimum and
maximum length of a valid term to be 3 and 30.

For LED, we use a temporal threshold of Tt = 30 minutes and spatial threshold
of Td ≈ 100 meters (difference of 0.001 in latitude or 0.0015 in longitude) in Eq. (1)
for the detection of local event clusters. For MED, we focus on terms that appear in
at least 5 tweets. We evaluate the values of the standardized K -function L̂(s) for all
these terms with s chosen to be 0.2, 0.4, 0.6, 0.8 and 1, and only consider those that
have an average L̂(s) value no smaller than 0.5 as valid terms for generating keyword
time series. The initial temporal and spatial resolutions in MED are set to Δt = 30
minutes and Δd = 100 meters, and the number of spatial scales is set to nscales = 4.
Once the clusters are obtained by both methods, we perform simple post-processing
steps that (i) remove clusters that contain less than 3 tweets or less than 3 distinct
users, so that each event would contain sufficient information from sufficient number
of observes, and (ii) remove clusters in which more than 50% of the tweets comes
from a single user, so that the information source is sufficiently diverse, and finally (iii)
remove clusters that correspond to job advertisements and traffic alerts posted by bots.
While there is no general rule for such post-processing, we found these steps practical
to remove clusters that are not meaningful and correspond to noisy information.

7.3 Event detection results

We now analyze the clustering results for both LED andMED algorithms. First of all,
the clusters detected byLED do correspond tomeaningful realworld events of interest.
For example, Table 1 shows some example local clusters obtained that correspond to
several protests during the Occupy Wall Street (OWS) movement8 in New York City.
To understand better the behavior of LED, we take 2011-11-17 as an example date,
when many OWS protests took place. We first show in Fig. 13 all the 41 local event

7 https://dev.twitter.com/streaming/overview/request-parameters#locations.
8 http://en.wikipedia.org/wiki/Occupy_Wall_Street.
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Table 1 Example local clusters detected by LED that correspond to protests in the OWS movement

Date Event Example Tweets Tweet IDs

2011-11-15 At about 1 am, NYPD
began to clear Zuccotti
Park

Lines of NYPD
circulating inside park.
Stand here, don’t stand
there etc. outside
perimeter lined by riot
police. #OWS

136593898050043905

2011-11-17 More than 30,000
demonstrated in and
around Zuccotti Park,
Union Square, Foley
Square, the Brooklyn,
and other locations
through the city

Mostly media, police
right now in Zuccotti
Park. We need more
numbers. Get down
here. #OWS #N17

137128655636803584

Occupy wall street is
occupying union
square. As long as I can
get home on the subway
later chant on. Chant on

137268645297532929

March stretches from
Brooklyn Bridge all the
way back to Foley
Square. Thousands
lined up down Centre
Street on way to bridge
#n17 #OWS

137315275430309888

Crossed Brooklyn Bridge
and was greeted by cop
saying, Welcome to
Brooklyn

137334153854197760

2012-01-01 New York police arrested
68 Occupy Wall Street
protesters after they
moved back in Zuccotti
Park where the
movement began last
year

Arrests happening now in
Zuccotti Park #ows
#OccupyWallSt

153361598260580353

2012-01-03 Approximately 200
Occupy protesters
performed a flash mob
at the main concourse
of New York’s Grand
Central Terminal

#Occupy #ows protest in
Grand Central #New
York #NYC

154337396203339776

2012-03-17 Occupy Wall Street
demonstrators
attempted to reoccupy
Zuccotti Park to mark
the movement’s six
month anniversary

Haven’t seem Zuccotti
like this in months.
Some instigation by
protestors but police
seem tense today, too
#M17 #OWS

181082983598530560
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Fig. 13 Local event clusters detected byLED on 2011-11-17. The colors represent cluster ids (Color figure
online)

clusters detected on this date in middle and lower Manhattan, where different clusters
are shown in different colors. Detailed information about the top 20 clusters are further
shown in Table 2, where the six columns correspond to cluster id, median timestamp
(GMT+0) of all the tweets in the cluster, minimal time interval (in seconds) that covers
80% of the tweets, mean latitude and longitude of the tweets, and (up to 10) top terms
contained in the cluster. As we can see in Fig. 13 and in the third column of Table 2,
all the clusters are highly localized in both time and space. In addition, due to the strict
temporal and spatial constraints used by LED (see Eq. (1)), for the same event we get
separate clusters, which correspond to different timestamps (such as clusters 2 and
5 that talk about protests at Zuccotti Park) or different locations (such as clusters 3
and 13 that talk about protests at Union Square). Ideally, we would like some of these
separated clusters to be grouped together if they are related to the same real world
event.

We now present the event detection results on data from the same date usingMED.
Table 3 summarizes the top 10 clusters detected byMED, four of which are visualized
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on the map in Fig. 14. From Fig. 14 and the third column of Table 3, we see thatMED
is able to detect events that spread in much larger spatial areas or longer time intervals
than LED. Specifically, we see in Fig. 14a, b two clusters related to OWS protests at
Zuccotti Park (cluster 1), and Union Square and Foley Square (cluster 2), respectively,
both of which span rather long time intervals. Moreover, although most of the tweets
in the two clusters are mainly posted from locations where the protests took place,
there also exist tweets in the clusters that mention the same events but have been
posted at quite distant locations. In Fig. 14c, d, we see two clusters corresponding to
the Raise Cache tech event (cluster 5) and the Mastercard free lunch promotion event
(cluster 9), respectively, both of which are more concentrated in time but spread in
space (with a few outliers in the latter case). Although there exists certain amount of
noise tweets in the detected clusters, these examples demonstrate that MED is able
to detect events that concentrate only in time or space, many of which are of different
scales. In comparison,LED is not able to detect such event clusters. Specifically,LED
produced many separated clusters for OWS protests, two separated clusters with some
missing tweets for the Raise Cache tech event, and missed completely the Mastercard
promotion event due to the lack of a group of tweets that are concentrated in both time
and space.

Finally, we notice that even in the results obtained byMED there sometimes exists
more than one cluster about the same event, for example, in Table 3 there are two
clusters detected for both the OWS protests (clusters 1 and 2) and the Katy Perry
concert (clusters 3 and 4). First, the protests at Zuccotti Park took place from the
morning to noon, while the protests at Union Square and Foley Square happened in
the afternoon after 3pm. Although there indeed exist semantic links between tweets
that correspond to these two events, the rather different locations and timestamps lead
to separate clusters. Second, for the Katy Perry concert, the two clusters highly overlap
in both time and space, and the tweets in one cluster have quite strong links to those in
the other one. In this case, clusters have been separated mainly because of the strong
patterns present in the texts: While in cluster 3 the concert is described mostly using
a single term “katyperry”, in cluster 4 we see two separate terms “katy” and “perry”.

7.4 Scalability

The computational complexity of both LED and MED mainly depend on (i) the
construction of a similarity graph, and (ii) the graph-based clustering process. As we
mentioned before, the Louvain method used in the clustering process is empirically
observed to be able to scale to large scale graphs. Therefore, we mainly discuss the
computational cost of constructing similarity graphs in the two algorithms.

For both LED and MED, the construction of a similarity graph can be performed
efficiently because the similarities need to be computed only for pairs of tweets that
have common terms. Thus, the computational complexity of the similarity graph con-
struction, using an appropriate index structure (such as an inverted index), can be
O(n × avg_connectivity), where n is the total number of tweets and avg_connectivity
denotes, given a tweet t , the average number of tweets in the dataset with non-zero
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Fig. 14 Example event clusters detected byMED on 2011-11-17: aOWS protests at Zuccotti Park (cluster
1). b OWS protests at Union Square and Foley Square (cluster 2). c Raise Cache (cluster 5). d Mastercard
free lunch promotion (cluster 9)

similarity with t . In our real world experiment, avg_connectivity corresponds to only
2% of the total number of tweets.

In addition, avg_connectivity can be further reduced by the term-filtering procedure
that is employed inMED for noise-filtering. Since term-filtering is applied to the most
popular (frequent) terms, this can substantially affect avg_connectivity. In our exper-
iment, for example, after the filtering procedure avg_connectivity is further reduced
by more than 40% compared to LED. Moreover, the filtering procedure potentially
represents a tradeoff between the performance of the algorithm and its computational
complexity. A more aggressive filtering can largely attenuate the influence of noisy
information and at the same time reduce the computational cost. However, it might
also filter out terms that are related to some relatively small-scaled events.

For MED, we need to compute the spatiotemporal similarity of time series for
the valid terms (after term-filtering) shared by every pair of tweets. However, since
the spatiotemporal similarity is defined between time series that come from different
geographical cells,we only need to evaluate, for each valid term, the pairwise similarity
between time series from different cells, instead of comparing every pair of different
tweets containing that term. This keeps the number of DWT computations needed
relatively low due to the small number of geographical cells.
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Practically, for the daily Twitter stream with geotag in the middle and lower Man-
hattan area of New York City that we have considered in the experiment (∼8000
geotagged tweets with 36,000 terms in total), it takes only a few seconds to finish the
construction of the similarity graph in LED. For the implementation of MED, it takes
roughly 5 min for our MATLAB code to create the similarity graph on a lab server
with average computing power or 8min on amid-2009MacBook Pro (both single core
process), where the main computational cost is due to the DWT computations. While
we consider this computation time reasonable given the benefits of the algorithm, we
certainly hope to further improve the scalability of our algorithm in future work.

8 Related work

Social media data have become pervasive due to the fast development of online social
networks since the last decade. This has given rise to a series of interesting research
problems such as event detection based on user-generated content (Sayyadi et al. 2009;
Becker et al. 2009;Aggarwal and Subbian 2012). As an example, Chen andRoy (2009)
and Papadopoulos et al. (2011) have proposed to detect social events using tagged
photos in Flickr. A more popular platform is Twitter, which has attracted a significant
amount of interest due to the rich user-generated text data that can be used for event
detection (Atefeh and Khreich 2013). Early works in the field have focused on more
specific types of events, such as news (Sankaranarayanan et al. 2009) and earthquakes
(Sakaki et al. 2010), while recent approaches detect various types of events (Petrovic
et al. 2010; Marcus et al. 2011; Becker et al. 2011; Ozdikis et al. 2012; Li et al. 2012a;
Parikh andKarlapalem2013;Berlingerio et al. 2013).Although the specific techniques
presented in the state-of-the-art event detection approaches may vary from a technical
point of view, many of them rely on the detection of certain behaviors in the Twitter
stream such as the burstiness of certain keywords, which indicates the emergence of
particular events. In particular, several works use wavelets, which is a well-developed
tool in signal processing, for event detection based on keyword burstiness patterns
(Weng and Lee 2011; Cordeiro 2012).

Recently, there has been an increasing amount of interest in exploring both the
temporal and spatial dimensions to better capture the meaningful information and
reduce noise in the data from social media platforms. In Rattenbury et al. (2007), the
authors have proposed to analyze for event extraction the semantics of tags associated
with the Flickr photos, by taking into accountmultiple temporal and spatial resolutions.
In Chen and Roy (2009), the authors have proposed to cluster Flickr photos based on
both the temporal and the spatial distributions of the photo tags using wavelets. In
Becker et al. (2010), the authors have considered combining text, temporal and spatial
features in order to build an appropriate tweet similarity measure. In Lappas et al.
(2012), the authors have proposed two approaches to detect burstiness of keywords
in both temporal and spatial dimensions simultaneously. In Sugitani et al. (2013),
the authors have proposed a hierarchical clustering procedure for event detection in
Twitter, where both temporal and spatial constraints have been imposed tomeasure the
similarities of tweets. They have also proposed to examine co-occurrences of keywords
that present specific spatiotemporal patterns. Other examples include Lee et al. (2011),
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Li et al. (2012b), Thom et al. (2012), Walther and Kaisser (2013) and Zaharieva
et al. (2013), where the authors have proposed spatiotemporal clustering methods for
anomaly and event detection in Twitter and Flickr, respectively. These approaches are
certainly inspirational to the idea proposed in the present paper; However, most of
them do not explicitly handle multiple spatiotemporal scales in event detection.

Finally, there are a few approaches in the literature that have studied the influence of
different resolutions for temporal and spatial analysis in event detection. For example,
in Cooper et al. (2005) and Rattenbury et al. (2007), the authors have proposed to
use a scale-space analysis of the data (Witkin 1983). The common objective in these
approaches is to select the most appropriate scale for event extraction and detection.
More generally, multiscale or multiresolution clustering algorithms has been of inter-
est in the machine learning, pattern recognition, and physics (Ronhovde et al. 2011,
2012) communities since the last decade. The approaches that take advantage of the
properties of the wavelet transform to enable a multiresolution interpretation in the
clustering process, such as the works in Sheikholeslami et al. (2000) and Tremblay
and Borgnat (2012), are of particular interest. Although these approaches are not orig-
inally proposed for event detection in social media platforms, they have inspired us
to consider wavelets in our framework. While they output multiple sets of clustering
solutions at different resolutions, our approach however uses wavelets to choose the
appropriate temporal and spatial resolutions for constructing a single data similarity
graph.

In summary, although there exist many approaches that take into account the tempo-
ral and spatial dimensions of the social media data for event detection, they generally
do not explicitly handle different scales in data analysis. In contrast, our framework
explicitly handles multiple spatiotemporal scales, which we believe is essential for
building an efficient and generic event detection approach. Different scales in the
temporal and spatial dimensions have been treated separately in most of the state-of-
the-art analyses, but the relationship and interaction between these scales have been
largely overlooked in the literature. To the best of our knowledge, our approach is the
first attempt that is based on an explicit modeling of the relationship between differ-
ent temporal and spatial resolutions. Finally, we present a statistical analysis of the
temporal and spatial distributions of noisy information in the Twitter data, which we
believe is the first of its kind. We believe our perspective contributes to the research in
the field of social media analytics and provides new insights into the design of novel
clustering and event detection algorithms.

9 Conclusion

In this paper, we have proposed a novel approach towards multiscale event detection in
social media. Especially, we have shown that it is important to understand and model
the relationship between the temporal and spatial scales, so that events of different
scales can be separated simultaneously and in ameaningful way. Furthermore, we have
presented statistical modeling and analysis about the spatiotemporal distributions of
noisy information in the Twitter stream, which not only helps us define a novel term-
filtering procedure for the proposed approach, but also provides new insights into the
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understanding of the influence of noise in the design of event detection algorithms.
Future directions include (i) further investigation of the possibility of extending and
generalizing the proposed scale relationship model to handle temporal and spatial
scales simutaneously for multiscale event detection, (ii) more appropriate and accurate
statistical models for analyzing noisy information present in social media data, and
(iii) improvement on the scalability of the proposed algorithms.
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