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The network traffic matrix is widely used in network operation and management. It is
therefore of crucial importance to analyze the components and the structure of the net-
work traffic matrix, for which several mathematical approaches such as Principal Compo-
nent Analysis (PCA) were proposed. In this paper, we first argue that PCA performs poorly
for analyzing traffic matrix that is polluted by large volume anomalies, and then propose a
new decomposition model for the network traffic matrix. According to this model, we carry
out the structural analysis by decomposing the network traffic matrix into three sub-matri-
ces, namely, the deterministic traffic, the anomaly traffic and the noise traffic matrix, which
is similar to the Robust Principal Component Analysis (RPCA) problem previously studied
in [13]. Based on the Relaxed Principal Component Pursuit (Relaxed PCP) method and the
Accelerated Proximal Gradient (APG) algorithm, we present an iterative approach for
decomposing a traffic matrix, and demonstrate its efficiency and flexibility by experimen-
tal results. Finally, we further discuss several features of the deterministic and noise traffic.
Our study develops a novel method for the problem of structural analysis of the traffic
matrix, which is robust against pollution of large volume anomalies.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction the packet-level data and the flow-level data. With the ra-
pid growth of the Internet scale and link transmitting capa-
bility, on the one hand, it is usually infeasible to collect and

process the complete packet-level data; On the other hand,

1.1. The Internet traffic data

The Internet traffic data is considered as a significant in-
put for network operation and management. To monitor
and analyze traffic data efficiently is one of the most
important problems in the research field of network mea-
surements. In general, there are two levels of traffic data:
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the coarse flow-level data obtained by packet sampling of-
ten contains enough network information and has become
increasingly popular in recent studies. As an example, one
type of widely used flow-level traffic data is the IP flows
collected in each router by the Netflow protocol. Roughly
speaking, each IP flow is a sequence of packets sharing
the same Source/Destination IP addresses, Source/Destina-
tion port numbers and transport protocol during certain
time intervals. However, in large scale networks, the vol-
ume of IP flow data is still too huge for storage and pro-
cessing. For instance, the one-month IP flow data of the
GEANT backbone network is about 150 GB [1], which
makes important applications such as anomaly detection
impractical. Therefore, it is necessary to further compress
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the IP flow data, mainly by means of flow sampling and
aggregation.

The network traffic matrix is computed by IP flow
aggregation, which records how much data is transmitted
between each Original-Destination (OD) pair during differ-
ent time intervals. For each OD pair (kq, k2), the original
point k; and the destination point k, are both the Points
of Presence (PoP) in the network, and we aggregate all
the IP flows which enter the network at k; and exit at k,
to represent the OD flow corresponding to (ki, k). The re-
search topics in traffic matrix analysis mainly include: (1)
To estimate a traffic matrix accurately; (2) To generate
synthetic traffic matrix; (3) To utilize a traffic matrix effec-
tively for measurement applications, such as anomaly
detection and routing optimization. These topics require
a deep understanding of the components and structure of
the traffic matrix. In this paper, we carry out structural
analysis of the traffic matrix by studying different traffic
components that constitute the traffic matrix.

1.2. Traffic matrix and its structural analysis

Considering the network traffic with p OD flows during
t time intervals, the corresponding traffic matrix Xisat x p
non-negative matrix. For each integer 1 < j < p, the jth col-
umn X; of X is the traffic time series for the jth OD flow; for
each integer 1 <i < t, the ith row X(i, :) of X is the traffic
snapshot of all the OD flows during the ith time interval.
According to the datasets adopted in this paper, we sup-
pose t > p. In real network measurements, the Netflow pro-
tocol consumes much CPU resources; some PoP routers
might not support Netflow; and the IP flow data might
get lost during the transmission. These limitations make
the collection of a complete traffic matrix a challenging
task, therefore many estimation algorithms by means of
indirect measurements (such as link traffic data collected
by the SNMP protocol) were proposed in the literature. In
recent studies, the error of the third generation estimation
algorithms have been decreased to below 10%. In this pa-
per, however, we do not concentrate on the estimation
problem. Instead, we perform our experiments based on
real world datasets of traffic matrices. These datasets are
collected from the Abilene networks (in the US) and the
GEANT networks (in Europe), which are available from
[2,3], respectively.

In general, a traffic matrix is a combination of different
classes of network traffic. In network operation and man-
agement, people usually need information on all classes
of traffic, such as the deterministic traffic and the anomaly
traffic. In this paper, we study the structural analysis prob-
lem of a traffic matrix, which is to accurately decompose
the traffic matrix into sub-matrices that correspond to dif-
ferent classes of traffic, hence explore in detail various fea-
tures of the network traffic.

The most widely used approach for traffic matrix anal-
ysis is Principal Component Analysis (PCA) and its variants.
For example, Lakhina et al. [4] first introduced the PCA
method in the studies of traffic matrices, and they found
that traffic matrices can be well approximated by a few
principal components that correspond to the largest singu-
lar values of the matrices. Therefore, they claimed that

traffic matrices usually have low effective dimensions. They
further introduced the concept of eigenflow and the eigen-
flow classification method, discussed the distribution pat-
tern of different eigenflow classes, and proposed a
method to decompose each OD flow time series according
to the classification results. These ideas were further devel-
oped in their later work [5], in which they presented the
PCA-subspace method for volume anomaly detection, and
decomposed the link traffic matrix into two sub-matrices
that correspond to a normal subspace and an anomaly sub-
space, respectively. During each time interval, the norm of
the traffic volume that corresponds to the anomaly sub-
space was compared with the Q-statistic threshold, whose
result was used to infer the existence of anomalies in the
network.

After Lakhina’s studies, many researchers have enriched
the PCA-based methods for traffic matrix analysis. Huang
et al. [6] proposed a distributed PCA method for volume
anomaly detection, which considered the trade-off be-
tween the detection accuracy and the data communication
overhead. Zhang et al. [7] extended the classical PCA meth-
od and argued that large volume anomalies should be ex-
tracted via both spatial and temporal approaches, which
were later named as Network Anomography. Based on the
fact that traffic matrices often have low effective dimen-
sions, Soule et al. [8] proposed a new principal component
method for traffic matrix estimation, and the experiments
demonstrated that their approach has a lower estimation
error compared to most of the previous methods, such as
the tomogravity method and the route change method.

However, recent studies have shown some limitations
of the PCA-based methods. Ringberg et al. [10] experi-
mented the PCA-based anomaly detection method, sug-
gesting that its efficiency is very sensitive to the choice
of parameters, such as the number of principal compo-
nents in the normal subspace, the value of detection
threshold, and the level of traffic aggregation. In addition,
they found that large volume anomalies might pollute
the normal subspace, which could lead to high false posi-
tive rate in anomaly detection. Ohsita et al. [11] argued
that the traffic matrix estimated by network tomography
is not a proper input for the PCA-based anomaly detectors.
Since most estimation methods are designed for an anom-
aly-free traffic matrix, the estimation error might increase
when the network traffic contains large volume anomalies.
Instead, they suggested estimating the increased traffic
matrix and obtained a high attack-detection rate. Their re-
search also indicated the strict requirements of input traf-
fic matrix for the PCA-based methods. More recently,
Rubinstein et al. [12] proved that attackers could signifi-
cantly degrade the performance of the PCA-based anomaly
detectors simply by adding chaff volumes before real at-
tacks, and designed an anomaly detector that is more ro-
bust against these attacks.

1.3. Main contributions of this paper

As mentioned above, although it has been extensively
studied before, PCA-based methods still have limitations
for traffic matrix analysis and related applications. One
important drawback is that, when the traffic matrix is
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corrupted by large volume anomalies, the resulting princi-
pal components will be significantly skewed from those in
the anomaly-free case. This prevents the subspace-based
methods from accurately decomposing the total traffic into
normal traffic and anomaly traffic, and decreases the effi-
ciency of PCA-based anomaly detectors. However, to our
knowledge there are only a few existing methods for ana-
lyzing a traffic matrix with large volume anomalies. This is
going to be the focus of this paper, where we address the
problem of structural analysis of polluted traffic matrices.
The main contribution of our paper is twofold:

(1) As the basic assumption behind the subspace-based
methods is that each eigenflow can be exactly classi-
fied, it is an interesting question whether those clas-
sification method still perform well for a polluted
traffic matrix. Specifically, (i) is there an eigenflow
that satisfies more than one classification criterion
of the eigenflow classes? (ii) is there an eigenflow
that satisfies no classification criterion of the eigen-
flow classes? (iii) does the distribution pattern of
eigenflows maintain for a polluted traffic matrix?
We discuss these problems in Section 2, where we
use PCA for the structural analysis of real world traf-
fic matrices, which usually have large volume
anomalies.

(2) As the PCA-based structural analysis performs
poorly when the traffic matrix contains large volume
anomalies, it is necessary to provide a new analysis
tool that is suitable for polluted traffic matrices. In
Sections 3 and 4, we propose a new decomposition
model for the traffic matrix based on empirical net-
work traffic data, and formalize the mathematical
definition of the structural analysis problem. This
motivates us to discover the equivalence between
structural analysis and the Robust Principal Compo-
nent Analysis (RPCA) problem. We then design a
decomposition algorithm based on the Relaxed Prin-
cipal Component Pursuit (Relaxed PCP) method,
which is suitable for solving the RPCA problem.
Using this algorithm, we are able to obtain a proper
traffic decomposition for the polluted traffic matri-
ces in our experiments. Finally, we analyze several
properties of the sub-matrices from the decomposi-
tion of the traffic matrix in detail in Section 5.

2. PCA for the structural analysis of polluted traffic
matrix

2.1. The classical PCA method

PCA is widely used in high dimensional data analysis,
where the redundant high dimensional data can be
approximated by a low dimensional representation. In
our study, we consider each row vector of the traffic matrix
X € R™P as a data point in RP, thus X contains t data points.
Following the common approach in [4,5], we normalize
each OD flow vector (columns of X) to have zero mean be-
fore performing PCA:

X;=X;—mean(X;) j=1,2,...,p. (1)

PCA can be viewed as a coordinate transformation pro-
cess, where the data points have been transformed from
the original coordinate system to a new coordinate system.
All the unit vectors of the new coordinate system are rep-
resented as {#;}}_,, and v; is called the ith principal compo-
nent vector. The first principal component vector u;
captures the maximum variance (energy) of the original
traffic matrix X:

v, = argmax | Xv||. (2)
lvl=1

For each integer k > 2, suppose we have obtained the
first k — 1 principal component vectors, the kth principal
component vector v, then captures the maximum variance
of the residual traffic matrix, which is the difference be-
tween the original traffic matrix X and its mappings onto
the first k — 1 principal component vectors:

k-1
<X - ZXU,-viT> v

i=1

vy = argmax
loll=1

. (3)

Following this progress, all the principal component
vectors are defined iteratively. It is easy to show that
{v;}f_, form an orthogonal basis of RP. Thus the traffic ma-
trix can be decomposed as:

P
X=X[vi v2 ... gllva vz ... V)" =Y Xvio!
i=1
p XZ),' T P T
= Xvi| —v; = Xvillu;v; , 4

Xl ol = X v (4)

where
XI/,‘ .
Ui = i=12,..., 5
= X . (5)

is a unit vector in R, which is called the ith eigenflow cor-
responding to v; [4].

Following basic matrix theory, we can show that the
principal component vectors {z;}}_; are the eigenvectors
of the matrix XX, sorted by the corresponding eigenvalues
{%}F_; in a descending order:

XTXZ/I':;V{Z/,' l.:‘l.,27...,p7 (6)

where 7; > 2, > ... > 4, > 0. Furthermore, g; =/ is
called the i-th singular value of X. Therefore, {#;}} , can
be found by computing the eigenvectors of X'X.

Since | Xvi|| = \/u,TXTXv,- = \/Ai vTv; = gy, Eq. (4) can be
rewritten as:

p
X=Youv!. (7)

i=1

Eq. (7) is called the Singular Value Decomposition (SVD) of
X. By Eckart-Young theorem [19], for each integer 1 <r < p,
A=31, oiu;v7 is the best rank-r approximation of X:

Ay = argmin ||X — Al (8)

rank(A)<r

where || - || denotes the Frobenius matrix norm. Each data
point X(s,: )" € RP (1 < s < t) can then be approximated as

X(s,:)' = Y ow(s)v, 9)
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where {ou;(s)}}_, are the first r coefficients of X(s, :)" under
the new coordinate system. Therefore, PCA can be viewed
as a technique for dimensionality reduction.

2.2. Eigenflows of the polluted traffic matrix

In the following experiments, we adopt two widely
used traffic matrix datasets, one from the Abilene network
and the other from the GEANT network. Abilene is a Inter-
net2 backbone network with 12 PoPs (144 OD flows), and
GEANT is a pan-European research network with 23 PoPs
(529 OD flows). In this paper, the minimal time interval
in the Abilene dataset is 5 min; the minimal time interval
in the GEANT dataset is 15 min, since the flow files are
written in 15 min. In fact, there exists flow data with finer
time scale. For example, the minimal time interval of an-
other GEANT traffic dataset is precise to 1s in [28]. The
Abilene dataset contains 24 weeks’ traffic records from
March 1, 2004 to September 10, 2004, and each week’s
data is represented by a traffic matrix. Here we select the
traffic matrices that correspond to the first 8 weeks (de-
noted as X01-X08). For the GEANT dataset, traffic records
are not complete for certain days. Since most of the
researchers study the weekly traffic matrix, we choose a
subset of the GEANT dataset: the four consecutive weeks’
traffic matrices from March 28, 2005 to April 24, 2005 (de-
noted as YO1-YO04). Each traffic matrix in the Abilene data-
set consists of 2016 rows (time steps), while each GEANT
traffic matrix consists of 672 rows.

Notice that for each of these traffic matrices, there are a
small number of OD flow time series that contain a large
percentage of zero entries. This usually means that these
OD flows are not stable, therefore we delete them in the
experiments. For each traffic matrix in the Abilene dataset,
we delete the 23 OD flows whose source or destination PoP
is "ATLA-M5” (thus the number of OD flows actually used
is 121); For each traffic matrix in the GEANT dataset, we
delete those OD flows that have more than 50% zero entries
(the number of OD flows actually used is between 457 and
483). Table 1 summarizes the datasets used in our experi-
ments, and Table 2 (the first column) shows the number of
OD flows actually used for each traffic matrix.

In Lakhina’s original study [4], all the eigenflows of a
traffic matrix can be classified into three types: First, the
eigenflows that exhibit distinct periodical patterns are
called d-eigenflow (for “deterministic”), since they reflect
the diurnal activity in the network traffic, as well as the
difference between weekday and weekend activities; Sec-
ond, the eigenflows that represent strong, short-lived
spikes are called s-eigenflow (for “spike”), as they capture
the occasional traffic bursts and dips which are usually re-
ported; Third, the eigenflows that roughly have a station-
ary and Gaussian behavior are called n-eigenflow (for

“noise”), since they capture the remaining random varia-
tion that arises due to multiplexing of many individual
traffic sources.

In this paper, we follow the classification criteria in [4]
for both d-eigenflow and s-eigenflow. The original classifi-
cation criterion for n-eigenflow in [4] is to compare the
qq-plot of eigenflow’s distribution with the normal distri-
bution; However, it is not considered as a quantitative
method. Therefore, we use another classification criterion
from the Kolmogorov-Smirnov (K-S) test instead. Suppose
u; is an eigenflow of the traffic matrix X, we classify it
according to the following three criteria:

(1) d-eigenflow: Let H denote the set of period parame-
ters measured in hours. For each element h € H, we
compute the Fourier power spectrum u;(h) of u;:

-1 2
() = | Sk + 1) - exp(—oki)| /¢
k=0
w=2n/T
T = 60h/ty

)

where T is the period of Fourier transform and ¢ty is the
length of time interval (measured in minutes). In this pa-
per, H={k}}%, U{2K}Z5. If {12,24) Nargmax,.,{i;(k)}
# ¢, u; satisfies the criterion of d-eigenflow and we classify
it as d-eigenflow;

(2) s-eigenflow: Let ¢ denote the standard deviation of
u;. If y; has at least one entry outside the interval
[mean (u;) — 50, mean (u;) + 50], u; satisfies the cri-
terion of s-eigenflow and we classify it as s-
eigenflow;

(3) n-eigenflow: We use the K-S test to verify the nor-
mal distribution of u;. If the null hypothesis (Normal
Distribution) is not rejected at 5% significance level,
u; satisfies the criterion of n-eigenflow and we clas-
sify it as n-eigenflow.

In order to evaluate the completeness (each eigenflow
has to be classified into at least one class) and orthogonal-
ity (the same eigenflow must not be classified into more
than one class at the same time) of eigenflow classification,
we further define the following two concepts:

e indeterminate eigenflow: eigenflows that satisfy more
than one classification criterion;

e non-determinate eigenflow: eigenflows that satisfy no
classification criterion.

Next, we apply PCA to compute the principal component
vectors and eigenflows of each traffic matrix. Following the
classification criteria proposed above, we summarize the
classification results of eigenflows in Table 2. Here we

Table 1

Datasets used in the experiments.
Name #0D flows/actually used Time interval Time steps Peroid
Abilene 144/121 5 min 2016 8 weeks
GEANT 529/457-483 15 min 672 4 weeks
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Table 2
Eigenflow classification using PCA.

Traffic matrix name (#  # Satisfy d- # Satisfy s- # Satisfy n- # non- # Indeterminate  # Classified Unclassified

0D flows used) eigenflow eigenflow eigenflow determinate eigenflow eigenflow energy rate (%)

eigenflow

X01 (121) 10 42 87 10 26 85 83.08

X02 (121) 9 46 80 10 22 89 82.59

X03 (121) 14 78 47 12 29 80 11.08

X04 (121) 10 62 74 5 28 88 94.67

X05 (121) 8 73 62 9 30 82 46.09

X06 (121) 15 52 83 9 33 79 0.32

X07 (121) 6 63 75 9 30 82 9.39

X08 (121) 10 53 71 11 24 86 98.49

Y01 (483) 17 54 469 5 59 419 76.67

Y02 (465) 5 66 453 6 65 394 77.70

Y03 (465) 7 47 454 5 48 412 43.19

Y04 (457) 12 62 444 5 66 386 82.42

define the unclassified energy rate as the percentage of en-
ergy captured by the principal component vectors that cor-
respond to either indeterminate or non-determinate
eigenflows. Since the energy captured by one principal
component vector is proportional to the square of the cor-
responding singular value, we have:

ZkeUEID)“k
Z?:l 2 ’

where the union of unclassified eigenflow ID (UEID) is

unclassified energy rate = (10)

UEID = {k|uy is indeterminate or non-determinate}.
(11)

Based on the classification results of the twelve weekly
traffic matrices described above, we make the following
observations on traffic matrices that are possibly polluted
by large volume anomalies:

(1) One the one hand, only a small number of eigen-
flows satisfy the classification criterion of d-eigen-
flow (usually less than 20), and most of them
correspond to large singular values; On the other
hand, there is a considerable number of eigenflows
satisfying the classification criterion of s-eigenflow
and n-eigenflows. The proportion of each eigenflow
class varies from one traffic matrix to another. These
are similar to Lakhina’s experimental results pre-
sented in [4].

(2) The PCA-based eigenflow classification method
shows serious limitations in terms of classification
completeness and orthogonality. Specifically, a large
number of eigenflows cannot be exactly classified
into one eigenflow class. Furthermore, some unclassi-
fied eigenflows correspond to large singular values,
and the unclassified energy rate is larger than 70%
for seven of the twelve traffic matrices. These results
are not consistent with those in Lakhina’s study [4], in
which the non-determinate eigenflows do not exist
and the indeterminate eigenflows only contribute lit-
tle energy. Although the authors in [4] argued that
their classification method could be enhanced by
heuristic mechanisms, our experiments show that
some unclassified eigenflows are essentially different

from all the eigenflow classes, hence the classification
results cannot be clearly improved only by changing
parameters or adopting heuristic algorithms.

(3) For each traffic matrix in the Abilene dataset (X01-
X08), the first six eigenflows (eigenflows corre-
sponding to the six largest singular values) often
contain some instances satisfying the classification
criterion of s-eigenflow. This does not happen in
Lakhina’s study [4], where the first six eigenflows
are exactly classified as d-eigenflows. For the GEANT
traffic matrices, the first six eigenflows do not satisfy
the criterion of s-eigenflow in general, which can be
explained by the fact that the anomaly volumes in
the GEANT networks are not as large as that in the
Abilene networks.

Here we present the experimental result for the traffic
matrix X01 as a case study. Fig. 1 shows the classification
result of the 121 eigenflows (sorted from large to small
by the corresponding singular values), where each indeter-
minate eigenflow appears simultaneously in more than
one classes whose classification criteria it satisfies. The
first six eigenflows and their Fourier power spectra are
shown in blue in Figs. 2 and 3, respectively. Each pair of
red lines in Fig. 2 is the +50/—50¢ boundary for the corre-
sponding eigenflow, which is used for the inference of s-
eigenflow. It is clear that five out of six eigenflows in
Fig. 2 satisfy the classification criterion of s-eigenflow.
However, for the first four eigenflows, their Fourier power
spectra all achieve the maximum values when the period
parameter is equal to 24 h, suggesting that they satisfy
the criterion of d-eigenflow. Therefore, we can view each
of the first four eigenflows as a hybrid time series mixed
with the deterministic diurnal pattern and the short-lived
anomaly pattern, which is quite different from the three
pre-defined eigenflow classes. Changing parameters or
using heuristic algorithms in classification would not help
much in this case. If we classify these four eigenflows as d-
eigenflow, the energy of anomaly traffic will be signifi-
cantly underestimated, which might increase the false neg-
ative rate of anomaly detection algorithms; On the
contrary, classifying them as s-eigenflow will lead to
underestimation of normal network traffic, which could
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Fig. 1. Eigenflow classification result for the traffic matrix X01.

prevent us from correctly decomposing the deterministic
traffic component from a polluted traffic matrix.

From the discussions above, we can see that PCA-based
method has limitations in eigenflow classification: (i) for
both the Abilene dataset and the GEANT dataset, a large
proportion of eigenflows could not be exactly classified
into one eigenflow class; (ii) for the Abilene dataset, some
eigenflows corresponding to the six largest singular values
satisfy the classification criterion of s-eigenflow, which
would be problematic for us to isolate the deterministic
traffic trend or to detect the anomaly traffic events. This
motivates us to propose a new model for the structural
analysis of traffic matrix in the next section.

3. Relaxed principal component pursuit for the
structural analysis of polluted traffic matrix

3.1. The decomposition model of traffic matrix

In this section we propose a new decomposition model
for the traffic matrix data, and discuss the mathematical
nature of the structural analysis problem. Next, based on
the optimization process corresponding to PCA, we explain
intuitively the limitations of PCA-based method for analyz-
ing a polluted traffic matrix. This helps interpret the exper-
imental results presented in Section 2.2 more deeply.

According to the empirical measurement data, we sup-
pose that there exist three classes of network traffic: the
deterministic traffic which shows diurnal pattern; the
anomaly traffic which appears rarely but involves large
peak-like or block-like volumes; the noise traffic that has
small magnitude but appears in every OD flow during all
the time intervals. Formally speaking, we propose to
decompose each traffic matrix into three sub-matrices:

X=A+E+N, (12)

where A, E and N represent the deterministic traffic matrix,
the anomaly traffic matrix and the noise traffic matrix,
respectively. Each class of traffic has its own features,
based on which we make the following hypotheses:

(1) The deterministic traffic is mainly contributed by
periodical traffic. This means that the periodical traf-
fic time series of different OD flows have similar peri-
ods and phases, and they mainly differ in magnitudes.
This implies that A should be a low-rank matrix.

(2) The anomaly traffic does not show up frequently,
which implies that E should be a sparse matrix.
However, its nonzero entries may have large
magnitudes.

(3) We assume that N is a random matrix consists of
independent zero-mean Gaussian random variables.
Each column of N (the noise traffic time series of an
OD flows) can be viewed as Gaussian random vari-
ables which have the same variance. Since the noise
variance is usually proportional to the scale of the
corresponding OD flow, and different OD flows
may have very different scales, the Gaussian random
variables corresponding to different columns may
have different variances.

Eq. (12) and hypotheses (1)-(3) constitute our decom-
position model for the traffic matrix. In practical measure-
ments, only the traffic matrix X can be observed, thus the
mathematical nature of the structural analysis problem is
to exactly decompose X into three components, namely
A, E and N in our decomposition model.

Consider a simple case where we neglect the noise traffic
matrix N in (12). Suppose that rank(A) = ro. According to
Section 2.1, A;, = >, o;u; 0] is the best rank-ro approxima-
tion of X. Then, one natural question is to ask whether
A=A, If this is true, the PCA method would achieve a
decomposition of X that is consistent with our decomposi-
tion model (A;, = A, hence X —A,, = E). However, it has
not been shown that A is the solution to the optimization
problem (8). Considering the magnitude of nonzero entries
in E, our discussion is further divided into the following
two cases:

(1) If the anomaly traffic only has entries with small
magnitude, the Frobenius matrix norm |E|g=
|IX — A||r would be small, thus the deterministic traf-
fic matrix A is most likely to be the solution to prob-
lem (8). In this case A = A, and these two matrices
have the same eigenflows. As the deterministic traf-
fic is mainly contributed by diurnal traffic, the first ro
eigenflows of A are usually d-eigenflows (since ran-
k(A)=r1o). Following the definition of A,,, these
eigenflows are also the first ro eigenflows of X.
Therefore, when the anomaly traffic has entries with
small magnitude, the PCA method performs well in
eigenflow classification.
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Fig. 3. Fourier power spectra of the first six eigenflows of X01.

(2) If the anomaly traffic has entries with large magni-
tude, even though E is a sparse matrix, its Frobe-
nius matrix norm ||E|r=|X — Al would be large.
As a result, A is usually not the solution to problem

(8), and A, contains a large amount of anomaly
traffic. Therefore, some of the first ro eigenflows
of X may satisfy the classification criterion of s-
eigenflow.
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The discussions above explain intuitively the experi-
mental results presented in Section 2.2. The PCA-based
eigenflow classification can be considered as a special meth-
od for traffic matrix decomposition. However, when the
traffic matrix is polluted by large volume anomalies, PCA
cannot achieve a complete and orthogonal eigenflow classi-
fication, and the PCA-based traffic matrix decomposition is
inconsistent with the proposed decomposition model.

3.2. Robust principal component analysis and principal
component pursuit

Following the decomposition model proposed in Sec-
tion 3.1, the structural analysis problem of the traffic ma-
trix is to accurately decompose the original traffic matrix
X into a deterministic traffic matrix A, an anomaly traffic
matrix E, and a noise traffic matrix N. This is similar to
the Low-rank Matrix Recovery problem, which is also
known as Robust Principal Component Analysis (RPCA) [13].

Recently, developments in the theory of Compressive
Sensing [24,20] have attracted wide attentions in the field
of information science. Compressive Sensing theory states
that: If the signal has a sparse representation under some
orthonormal bases or dictionaries, it can then be recovered
by far fewer samples or measurements than that are
needed using traditional methods. Partially motivated by
this claim, Ma et al. proposed the Principal Component Pur-
suit (PCP) method for the RPCA problem. They studied the
approximate algorithms for PCP, and applied it to different
real world applications such as video background model-
ing [13], face alignment [15], and web document corpus
analysis [16]. Following the definitions in [13,14,17], we
briefly describe the RPCA problem and the PCP method
as follows. We assume that X, A, E, N are real matrices in
R™>P; A(-) denotes the support set of a matrix, which is
the union of non-zero positions of the matrix.

Problem 1 (standard RPCA problem). Suppose that
X=A+E, where A and E are two unknown matrices.
Assume that A is a low-rank matrix and E is a sparse
matrix, the standard RPCA problem is to recover A and E
from X.

The authors in [17] suggested that the standard RPCA
problem can be formulated as the following optimization
problem:

rrA}iEn rank(A) + y||Ell, st A+E=X, (13)

where || - |lo = |A(-)| is the degree of the support set, which
is also called the lp-norm of the matrix; y is a positive
parameter that balance the two competing terms. Problem
(13) consists of two sub-problems, namely the low-rank
matrix completion problem and the ly-norm minimization
problem. Unfortunately, both of them are NP-hard, which
makes problem (13) intractable in polynomial time.

On the one hand, thanks to the developments in
Compressive Sensing theory, a series of previous works
suggested the equivalence between the lp-norm minimiza-
tion and the [;-norm minimization problems; On the other
hand, recent research on the matrix completion problem
[21] studied the matrix nuclear norm || - ||, (for a matrix

A € R"”P, the nuclear norm ||A||, = >°_, 0x(A) is defined as
the sum of its singular values {o(A)};_,), and indicated
that the two optimization problems, namely, the matrix
rank minimization problem and the problem of minimiz-
ing the matrix nuclear norm, usually produce similar re-
sults. More importantly, both the l;-norm minimization
and the nuclear norm minimization problems are convex
optimization problems hence can be solved efficiently.

The PCP method is used for solving a hybrid optimiza-
tion problem that consists of [;-norm minimization and
nuclear norm minimization: To relax the objective func-
tion in (13), we replace the lp-norm with the l;-norm,
and the rank with the matrix nuclear norm | - |,, respec-
tively. Candes et al. [13] proved that, under surprisingly
broad conditions, “almost all” matrices of the form
X =A +E, namely, matrices that are the sums of a low-rank
matrix A and a sparse matrix E, can be exactly decomposed
into these two components by solving the following con-
vex optimization problem:

min|All, + Z|E|, st.A+E=X, (14)

where A > 0 is a regularization parameter. In addition, they
showed that 4 =1/,/max(t,p) is a proper choice for the
parameter that is independent from A and E, and we follow
this choice throughout the rest of the paper.

The standard RPCA problem assumes that X is strictly
equal to the sum of a low-rank matrix and a sparse matrix.
However, in many real world applications, observational
data often contains certain level of noise, and it usually
pollutes almost all the entries of the matrix. One of the
most common perturbations is the Gaussian white noise,
which leads to the generalized RPCA problem with Gauss-
ian noise:

Problem 2 (generalized RPCA problem with Gaussian
noise). Suppose that X=A+E+N, where A, E and N are
unknown matrices. Assume that A is a low-rank matrix, E is
a sparse matrix, and N is a random matrix whose entries
follow i.i.d. zero-mean Gaussian distributions with ||N||z<
for some positive 6. The generalized RPCA problem is to
recover A and E from X under the perturbation of N.

For Problem 2, Zhou et al. [14] generalized the PCP
method to propose the Relaxed PCP method, which is to
solve the following optimization problem:

min(|A[l, + Z[E[l; s.t. [|X —A—E[|; <o. (15)

They proved that, under the same conditions as that PCP
requires, for any realization of the Gaussian noise satisfy-
ing ||N||r < o, the solution to the generalized RPCA problem
(15) gives a stable estimation of A and E with high
probability.

The assumptions in the generalized RPCA problem are
similar to the hypotheses on the traffic matrix in our
decomposition model (12). In fact, we can multiply the col-
umns of the traffic matrix by some constants to make sure
that the Gaussian random variables in the noise traffic ma-
trix have the same variance. Meanwhile, this multiplica-
tion preserves the rank of the deterministic traffic matrix
and the sparsity of the anomaly traffic matrix. Therefore,
the Relaxed PCP method can be used for solving our struc-
tural analysis problem.
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3.3. The accelerated proximal gradient algorithm

The Relaxed PCP method used for solving the con-
strained optimization problem (15) is usually computa-
tionally expensive. A more efficient way is to solve an
equivalent unconstrained optimization problem instead,
using algorithms such as Iterative Thresholding (IT) [13],
Augmented Lagrange Multiplier (ALM) and Accelerated
Proximal Gradient (APG) [14]. In this paper, we adopt the
APG algorithm, which solves the following unconstrained
minimization problem:

. 1
ming[A, + pA|E] + 51X ~ A~ E[l, (16)

where 1| X —A - E||2 is the penalty function, and x>0 is a
Lagrangian parameter. It has been proved in [14] that with
some proper choices of u= u(é), the solution to (16) is
equivalent to the solution to (15).

As mentioned above, the choice of the regularization
parameter / follows that in [13,14]:
PR S (17)

/max(t,p)

For the Lagrangian parameter u, it is chosen as
v2max(t,p)o and (Vt+ P)o in [14,22], respectively,
where ¢ is the variance of Gaussian noise matrix N. These
choices are motivated by neglecting the effect of the sparse
matrix E: if we set E = 0 in problem (16), the APG algorithm
which solves this problem boils down to the Singular Value
Thresholding algorithm with total sampling [14,23]. In our
case, since the anomaly traffic matrix might contribute a
large proportion of energy, these choices are not suitable.
Therefore we present a new choice of y in this paper. Con-
sidering the case when A = 0, problem (16) boils down to:

mingu/ B[, + X ~ EJ2 (18)
If we consider X and E as two column vectors of dimension
t x p, problem (18) becomes the Basis Pursuit Denoising
problem first introduced in [25,26]. As E is a sparse vector,
we follow [25] to choose i = 0/2log(tp). Since 4 is cho-
sen as in (17), we compute u accordingly as:

W= 0/2log(tp) max(t,p). (19)

For each OD flow time series X; € R' (1 <j < p), we need to
estimate the variance o; of the Gaussian noise traffic. This
is a well-studied signal processing problem. We adopt
the estimation method proposed in [27]: q}yen an ortho-
normal wavelet basis, and let W; = {a, e denote X;'s
wavelet coefficients at the finest scale, gj Is estimated as
the median absolute deviation of W; divided by 0.6745:

g = ()631% median{ ‘ak — median(W;) )} (20)
where median (-) denotes the median value of a vector.
This estimation method is motivated by the empirical fact
that, wavelet coefficients at the finest scale are, with few
exceptions, essentially pure noise. In this paper, we adopt
the Daubechies-5 wavelet basis.

Now we are ready to present the proposed Algorithm 1
(see Appendix) for traffic matrix decomposition, which is
partially based on the noisy-free version of the APG algo-
rithm in [18].

4. Experiments

We decompose the twelve traffic matrices described in
Section 2 using Algorithm 1 (X01-X08 are from the Abilene
dataset and YO1-Y04 are from the GEANT dataset). The de-
tailed experimental results are summarized in Table 3,
where each row corresponds to the decomposition result
for one traffic matrix. From left to right, the columns of
Table 3 represent:

(1) Name of the Traffic matrix.

(2) The rank of the deterministic traffic matrix.

(3) The rank of the original traffic matrix.

(4) The ratio of (2) to (3), to evaluate the relative low-
rank degree of the deterministic traffic matrix.

(5) The lp-norm of the anomaly traffic matrix.

(6) t x p, where t and p are the number of rows and col-
umns of the traffic matrix, respectively.

(7) The ratio of (5) to (6), to evaluate the relative spar-
sity level of the anomaly traffic matrix.

(8) The ratio of Frobenius norm of the noise traffic
matrix to that of the corresponding original traffic
matrix, to evaluate how much energy is contained
in the noise traffic matrix.

(9) Number of iterations implemented in the APG
algorithm for each traffic matrix. In this paper, the
tolerance parameter for the stopping criterion is
set to 107,

(10) Computational time of the implementation of the
APG algorithm for each traffic matrix (in seconds).
In all the experiments, we use a commercial PC with
2.0 GHz Intel Core2 CPU and 2.0 GB RAM.

All the traffic matrices in our experiments are decom-
posed into three sub-matrices. According to the results in
Table 3, these sub-matrices indeed satisfy the hypotheses
of the decomposition model (12):

1. The ranks of the deterministic traffic matrices in the
Abilene dataset are less than 13; for the GEANT dataset,
the ranks are less than 31. The rank of each determinis-
tic traffic matrix is less than 11% of the rank of the cor-
responding original traffic matrix. Therefore, all the
decomposed deterministic traffic matrices are typical
low-rank matrices.

2. In both datasets, the lp-norm of one anomaly traffic
matrix does not exceed 40000. For each anomaly traffic
matrix, less than 17% entries are non-zero entries.
Therefore, all the anomaly traffic matrices are typical
sparse matrices.

3. For all the twelve traffic matrices used in our experi-
ments, the ratio of the Frobenius norm between the
noise traffic matrix and the original traffic matrix is less
than 0.18. Hence, noise traffic matrices usually contrib-
ute only a small proportion of the total energy.
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Table 3
Traffic matrix decomposition results using Relaxed PCP.
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Traffic matrix ~ Rank (A) Rank (X) Rank (A)/rank (X)  ||Ello txp IEllo/(t x p)  |IN||g/||X||r  # Iteration =~ Computation time (s)
X01 10 121 0.0826 32766 243936  0.1343 0.1718 86 24
X02 11 121 0.0909 34713 243936  0.1423 0.1483 209 56
X03 12 121 0.0992 37280 243936  0.1528 0.0824 254 70
X04 11 121 0.0909 30519 243936  0.1251 0.0395 663 168
X05 10 121 0.0826 30878 243936  0.1266 0.1173 86 31
X06 10 121 0.0826 31133 243936 0.1276 0.0562 118 44
X07 13 121 0.1074 37463 243936 0.1536 0.0887 170 64
X08 12 121 0.0992 39287 243936 0.1611 0.0564 155 60
Y01 31 483 0.0642 31505 324576  0.0971 0.1114 168 350
Y02 28 465 0.0602 28575 312480 0.0914 0.1330 171 390
Y03 30 465 0.0645 28651 312480 0.0917 0.1229 146 312
Y04 30 457 0.0656 29119 307104  0.0948 0.0752 219 489

In addition, the number of iterations and the computa-
tional time needed in the implementation of the APG algo-
rithm are quite acceptable. Specifically, for all the traffic
matrices in the Abilene dataset, the computational time is
less than three minutes; the average computational time
for the GEANT traffic matrices is longer, but still less than
nine minutes.

To further understand the experimental results, we fo-
cus on the decomposition results of three traffic matrices:
X01, X04 and YO1. Fig. 4 shows the traffic matrix X01
(upper left) in the Abilene dataset, and the three sub-
matrices decomposed by the Relaxed PCP method. We
can see that the deterministic traffic matrix (upper right)
contributes most of the energy of the total network traffic,
and the columns (corresponding to the deterministic traffic
time series) show clear diurnal pattern, especially for OD
flows with large magnitude. Most of the large volume
anomalies in X01 are short-lived and well isolated in the
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anomaly traffic matrix (bottom left). This matrix is indeed
quite sparse, without distinct periodical traffic or noise
traffic. Furthermore, most of the entries in the noise traffic
matrix (bottom right) have small magnitudes, therefore
the noise traffic indeed contributes little energy to the total
network traffic. For most of the OD flows, the variances of
the noise traffic are proportional to their mean volume,
that is, an OD flow with large magnitude usually has large
noise traffic. However, there also exist some OD flows of
moderate magnitude which contain very large noise traffic,
which will be discussed in Section 5.2. In summary, using
the Relaxed PCP proposed described in Section 3.2, we
achieve a proper decomposition for the traffic matrix
X01, where all the sub-matrices satisfy the corresponding
hypotheses in the decomposition model (12).

For comparison, we then decompose X01 using the PCA-
based subspace method. Recall that in Figs. 2 and 3, the first
four eigenflows satisfy the criteria of both d-eigenflow and
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s-eigenflow, and they contribute most of the energy of X01.
Therefore, the key is the classification results for these four
eigenflows. Suppose that for i € {1, 2, 4}, we classify the first
i eigenflow (s) as d-eigenflow, and the rest (if exists) in the
first four eigenflows as s-eigenflow. The normal traffic ma-
trix (projection onto the normal subspace) is then gener-
ated by the first i d-eigenflow (s), and the residual traffic
matrix is the difference between the original traffic matrix
and the normal traffic matrix. In other words, the normal
traffic matrix and the residual traffic matrix constitute a
decomposition of X01 For each choice of i, the resulting nor-
mal traffic matrix and residual traffic matrix are shown in
each row of Fig. 5. We can see that for i = 1, most of the large
anomaly traffic is isolated in the residual traffic matrix,
while the normal traffic matrix only captures partially the
deterministic traffic in X01. In other words, the residual
traffic matrix also contains a large proportion of the diurnal
traffic. For i = 2, although more diurnal traffic is present in
the normal traffic matrix, this matrix still contains large
anomaly traffic. Thus we cannot efficiently identify large
volume anomalies from the residual traffic matrix. For
i =4, since the fifth eigenflow is not a s-eigenflow and the
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sixth is one, the normal traffic matrix is generated based
on the first five eigenflows of X01. In this case, the decom-
position is even worse, since most of the anomaly traffic is
contained in the normal traffic matrix. This again demon-
strates that, for traffic matrices with large volume anoma-
lies, PCA is not a suitable method for the structural
analysis problem. Furthermore, we believe that its perfor-
mance cannot be significantly improved only by changing
parameters or using heuristic mechanisms.

Fig. 6 shows the traffic matrix X04 in the Abilene data-
set, as well as three sub-matrices decomposed by the Re-
laxed PCP method (they are arranged in the same way as
Fig. 4). A significant difference between X04 and XO01 is
that the former one contains long-lived large volume
anomalies. Therefore, the anomaly traffic in X04 contrib-
utes a larger proportion of the total energy than that in
X01. Using the same ways to compute parameters A and
w1 in Algorithm 1, our experimental result in Fig. 6 shows
that the Relaxed PCP method can also exactly decompose
a traffic matrix with long-lived large volume anomalies.

Fig. 7 displays the decomposition result of the traffic
matrix YO1 in the GEANT dataset. In general, the result is

Residual Traffic Matrix (i=1)
x 10

é 8
-
g4
3
2 2

0
20001500 120

1000 8o 100
500 40 80
Time Step 20 OD Flow ID
Residual Traffic Matrix (i=2)
x10

g 8
5
g4l
3
g 2

0
20001500 120

1000 go 100
Time Step 500 20 40 OD Flow ID
Residual Traffic Matrix (i=4)
x10 ‘

Volume / kbytes
[

100120
2p 40 80 50 Fiow ID

Fig. 5. The decomposition result of X01 by PCA.



2060 Z. Wang et al. / Computer Networks 56 (2012) 2049-2067

Original Traffic Matrix

Volume / kbytes

0
2000
1500

1000

Time Step

. 80
500 20 " oD Flow ID

Anomaly Traffic Matrix

-y

Volume / kbytes

0.

2000

1500
1000

Time Step 300

8
60
20 40 OD Flow ID

Deterministic Traffic Matrix

x 10

[X]

Volume / kbytes

0
00

L)
[=1

1500 : 120
1000 - "0 8 & 100
p 4
Time Step 2 oD Flow 1D
Noise Traffic Matrix
x 10
i
H 8
g :
2 : i
2 :
0 S
2000 \ R
15001005\_\_\_\ S ’53730 100120
Time Step 900 T gp 40

OD Flow ID

Fig. 6. The decomposition result of X04 by Relaxed PCP.

similar to that of X01 and X04. However, since the GEANT
traffic matrices usually contain more unstable OD flows
than the Abilene traffic matrices, the periodical traffic pat-
tern shown in the resulting deterministic traffic matrix is
less obvious compared to results of X01 and X04.

5. Discussions

According to the traffic matrix decomposition model
(12), we decompose the traffic matrix into three sub-
matrices, which correspond to three classes of network
traffic. Based on the experimental results obtained, we
now have further discussions on the deterministic traffic
matrix and the noise traffic matrix in this section (We do
not discuss the anomaly traffic matrix since it may vary
significantly for different input traffic matrices).

5.1. Non-periodical traffic in the deterministic traffic matrix

As shown in Section 4, for each traffic matrix in our
experiments (X01-X08 and Y01-Y04), the deterministic
traffic matrix decomposed by Algorithm 1 has a low rank
compared to the corresponding OD flow number. In most
cases, columns of the deterministic traffic matrix (deter-
ministic traffic time series) display significant diurnal pat-
tern. However, there also exist several columns that
contain traffic changes, which are quite different from
the periodical traffic. This observation is quite obvious for
the Abilene traffic matrices X03 and X07.

As an example, Fig. 8 displays X03 and the decomposed
deterministic traffic matrix. Clearly, we observe a few
long-lived traffic changes in the deterministic traffic ma-
trix. These traffic changes affect a few columns (traffic time
series) with long-lived growth or decline in terms of traffic

volume, and such growths and declines usually happen
during the same time intervals. In particular, we illustrate
in Fig. 9 eleven affected time series, which have the same
source router “WASH”. As we can see, one traffic growth
and ten traffic declines all happen during the time intervals
[1150; 1450], which share the same starting and ending
time. In fact, more than 20 time series in the deterministic
traffic matrix are significantly affected, but their source
and destination routers do not present clear distribution
laws. These traffic changes have not been reported in the
previous studies. Therefore, it seems that the deterministic
traffic matrix may contain non-periodical traffic changes,
which are usually combinations of long-lived traffic
growths and declines during the same time intervals.
These changes can hardly be judged as any of the well
known volume anomalies such as DoS/DDoS, flash crowd,
alpha, outages and ingress/egress shift [9]. Since the Abi-
lene traffic dataset only records OD flows’ coarse-gained
byte counts during every five-minute time interval, and
we do not have more detailed information about the net-
work when these traffic changes happen, it is difficult to
explain the reason for these long-lived traffic changes.
We leave this for future work.

In addition, we illustrate in Fig. 10 the sum of the afore-
mentioned eleven OD flow time series in X03, as well as the
sum of the corresponding deterministic traffic series (ele-
ven columns of the deterministic traffic matrix of X03),
both with the same source router "WASH”. We can see that
the sum of the OD flows contains some short-lived large
traffic growths during the time intervals [1150, 1450],
while these needle-like traffic growths cannot be observed
in the sum of the deterministic traffic series. In fact, the lat-
ter sum presents typical periodical pattern during the
whole week. This shows that, although individual deter-
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Fig. 12. The decomposition of OD flow time series No. 51 in X01. Colors indicate the same classes of traffic as that in Fig. 11.

ministic traffic series with the same source router may con- network traffic with the source router “WASH” (which is
tain significant traffic changes, the sum of them tends to the sum of eleven OD flows), the anomaly traffic compo-
show expected patterns. As a result, if we consider the total nent can be well decomposed by the Relaxed PCP method.
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5.2. Some features of the noise traffic matrix

5.2.1. The proportion of noise traffic in different OD flows

As can be seen from Table 3 in Section 4, noise traffic
matrices contribute a small proportion of the total network
traffic. However, we observe that the ratios of the noise
traffic to the total traffic vary in different OD flows. For in-
stance, Figs. 11 and 12 illustrate decompositions of two OD
flows in the Abilene traffic matrix X01, namely OD flow No.
50 and No. 51, respectively. More specifically, for OD flow
No. 50, the total® traffic time series (blue) is mainly con-
tributed by the deterministic traffic time series (red) and
the anomaly traffic time series (black), and the noise traffic
time series (green) has much smaller average magnitude.
Therefore, we conclude that the noise traffic is not an
important component in OD flow No. 50. In fact, this is
the case for most of the OD flows.

However, a small number of OD flows have different
decomposition results. For example, for OD flow No. 51,
the noise traffic time series has quite large average magni-
tude compared to the original traffic time series, therefore
the noise traffic becomes a significant component for this
OD flow hence should not be neglected in the analysis.
Actually, this OD flow contains large-amplitude oscilla-
tions, which is not a common feature for all the OD flows,
and it should be classified as the noise traffic in the network.

To summarize, although noise traffic time series are usu-
ally small in magnitude, they cannot be neglected in the
analysis of a few OD flows which contain large oscillations.

5.2.2. The variance of noise traffic time series

The energy (variance) of the noise traffic may vary sig-
nificantly in different OD flows. Suppose that X is a traffic
matrix, and we compose it as X=A+E + N by Algorithm
1. For each OD flow time series X; (one column of X), we
are interested in the relationship between variance Var(N;)
of the noise traffic (which is estimated by the standard

! For interpretation of color in Figs. 1-14, the reader is referred to the
web version of this article.

deviation of noise traffic time series N;) and statistics of X;.
For example, Fig. 13 illustrates the relationship between
Var(N;) and mean (X;). Specifically, for each data point in
the figure, the horizontal axis represents the mean value
of an OD flow time series, and the vertical axis represents
the variance of the noise traffic of the same OD flow. Here
we have analyzed all the OD flows in our datasets, where
time series of the same OD flow in different weeks are con-
sidered as different data points. Therefore, we have
121 x 8 =968 data points for the Abilene dataset, and
1870 for the GEANT dataset.

It is clear from Fig. 13 that there is a strong positive cor-
relation between the mean volume of OD flows and the var-
iance of the corresponding noise traffic. In the log-log plot,
the distribution of the data points follows a weak linear
relationship, and such relationship is more noticeable for
the Abilene dataset. Therefore, it is reasonable to assume
that in most cases the variance of the noise traffic of an
OD flow can be approximated by a power function of the
mean volume of the OD flow, which can be written as

Var(N;) ~ b mean(X;)", (21)
where b and c are some positive parameters. Notice that
there exist many mathematical methods for the estimation
of the parameters b and c; However, this is beyond the
scope of the current study and we leave it for future work.
Instead, we propose empirical bounds for the variance of
the noise traffic for the two datasets, which are two param-
eter pairs (b1, c1) and (b2, c2) satisfying

b1 mean(X;)" < Var(N;) < b2 mean(X;)®. (22)

As labeled in Fig. 13, for the Abilene dataset, the choices
b1=b2=4, c1=0.6 and c2=0.9 seem to work well for
most of the data points except a few outliers; for the
GEANT dataset, b1 =b2=4, c1=0.5 and c2=0.9 are the
reasonable choices.

In addition, we have also analyzed the relationships be-
tween the variance of the noise traffic and several other
statistics of the corresponding OD flow, such as the I,-
norm, the median value, and the variance of the OD flow.
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Fig. 14. The pair of variances of the noise traffic for two consecutive weeks.

For all of them, we have observed the positive correlation
between the two as well, but not as significant as the
correlation between the noise variance and the mean vol-
ume of the flow. In this case, it is less obvious to find an ex-
plicit mathematical model for the correlation as Eq. (21).

Finally, it is interesting to study the temporal stability
of variances of the noise traffic during different weeks.
Suppose we have two traffic matrices that record the
traffic volume of the same network for two consecutive
weeks. By decomposing them using the APG algorithm
independently, we first obtain two noise traffic matrices,
one for each week. Recall that each column vector of a
noise traffic matrix represents the noise traffic time series
of an OD flow. For each OD flow, we then compare the
pair of variances of the corresponding noise traffic for
the two consecutive weeks. Specifically, we choose traffic
matrices for three pairs of consecutive weeks in the Abi-
lene dataset:

e X01 (from March 1, 2004) and X02 (from March 8,
2004).

e X03 (from April 2, 2004) and X04 (from April 9, 2004).

e X07 (from May 8, 2004) and X08 (from May 15, 2004).

Since each Abilene traffic matrix contains 121 OD flows
(columns), the variances of the corresponding noise traffic
include 121 data points. Fig. 14 shows the variances of the

noise traffic for the six chosen traffic matrices (121 x
6 = 726 data points in total).

We observe the following features in Fig. 14: (1) For
each traffic matrix, the variances of the noise traffic of dif-
ferent OD flows may vary significantly; (2) For traffic
matrices of two consecutive weeks, the variances of the
noise traffic of the same OD flow are similar in most cases;
(3) For two traffic matrices that do not represent two con-
secutive weeks, the variances of the noise traffic of the
same OD flow may vary significantly (Take the same OD
flows in X01 and X03 as examples).

However, our observations are not sufficient to con-
clude that the variance of the noise traffic is strictly stable,
the reason being that: (1) The analysis above is not
comprehensive enough as our datasets do not contain
traffic matrices for many consecutive weeks; (2) There also
exist a few variance pairs in which one is obviously differ-
ent from the other, although they correspond to the same
OD flow for the two consecutive weeks. We plan to
investigate the unstable variances of the noise traffic in
future work.

6. Conclusions

In this paper, we focus on the structural analysis of
the traffic matrix that has been polluted by large volume
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anomalies. We first demonstrate that the PCA-based
analysis method performs poorly for polluted traffic
matrices. Next, we propose a new decomposition model
for the traffic matrix that is more practical in the analysis
of empirical network traffic data, and study the
decomposition problem using the relaxed principal
component pursuit method. Finally, we discuss the
experimental results in more details for the deterministic
and noise traffic matrix. The major findings in this paper
are:

1. We experiment the classical PCA method for traffic
matrix analysis. Different from the previous works
[4,5], the traffic matrices that we analyze contain some
large volume anomalies. In this case, our results show
that the eigenflow classification is neither complete
nor orthogonal, which suggests that PCA is unable to
decompose accurately the traffic matrix into the normal
traffic matrix and the large anomaly traffic matrix.

2. Based on the empirical network traffic data, a new
decomposition model for the traffic matrix is proposed
in Section 3.1. To the best of our knowledge, it is a novel
way of formalizing the structure of the traffic matrix,
which also provides a simple view of the traffic matrix
analysis problem. Moreover, this model helps explain
intuitively some of the limitations of the classical PCA
method in our experiments.

3. According to the decomposition model of the traffic
matrix, we show that the problem of traffic matrix
decomposition is equivalent to the robust PCA problem,
which has been extensively studied recently. Based on
the relaxed principal component pursuit method and
the accelerated proximal gradient algorithm, we
develop an algorithm for the decomposition of traffic
matrices that may contain large volume anomalies.
The experimental results demonstrate the efficiency
and flexibility of the proposed algorithm.

4. We discuss some detailed features of the deterministic
traffic matrix and the noise traffic matrix. Firstly, we
observe that the deterministic traffic matrix may
contain non-periodical traffic changes, which are usu-
ally combinations of long-lived traffic growths and
declines during the same time intervals. Secondly,
although the noise traffic matrix contributes a small
proportion of the total network traffic in general, the
ratios of the noise traffic to the total traffic may vary
significantly in different OD flows. Thirdly, we find
that there exists significant positive correlation
between the mean volume of OD flow and the vari-
ance of the noise traffic time series, and we further
test the temporal stability of the variance of the noise
traffic.

To summarize, this paper is a preliminary study on
applying the Relaxed PCP method for network traffic anal-
ysis, whose efficiency and flexibility have been demon-
strated in the experimental results. For future work, we
plan to further optimize the Relaxed PCP method to make
it adaptable to the network traffic data, and explore its
applications in volume anomaly detection and data clean-
ing for the polluted traffic matrix.
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Appendix A

In this appendix, we present the APG algorithm for traf-
fic matrix decomposition.

Algorithm 1. APG for traffic matrix decomposition

Input: the traffic matrix X € R>P,

1. Compute the regularization parameter 7 using (17).

2. Compute the Lagrangian parameter y using (19)
with ¢ =1.

3. For each OD flow time series Xj, estimate the
variance o¢; of its Gaussian noise component using
(20).

4. Let X = X/diag{a;}.

5. Let A0=A,1 =0,Ey=E_1=0,tg=t_1=1,
St=sf—1and k=0.

6. while not converged do

YR =A+ t"}',:] (A — Ar_1);
Yi = B+ 5= (B — Ein);
Gt =Y -3 (Yi+YE-X):
Gi=YE- 3 (ve+YE-X);
(U,S,V) = SVD (G’,j) :

Aier = US[SIVT;

Epp1 = S/Tu {Gf] )

144 /4t2+1

tk+l =
Skt = ( A) + (A +Boa = YE - Y5 ):
= Z(Yk - Ek) + (AkH +Eey — Y3 — Yf)§
k—k+1

end while
7. Let X=X - diag{c;}.
Output:
A=A, - diag{o;}; E=E\- diag{o;}; N=X-A—E.

In Algorithm 1, S.[]: R”P — R"”P represents the soft-
thresholding operator with parameter &>0. VX € R,
S:[X] € R™? and it satisfies

X(@i,j)—¢ if X(i,j) > ¢
SX)(i.4) = § X(i.j) +e if X(i,j) < —¢. (23)
0 otherwise
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We choose the stopping criterion of Algorithm 1 as the one
defined in [18], which terminates the iterations when the

2
A E
Sk+1 ‘F + ‘ Sl<+1

ance parameter.

2
quantity ‘ ‘F is less than a pre-defined toler-
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