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Abstract: We propose an alternative maximum entropy approach to learning the spectra of massive
graphs. In contrast to state-of-the-art Lanczos algorithm for spectral density estimation and applica-
tions thereof, our approach does not require kernel smoothing. As the choice of kernel function and
associated bandwidth heavily affect the resulting output, our approach mitigates these issues. Fur-
thermore, we prove that kernel smoothing biases the moments of the spectral density. Our approach
can be seen as an information-theoretically optimal approach to learning a smooth graph spectral
density, which fully respects moment information. The proposed method has a computational cost
linear in the number of edges, and hence can be applied even to large networks with millions of
nodes. We showcase the approach on problems of graph similarity learning and counting cluster
number in the graph, where the proposed method outperforms existing iterative spectral approaches
on both synthetic and real-world graphs.

Keywords: maximum entropy; graph spectrum; graph similarity; cluster counting; Lanczos method

1. Introduction

Many systems of interest can be naturally characterised by complex networks; ex-
amples include social networks [1–3], biological networks [4] and technological networks.
Trends, opinions and ideologies spread on a social network, in which people are nodes
and edges represent relationships. Networks are mathematically represented by graphs.
Of crucial importance to the understanding of the properties of a network or graph is its
spectrum, which is defined as the eigenvalues of its adjacency or Laplacian matrix [5,6].
The spectrum of a graph can be considered as a natural set of graph invariants and has
numerous uses including estimating the graph connectivity, e.g., the mixing time on ran-
dom graphs [7], detecting the presence of specific structures in the graph [8–10], graph
isomorphism test [11] and measuring graph similarity [12], and graph classification [13].
Practically, it has been extensively studied in the fields of chemistry, physics, computer
science and mathematics [14]. One of the main limitations in utilising graph spectra to solve
problems such as measuring graph similarity and estimating the number of clusters (these
are just two example applications of the general method we propose for learning graph
spectra in this paper) is the inability to automatically and consistently learn an everywhere-
positive and non-singular approximation to the spectral density. Full eigen-decomposition
(which is prohibitive for large graphs) or the Lanczos algorithm both give a Dirac sum that
must be smoothed to be everywhere positive. The choice of smoothing kernel kσ(x, x′) and
kernel bandwidth choice σ, or number of histogram bins, which are usually chosen in an
ad-hoc manner, can significantly affect the resulting output.

In this paper, we propose a maximum entropy (MaxEnt) approach based on the novel
maximum entropy algorithm [15] to learn the spectrum of massive graphs. The main
contributions of the paper are as follows:
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• We prove that kernel smoothing, commonly used in methods to visualise and compare
graph spectral densities, biases moment information;

• We propose a computationally efficient and information-theoretically optimal smooth
spectral density approximation based on the method of maximum entropy, which
fully respects the moment information. It further admits analytic forms for symmetric
and non-symmetric Kullback–Leibler (KL) divergences and Shannon entropy;

• We utilise our information-theoretic spectral density approximation on two example
applications. We investigate graph similarity and to learn the number of clusters in a
graph, outperforming iterative smoothed spectral approaches on both synthetic and
real-world data sets.

2. Graphs and Graph Spectrum

Graphs are the mathematical structure underpinning the formulation of networks.
Let G = (V, E) be an undirected graph with vertex set V = {vi}n

i=1. Each edge between
two vertices vi and vj carries a non-negative weight wij, the ij-th entry of the adjacency
matrix W. For unweighted graphs we set wij = 1 for two connected nodes and 0 for two
disconnected nodes. The degree of a vertex vi ∈ V is defined as di = ∑n

j=1 wij, and the
degree matrix D is defined as a diagonal matrix that contains the degrees of the vertices
along diagonal, i.e., Dii = di. The unnormalised graph Laplacian matrix is defined as
L = D−W. As G is undirected (wij = wji), the unnormalised Laplacian is symmetric. As
symmetric matrices are special cases of normal matrices, they are Hermitian matrices and
have real eigenvalues. Another common variant of the Laplacian matrix is the normalised
Laplacian [8],

Lnorm = D−
1
2 LD−

1
2 = I−Wnorm = I−D−

1
2 WD−

1
2 , (1)

where Wnorm is known as the normalised adjacency matrix (strictly speaking the second
equality only holds for graphs without isolated vertices). The spectrum of the graph is
defined as the density of the eigenvalues of the given adjacency, Laplacian or normalised
Laplacian matrices corresponding to the graph. Unless otherwise specified, we will consider
the spectrum of the normalised Laplacian.

3. Motivation for a New Method to Approximate and Compare Graph Spectra

For large sparse graphs with millions, or billions, of nodes, learning the exact spec-
trum using eigen-decomposition is unfeasible due to the O(n3) cost. Powerful iterative
methods (such as the Lanczos algorithm, kernel polynomial methods, Chebyshev/Taylor
approximations, the Haydock method and many more), which only require matrix-vector
multiplications and hence have a computational cost scaling with the number of non-zero
entries in the graph matrices, are often used. There is extensive literature documenting the
performance of these methods. Ref. [16] states that the Lanczos algorithm is significantly
more accurate than other methods (including the kernel polynomial methods), followed
by the Haydock method. Ref. [17] shows that the convergence of the Lanczos algorithm is
twice that of the Chebyshev approximation. Hence given the superior theoretical guaran-
tees and empirical performance of the Lanczos algorithm, we employ it as a sole baseline
against our MaxEnt method. The Lanczos algorithm [17] approximates the graph spectrum
with a sum of weighted Dirac delta functions, closely matching the first m moments (where
m is the number of iterative steps used, as detailed in Section 4.1) of the spectral density:

p(λ) =
1
n

n

∑
i=1

δ(λ− λi) ≈
m

∑
i=1

wiδ(λ− λi), (2)

where ∑m
i=1 wi = 1, and λi denotes the i-th eigenvalue in the spectrum. This can be seen

as an m-moment matched discrete approximation to the spectral density of the graph.
However, such an approximation is undesirable because natural divergence measures
between densities, such as the information-based relative entropy, i.e., the KL divergence
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DKL(p||q) ∈ (0, ∞) [18,19], can be infinite for densities that are mutually singular. The use
of the Jensen-Shannon divergence simply re-scales the divergence into DJS(p||q) ∈ (0, 1).

The Argument against Kernel Smoothing

To alleviate these limitations, practitioners typically generate a smoothed spectral
density by convolving the Dirac mixture of spectral components with a smooth kernel
kσ(λ− λi) [12,20], often a Gaussian or Cauchy [20] to facilitate visualisation and compari-
son. The smoothed spectral density, with reference to Equation (2), thus takes the form:

p̃(λ) =
∫

kσ(λ− λ′)p(λ′)dλ′

=
∫

kσ(λ− λ′)
m

∑
i=1

wiδ(λ
′ − λi)dλ′

=
m

∑
i=1

wikσ(λ− λi)

(3)

We make some assumptions regarding the nature of the kernel function, kσ(λ− λi), in order
to prove our main theoretical result about the effect of kernel smoothing on the moments
of the underlying spectral density. Both of our assumptions are met by (the commonly
employed) Gaussian kernel.

Assumption 1. The kernel function kσ(λ− λi) is supported on the real line [−∞, ∞].

Assumption 2. The kernel function kσ(λ− λi) is symmetric and permits all moments.

Theorem 1. The m-th moment of a Dirac mixture ∑m
i=1 wiδ(λ−λi), which is smoothed by a kernel

kσ satisfying Assumptions 1 and 2, is perturbed from its unsmoothed counterpart by an amount
∑m

i=1 wi ∑r/2
j=1 (

r
2j)Ekσ(λ)(λ

2j)λ
m−2j
i , where r = m if m is even and m− 1 otherwise. Ekσ(λ)(λ

2j)

denotes the 2j-th central moment of the kernel function kσ(λ).

Proof. The moments of the Dirac mixture are given as

〈λm〉 =
m

∑
i=1

wi

∫
δ(λ− λi)λ

mdλ =
m

∑
i=1

wiλ
m
i . (4)

The moments of the modified smooth function (Equation (3)) are

〈λ̃m〉 =
m

∑
i=1

wi

∫
kσ(λ− λi)λ

mdλ

=
m

∑
i=1

wi

∫
kσ(λ

′)(λ′ + λi)
mdλ′

= 〈λm〉+
m

∑
i=1

wi

r/2

∑
j=1

(
r
2j

)
Ekσ(λ)(λ

2j)λ
m−2j
i .

(5)

We have used the binomial expansion and the fact that the infinite domain is invariant
under shift reparameterisation and the odd moments of a symmetric distribution are 0.

Remark 1. The above proves that kernel smoothing alters moment information, and that this process
becomes more pronounced for higher moments. Furthermore, given that wi > 0, Ekσ(λ)(λ

2j) > 0
and (for the normalised Laplacian) λi > 0, the corrective term is manifestly positive, so the smoothed
moment estimates are biased.
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Remark 2. For large random graphs, the moments of a generated instance converge to those
averaged over many instances , hence by biasing our moment information we limit our ability
to learn about the underlying stochastic process. We include a detailed discussion regarding the
relationship between the moments of the graph and the underlying stochastic process in Section 5.2.

Note, of course, that even though our argument here is using the approximate m
moment approximation, the same argument would hold if we used the full n-moment
information of the underlying matrix (i.e., all the eigenvalues).

4. An Information-Theoretically Optimal Approach to Estimating Massive
Graph Spectrum

For large, sparse graphs corresponding to real networks with millions or billions of
nodes, where eigen-decomposition is intractable, we may still be able to compute a certain
number of matrix-vector products, which we can use to get unbiased estimates of the
spectral density moments, using stochastic trace estimation as explained in Section 4.1.
We can settle on a unique spectral density which satisfies the given moment information
exactly, known as the density of maximum entropy explained in Section 4.2.

4.1. Stochastic Trace Estimation

The intuition behind stochastic trace estimation is that we can accurately approximate
the moments of λ with respect to the spectral density p(λ) by using computationally cheap
matrix-vector multiplications. The moments of λ can be estimated using a Monte-Carlo
average,

nEp(λ
m) = Ev(vTXmv) ≈ 1

d

d

∑
j=1

vT
j Xmvj, (6)

where vj is any random vector with zero mean and unit covariance and X is an n × n
matrix whose eigenvalues are {λi}n

i=1. This enables us to efficiently estimate the moments
in O(d×m× nnz) for sparse matrices (where nnz is the number of non-zero entries in the
matrix), where d× m � n. We use these as moment constraints in our entropic graph
spectrum formalism to derive the functional form of the spectral density. Examples of this
in the literature include [17,21]. The algorithm for learning the graph Laplacian moments
is summarised in Algorithm 1.

Algorithm 1 Learning the Graph Laplacian Moments via Stochastic Trace Estimation (STE)

1: Input: Normalised Laplacian Lnorm, number of probe vectors d, number of moments
required m

2: Output: Moments of normalised Laplacian {µi}
3: for i in 1, .., d do
4: Initialise random vector zi ∈ R1×n

5: for j in 0 do
6: zj = zi

7: ρj = zi
Tz′j

8: end for
9: for j in 1, .., m do

10: zj = Lnormzj

11: ρj = zi
Tz′j

12: end for
13: end for
14: µi = 1/d×∑d

j=1 ρij
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Comment on the Lanczos Algorithm

In the state-of-the-art iterative algorithm Lanczos [17], the tri-diagonal matrix Tm×m

can be derived from the moment matrix Mm×m, corresponding to the discrete measure
dα(λ) satisfying the moments µi = vTXiv =

∫
λidα(λ) for all i ≤ m [22] and hence it can

be seen as a weighted Dirac approximation to the spectral density matching the first m
moments. The weight given on every Ritz eigenvalue λ′′i (the eigenvalues of the matrix
Tm×m) is the square of the first component of the corresponding Ritz vector (φi), i.e., [φi]1

2,
hence the approximated spectral density can be written as,

1
n

n

∑
i

δ(λ− λi) ≈
m

∑
i

wiδ(λ− λ′′i ) =
m

∑
i

φi[1]2δ(λ− λ′′i ). (7)

As we will further discuss in this paper, whilst this approximate spectral density
respects the moment information of the original matrix, in practice as this spectral density
is discrete, it must be smoothed. This smoothing neither respects moment nor bound
information (for example the matrix may be positive definite). We hence expect a method
which respects such information when relevant to provide superior performance, this is
the subject of enquiry of this paper.

4.2. Maximum Entropy

The method of maximum entropy, hereafter referred to as MaxEnt, is information-
theoretically optimal in so far as it makes the least additional assumptions about the
underlying density and is flattest in terms of the KL divergence compared to the uni-
form [18]. To determine the spectral density p(λ) using MaxEnt, we maximise the entropic
functional

S = −
∫

p(λ) log p(λ)dλ−∑
i

αi

[ ∫
p(λ)λidλ− µi

]
(8)

with respect to p(λ), where Ep[λi] = µi are the power moment constraints on the spectral
density, which are estimated using stochastic trace estimation (STE) as explained in Section 4.1.
The resultant entropic spectral density has the form

p(λ|{αi}) = exp

[
−(1 + ∑

i
αiλ

i)

]
, (9)

where the coefficients {αi}m
i=1 are derived from optimising (8). We use the MaxEnt algo-

rithm, proposed in [15], to learn these coefficients. For simplicity, we denote p(λ|{αi}m
i=1)

as p(λ). Python code is made available at https://github.com/diegogranziol/Python-
MaxEnt accessed on 30 April 2022.

4.3. The Entropic Graph Spectral Learning Algorithm

We first estimate the m moments of the normalised graph Laplacian {µi}m
i=1 via STE

as shown in Algorithm 1, then use the moment information to solve for MaxEnt coefficients
{αi}m

i=1 and compute the entropic graph spectrum via Equation (9). The full algorithm for
learning the entropic graph spectrum is summarised in Algorithm 2.

Algorithm 2 Entropic Graph Spectrum (EGS) Learning

1: Input: Normalised Laplacian Lnorm, number of probe vectors d, number of moments
used m

2: Output: EGS p(λ)
3: Moments {µi}m

i=1 ← Algorithm 1(Lnorm, d, m)
4: MaxEnt Coefficients {αi}m

i=1 ←MaxEnt algorithm
(
{µi}m

i=1
)

5: Entropic graph spectrum p(λ) = exp[−(1 + ∑i αiλ
i)]

https://github.com/diegogranziol/Python-MaxEnt
https://github.com/diegogranziol/Python-MaxEnt
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5. Further Remarks
5.1. Analytic Forms for the Differential Entropy and Divergence from EGS

To calculate the differential entropy we simply note that

S(p) =
∫

p(λ)

(
1 +

m

∑
i

αiλ
i

)
dλ = 1 +

m

∑
i

αiµi. (10)

The KL divergence between two EGSs, p(λ) = exp[−(1 + ∑i αiλ
i)] and q(λ) = exp[−(1 +

∑i βiλ
i)] (where βi refers to the Lagrange multiplier for each moment constraint), can be

written as,

DKL(p||q) =
∫

p(λ) log
p(λ)
q(λ)

dλ = −∑
i
(αi − βi)µ

p
i , (11)

where µ
p
i refers to the i-th moment constraint of the density p(λ). Similarly, the symmetric-

KL divergence can be written as,

DKL(p||q) +DKL(q||p)
2

=
∑i(αi − βi)(µ

q
i − µ

p
i )

2
, (12)

where all the α and β are derived from the optimisation and all the µ are given from the
stochastic trace estimation.

5.2. On the Importance of Moments

Given that all iterative methods essentially generate an m moment empirical spectral
density (ESD) approximation, it is instructive to ask what information is contained within
the first m spectral moments. To answer this question concretely, we consider the spectra of
random graphs. By investigating the finite size corrections and convergence of individual
moments of the empirical spectral density (ESD) compared to those of the limiting spectral
density (LSD), we see that the observed spectra are faithful to those of the underlying
stochastic process. Put simply, given a random graph model, if we compare the moments
of the spectral density observed from a single instance of the model to that averaged over
many instances, we see that the moments we observe are informative about the underlying
stochastic process.

5.2.1. ESD Moments Converge to Those of the LSD

For random graphs, with independent edge creation probabilities, their spectra can
be studied through the machinery of random matrix theory [23]. We consider the entries
of an n × n matrix Xn to be zero mean and independent, with bounded moments. For
such a matrix, a natural scaling which ensures we have a bounded norm as in n → ∞ is
Xn = Mn/

√
n. It can be shown (see for instance [24]) that the moments of a particular

instance of a random graph and the related random matrix Xn converge to those of the
limiting counterpart in probability with a correction of O(n−2).

5.2.2. Finite Size Corrections to Moments Get Worse with Larger Moments

A key result, akin to the normal distribution for classical densities, is the semicircle
law for random matrix spectra [24]. For matrices with independent entries aij, ∀i > j, with
common element-wise bound K, common expectation µ and variance σ2, and diagonal
expectation Eaii = ν, it can be shown that the corrections to the semicircle law for the
moments of the eigenvalue distribution,∫

xmdµ(x) =
1
n

TrXm
n , (13)
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have a corrective factor bounded by [25]

K2m6

2σ2n2 . (14)

Hence, the finite size effects are larger for higher moments than that for the lower counter-
parts. This is an interesting result, as it means that for large graphs with n→ ∞, the lowest
order moments, which are those learned by any iterative process, best approximate those
of the underlying stochastic process.

6. Visualising the Modelling Power of EGS

Having developed a theory as to why a smooth, exact moment-matched approximation
of the spectral density is crucial to learning the characteristics of the underlying stochastic
process, and having proposed a method (Algorithm 2) to learn such a density, we test
the practical utility of our method and algorithm on examples where the limiting spectral
density is known.

6.1. Erdős-Rényi Graphs and the Semicircle Law

For Erdős-Rényi graphs with n nodes and edge creation probability p ∈ (0, 1), and
np → ∞, the limiting spectral density of the normalised Laplacian converges to the
semicircle law. We consider here to what extent the learned EGS with finite moments
can effectively approximate the density. Wigner’s density is fully defined by its infinite
number of central moments given by Eµ(λ2n) = (R/2)2nCn, where Cn × (n + 1) = (2n

n )
are known as the Catalan numbers. As a toy example we generate a semicircle centered
at λ = 0.5 with R = 0.5 and use the analytical moments to compute its corresponding
EGS. As can be seen in Figure 1, for m = 5 moments, the central portion of the density is
already well approximated, but the end points are not. This is largely corrected for m = 30
moments. Next, we generate an Erdős-Rényi graph with n = 5, 000 and p = 0.001, and
learn the moments using stochastic trace estimation. We then compare the fit between
the EGS computed using a different numbers of input moments m = 3, 30, 60, 100 and
the graph eigenvalue histogram computed by eigen-decomposition. We plot the results
in Figure 2. One striking difference between this experiment and the previous one is the
number of moments needed to give a good fit. This can be seen especially clearly in the top
left subplot of Figure 2, where using 3 moments, i.e., Gaussian approximation, completely
fails to capture the bounded support of the spectral density. Given that the exponential
polynomial density is positive everywhere, it needs more moment information to learn the
regions of boundedness of the spectral density in its domain. In the previous example we
artificially alleviated this phenomenon by putting the support of the semicircle within the
entire domain. It can be clearly seen from Figure 2a that increasing moment information
successively improves the fit to the support. Furthermore, the magnitude of the oscillations,
which are characteristic of an exponential polynomial function, decay for larger moments.

0 0.5 1
0

0.5

1

1.5

Semi-circle

EGS(m=5)

0 0.5 1
0

0.5

1

1.5

Semi-circle

EGS(m=30)

(a)

Figure 1. Cont.



Algorithms 2022, 15, 209 8 of 16

0 5 10 15 20 25 30
No. of Moments

-4

-3

-2

L
o

g
1
0
( 

D
K

L
)

10 20 30
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-3.4
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Figure 1. (a) EGS semicircle fit for different moment number m. (b) KL divergence between semicircle
density and EGS.

6.2. Beyond the Semicircle Law

For the adjacency matrix of an Erdős-Rényi graph with p ∝ 1/n, the limiting spectral
density does not converge to the semicircle law and has an elevated central portion, and the
scale-free limiting density converges to a triangle-like distribution. For other random graph
models, such as the Barabási-Albert model (also known as the scale-free network), the
probability of a new node being connected to a certain existing node is proportional to the
number of links that the existing node already has, violating the independence assumption
required to derive the semicircle density. We plot a Barabási-Albert network (n = 5000)
and, similar to Section 6.1, we learn the EGS and plot the resulting spectral density against
the eigenvalue histogram, shown in Figure 2b. For the Barabási-Albert network, due to
the extremity of the central peak, a much larger number of moments is required to get a
reasonable fit. We also note that increasing the number of moments is akin to increasing
the number of bins in terms of spectral resolution, as seen in Figure 2b.

(a)

Figure 2. Cont.
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(b)

Figure 2. (a) EGS fit to randomly generated Erdős-Rényi graph (n = 5000 , p = 0.001). The number
of moments m used increases from 3 to 100 and the number of bins used for the eigenvalue histogram
is nb = 500. (b) EGS fit to randomly generated Barabási-Albert graph (n = 5000). The number of
moments used for computing EGSs and the number of bins used for the eigenvalue histogram are
m = 30, nb = 50 (Left) and m = 100, nb = 500 (Right).

7. EGS for Measuring Graph Similarity

In this section, we test the use of our EGS in combination with symmetric KL diver-
gence to measure similarity between different types of synthetic and real-world graphs.
Note that our proposed EGS, based on the MaxEnt distribution, enables the symmetric KL
divergence to be computed analytically, which we show in Section 5.1. We first investigate
the feasibility of recovering the parameters of random graph models, and then move onto
classifying the network type as well as computing graph similarity among various synthetic
and real-world graphs.

7.1. Inferring Parameters of Random Graph Models

We investigate whether one can recover parameters of random graph models via
the learned EGS of the graph instances. We generate a random graph with a given size
and parameters and learn its entropic spectral characterisation using our EGS learner
(Algorithm 2). Then, we generate another graph of the same size but learn its parameter
value by minimising the symmetric-KL divergence between its entropic spectral surrogate
and that of the original graph. We consider three different random graph models, i.e.,
Erdős-Rényi (ER) with edge probability p, Watts-Strogatz (WS) with rewiring probability p,
and Barabási-Albert (BA) with number of edges r attached to each new node, and different
graph sizes (n = 50, 100, 150). The results are shown in Table 1. It can be seen that, given the
approximate EGS, we are able to infer the parameters of the graph producing that spectrum.

Table 1. Average parameters estimated by our MaxEnt-based method for the 3 types of network. The
number of nodes in the network is denoted by n.

n 50 100 150

ER (p = 0.6) 0.600 0.598 0.604
WS (p = 0.4) 0.468 0.454 0.414
BA (r = 0.4n) 18.936 40.239 58.428



Algorithms 2022, 15, 209 10 of 16

7.2. Learning Real-World Network Types

Determining which random graph model best fits a real-world network (charac-
terised by spectral divergence) leads to a better understanding of graph dynamics and
characteristics. This has been explored for small biological networks [12] where full eigen-
decomposition is viable. Here, we conduct similar experiments (based on our EGS method)
for large networks. We first test on a large (5000-node) synthetic BA network. By min-
imising the symmetric KL divergence between its EGS and those of small (1000-node)
random networks (ER, WS, BA), we successfully recover the graph type (see Table 2). As a
real-world use case, we further repeat the experiment to determine which random network
can best model the YouTube network from the SNAP dataset [26] and find, as shown in
Table 2, that the BA gives the lowest divergence. Further we show that EGS can also be
used to compare similarity among real-world networks, such as biological, citation and
road networks from the SNAP dataset.

Table 2. Minimum KL divergence between the EGSs of random networks and that of a BA graph and
YouTube network.

Large BA YouTube

ER 2.662 7.728
WS 7.612 9.735
BA 2.001 7.593

7.3. Comparing Different Real-World Networks

We now consider the feasibility of comparing real-world networks using EGS. Specif-
ically, we take 3 biological networks, 5 citation networks and 3 road networks from the
SNAP dataset [26], and compute the symmetric KL divergences between their EGS with
m = 100 moments. We present the results in a heat map (Figure 3). We see very clearly that
the intra-class divergences between the biological, citation and road networks are much
smaller than their inter-class divergences. This strongly suggests that the combination of
our EGS method and the symmetric KL divergence can be used to identify similarity in
networks. Furthermore, as can be seen in the divergence between the human and mouse
network, the spectra of the human gene network are more closely aligned with each other
than they are with the spectra of the mouse gene network. This suggests a reasonable
amount of intra-class distinguishability as well.

0 1 2 3 4 5 6 7 8 9 10
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Figure 3. Symmetric KL heatmap between 9 graphs from the SNAP dataset: (0) bio-human-gene1,
(1) bio-human-gene2, (2) bio-mouse-gene, (3) ca-AstroPh, (4) ca-CondMat, (5) ca-GrQc, (6) ca-HepPh,
(7) ca-HepTh, (8) roadNet-CA, (9) roadNet-PA, (10) roadNet-TX.
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8. EGS for Estimating Cluster Number

It is known from spectral graph theory [10] that the multiplicity of the 0 eigenvalue
of the Laplacian (and the normalised Laplacian) is equal to the number of connected
components in the graph. For a small number of inter-cluster connections between k
clusters, we expect (by matrix perturbation theory) the k smallest eigenvalues to be close
to 0. This leads to the so-called eigengap between the k-th and k + 1-th eigenvalue which
is used as a heuristic to detect number of clusters in a graph [10]. Here, we first make the
above argument about eigenvalues precise in the following theorem.

Theorem 2. The normalised Laplacian eigenvalue, perturbed by adding a single edge between
nodes v1 and vm+1 from two previously disconnected clusters A and B, is bounded to first order by∣∣∣∣ 1√

d1da
+

1√
dm+1db

− 2√
d1dm+1

∣∣∣∣, (15)

where di denotes the degree of node vi, 1/
√

da = ∑g∈N(v1)
1/
√

dg and similarly 1/
√

db =

∑g∈N(m+1) 1/
√

dg, where ∑g∈N(v1)
denotes the sum over all nodes connecting to node v1.

Proof. Using Weyl’s bound on Hermitian matrices

∆λi = |λ′i − λi| ≤ ||L′norm − Lnorm||2 ≤ ||L′norm − Lnorm||F (16)

where λi and λ′i are the i-th eigenvalue of the normalised graph Laplacian Lnorm and L′norm
for graph G and its perturbed version G′, respectively, and || · ||2 and || · ||F denote the
matrix 2-norm and Frobenius norm, respectively. By definition that the ij-th entry of Lnorm

is that of L divided by
√

didj, we have

∆Lnorm = ∑
g∈(g,1)

(
1√
d1dg

− 1√
(d1 + 1)dg

)
− 2√

d1dm+1

+ ∑
g∈(g,m+1)

(
1√

dm+1dg
− 1√

(dm+1 + 1)dg

)
,

to first order in the binomial expansion. We hence prove the result.

Corollary 1. For two clusters in which nodes have an identical degree d� 1, connected by a single
inter-cluster link, the zero eigenvalue is perturbed (to first order) by at most ∆λ0 = 1

d .

Remark 3. For E inter-cluster connections, our bound scales as E/d and hence the intuition of a
small change in the 0 eigenvalue holds if the number of edges between clusters is much smaller than
the degree of the nodes within the clusters.

For the case of large sparse graphs, where only iterative methods such as the Lanczos
algorithm can be used, the same arguments from Section 3 apply. This is because the Dirac
delta functions are now weighted, and to obtain a reliable estimate of the eigengap, one
must smooth the spectral delta functions. We would expect a smoothed spectral density plot
to have a spike near 0, and the moments of the spectral density to encode this information
and the mass of this peak to be spread. We hence look for the first spectral minimum in
the EGS and calculate the number of clusters as shown in Algorithm 3. We conduct a set
of experiments to evaluate the effectiveness of our spectral method in Algorithm 3 for
learning the number of clusters in a network, where we compare it against the Lanczos
algorithm with kernel smoothing on both synthetic and real-world networks.
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Algorithm 3 Cluster Number Estimation

1: Input: Normalised graph Laplacian Lnorm, graph dimension n, tolerance η
2: Output: Number of clusters Nc
3: EGS p(λ)← Algorithm 2 (Lnorm)

4: Find minimum λ∗ that satisfy dp(λ)
dλ |λ=λ∗ ≤ η and d2 p(λ)

dλ2 |λ=λ∗ > 0

5: Calculate Nc = n
∫ λ∗

0 p(λ)dλ

8.1. Synthetic Networks

The synthetic data consists of disconnected sub-graphs of varying sizes and cluster
numbers, to which a small number of inter-cluster edges are added. We use an identical
number of matrix vector multiplications, i.e., m = 80 (see Section 9 for experimental details
for both EGS and Lanczos methods), and estimate the number of clusters and report the
fractional error. The results are shown in Table 3. In each case, the method achieving lowest
detection error is highlighted in bold. It is evident that the EGS approach outperforms
Lanczos as the number of clusters and the network size increase. We observe a general
improvement in performance for larger graphs, visible in the differences between fractional
errors for EGS as the graph size increases and not for kernel-smoothed Lanczos.

Table 3. Fractional error in cluster number detection for synthetic networks using EGS and Lanczos
methods with 80 moments. nc denotes the number of clusters in the network and n = 30× nc the
number of nodes. Best results given in bold font.

nc 9 30 90 240

Lanc 3.2 × 10−3 1.4× 10−2 1.8× 10−2 2.89× 10−2

EGS 9.7× 10−3 6.4 × 10−3 5.8 × 10−3 3.5 × 10−3

To test the performance of our approach for networks that are too large to apply
eigen-decomposition, we generate two large networks by mixing the ER, WA, BA random
graph models. The first large network has a size of 201,600 nodes and comprises 305 inter-
connected clusters whose size varies from 500 to 1000 nodes. The second large network has
a size of 404,420 nodes and comprises interconnected 1355 clusters whose size varies from
200 to 400 nodes. The results in Figure 4a,b show that for both methods, the detection error
generally decreases as more moments are used, and our EGS approach again outperforms
the Lanczos method for both large synthetic networks.

8.2. Small Real-World Networks

We next experiment with relatively small real-world networks, such as the Email network
(with n = 1003 nodes) in the SNAP dataset and the Net Science collaboration network (with
n = 1589 nodes) [27]. For such networks, we can still calculate the ground-truth number of
clusters by computing the eigenvalues explicitly and finding the spectral gap near 0. For the
Email network, we count 20 very small eigenvalues before a large jump in magnitude (measured
on a log scale) and set this as the ground-truth (see Figure 5). We plot the log error against the
number of moments for both EGS and Lanczos in Figure 4c, with EGS showing superior
performance. Similar results have been observed in Figure 4d for the NetScience dataset,
which show that EGS quickly outperforms the Lanczos algorithm after around 20 moments.

8.3. Large Real-World Networks

For large datasets with n � 104, where the Cholesky decomposition becomes com-
pletely prohibitive even for powerful machines, we can no longer define a ground-truth
using a complete eigen-decomposition. Nevertheless, we present our findings for the num-
ber of clusters in the DBLP (n = 317,080), Amazon (n = 334,863) and YouTube (n = 1,134,890)
networks [26] in Table 4, where we use a varying number of moments. We see that for
both the DBLP and Amazon networks, the number of clusters Nc seems to converge with
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increasing moments number m, whereas for YouTube such a trend is not visible. This can
be explained by looking at the approximate spectral density of the networks implied by
maximum entropy. For both DBLP and Amazon (Figure 6a,b respectively), we see that
our method implies a clear spectral gap near the origin, indicating the presence of clusters.
Whereas for the YouTube dataset, shown in Figure 6c, no such clear spectral gap is visible
and hence the number of clusters cannot be estimated accurately.
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Figure 4. Log error of cluster number detection using EGS and Lanczos methods on large synthetic
networks with (a) 201,600 nodes and 305 clusters and (b) 404,420 nodes and 1355 clusters, and on small-
scale real-world networks (c) Email network of 1003 nodes and (d) NetScience network of 1589 nodes.

Table 4. Cluster number detection by EGS in the DBLP (n = 317,080), Amazon (n = 334,863) and
YouTube (n = 1,134,890) datasets.

Moments 40 70 100

DBLP 2.2× 104 8.5× 103 8.3× 103

Amazon 2.4× 104 1.1× 104 1.2× 104

Youtube 4× 103 1.3× 104 1.9× 104
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Figure 5. Eigenvalues of the Email dataset with clear spectral gap and λ∗ ≈ 0.005. The shaded area
multiplied by the number of nodes n predicts the number of clusters.
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Figure 6. Spectral density of three large-scale real-world networks estimated by EGS and Lanczos.
(a) DBLP dataset, (b) Amazon dataset, (c) YouTube dataset.

9. Experimental Details

We use d = 100 Gaussian random vectors for our stochastic trace estimation, for
both EGS and Lanczos [17]. We explain the procedure of going from adjacency matrix
to Laplacian moments in Algorithm 1. When comparing EGS with Lanczos, we set the
number of moments m equal to the number of Lanczos steps, as they are both matrix
vector multiplications in the Krylov subspace. We further use Chebyshev polynomial
input instead of power moments for improved performance and conditioning. In order to
normalise the moment input we use the normalised Laplacian with eigenvalues bounded
by [0, 2] and divide by 2. To make a fair comparison we take the output from Lanczos [17]
and apply kernel smoothing [16] before applying our cluster number estimator.

10. Conclusions

In this paper, we propose a novel, efficient framework for learning a continuous
approximation to the spectrum of large-scale graphs, which overcomes the limitations
introduced by kernel smoothing. We motivate the informativeness of spectral moments
using the link between random graph models and random matrix theory. We show that
our algorithm is able to learn the limiting spectral densities of random graph models for
which analytical solutions are known. We showcase the strength of this framework in two
real-world applications, namely, computing the similarity between different graphs and
detecting the number of clusters in the graph. Interestingly, we are able to classify different
real-world networks with respect to their similarity to classical random graph models. The
EGS may be of further use to researchers studying network properties and similarities.
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