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Internet 0 — inter-device internetworking

R Krikorian and N Gershenfeld

The assumptions behind Internet architectures do not scale to small devices — they have a baseline cost that is still too high for small, 
few-dollar, embedded objects. This barrier either leaves many devices network disenfranchised or encourages the creation of segmented 
networks. Internet 0 attempts to enable pervasive computing and networking on the embedded level by providing the Internet protocol as 
a communications substrate, and, through the use of an end-to-end modulation scheme, to speak to devices. I0 is a framework to bridge 
together heterogeneous devices via IP in a manner that is still compatible with designing globally large computer networks.

1. Introduction
While the Internet has introduced new networking 
technologies and communications methods, its reach has not 
extended far below fairly computationally intensive devices 
[1]. Most think the smallest computational unit that is 
Internet-capable are those running full-blown operating 
systems (Windows, Mac OS X, Free DOS, Unix-compatible, 
etc) and are equipped with high-speed networking hardware 
(Ethernet, IEE802.11, etc). Unfortunately, this leaves a 
disfranchised group of devices — those which are too small, 
too embedded, or thought to be too ‘simple’. This paper 
introduces Internet 0, a framework to bring networking to that 
forgotten class.

John Romkey is famous for creating the first Internet ‘device’, 
a toaster that could be turned on and off over the Internet, in 
1990. To make that happen, Romkey spliced a power relay to 
his toaster and connected that to the parallel port of his 
network connected laptop. Unfortunately, this example 
illustrates exactly why nothing has changed in the last decade. 
An engineer asked to put an incandescent light on to the 
Internet in the present may do the very same thing. He or she 
may simply splice a relay on to the AC power line running to 
the light bulb, connect the relay’s switching line to a pin on the 
parallel port of the computer, then author a simple CGI script 
that takes input from an HTML button and then outputs state 
to that pin.

Taking this particular example a bit further — consider 
creating a light switch somewhere else in the building (or even 
in another) that controls this light. Using the set-up described 
above as the light bulb, a light switch simply needs to be the 

embodiment of a Web client. An engineer can attach a light 
switch to another pin on the parallel port (this time an input 
one), author software that monitors that pin, and when the pin 
state changes issue a Web request to the computer with the 
light bulb.

While this light bulb and switch is a functioning solution for 
network-enabled control, it underscores how the Internet has 
failed at ‘interdevice internetworking’. The above example 
requires two fairly expensive network-enabled desktop-class 
computers (at a cost on the order of $1000 each) and each has 
to be individually configured to know how to make or receive 
requests from the other. The demonstration also assumes that 
both locations have either Ethernet or IEE802.11 and an IP 
address issuing authority (either computational as a DHCP 
server, or personal via a network administrator) — both of 
which take a qualified IT department to set up and maintain. 
And finally, there is more than just the power consumption 
issues of the light bulb and switch themselves, but now also 
the watts of power required to power the computer’s CPU and 
hard drives.

I0 attempts to solve those issues by defining a framework that 
not only enables small devices to inter-communicate with each 
other, but also inter-operate with any other machine, no 
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matter how large or small. I0 networks are based around seven 
basic tenets:

• bringing the Internet protocol all the way to the device 
level to  make devices full network citizens,

• compiling standards and delayering network protocol 
stacks to make  them computationally efficient enough to 
fit into embedded  microprocessors,

• allowing devices to talk to each other directly to remove 
the  necessity of centralised servers and protocol 
converters,

• advertising a device not only to the virtual network, but 
also to the  physical one to allow direct interactions 
between objects and objects, and also objects and 
people,

• slowing down networks to decrease network complexity 
and therefore simplify network access,

• using the same modulation scheme across many different 
media so that device designers can be free to choose 
their preferred hardware medium while not being isolated 
from devices that use another,

• pushing the engineering politics of open standards to 
inspire competition not in differing architectures, but in 
differing network services.

There are many other standards which aim to do the same 
thing — everything from CAN bus for the transportation 
industry, LonWorks for building automation, and sensor 
networks, I2C for inter-IC communication, etc. Each one of 
these embody portions of the seven listed above, but none, 
except I0, has all characteristics. The Internet has scaled 
through orders of magnitude in both size and speed while the 
device network standards have yet to attempt global naming 
and routing.

2. IP to the leaf node
Historically, engineers have stayed away from using native 
Internet protocols, in all portions of an embedded device 
network or system, out of fear that the implementation of the 
stack was too difficult or that the use of IP was inefficient. This 
mentality has unfortunately left device networks in a myriad of 
different protocols — almost resembling the disparate 
computing networks in the early days of the Internet. To 
rectify computer networking, the Internet protocol [2] was 
introduced as the lowest common denominator — any 
computer that wishes to join an IP network simply needs to 
prepend all data it transmits with a 20 byte IP header, and any 
network technology simply needs to carry packets as small as 
576 bytes. This type of abstraction allows for any computer to 
talk to any other computer on the Internet without knowledge 
of the networking technology that interconnects them.

I0 uses micro-IP stacks that are compliant enough with 
conventional Internet protocol stacks, thereby enabling any I0 
device to talk to any other device that speaks IP — all in a 
couple of kilobytes of code. Unlike more ‘conventional’ IP 
stacks that are run as portions of fully fledged operating 
systems, occupy 100s of KBs of code, and require processors 

that draw watts of power, these stacks are small and simple 
enough to be trivially embedded into a $1 8-pin 
microcontroller that consumes only milliwatts of power. 
Moreover, that custom stack can be translated into a couple of 
square millimetres of silicon that can be added to an ASIC.

The fears of inefficiency in IP is derived from the requirement 
of the IP header — any transmitted data must be prepended 
by 20 bytes of the IP header, plus an additional 12 or 20 bytes 
for a UDP or TCP header respectively. If proportionally, data is 
not larger than that header, then transmitting IP may be 
wasteful, detractors argue. However, on the byte level, IP 
compression is rather standard [3, 4] achieving header sizes as 
small as 5 bytes in long-lived TCP/IP flows (tighter 
compression may be possible by compressing the entire 
packet and not simply the header). As for power 
considerations, power does not equal transmitted bits, rather, 
power is related to receiving bits. A sender and receiver can 
agree on a strategy for the receiver to turn on its amplifier to 
listen for a low signal at a particular time in order to be more 
power efficient.

IP on its own, however, is not that useful as most network 
applications tend to use IP to wrap the user data protocol 
(UDP) [5] or the transmission control protocol (TCP) [6]. While 
there is much debate on which protocol is the correct one to 
use in particular situations (consider a light switch based on 
UDP versus one based on TCP — the UDP-based switch 
requires much less bandwidth, however on a congested 
network where the light switch’s packet is dropped, the person 
toggling the switch may need to press the button again, unlike 
a TCP-based switch which would handle the negotiation itself; 
Bauer and Patrick propose a human-factors extension to the 
ISO/OSI network model [7] that formalises scenarios just as 
that), either can be implemented on a small scale. TCP does 
require more state than UDP; however, implementing TCP 
does allow for trivial interoperability with standard network 
applications such as Web browsers.

We assume that all data is transmitted to I0 nodes in a serial 
fashion — specifically using the serial line protocol (SLIP) [8] 
(the predecessor, and simpler, sibling to the point-to-point 
protocol (PPP) [9] which is currently used on most dial-up and 
some wired connections to ISPs). SLIP specifies a start byte 
that is used to frame a packet that is sent over the line making 
it very simple for an I0 processor to pick out the start of the 
packet. At no point does the I0 processor need to buffer the 
entire packet or even the packet header in memory (an 
implementation is free to do so, if it wishes, but it is not 
necessary), it can simply read and process the packet as it 
streams in. While it streams in, the software only needs to 
keep track of a few bytes of state — a 16-bit sum of the packet 
header (used for checksum verification), the source IP address, 
and the destination IP address. Once the checksum can be 
confirmed to be correct, the processor can determine whether 
the packet is destined for it. If not, it can simply ignore all 
incoming bytes until the next SLIP start byte. All IP header 
processing can be performed with only 10 bytes state and 
through use of accumulated operations.

Following the above, transmission is straightforward. When 
the device wishes to transmit data, it only needs first to 
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transmit 20 bytes of header containing the length of data it 
wishes to send, an identification number, a checksum, and the 
source and destination of the data (the rest of the fields in the 
IP header are kept constant). The identifier of the data could 
be chosen at random (but to co-operate with the rest of the 
Internet, it can instead be monotonically increasing) and 
checksum computations can be kept to a minimum by 
precomputing the checksum with known constants. That pre-
computed value can then be updated with the length of the 
packet, its identification number, and the destination IP 
address.

UDP transmission comes next. The UDP header specifies a 
destination and source port number for the packet, as well as 
a checksum over the entire UDP header. As with the IP 
header, the UDP checksum can be pre-computed so the 
source and destination ports can be transmitted, the 
checksum can be updated with that information and 
transmitted, and then the actual data can follow. Performing 
TCP/IP at this scale is possible, but we do not cover it within 
the scope of this paper.

3. Compiled standards
The above Internet protocol stack reduction is an example of 
compiling standards. The IP stack is traditionally described 
using the 7-layer ISO/OSI network model which dictates 
network handling through physical, data link, network, 
transport, session, presentation, and application levels. This 
model serves well for the design and maintenance of the 
networking stack where a different entity takes charge of each 
individual layer. Unfortunately, this model also leads to 
networking stacks that are more complicated than the 
application that is using them; layered networking stacks are 
very appropriate for general-purpose operating systems that 
may not know what program is running on them a priori, and 
so they must handle all possible error cases that may occur. 
Fortunately, a light bulb does not need to run many 
simultaneous processes.

A light bulb can well define all the capabilities of the IP stack 
that it will require beforehand, and therefore it is possible to 
‘compile out’ of the stack whatever portion is no longer 
necessary. This is very similar to what a software compiler 
does, as an optimising compiler is able (within certain bounds) 
to identify segments of code that will never be executed, and 
then simply leave them out of the compiled executable. A 
given light bulb may also know, at compile time, which port it 
is going to open. Armed with that knowledge, a software 
engineer can simply remove the portion of the stack that 
signals an error when two applications attempt to open the 
same port for listening. There are many more of these types of 
optimisations that are possible.

Abstraction layers also fall into redundancy traps. Each layer 
may need to reverify a data buffer, or re-do computation that 
another layer may have already performed simply because it 

does not have access to cross-layer information. Crosstalk can 
be useful in removing redundancy, or performing a joint-
optimisation between layers for careful control [10]. The I0 
micro-stack is an example of where information at the IP layer 
(traditionally encapsulated at the network layer of the ISO/OSI 
stack) is used to optimise packet handling at the TCP/UDP/
HTTP layers (the transport and application layers), thereby 
creating much tighter network code.

Lastly, this type of optimisation co-exists quite nicely with 
Moore’s law. Even as processors get smaller and smaller, 
careful software optimisation means that an even smaller, 
cheaper processor that has a lower power draw, and is simpler 
to package, can be used to implement the Internet.

4. Peers do not need servers
I0 devices function without the need of servers as any two 
nodes, via the Internet protocol, have the direct ability to talk 
to each other without having to go through an intermediary; 
two nodes can exchange information directly rather that going 
through a central broker to get the same information. This 
independence allows each node to have ownership over its 
state and threads of execution. This model also addresses 
scalability for data storage and computation through 
redundancy and locality in ways that a centralised system 
cannot [11, 12].

Centralised systems, such as the Web server/client 
relationship, are prone to failure at the one information 
source. If a Web server fails, then the Web client has no 
redundancy plan and is required to simply wait until the 
problem has been rectified. Distributed systems, such as the 
GNUtella file sharing network, do not have this problem. 
GNUtella nodes locally cache information and are redundant 
data sources throughout a network — when a particular piece 
of information is requested, the network can provide many 
sources, with the client even being free to choose a source 
which it believes will be ‘easier’ to access. When a single node 
on the network is removed, the rest of the network still 
operates without failure.

The above holds true when discussing an Internet 0 device 
network. If all devices are required to proxy their information 
through a centralised node, then the entire network is prone 
to failure when that single node becomes overwhelmed, fails, 
or is under attack. Allowing a more open network where 
devices directly intercommunicate with specific other nodes 
means that failures are localised to those relationships; if a 
single node goes down, all that is affected are the other nodes 
that deal directly with it. No other state nor execution is 
directly affected.

All this is not to say there is no room for centralisation of 
hierarchy in this network [13]. Google is a prime example for 
centralisation — the Google spider walks the entire World 
Wide Web indexing information and providing it so that a user 
can access at a single point, the Google Web site. Without 
Google, the WWW would continue to exist and function 
normally; however, Google has added a higher level service to 
the network that makes it more valuable. Hierarchy is too 
important as it solves problems where certain nodes may have 
very valuable information that all other nodes wish to obtain, 
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but which, for engineering issues, would be too much of a 
burden to require a single node to disseminate it to the entire 
network [14, 15].

5. Physical identity
The crux of any network is the ability for nodes to be able to 
identify each other. Names, however, mean very different 
things to different people. Computers on the Internet have 
Internet addresses as their names, but those names are only 
used to specify where in the network the computer is located. 
Network adapters, however, do have hardware addresses that 
allow for unique identification between machines, but the 
management of such a scheme can be burdensome.

Internet protocol addresses are not suitable for identification 
purposes because they are not doled out on the basis of 
physical location; rather, they are assigned based on where on 
the Internet hierarchy that machine currently resides. 
Additionally, many organisations assign internal and 
unroutable IP addresses to their organisation’s computers in 
such a way that there does exist another machine in the world 
with the same IP address (most network address translation 
(NAT) equipment obtain a single IP address on its globally 
routed interface, and then assign IP address from the 
192.168/16 subnet to the internal machinery — therefore 
there does exist an approximately one in 100 000 chance that 
a computer inside a NAT has an address that is used by 
another computer in a different NAT). IP addresses are simply 
not globally unique, nor do they have any notion of 
permanence.

Hardware addresses, such as those used as the media access 
control (MAC) address on Ethernet are, however, globally 
unique. To maintain such a system requires a centralised 
serialisation authority — the IEEE. The IEEE makes sure never 
to assign the same block of hardware addresses to two 
different parties at the cost of those parties purchasing either 
an ‘organisationally unique identifier’ or an ‘individual address 
block’ at the rate of US$1650 and US$550 respectively. This, 
unfortunately, locks out many experimenters and developers 
from creating their own network interfaces.

I0 devices rely on zero configuration schemes [16] to obtain IP 
addresses along with a random 128-bit string as its hardware 
address. The use of a 128-bit string as a MAC-like address 
comes from the observation that the chance for collision of 
two IID strings of that length is approximately 1 in 1038, 
making it ‘mostly’ unique (MAC addresses need not actually 
be unique, simply unique enough that two interfaces with the 
same MAC address do not appear in any network smaller than 
two subnets bridged together, but also that it may be possible 
to use that string as an IPv6-like address [17] in future work.

With the ability to physically identify devices, a new 
programming paradigm can be introduced which involves 
physically accessing the network nodes. There are certain 
operations that one may not want to expose over the network 
— however, forcing an operator to physically access a node to 
verify that he or she has permissions to perform the network 
access is very promising.

6. Big bits 
Most development in networking technology has been 
allocated to going as fast as possible as that means saturating 
all available bandwidth on a channel — for the Internet that 
means hardware research is devoted to faster-than-terabit 
Internet 2 links, while software research delves into saturating 
those links [18]. Unfortunately, two crucial points are easily 
forgotten in this race — a light bulb does not need to watch 
video on demand, and there are many hidden costs to pushing 
bits quickly.

Every bit in a network has a size. Given the speed of light, 
transmitting one bit a second means that the bit grows to a 
size of 3.0 × 108 metres long. Likewise, in a gigabit network, 
each bit has a size of approximately 30 cm. This bit size is 
effectively the window of opportunity for the two devices to 
agree on what is being transmitted on the network. When the 
network is operating a very fast data rate, there are 
considerations such as the impulse response of the medium 
and impedance matching between interfaces that must be 
accounted for (the impulse response dictates what the onset 
of a bit looks like, while the impedance matching allows for 
efficient power transfer between media without causing an 
‘echo’ of the transmitted energy to be reflected back to the 
source), which in turn causes the network technology to 
become complicated and expensive as agile radios, active 
splits, and efficient cabling is needed.

If the network is slowed down such that a bit is larger than the 
structure of the network, each node is effectively operating in 
the near field. All the vagaries of the network do settle down 
on that time-scale, and the entire network reflects the value 
that the transmitter is sending. Less consideration needs to be 
made to the nonlinearities that occur at high data rates, and 
therefore transmitters and receivers can be constructed very 
simply and cheaply.

7. End-to-end modulation
The end-to-end principle in systems design puts all the 
interaction intelligence at the edges of the network, and not in 
the central core. The central core is kept as agnostic to the 
actual transmission as possible to prevent redundancy 
between central nodes, and between central nodes and those 
involved with the communication at the end points. The 
Internet exhibits end-to-end design in its use of the Internet 
protocol — no matter what hardware is being used, or what 
application is being run, all of them use the same network 
transport allowing for flexibility because neither the hardware 
nor the application need know the details of the other. A non-
end-to-end system would require that intermediary nodes 
process and interpret all the data that is streaming in, possibly 
reformat it, and then retransmit the data.

Internet 0 relies on an end-to-end modulation scheme to 
transmit Internet protocol packets so therefore it is not only 
agnostic to which network the information it is transmitting is 
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destined for, but also the transmitter need not worry as to the 
actual media that the data is moving through. This is achieved 
by using a modulation scheme based upon impulse radio [19] 
where data is transmitted through time positioning of high- 
frequency ‘clicks’ (a 1 µs click yields saturation from DC to 
1 MHz). These clicks can be passed through almost all media 
— through IR via the flashing of a LED, through the air via 
ultrasonic speakers, through AC power lines by capacitively 
coupling, etc. Each one of these media has very specific 
frequency pass-bands and other transmission characteristics; 
however, they can all pass a portion of the transmitted energy. 
As long as enough energy is received by the other end in a 
manner that allows for careful positioning of the onset of that 
energy, then this encoding scheme is appropriate. These 
media can also be coupled together without the need for 
demodulating at the terminal of one, and then remodulating 
at the terminal of the other — this is very similar to a Morse 
code operator synchronising their dots and dashes on an 
electrical telegraph with the flashes seen from a light coming 
from a ship; there is no need to actually translate those pulses 
into English and then back into code.

A single bit is divided into two time intervals in a Manchester-
like encoding scheme — if an impulse occurs precisely in the 
centre of the first interval, then a 0 is being encoded. Likewise, 
an impulse precisely in the centre of the second interval 
encodes a 1. Any other impulse can be rejected as noise. 
These bits are then strung together in an 8N1 serial fashion 
with a start bit, eight data bits, and then one stop bit. Both 
the start and stop bits are identified as they have transitions 
precisely in the centre of both the first and second bit time 
intervals (Fig 1).

This modulation scheme has the property of being able to 
reject spurious transitions as they will be incommensurate to 
the rest of the byte; if a click appears in a place where one is 
not expected, then that bit can be easily thrown out and 
rejected. Similarly to most UWB systems, a spreading code 
can be used for additional noise rejection [20, 21] through the 
careful positioning of the start of each byte click sequence 
(there do exist simple implementations of the spreading 
encoders and decoders that can be used in an I0 device [22]). 
The onset of each byte is dictated by the spreading code, and 
not the positions of each bit, to allow a transmitter to use a 
spreading code if desired, but not dictate that the receiver use 
one; a receiver can receive an I0 click sequence which has had 
the onset of each byte positioned through spreading, and 
simply ignore that additional piece of information and decode 
as before.

Additionally, this scheme has no specification of how quickly 
or how slowly the transitions can be sent — the only item 
gating their speed is the impulse response of the system. This 

self-clocking specification is appropriate to being run at 
terahertz speed for on-chip communication, or millihertz 
speed for encoding into the waves of an ocean. Finally, it is 
also promising in being able to allow multiple transmitters to 
share the same channel as a receiver with enough 
computational power can separate out multiple transmitters 
based solely on the click interval they are each using. A 
transmitter can simply pick a random click interval, and then 
blindly transmit on the channel — if the receiver knows exactly 
what click interval it is looking for then it can reject all other 
impulses as noise, or it can simultaneously decode all the 
data, and sort through all the incoming data based on click 
length.

8. Open standards
The Internet has grown as fast as it has because of open 
standards. No licensing fees are necessary for anybody to 
create and then deploy hardware and software on the Internet, 
as long as one stays compatible with the Internet protocol. 
This one protocol is open for anybody to implement, and it is 
in the implementor’s best interest to stay compatible so that 
he or she can intercommunicate with other machines and 
people.

A classic example of non-open standards and closed systems is 
the global cellular phone system. Almost the entire world relies 
on the GSM system for cellular service — this allows 
manufacturers to make the telephones they wish to make, it 
allows service providers to simply provide the end user with 
service, and it allows third parties to deploy applications on 
the network that people can then use and pay for. North 
America, on the other hand, used to operate on closed 
systems. Carriers used to compete on infrastructure, and 
therefore they negotiate with manufacturers to create the 
telephones they wish to make, and applications (if they are 
ever developed by an outside party) need to be carefully 
managed and deployed on individual systems. On every link, 
the quality of the service may have been better than GSM, but 
the overall quality that the consumer received was less 
because the system did not provide for rich access.

This same battle is being played out in the building 
infrastructure space. There are many different competing 
standards; however, they all have intricate licensing and co-
operation fees. Echelon Technologies both sells devices which 

Fig 1 One byte being transmitted as clicks.
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operate on the LonWorks network and maintains the Open 
Systems Alliance which is a group of corporations orbiting 
around this standard. Development of integration 
technologies related to LonWorks requires membership in the 
Open Systems Alliance; however, membership only qualifies 
those to develop systems that use LonWorks, it does not allow 
one to create new devices and software to interact with the 
network. That requires licensing of a patent held by Echelon.

Another example is the UPnP (universal plug-n-play) standard. 
UPnP is an interoperability protocol aimed to allow devices to 
automatically configure themselves when in the presence of 
others. Obtaining the standards for UPnP is simple as they are 
widely published; however, to deploy a commercial device and 
advertise it as UPnP compliant requires registration into the 
UPnP Implementors Corporation. Therefore, while it is 
possible to create a UPnP compliant device, it is not allowed to 
advertise itself to the world as compliant until the creator joins 
the corporation.

It is systems and administrations such as these that leave 
device networks in the same state as computer networks 
before the introduction of the Internet. Internet 0 is aimed to 
be as open as the Internet standards are, therefore allowing 
anybody to implement it and therefore be interoperable with 
any other device.

9. Implementations
There are two implementations of Internet 0 currently under 
development. The first is a very lightweight one based around 
the 8-pin ATMEL ATTiny15 series of microprocessors (Fig 2). It 
has a single data port over which it receives both DC power 
and it can ‘click’ a transmission on top of that DC offset — it is 
then possible to use that same data port to transmit over any 
media simply by AC coupling in (to remove the offset), and 
then transmitting those impulses. This particular board is 
aimed towards tagging and other very simple communications 
applications. The scenario under development is a tag that 
can be powered without contact (either inductively or 
capacitively) and then transmit a packet out to a server 
somewhere on the Internet for data collection.

The second embodiment is a slightly more powerful board that 
can both transmit and receive I0 packets. It is currently based 
around the ATMEL ATTiny26 series and has three data ports 
(using the same DC offset technique as mentioned above) to 
allow for branching and routing in the network. Also, those 
three data ports are then amplified and fed through a 
comparator to pick out the impulses that may be occurring on 
the line. This board is not capable of high speed 
communications, but it does provide ample room for 
experimentation and development.

10. Conclusions
Internet 0 describes how a subnet operates — everybody 
within a cloud transmits to and receives from everybody else in 
the cloud. At no point has Internet 0 specified routing or 
hierarchy, and in order to speak globally it has to rely on the 
infrastructure already laid in place by the Internet. But after 
having removed servers from Internet 0, it seems unfortunate 
that it still needs to rely on servers to work globally. A possible 

solution to this problem lies in mathematical programs and 
graphical models [23]. These models specify global 
optimisation solutions through local problem solving, and this 
is precisely what you want to do with routing and naming on a 
global scale — the ideal solution would be to have nodes co-
operate on a local level to allow for the network on the global 
scale to function.

As it stands, Internet 0 is an enabling step to bring networking 
to the device level. It is not simply getting a few nodes to talk 
to each other, instead it is transforming these small and 
embedded devices into first class citizens on a global network. 
This is a large step towards extending the reach of the 
Internet.
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