
BT Technology Journal • Vol 22 No 4 • October 2004278

Internet 0 — inter-device internetworking

R Krikorian and N Gershenfeld

The assumptions behind Internet architectures do not scale to small devices — they have a baseline cost that is still too high for small,
few-dollar, embedded objects. This barrier either leaves many devices network disenfranchised or encourages the creation of segmented
networks. Internet 0 attempts to enable pervasive computing and networking on the embedded level by providing the Internet protocol as
a communications substrate, and, through the use of an end-to-end modulation scheme, to speak to devices. I0 is a framework to bridge
together heterogeneous devices via IP in a manner that is still compatible with designing globally large computer networks.

1. Introduction
While the Internet has introduced new networking
technologies and communications methods, its reach has not
extended far below fairly computationally intensive devices
[1]. Most think the smallest computational unit that is
Internet-capable are those running full-blown operating
systems (Windows, Mac OS X, Free DOS, Unix-compatible,
etc) and are equipped with high-speed networking hardware
(Ethernet, IEE802.11, etc). Unfortunately, this leaves a
disfranchised group of devices — those which are too small,
too embedded, or thought to be too ‘simple’. This paper
introduces Internet 0, a framework to bring networking to that
forgotten class.

John Romkey is famous for creating the first Internet ‘device’,
a toaster that could be turned on and off over the Internet, in
1990. To make that happen, Romkey spliced a power relay to
his toaster and connected that to the parallel port of his
network connected laptop. Unfortunately, this example
illustrates exactly why nothing has changed in the last decade.
An engineer asked to put an incandescent light on to the
Internet in the present may do the very same thing. He or she
may simply splice a relay on to the AC power line running to
the light bulb, connect the relay’s switching line to a pin on the
parallel port of the computer, then author a simple CGI script
that takes input from an HTML button and then outputs state
to that pin.

Taking this particular example a bit further — consider
creating a light switch somewhere else in the building (or even
in another) that controls this light. Using the set-up described
above as the light bulb, a light switch simply needs to be the

embodiment of a Web client. An engineer can attach a light
switch to another pin on the parallel port (this time an input
one), author software that monitors that pin, and when the pin
state changes issue a Web request to the computer with the
light bulb.

While this light bulb and switch is a functioning solution for
network-enabled control, it underscores how the Internet has
failed at ‘interdevice internetworking’. The above example
requires two fairly expensive network-enabled desktop-class
computers (at a cost on the order of $1000 each) and each has
to be individually configured to know how to make or receive
requests from the other. The demonstration also assumes that
both locations have either Ethernet or IEE802.11 and an IP
address issuing authority (either computational as a DHCP
server, or personal via a network administrator) — both of
which take a qualified IT department to set up and maintain.
And finally, there is more than just the power consumption
issues of the light bulb and switch themselves, but now also
the watts of power required to power the computer’s CPU and
hard drives.

I0 attempts to solve those issues by defining a framework that
not only enables small devices to inter-communicate with each
other, but also inter-operate with any other machine, no

I0 networks are based
around seven basic tenets

Internet 0 — inter-device internetworking

BT Technology Journal • Vol 22 No 4 • October 2004 279

matter how large or small. I0 networks are based around seven
basic tenets:

• bringing the Internet protocol all the way to the device
level to make devices full network citizens,

• compiling standards and delayering network protocol
stacks to make them computationally efficient enough to
fit into embedded microprocessors,

• allowing devices to talk to each other directly to remove
the necessity of centralised servers and protocol
converters,

• advertising a device not only to the virtual network, but
also to the physical one to allow direct interactions
between objects and objects, and also objects and
people,

• slowing down networks to decrease network complexity
and therefore simplify network access,

• using the same modulation scheme across many different
media so that device designers can be free to choose
their preferred hardware medium while not being isolated
from devices that use another,

• pushing the engineering politics of open standards to
inspire competition not in differing architectures, but in
differing network services.

There are many other standards which aim to do the same
thing — everything from CAN bus for the transportation
industry, LonWorks for building automation, and sensor
networks, I2C for inter-IC communication, etc. Each one of
these embody portions of the seven listed above, but none,
except I0, has all characteristics. The Internet has scaled
through orders of magnitude in both size and speed while the
device network standards have yet to attempt global naming
and routing.

2. IP to the leaf node
Historically, engineers have stayed away from using native
Internet protocols, in all portions of an embedded device
network or system, out of fear that the implementation of the
stack was too difficult or that the use of IP was inefficient. This
mentality has unfortunately left device networks in a myriad of
different protocols — almost resembling the disparate
computing networks in the early days of the Internet. To
rectify computer networking, the Internet protocol [2] was
introduced as the lowest common denominator — any
computer that wishes to join an IP network simply needs to
prepend all data it transmits with a 20 byte IP header, and any
network technology simply needs to carry packets as small as
576 bytes. This type of abstraction allows for any computer to
talk to any other computer on the Internet without knowledge
of the networking technology that interconnects them.

I0 uses micro-IP stacks that are compliant enough with
conventional Internet protocol stacks, thereby enabling any I0
device to talk to any other device that speaks IP — all in a
couple of kilobytes of code. Unlike more ‘conventional’ IP
stacks that are run as portions of fully fledged operating
systems, occupy 100s of KBs of code, and require processors

that draw watts of power, these stacks are small and simple
enough to be trivially embedded into a $1 8-pin
microcontroller that consumes only milliwatts of power.
Moreover, that custom stack can be translated into a couple of
square millimetres of silicon that can be added to an ASIC.

The fears of inefficiency in IP is derived from the requirement
of the IP header — any transmitted data must be prepended
by 20 bytes of the IP header, plus an additional 12 or 20 bytes
for a UDP or TCP header respectively. If proportionally, data is
not larger than that header, then transmitting IP may be
wasteful, detractors argue. However, on the byte level, IP
compression is rather standard [3, 4] achieving header sizes as
small as 5 bytes in long-lived TCP/IP flows (tighter
compression may be possible by compressing the entire
packet and not simply the header). As for power
considerations, power does not equal transmitted bits, rather,
power is related to receiving bits. A sender and receiver can
agree on a strategy for the receiver to turn on its amplifier to
listen for a low signal at a particular time in order to be more
power efficient.

IP on its own, however, is not that useful as most network
applications tend to use IP to wrap the user data protocol
(UDP) [5] or the transmission control protocol (TCP) [6]. While
there is much debate on which protocol is the correct one to
use in particular situations (consider a light switch based on
UDP versus one based on TCP — the UDP-based switch
requires much less bandwidth, however on a congested
network where the light switch’s packet is dropped, the person
toggling the switch may need to press the button again, unlike
a TCP-based switch which would handle the negotiation itself;
Bauer and Patrick propose a human-factors extension to the
ISO/OSI network model [7] that formalises scenarios just as
that), either can be implemented on a small scale. TCP does
require more state than UDP; however, implementing TCP
does allow for trivial interoperability with standard network
applications such as Web browsers.

We assume that all data is transmitted to I0 nodes in a serial
fashion — specifically using the serial line protocol (SLIP) [8]
(the predecessor, and simpler, sibling to the point-to-point
protocol (PPP) [9] which is currently used on most dial-up and
some wired connections to ISPs). SLIP specifies a start byte
that is used to frame a packet that is sent over the line making
it very simple for an I0 processor to pick out the start of the
packet. At no point does the I0 processor need to buffer the
entire packet or even the packet header in memory (an
implementation is free to do so, if it wishes, but it is not
necessary), it can simply read and process the packet as it
streams in. While it streams in, the software only needs to
keep track of a few bytes of state — a 16-bit sum of the packet
header (used for checksum verification), the source IP address,
and the destination IP address. Once the checksum can be
confirmed to be correct, the processor can determine whether
the packet is destined for it. If not, it can simply ignore all
incoming bytes until the next SLIP start byte. All IP header
processing can be performed with only 10 bytes state and
through use of accumulated operations.

Following the above, transmission is straightforward. When
the device wishes to transmit data, it only needs first to

Internet 0 — inter-device internetworking

BT Technology Journal • Vol 22 No 4 • October 2004280

transmit 20 bytes of header containing the length of data it
wishes to send, an identification number, a checksum, and the
source and destination of the data (the rest of the fields in the
IP header are kept constant). The identifier of the data could
be chosen at random (but to co-operate with the rest of the
Internet, it can instead be monotonically increasing) and
checksum computations can be kept to a minimum by
precomputing the checksum with known constants. That pre-
computed value can then be updated with the length of the
packet, its identification number, and the destination IP
address.

UDP transmission comes next. The UDP header specifies a
destination and source port number for the packet, as well as
a checksum over the entire UDP header. As with the IP
header, the UDP checksum can be pre-computed so the
source and destination ports can be transmitted, the
checksum can be updated with that information and
transmitted, and then the actual data can follow. Performing
TCP/IP at this scale is possible, but we do not cover it within
the scope of this paper.

3. Compiled standards
The above Internet protocol stack reduction is an example of
compiling standards. The IP stack is traditionally described
using the 7-layer ISO/OSI network model which dictates
network handling through physical, data link, network,
transport, session, presentation, and application levels. This
model serves well for the design and maintenance of the
networking stack where a different entity takes charge of each
individual layer. Unfortunately, this model also leads to
networking stacks that are more complicated than the
application that is using them; layered networking stacks are
very appropriate for general-purpose operating systems that
may not know what program is running on them a priori, and
so they must handle all possible error cases that may occur.
Fortunately, a light bulb does not need to run many
simultaneous processes.

A light bulb can well define all the capabilities of the IP stack
that it will require beforehand, and therefore it is possible to
‘compile out’ of the stack whatever portion is no longer
necessary. This is very similar to what a software compiler
does, as an optimising compiler is able (within certain bounds)
to identify segments of code that will never be executed, and
then simply leave them out of the compiled executable. A
given light bulb may also know, at compile time, which port it
is going to open. Armed with that knowledge, a software
engineer can simply remove the portion of the stack that
signals an error when two applications attempt to open the
same port for listening. There are many more of these types of
optimisations that are possible.

Abstraction layers also fall into redundancy traps. Each layer
may need to reverify a data buffer, or re-do computation that
another layer may have already performed simply because it

does not have access to cross-layer information. Crosstalk can
be useful in removing redundancy, or performing a joint-
optimisation between layers for careful control [10]. The I0
micro-stack is an example of where information at the IP layer
(traditionally encapsulated at the network layer of the ISO/OSI
stack) is used to optimise packet handling at the TCP/UDP/
HTTP layers (the transport and application layers), thereby
creating much tighter network code.

Lastly, this type of optimisation co-exists quite nicely with
Moore’s law. Even as processors get smaller and smaller,
careful software optimisation means that an even smaller,
cheaper processor that has a lower power draw, and is simpler
to package, can be used to implement the Internet.

4. Peers do not need servers
I0 devices function without the need of servers as any two
nodes, via the Internet protocol, have the direct ability to talk
to each other without having to go through an intermediary;
two nodes can exchange information directly rather that going
through a central broker to get the same information. This
independence allows each node to have ownership over its
state and threads of execution. This model also addresses
scalability for data storage and computation through
redundancy and locality in ways that a centralised system
cannot [11, 12].

Centralised systems, such as the Web server/client
relationship, are prone to failure at the one information
source. If a Web server fails, then the Web client has no
redundancy plan and is required to simply wait until the
problem has been rectified. Distributed systems, such as the
GNUtella file sharing network, do not have this problem.
GNUtella nodes locally cache information and are redundant
data sources throughout a network — when a particular piece
of information is requested, the network can provide many
sources, with the client even being free to choose a source
which it believes will be ‘easier’ to access. When a single node
on the network is removed, the rest of the network still
operates without failure.

The above holds true when discussing an Internet 0 device
network. If all devices are required to proxy their information
through a centralised node, then the entire network is prone
to failure when that single node becomes overwhelmed, fails,
or is under attack. Allowing a more open network where
devices directly intercommunicate with specific other nodes
means that failures are localised to those relationships; if a
single node goes down, all that is affected are the other nodes
that deal directly with it. No other state nor execution is
directly affected.

All this is not to say there is no room for centralisation of
hierarchy in this network [13]. Google is a prime example for
centralisation — the Google spider walks the entire World
Wide Web indexing information and providing it so that a user
can access at a single point, the Google Web site. Without
Google, the WWW would continue to exist and function
normally; however, Google has added a higher level service to
the network that makes it more valuable. Hierarchy is too
important as it solves problems where certain nodes may have
very valuable information that all other nodes wish to obtain,

abstraction layers also fall
into redundancy traps

Internet 0 — inter-device internetworking

BT Technology Journal • Vol 22 No 4 • October 2004 281

but which, for engineering issues, would be too much of a
burden to require a single node to disseminate it to the entire
network [14, 15].

5. Physical identity
The crux of any network is the ability for nodes to be able to
identify each other. Names, however, mean very different
things to different people. Computers on the Internet have
Internet addresses as their names, but those names are only
used to specify where in the network the computer is located.
Network adapters, however, do have hardware addresses that
allow for unique identification between machines, but the
management of such a scheme can be burdensome.

Internet protocol addresses are not suitable for identification
purposes because they are not doled out on the basis of
physical location; rather, they are assigned based on where on
the Internet hierarchy that machine currently resides.
Additionally, many organisations assign internal and
unroutable IP addresses to their organisation’s computers in
such a way that there does exist another machine in the world
with the same IP address (most network address translation
(NAT) equipment obtain a single IP address on its globally
routed interface, and then assign IP address from the
192.168/16 subnet to the internal machinery — therefore
there does exist an approximately one in 100 000 chance that
a computer inside a NAT has an address that is used by
another computer in a different NAT). IP addresses are simply
not globally unique, nor do they have any notion of
permanence.

Hardware addresses, such as those used as the media access
control (MAC) address on Ethernet are, however, globally
unique. To maintain such a system requires a centralised
serialisation authority — the IEEE. The IEEE makes sure never
to assign the same block of hardware addresses to two
different parties at the cost of those parties purchasing either
an ‘organisationally unique identifier’ or an ‘individual address
block’ at the rate of US$1650 and US$550 respectively. This,
unfortunately, locks out many experimenters and developers
from creating their own network interfaces.

I0 devices rely on zero configuration schemes [16] to obtain IP
addresses along with a random 128-bit string as its hardware
address. The use of a 128-bit string as a MAC-like address
comes from the observation that the chance for collision of
two IID strings of that length is approximately 1 in 1038,
making it ‘mostly’ unique (MAC addresses need not actually
be unique, simply unique enough that two interfaces with the
same MAC address do not appear in any network smaller than
two subnets bridged together, but also that it may be possible
to use that string as an IPv6-like address [17] in future work.

With the ability to physically identify devices, a new
programming paradigm can be introduced which involves
physically accessing the network nodes. There are certain
operations that one may not want to expose over the network
— however, forcing an operator to physically access a node to
verify that he or she has permissions to perform the network
access is very promising.

6. Big bits
Most development in networking technology has been
allocated to going as fast as possible as that means saturating
all available bandwidth on a channel — for the Internet that
means hardware research is devoted to faster-than-terabit
Internet 2 links, while software research delves into saturating
those links [18]. Unfortunately, two crucial points are easily
forgotten in this race — a light bulb does not need to watch
video on demand, and there are many hidden costs to pushing
bits quickly.

Every bit in a network has a size. Given the speed of light,
transmitting one bit a second means that the bit grows to a
size of 3.0 × 108 metres long. Likewise, in a gigabit network,
each bit has a size of approximately 30 cm. This bit size is
effectively the window of opportunity for the two devices to
agree on what is being transmitted on the network. When the
network is operating a very fast data rate, there are
considerations such as the impulse response of the medium
and impedance matching between interfaces that must be
accounted for (the impulse response dictates what the onset
of a bit looks like, while the impedance matching allows for
efficient power transfer between media without causing an
‘echo’ of the transmitted energy to be reflected back to the
source), which in turn causes the network technology to
become complicated and expensive as agile radios, active
splits, and efficient cabling is needed.

If the network is slowed down such that a bit is larger than the
structure of the network, each node is effectively operating in
the near field. All the vagaries of the network do settle down
on that time-scale, and the entire network reflects the value
that the transmitter is sending. Less consideration needs to be
made to the nonlinearities that occur at high data rates, and
therefore transmitters and receivers can be constructed very
simply and cheaply.

7. End-to-end modulation
The end-to-end principle in systems design puts all the
interaction intelligence at the edges of the network, and not in
the central core. The central core is kept as agnostic to the
actual transmission as possible to prevent redundancy
between central nodes, and between central nodes and those
involved with the communication at the end points. The
Internet exhibits end-to-end design in its use of the Internet
protocol — no matter what hardware is being used, or what
application is being run, all of them use the same network
transport allowing for flexibility because neither the hardware
nor the application need know the details of the other. A non-
end-to-end system would require that intermediary nodes
process and interpret all the data that is streaming in, possibly
reformat it, and then retransmit the data.

Internet 0 relies on an end-to-end modulation scheme to
transmit Internet protocol packets so therefore it is not only
agnostic to which network the information it is transmitting is

every bit in a network has
a size

Internet 0 — inter-device internetworking

BT Technology Journal • Vol 22 No 4 • October 2004282

destined for, but also the transmitter need not worry as to the
actual media that the data is moving through. This is achieved
by using a modulation scheme based upon impulse radio [19]
where data is transmitted through time positioning of high-
frequency ‘clicks’ (a 1 µs click yields saturation from DC to
1 MHz). These clicks can be passed through almost all media
— through IR via the flashing of a LED, through the air via
ultrasonic speakers, through AC power lines by capacitively
coupling, etc. Each one of these media has very specific
frequency pass-bands and other transmission characteristics;
however, they can all pass a portion of the transmitted energy.
As long as enough energy is received by the other end in a
manner that allows for careful positioning of the onset of that
energy, then this encoding scheme is appropriate. These
media can also be coupled together without the need for
demodulating at the terminal of one, and then remodulating
at the terminal of the other — this is very similar to a Morse
code operator synchronising their dots and dashes on an
electrical telegraph with the flashes seen from a light coming
from a ship; there is no need to actually translate those pulses
into English and then back into code.

A single bit is divided into two time intervals in a Manchester-
like encoding scheme — if an impulse occurs precisely in the
centre of the first interval, then a 0 is being encoded. Likewise,
an impulse precisely in the centre of the second interval
encodes a 1. Any other impulse can be rejected as noise.
These bits are then strung together in an 8N1 serial fashion
with a start bit, eight data bits, and then one stop bit. Both
the start and stop bits are identified as they have transitions
precisely in the centre of both the first and second bit time
intervals (Fig 1).

This modulation scheme has the property of being able to
reject spurious transitions as they will be incommensurate to
the rest of the byte; if a click appears in a place where one is
not expected, then that bit can be easily thrown out and
rejected. Similarly to most UWB systems, a spreading code
can be used for additional noise rejection [20, 21] through the
careful positioning of the start of each byte click sequence
(there do exist simple implementations of the spreading
encoders and decoders that can be used in an I0 device [22]).
The onset of each byte is dictated by the spreading code, and
not the positions of each bit, to allow a transmitter to use a
spreading code if desired, but not dictate that the receiver use
one; a receiver can receive an I0 click sequence which has had
the onset of each byte positioned through spreading, and
simply ignore that additional piece of information and decode
as before.

Additionally, this scheme has no specification of how quickly
or how slowly the transitions can be sent — the only item
gating their speed is the impulse response of the system. This

self-clocking specification is appropriate to being run at
terahertz speed for on-chip communication, or millihertz
speed for encoding into the waves of an ocean. Finally, it is
also promising in being able to allow multiple transmitters to
share the same channel as a receiver with enough
computational power can separate out multiple transmitters
based solely on the click interval they are each using. A
transmitter can simply pick a random click interval, and then
blindly transmit on the channel — if the receiver knows exactly
what click interval it is looking for then it can reject all other
impulses as noise, or it can simultaneously decode all the
data, and sort through all the incoming data based on click
length.

8. Open standards
The Internet has grown as fast as it has because of open
standards. No licensing fees are necessary for anybody to
create and then deploy hardware and software on the Internet,
as long as one stays compatible with the Internet protocol.
This one protocol is open for anybody to implement, and it is
in the implementor’s best interest to stay compatible so that
he or she can intercommunicate with other machines and
people.

A classic example of non-open standards and closed systems is
the global cellular phone system. Almost the entire world relies
on the GSM system for cellular service — this allows
manufacturers to make the telephones they wish to make, it
allows service providers to simply provide the end user with
service, and it allows third parties to deploy applications on
the network that people can then use and pay for. North
America, on the other hand, used to operate on closed
systems. Carriers used to compete on infrastructure, and
therefore they negotiate with manufacturers to create the
telephones they wish to make, and applications (if they are
ever developed by an outside party) need to be carefully
managed and deployed on individual systems. On every link,
the quality of the service may have been better than GSM, but
the overall quality that the consumer received was less
because the system did not provide for rich access.

This same battle is being played out in the building
infrastructure space. There are many different competing
standards; however, they all have intricate licensing and co-
operation fees. Echelon Technologies both sells devices which

Fig 1 One byte being transmitted as clicks.

start 0 1 1 0 0 1 1 1 stop

the Internet has grown as
fast as it has because of
open standards

Internet 0 — inter-device internetworking

BT Technology Journal • Vol 22 No 4 • October 2004 283

operate on the LonWorks network and maintains the Open
Systems Alliance which is a group of corporations orbiting
around this standard. Development of integration
technologies related to LonWorks requires membership in the
Open Systems Alliance; however, membership only qualifies
those to develop systems that use LonWorks, it does not allow
one to create new devices and software to interact with the
network. That requires licensing of a patent held by Echelon.

Another example is the UPnP (universal plug-n-play) standard.
UPnP is an interoperability protocol aimed to allow devices to
automatically configure themselves when in the presence of
others. Obtaining the standards for UPnP is simple as they are
widely published; however, to deploy a commercial device and
advertise it as UPnP compliant requires registration into the
UPnP Implementors Corporation. Therefore, while it is
possible to create a UPnP compliant device, it is not allowed to
advertise itself to the world as compliant until the creator joins
the corporation.

It is systems and administrations such as these that leave
device networks in the same state as computer networks
before the introduction of the Internet. Internet 0 is aimed to
be as open as the Internet standards are, therefore allowing
anybody to implement it and therefore be interoperable with
any other device.

9. Implementations
There are two implementations of Internet 0 currently under
development. The first is a very lightweight one based around
the 8-pin ATMEL ATTiny15 series of microprocessors (Fig 2). It
has a single data port over which it receives both DC power
and it can ‘click’ a transmission on top of that DC offset — it is
then possible to use that same data port to transmit over any
media simply by AC coupling in (to remove the offset), and
then transmitting those impulses. This particular board is
aimed towards tagging and other very simple communications
applications. The scenario under development is a tag that
can be powered without contact (either inductively or
capacitively) and then transmit a packet out to a server
somewhere on the Internet for data collection.

The second embodiment is a slightly more powerful board that
can both transmit and receive I0 packets. It is currently based
around the ATMEL ATTiny26 series and has three data ports
(using the same DC offset technique as mentioned above) to
allow for branching and routing in the network. Also, those
three data ports are then amplified and fed through a
comparator to pick out the impulses that may be occurring on
the line. This board is not capable of high speed
communications, but it does provide ample room for
experimentation and development.

10. Conclusions
Internet 0 describes how a subnet operates — everybody
within a cloud transmits to and receives from everybody else in
the cloud. At no point has Internet 0 specified routing or
hierarchy, and in order to speak globally it has to rely on the
infrastructure already laid in place by the Internet. But after
having removed servers from Internet 0, it seems unfortunate
that it still needs to rely on servers to work globally. A possible

solution to this problem lies in mathematical programs and
graphical models [23]. These models specify global
optimisation solutions through local problem solving, and this
is precisely what you want to do with routing and naming on a
global scale — the ideal solution would be to have nodes co-
operate on a local level to allow for the network on the global
scale to function.

As it stands, Internet 0 is an enabling step to bring networking
to the device level. It is not simply getting a few nodes to talk
to each other, instead it is transforming these small and
embedded devices into first class citizens on a global network.
This is a large step towards extending the reach of the
Internet.

Acknowledgements
The authors would like to thank the National Science
Foundation for their support of this work. They would also like
to thank the members of the Things That Think consortium for
their generous support. Finally, they would like to thank BT for
their support of the Fellows Program.

References
1 Gershenfeld N, Krikorian R and Cohen D: ‘The Internet of Things’,

Scientific American (October 2004).

2 Postel J: ‘Internet Protocol’, IETF RFC 791 (September 1981).

3 Degermark M, Nordgren B and Pink S: ‘IP header compression’,
IETF RFC 2507(February 1999).

4 Cellatoglu A, Fabri S, Worrall S, Sadka A and Kondoz A: ‘Robust
Header Compression for Real-Time Services in Cellular Networks’,
Proceedings of 2nd Int Conference on 3G Mobile Communication
Technologies, London, UK (March 2001).

5 Postel J: ‘User Datagram Protocol’, IETF RFC 768 (August 1980).

6 Postel J: ‘Transmission Control Protocol’, IETF RFC 793
(September 1981).

7 Bauer B and Patrick A: ‘A Human Factors Extension to the Seven-
Layer OSI Reference Model’, Institute for Information Technology,
National Research Council, Canada (2002).

Fig 2 8-pin microprocessor I0 board.

Internet 0 — inter-device internetworking

BT Technology Journal • Vol 22 No 4 • October 2004284

8 Romkey J: ‘A Nonstandard For Transmission of IP Datagams over
Serial Lines: SLIP’, IETF RFC 1055 (June 1998).

9 Simpson W: ‘The Point-to-Point Protocol (PPP)’, IETF RFC 1661
(July 1994).

10 Chiang M: ‘To Layer or not to Layer: Balancing Transport and
Physical Layers in Wireless Multihop Networks’, Proceedings of
IEEE INFOCOM, Hong Kong, China (2004).

11 Stoica I, Morris R, Karger D, Kaashoek M and Balakrishnan H:
‘Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications’, Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications, ACM Press (2001).

12 Waldspurger C, Hogg T, Huberman B, Kephart J and Stornetta W:
‘Spawn: A Distributed Computational Economy’, Software
Engineering, 18, No 2, pp 103—117 (1992).

13 Yang B and Garcia-Molina H: ‘Comparing Hybrid Peer-to-Peer
Systems’,The VLDB Journal (September 2001).

14 Fuller V, Li T, Yu J and Varadhan K: ‘Classless Inter-Domain
Routing: an Address Assignment and Aggregation Strategy’, IETF
RFC 1519 (September 1993).

15 Mills D: ‘Internet Time Synchronisation: The Network Time
Protocol’, Global States and Time in Distributed Systems, IEEE
Computer Society Press (1994).

16 Stirling D and Al-Ali F: ‘Zero Configuration Networking’, ACM
Crossroads, 9, No 4 (2003).

17 Deering S and Hinden R: ‘Internet Protocol version 6’, IETF
RFC 2460 (December 1998).

18 Jin C, Wei D and Low S: ‘FAST TCP: Motivation, Architecture,
Algorithms, Performance’, IEEE Infocom (March 2004).

19 Win M and Scholtz R: ‘Impulse Radio: How it Works’, IEEE
Communications Letters, 2, No 2 (February 1998).

20 Win M and Scholtz R: ‘Ultra-wide Bandwidth Time-Hopping
Spread-Spectrum Impulse Radio for Wireless Multiple-Access
Communications’, IEEE Transactions on Communications (2000).

21 Laney D, Maggio G, Lehmann F and Larson L: ‘A Pseudo-Random
Time Hopping Scheme for UWB Impulse Radio Exploiting Bit-
Interleaved Coded Modulation’, Proceedings of the 2003
International Workshop on Ultra Wideband Systems, Oulu, Finland
(2003).

22 Vigoda B: ‘Analog Logic: Continuous-Time Analog Circuits for
Statistical Signal Processing’, PhD Thesis, Massachusetts Institute
of Technology (2003).

23 Kschischang F R, Frey B J, and Loeliger H-A: ‘Factor Graphs and
the Sum-Product Algorithm’, IEEE Transactions on Information
Theory (2001).

Raffi Krikorian is interested in distributed,
‘organic’ systems of extreme scales.

He is currently building very large
networks of very small Internet protocol-
enabled devices.

These devices can self-organise and co-
operate for use in distributed sensor
networks and other embedded infra-
structures without centralised servers.

Previously, he worked on autonomous
mobile code systems and distributed

computational systems.

A second-year master’s student, he has both bachelor’s and master’s
degrees in engineering and computer science from MIT.

Neil Gershenfeld directs the Center for Bits
and Atoms, a part of the MIT Media
Laboratory, and heads its Physics and
Media research group. He investigates the
relationship between the content of
information and its physical repre-
sentations. His projects have led to new
paradigms for computation, including the
development of tangible interfaces using
everyday objects, affective computers that
recognise and respond to human emotion,
wearable computers sewn with electronic
embroidery and powered by human
motion, a ground-breaking demonstration

of quantum computation, and even interspecies information
technology for animals. A prolific author, he received a BA in physics
from Swarthmore College, a PhD from Cornell University, and was
named a Junior Fellow of the Harvard University Society of Fellows.
Prior to coming to MIT, he was a member of the research staff at Bell
Labs.

