
Synthetic Movies

by

John A. Watlington

S.B., Electrical Engineering

Massachusetts Institute of Technology, 1987

Submitted to the Media Arts and Sciences Section

in Partial Ful�llment of the Requirements

for the Degree of

Master of Science

at the

Massachusetts Institute of Technology

September 1989

c
 Massachusetts Institute of Technology, 1989

All Rights reserved.

Author

Media Arts and Sciences Section

August 4, 1989

Certi�ed by

Andrew Lippman

Lecturer, Associate Director, MIT Media Laboratory

Accepted by

Stephen A. Benton

Chairman

Departmental Commitee on Graduate Students

Synthetic Movies

by

John A. Watlington

Submitted to the

Media Arts and Sciences Section on August 4th, 1989,

in partial ful�llment of the requirements

for the degree of Master of Science

Abstract

The introduction of digital video to the personal computer has generated in-
terest in the integration of image sequences into the user interface. Traditional
means of representing an image sequence lack the manipulability desired, requir-

ing that an alternative approach be taken. Previous work in the �eld of computer
graphics and videodisc applications suggest synthetic movies as the solution. A

synthetic movie is a movie which is composed as it is viewed, from a description
of the movie.

This thesis discusses synthetic movies and their application to the user inter-

face of the personal workstation. An example application, Video Finger, is pre-
sented. Video Finger uses a synthetic movie to convey information about other
people sharing the computer workspace.

Thesis Supervisor: Andrew Lippman

Lecturer, Associate Director, MIT Media Laboratory

The work reported herein was funded in part by a contract from CPW

Technologies.

2

Acknowledgements

There is a small group of people without whose support, this thesis would

probably never have been completed. I would like to thank:

Pascal, who fed me, o�ced me, and never let me take anything for granted.

Andy, who allowed me the freedom to explore beyond VQ.

Dee, who kept me company, even when the deadlines approached.

Walter and Mike, for keeping the facts straight, the spelling correct and being

ready sources of information and support.

My family, for getting me here in the �rst place.

In addition, I must thank the inhabitants of the Garden, for providing a fun
and challenging place to work.

This document was edited and typeset entirely on an Apple Macintosh, using

the Microsoft Word text editor and the OzTeX text formatter.

3

Contents

1 Introduction 7

1.1 What are Synthetic Movies ? . 9
1.2 Reasons for Exploring Synthetic Movies 10

1.2.1 Interactive Games . 11
1.2.2 Low Bandwidth Communication 12
1.2.3 The Movie Director . 13

1.3 Synthetic Movies at the User Interface 13

2 Previous Examples of Synthetic Movies 16

2.1 Computer Graphics . 17
2.2 Bolio . 19

2.3 Interactive Video Games . 19
2.4 The Movie Manual . 21

2.5 The Oxyacetylene Welding Simulator 22
2.6 The Elastic Charles . 23

3 Basic Components of a Synthetic Movie 25

3.1 The Object Description . 26

3.1.1 3D Representations . 26

3.1.2 A 2D Image Representation 28
3.2 The Movie Description . 29

3.2.1 Intraframe Movie Descriptions 29
3.2.2 Interframe Movie Descriptions 30

4 Video Finger: An Example Synthetic Movie 31

4.1 Video Finger Description . 32

4.1.1 Video Finger as a Synthetic Movie 33
4.2 Basic Design Issues . 34

4.2.1 Hardware Capabilities . 35

4.2.2 Object Representation . 37
4.2.3 Motion Description . 38

4.2.4 Depth . 39

4

5 Video Finger: Software Description 41

5.1 Basic Software Overview . 42

5.1.1 Object Handlers . 42

5.1.2 Task Dispatcher . 44

5.1.3 Drawing and Color Routines 45

5.2 Basic Task Language Interpreter 47

5.3 View Scaling . 48

5.3.1 View Caching . 51

5.4 Network Interface . 52

6 Video Finger: Data Preparation 54

6.1 Filming . 55
6.2 Pre-Processing . 56
6.3 Segmentation . 57

6.4 Alternative Means of Data Preparation 60

7 Results 61

7.1 Improvements . 61
7.2 Future Work . 63

7.3 Future Hardware . 64

8 Conclusion 66

5

List of Figures

1.1 A Typical Synthetic Movie Player 10

4.1 Typical UNIX �nger text output 32

4.2 Video Finger Display . 34
4.3 Block Diagram of the IranScan Frame Bu�er 36
4.4 The Image Views comprising an example Task 39

5.1 Video Finger Software Overview 43
5.2 Pixel Interpolation . 50

6.1 Object View at several di�erent stages during processing 58

7.1 Computer Price/Performance Comparison - 1990 65

6

Chapter 1

Introduction

The �eld of communication has always availed itself of the latest technology to

enhance the message quality. This can be traced from the invention of the print-

ing press, through the early use of electronics by the telegraph industry, to the

development of �lm and later, video, for the transmission of visual information.

In the last few years, the ready availability and low cost of digital electronics has

sparked a wide interest in digital transmission of visual information. The
exibil-

ity of the digital medium, shown by its ability to integrate text, audio, and video,

permits many new methods of obtaining and manipulating information.

The large amount of data required to represent an image sequence restricted re-

search into digital video until recent years. A typical motion image sequence, such

as standard broadcast TV, requires 8.2 MBytes/sec of data per second1. Conven-

1NTSC video uses three channels, transmitted with a bandwidth of 4.5 MHz (Luminance), 1.6
MHz (Chrominance I), and 0.6 MHz (Chrominance Q). The signal/noise levels desired require

7

tional image transmission and compression techniques utilize statistical properties

of the image sequence and psychophysical properties of the human visual system

to reduce the amount of data associated with the image sequence [Netravali89]

[Schreiber86] [Pratt78]. Use of these techniques allows image sequence transmis-

sion and display using a state of the art personal computer [Watlington87][Watlington88a].

Conventional compression techniques, although making digital video possible,

do not utilize the semantic content of the image sequence. This thesis proposes

an alternative method of image sequence transmission: a synthetic movie, where

the sequence is synthesized at the receiver from a description of the sequence's

contents. An analogy may be drawn to digital text transmission, where two meth-

ods are commonly used: facsimile and ASCII. Facsimile encodes the text using a

statistical model of the text image. ASCII provides a much more e�cient coding

by transmitting only the semantic content of the text. The text is reproduced at

the receiver by using a local description of the characters in the text (the font)

and the transmitted ASCII information. Synthetic movies attempt to separate the

semantic content of a sequence from the description of the objects in the scene,

allowing separate transmittal of the two components.

digitization at 8 bits/channel for the luminance channel and 5 bits/channel for the chrominance
channels. Adjusting for the actual display area (70%) provides the bandwidth �gure used.

8

1.1 What are Synthetic Movies ?

Synthetic movies are motion image sequences that are constructed as they are

being viewed. They are composed at the receiver, usually under the interactive

control of the user. The content of the components and the complexity of the

reconstruction vary. Examples of synthetic movies range from videodisc training

tools, to simple molecular modeling tools, interactive
ight simulators and video

games.

Synthetic movies may be categorized by the type of synthesis allowed. In-

traframe synthesis permits the actual content of the images being displayed to be

manipulated, whereas interframe synthesis is restricted to controlling the temporal

evolution of the sequence.

Interframe synthesis has seen much attention over the past decade, due to the

introduction of a relatively cheap random-access image frame store in the form

of the videodisc. In interframe synthesis, the temporal content of a sequence is

synthesized by selecting one frame of several possible frames of video for display.

The manipulability of the interframe synthetic movie is rather limited, as every

frame conceivably required must be present in the object description. In some

videodisc applications this restriction is partially circumvented by the addition of

a simple computer graphic overlay, such as text or still images.

Intraframe synthesis refers to synthesizing the actual content of each frame

in the motion sequence. This synthesis has been addressed by the computer

9

Movie
Description

Object
Description

Receiver

Display
(Local

Storage)

User
Interface

The
Viewer

Communications
Channel

F
ig
u
re
1
.1
:
A
T
y
p
ica
l
S
y
n
th
etic
M
ov
ie
P
layer

g
ra
p
h
ics
co
m
m
u
n
ity,
a
lth
o
u
g
h
d
u
e
to
th
e
co
m
p
lex
ity
n
o
rm
a
lly
a
sso
cia
ted
w
ith

rea
listic
in
tra
fra
m
e
sy
n
th
esis,
ra
rely
h
ave
th
e
m
ov
ies
b
een
g
en
era
ted
in
rea
l-tim
e

(ie.
a
s
th
ey
a
re
v
iew
ed
).

1
.2

R
e
a
so
n
s
fo
r
E
x
p
lo
r
in
g
S
y
n
th
e
tic
M
o
v
ie
s

S
y
n
th
etic
m
ov
ies
a
re
b
est
su
ited
to
tra
n
sm
ittin
g
certa
in
fo
rm
s
o
f
v
isu
a
l
in
fo
rm
a
-

tio
n
.
T
h
is
is
d
u
e
to
th
e
fa
ct
th
a
t
th
e
im
a
g
e
m
u
st
b
e
reco
n
stru
cted
a
t
th
e
receiver.

W
h
en
th
e
seq
u
en
ce
b
ein
g
tra
n
sm
itted
is
very
d
eta
iled
,
o
r
is
n
o
t
b
ein
g
m
a
n
ip
-

u
la
ted
,
sy
n
th
etic
m
ov
ies
a
re
n
o
t
th
e
m
ed
iu
m

o
f
ch
o
ice.
A
n
ex
a
m
p
le
o
f
th
is
is

a
rtistic
w
o
rk
s,
w
h
ich
a
re
u
su
a
lly
m
ea
n
t
to
b
e
v
iew
ed
in
a
sin
g
le,
u
n
id
irectio
n
a
l

seq
u
en
ce.
If
th
e
in
tera
ctive
tra
n
sm
itta
l
o
f
v
isu
a
l
in
fo
rm
a
tio
n
is
d
esired
,
h
ow
ever,

sy
n
th
etic
m
ov
ies
a
re
id
ea
l.

1
0

Synthetic movies, because they are constructed at the receiver, are inherently

manipulable. One component of the sequence may be changed, or an alternative

one used. In the case of interframe synthesis, the sequence may branch among a

wide possibility of cases. In intraframe synthesis, an object/actor on the screen

may mimic the sensed motions of a real person[Ginsberg83][Maxwell83]. Imple-

mentation considerations usually restrict the manipulability, but it remains as one

of the main reasons for developing synthetic movies.

The manipulability of the synthetic movie is not necessary for some applica-

tions. There are, however, many uses of image sequences where interactivity is

very desirable, or even required. Here are three example uses for synthetic movies:

1.2.1 Interactive Games

Electronic games have become increasingly popular as the cost of the required

electronics has plummeted. Games that produce a video display, in particular,

have been developed and produced in astounding numbers. The video display

generated by one of these electronic games must be viewed as a synthetic movie,

because it is an image sequence generated in real time to re
ect some internal

environment. Object descriptions are usually stored locally in read-only memory,

and the movie description is generated by the game's state machine response to

user input.

The realism of even the best of these games is rather limited, due to the

11

simplicity of the object descriptions used, but this is changing. Some commercial

video games are already using traditional computer graphic techniques to generate

the display. The computer processors used in video games are becoming more and

more powerful2.

1.2.2 Low Bandwidth Communication

Synthetic movies may be used for very low bandwidth information transmittal.

The \message" of the image sequence is contained in the movie description, which

is always transmitted. At the receiver, the movie description is reconstructed using

locally stored object descriptions. Once object descriptions compact enough to

be transmitted can be reconstructed in real-time, the object descriptions may be

transmitted along with the movie description.

The displayed image sequenced will be distorted due to several reasons. One

reason is the di�erences existing between the original object description and the

one used for reconstruction. Another reason is the omission of parts of the original

image sequence not incorporated into the movie description.

2A recent commercial video game release, \Hard Drivin' " from Atari, uses a Motorola
68010 for user input and general processing, an Analog Devices ADSP-2100
oating point signal
processor for graphics computation, and a TMS34010 drawing engine from Texas Instruments
for rendering to the frame bu�er. The performance obtained from this system is approximately
1000 polygons/frame [DSPatch].

12

1.2.3 The Movie Director

One of the possible future uses of synthetic movies is separating the artistic content

of a movie from the limitations imposed by physical �lming. A motion picture

maker could be freed from the requirement of having the exact lighting required,

or the camera3 in proper location, during the �lming. In the editing phase, the

movie would be synthesized from the database generated from the �lming using

any combination of lighting, lens characteristics, and camera position desired.

New objects could be added or existing objects removed from the scene. When

the desired e�ect is produced, the movie description for that scene is stored for

inclusion into the movie.

The movie distribution could entail transmitting both the movie description

and the object descriptions to the receiver, using a digital transmission medium.

Alternatively, the movie could be rendered once and recorded for publication and

distribution along more conventional channels.

1.3 Synthetic Movies at the User Interface

The earliest computers had no user interface. Batch mode processing limited

interaction with the computer to punching programs onto paper cards or tape,

then loading them into the computer. Output usually consisted of printing to

3This is assuming that a camera capable of recording more than just luminance information
is available. See Section 6.4 [Bove89].

13

a line printer. When the teletype appeared, and simple operating systems were

designed to use them; it was a great improvement. Teletypes were later replaced

by terminals using cathode ray tubes as their display, although the high cost of

memory limited the versatility of these displays to that of an electronic teletype (

the DEC VT-100, for example) Due to the relatively low cost of memory today,

the modern personal computer/workstation is usually equipped with a bit-mapped

display, usually capable of displaying multiple colors. The user interface, however,

usually still consists of little more than a window system which allows the user

the convenience of having multiple virtual \teletypes".

An exception to this are the object oriented user interfaces descending from

the original Smalltalk project at Xerox PARC[Kay77][XEROX Star], such as the

Apple Macintosh Desktop. These systems use the graphic capabilities of modern

bit-mapped displays to provide the user with a graphically oriented operating sys-

tem. Files and a hiearchical �le system are described using images of applications,

documents and �ling folders. Common system services (such as the printer, or

the routine to destroy a �le) are also given icons. If, in addition to being capable

of displaying still images, the computer system is capable of supporting moving

pictures, how may they be integrated into the user interface? Perhaps the answer

may be found by discussing the applications of still images at the user interface.

Still images are commonly used to represent a virtual object which conveys

information between the user and the computer. Control bars, buttons, dials,

14

etc., are simple examples of this. Icons are small still images used to represent

di�erent elements and functions of the system, such as �les and trash cans.

The simplest application of motion sequences in the user interface is an ex-

tension of the still image applications. Using interframe synthesis, icons that are

themselves image sequences can be made. Although these are interesting, they

are limited in the information that can be conveyed.

More interesting applications of motion sequences in the user interface can be

found when the content of the image sequence can convey more than one variable

of visual information. Intraframe synthesis allows the contents of the frames to

re
ect the state of many di�erent variables, in a form that is easily interpreted by

human users.

15

Chapter 2

Previous Examples of Synthetic

Movies

Synthetic movies have been explored previously many times. Early examples of

synthetic movies, with a very limited message, were interactive video games. The

graphical output of these video games tended to be of poor quality, with low

spatial and color resolution due to the high cost of memory. The next attempts at

creating synthetic movies were prompted by the availability of the videodisc, which

provided a large, random access frame store. As mentioned earlier, this allows

interframe synthetic movies to be generated. Newer videodisc systems include

graphic overlays and simple digital e�ects to allow increased manipulability of

the displayed image sequence. The generation of interframe synthetic movies has

received a large amount of attention from the �eld of computer graphics.

16

2.1 Computer Graphics

Intraframe synthetic movies have been given much attention by the �eld of In-

teractive Computer Graphics. Foley and Van Dam, in their classic treatise upon

the subject[Foley83], de�ne interactive computer graphics to be when the \user

dynamically controls the picture's content, format, size, or color...by means of an

interaction device". Computer graphic animations are very similar to synthetic

movies. The di�erence between them is the amount of time required to gener-

ate the image sequence. A synthetic movie is composed at it is viewed, whereas

computer graphic animations are not normally generated in real time. This, how-

ever, is a restriction imposed only by the capabilities of the synthesizing hardware.

Very expensive
ight simulators are capable of rendering images of moderate com-

plexity in real time (ie. as they are viewed). The cost of high-powered graphics

engines is decreasing, however, as their ability to generate more complicated real

time animations is increasing 1.

Generating a computer animation presents several problems to the animator.

The objects in the scene should look real, as well as act real. The realistic synthe-

sizing (rendering) of images is not simple, requiring that a 2D view be made from

a 3D database, incorporating the e�ects of lighting, lens e�ects and occlusions.

Much work has been done in the �eld of rendering, resulting in the development

1Examples of these are the Stellar Graphics Supercomputer [Apgar88], the Silicon Graphics
Workstations[Akeley88], AT+T's Pixel Machine, and UNC's Pixel Planes-4[Goldfeather89]

17

of techniques that allow realistic generation of synthetic images.

It is the acting real that presents a more serious problem in computer anima-

tion. Modeling the physics involved in natural motion, such as a tree waving in

the wind, or a dog running down a street, is a di�cult task. Once the motion has

been modeled, a method of controlling and synchronizing the motion of objects

in the scene must be found.

The control of the objects in an animation has three basic approaches. These

are the guiding mode, the animator level, and the task level. In the guiding mode

of control, the positions of the animated objects are explicitly controlled by the

animator. In the animator level of control, the motion/behavior of objects is

described algorithmically, usually in some sort of programming notation. The

task level of control stipulates the motion in the scene in terms of events and

relationships between the objects [Zeltzer85].

Unfortunately, the synthesis of realistic images is currently possible only by

the use of rendering techniques, such as ray tracing, which are not very amenable

to rapid computation. It is for this reason that alternative means of generating

synthetic movies merit research and development. At some point in the future,

advances both in computer technology and graphic rendering algorithms will likely

make computer graphic techniques the medium of choice.

18

2.2 Bolio

A system for the development of interactive simulation, the Integrated Graphical

Simulation Platform (IGSP) developed at the MIT Media Laboratory, provides

for simple synthetic movies in response to user input, present constraints and

task level animation. The IGSP includes an object editor, and behavior modeling

tools for the objects in the microworld. A hand position input device, the VPL

Dataglove, is provided for the user to interact in real time (actually handle!) with

the objects in the microworld. Another input device is a 6 degree of freedom

joystick, the Spaceball. Objects in the microworld may be fairly complex: a

roach which is capable of walking around under its own control, for example.

Another of the objects developed for the microworld is a robot arm that can

\play catch", with a user using the Dataglove, using inverse kinematics techniques.

[Brett87][Sturman89][Zeltzer88].

2.3 Interactive Video Games

The introduction of direct computer/user interaction with the appearance of the

MIT TX-02 was soon followed by the introduction of the �rst interactive video

games. Spacewar, a game developed at MIT in 1961 for the DEC PDP-1, for

the �rst time presented a user with a virtual world with which he could interact

2Although previous computers were not devoid of user interface, (they had switches and
paper tape for input) the TX-0 was one of the �rst computers to use a teletype as the user
interface.

19

in real time. The graphics display of Spacewar was very limited, using simple

line graphics to present the users with two miniature spaceships that could be

manipulated in front of a astronomically correct background of stars[Levy84].

The �rst video games to be available to the public were commercial video games

such as \Pong" and \Space Invaders". These �rst games were very simplistic, due

to the level of computer hardware available at a�ordable costs. Many other games

of increasing complexity, however, soon followed.

The introduction of the video game into the consumer market followed soon

after the advent of the �rst monolithic microcomputer. The microprocessor also

fueled the personal computer revolution, providing many people with the means

of producing and playing interactive video games. These games tended to have

poor spatial and color resolution, due to both memory and system bandwidth

constraints. The programmers who created these video games were forced to

explore methods of providing real-time graphics performance with very simple

equipment. They almost universally used a 2D image representation for their

objects.

The ready availability of consumer videodisc players spurred the development

of electronic games making use of them. The videodisc games produced tended

to combine interframe synthesis with simple user input via the host computer.

The resultant motion sequence can diverge at any user query step, although due

to videodisc storage considerations the divergent sequences are usually reunited

20

at a later time. These games su�er from the need to have an external videodisc

player, which is often as large as the computer itself, nearby. Additionally, extra

video equipment is necessary to mix and display the resultant video images. In

order to display video while the videodisc is searching for a new sequence, it is

necessary to use two videodisc players or a frame storage device.

2.4 The Movie Manual

The \Movie Manual" was a prototype electronic book, incorporating text, sound,

images and image sequences. It used computer controlled videodiscs to provide a

large, random access frame and data store. This data was accessed and displayed

to the user by interactive software using a book metaphor. Central to the \Movie

Manual" was the concept that the displayed information was being constructed

from the stored information as it was viewed. The information base, and the

means of presenting it, could be altered by the reader. The receiver utilized

information about the contents of the electronic book in displaying (formatting)

it.

The hardware consisted of a host minicomputer, equipped with a medium res-

olution framestore, two or more videodisc players, and video mixing equipment to

superimpose the computer graphics and video. The framestore was used to pro-

vide still computer graphics images and text, but was not used in generating image

sequences. Although this limited the electronic book to interframe synthesis, the

21

\Movie Manual" is a good example of a synthetic movie [Backer88].

2.5 The Oxyacetylene Welding Simulator

Another example of a synthetic movie is a training simulator designed by D. Hon of

Ixion Systems to teach oxyacetylene welding [Ixion][Brush89]. This simulator uses

a videodisc as a large framestore to store the images required for the simulator.

The student is coached in the technique of using a welding torch by a personal

computer controlling the videodisc player. An actual welding torch (without real

gases) is used as an input device. Its three dimensional position, and the state of

the two gas valves are used as input to the computer.

The student is �rst taught the procedure for lighting the torch. The computer

uses images from the disk to simulate the
ame that would be produced were the

student using a real oxyacetylene welding torch. The desired
ame is also shown

for comparison. Once the student has adjusted the gas
ow valves to the proper

settings, the simulation continues.

On the horizontal monitor face, an image of two pieces of steel sheeting is

shown. The student uses his welding torch to \weld" the two sheets together.

As the weld progresses, the controlling personal computer displays its evaluation

of the student's work by selective retrieval of images from the videodisc frame

store. If the weld being made would be
awed, the computer will display a
awed

weld. If the weld is acceptable, a good weld is displayed. The interframe synthetic

22

movie generated re
ects the internal model of the weld maintained by the personal

computer.

2.6 The Elastic Charles

A very recent example of an interframe synthetic movie, utilizing advances in

computer technology, is the \Elastic Charles" project [Br�ndmo89]. The \Elastic

Charles" is a hypermedia journal, a prototype electronic magazine. It contains a

collection of multimedia stories about the history, ecology, current news and usage

of the Charles River in Massachusetts. These stories are primarily visual, but are

augmented with text, graphics and sound. Hypermedia references (links) may be

made between text, graphics and sound and video segments.

The hardware platform for \Elastic Charles" consists of a personal computer

equipped with a specialized frame bu�er, and a videodisc player. The computer

used is an Apple Macintosh II. The ColorSpace II frame bu�er allows the Mac

to generate an overlay on the output of the videodisc, as well as permitting the

videodisc output to be digitized. The videodisc is used for storage of the video

sequences, limiting the magazine to interframe synthetic movies.

The traditional hypertext notion of a link is extended in \Elastic Charles" to

include references to motion image and sound sequences. Unlike text links, the

presence of links from a video sequence are presented in a separate window to

avoid disturbing the presentation of the video information. If a link references

23

another video sequence, the link is represented by a \micon", or moving icon.

This icon is a short, miniature sequence of video digitized from the referenced

video sequence. Micons are also used to navigate the video sequences, recording

the path taken by the user in a recent segments card.

24

Chapter 3

Basic Components of a Synthetic

Movie

The basic components of a synthetic movie are the description of the movie and

the description of the objects in the movie. The semantic content of the movie

is transmitted in the movie description. This is not to say that the object view

generated from the object description does not convey information, but that the

presence of that particular view is dictated by the movie description.

The actual structure of the components depends on the implementation of

the synthetic movie. For example, a videodisc based synthetic movie uses a very

di�erent movie description from a computer graphic animation. If interframe

synthesis is used, the movie description will not describe the contents of individual

frames, but rather their sequencing. Alternatively, if intraframe synthesis is used,

25

the movie description must contain a description of the contents of each frame.

The object descriptions, typically being relatively large, are usually stored

locally at the receiver. They may be pre-transmitted or provided on local mass

storage such as videodiscs, CD-ROMs, or hard disks. The movie description may

either be included on the mass storage device or transmitted separately.

3.1 The Object Description

The object descriptions contain representations of the objects used in the image

sequence. The complexity of the receiver is determined largely by the complexity

of the object descriptions. The desirable qualities of the object description are low

complexity, small size, and manipulability. Several classes of object representation

exist, each with advantages and disadvantages.

3.1.1 3D Representations

A common class of object representations describe an object by specifying a three

dimensional surface and the re
ectance at every point on the surface. These rep-

resentations di�er in how the three dimensional shape is described. Examples of

these representations are polygonal patch descriptions and particle representations1.

Another common class of object representations attempt to describe objects as

1Although some particle systems model the entire volume of the object (voxels), for
the purposes of synthetic movies only describing the particles along the surface (surfels) is
su�cient[Bove89].

26

combinations of primitive geometrical objects. Examples of this class are con-

structive solid geometry (CSG) and superquadric representations.

These representations tend to be very manipulable. The two dimensional view

required for display by conventional display devices must be rendered from the

three dimensional object description. In this rendering step, any desired object

view, using any lighting and lens parameters, may be generated.

The description of the motion (including deformation) of realistic objects

presents a di�cult problem. This is because most real objects (in particular live

objects) are non-rigid, or even more problematic: deformable. The representation

typically used for representation of non-rigid objects is an articulated object with

links between rigid sub-parts. An acceptable representation of deformable objects

has been the subject of much recent research[Terzopoulos88][Platt88]. One new

deformable object representation, which is promising due to its low computing

requirements, describes the deformations using a modal analysis [Pentland89].

The rendering stage that gives these representations much of their manipula-

bility is computationally expensive, and well beyond the limited computing power

available presently in personal computers. Other representations are currently

implementable, and have their own advantages.

27

3.1.2 A 2D Image Representation

A simpler representation is a limited view representation, where a set of 2D views

of the object from a limited number of viewing angles are stored. This representa-

tion allows for simple, realistic images and it is very fast as little to no computation

is required.

The control of this representation is very limited. The manipulations possi-

ble are translation, scaling and simple 2D remappings of the object views. The

generation of an object view not explicitly contained in the object description

is not a simple problem. If a view similar to the one desired is present in the

object description, it could be used. Calculation of an error metric to arrive upon

the closest approximation may be impossible, given the large number of possible

deformations. Interpolation to obtain views not contained explicitly in the object

database may be possible.

The methods of encoding the views di�ers. Full color (either RGB or YIQ) im-

ages may be used, or the images may color quantized to compress them. Addition-

ally, the object view data may be entropy or run-length encoded to further lower

the bandwidth. The redundancy present between adjacent views should allow a

large amount of compression if more advanced techniques of image compression

were used, such as Multiscale VQ, or other multi-channel techniques[Netravali89].

Multiscale (Pyramid) encoding would allow superb overlaying and would simplify

the adjustment of the image scale and focus, but would require an extremely

28

powerful computer.

3.2 The Movie Description

The Movie Description describes the position of objects in the scene over time.

This description may be generated or modi�ed locally in response to user input

or input received from external devices. The movie description is the \essence"

of the image sequence. It is what needs to be transmitted to recreate the original

image sequence at the receiver. If an image detail (such as which
ag is
ying

over the fort) is not included in the movie description, it will not be present in

the synthesized movie. The receiver, of course, must have the required object

descriptions.

3.2.1 Intraframe Movie Descriptions

Intraframe descriptions specify the sequence of images to be displayed. The images

must be one of a large set of images present in the object descriptions. Typically

a sequence of images are associated together for display, with the ability to enter

and leave the sequence at any particular frame. The movie description describes

the order in which the sequences are viewed.

In many intraframe synthetic movies, the movie description is actually a set of

constraints and procedures for manipulating the sequences. In Hypermedia, for

example, a set of procedures for browsing through information, with the ability to

29

establish and examine links to related information, is provided[Br�ndmo89]. The

course of the movie is determined by the user input received, possibly prompted

by additional visual or aural cues.

3.2.2 Interframe Movie Descriptions

Interframe descriptions describe the actual contents of the image sequence, in a

frame by frame manner. The computer graphics community has developed several

synthetic movie scripting languages for describing their animations [Reynolds82][Feiner82][Fortin83].

These languages di�er in many respects, but they share several details in common:

� The basic unit of time in the movie descriptions is the displayed frame.

� Support for parallel (and synchronized) execution of object motion descrip-
tions.

The movie description may not be explicitly de�ned in some interframe syn-

thetic movies. Instead, these movies are driven directly by software state machines

or constraint systems. Indeed, examples of these may be more numerous than ex-

plicitly de�ned movies. They include interactive video games,
ight simulators,

interactive graphical simulators[Zeltzer88] and many applications at the user in-

terface.

30

Chapter 4

Video Finger: An Example

Synthetic Movie

This thesis presents an example implementation of a synthetic movie, Video Fin-

ger. Video Finger is an application which uses a synthetic movie to convey in-

formation about the state of the computer workplace. It interfaces with existing

UNIX information servers over a local area network to obtain information about

users: their login state, and what they are currently doing. It was suggested by,

and named after, the UNIX �nger utility1. The main use of the �nger utility is to

�nd out who is logged in to a computer system, and what they are doing or how

long since they did something.

1Actually, the process currently being executed by a user is only displayed by a variant of
the �nger utility, the w utility.

31

3:08am up 3 days, 12:18, 26 users, load average: 0.70

User tty login@ idle JCPU PCPU what

sab tty12 9:51am 9:01 1:49 1:11 emacs -f rmail

wad tty16 2:57am 1 finger

kazu tty36 11:11am 15:21 1 1 rn

chen tty41 11:07pm 1:34 9 6 rlogin rebel

vmb tty58 9:23am 10:17 3:25 6 -tcsh

gslee ttyp2 3:05am 18 17 col

pat ttyp3 4:14pm 38:17 1 emacs ch2.tex

jh ttyp6 3:35am 6:12 5 -tcsh

lacsap ttypa 8:54pm 50:28 1:20 8 more foobar

klug ttypb 1:43am 1:09 10 tcsh

walter ttyr0 11:25am 36:15 40 4 emacs isabel

wave ttyre 2:18pm 1:49 1:14 3 -tcsh

Figure 4.1: Typical UNIX �nger text output

4.1 Video Finger Description

The traditional output of the �nger utility is text in a chart format, listing

selected information. An example output is shown in Fig. 4.1. Alternatively,

visualize a video interface to the same program: A window on the user's display

shows a preselected scene, perhaps a local computer terminal room or set of o�ces.

In this scene are the people sharing that computer system2. The people being

observed may actually be working at home, or in another country. The task being

performed by the people in the scene is indicative of their computer usage. If, for

example, they have been idle for longer than a preset threshold, they appear to

have fallen asleep. A typical Video Finger window is shown in Fig. 4.2.

2I use the term computer system loosely. The widespread popularity and increasing power
of personal workstations imply that most systems are actually a number of computers shared
by a group, and connected over a local area network, such as Ethernet.

32

If the window is allowed to remain, the scene within changes to re
ect the

changing computer environment. When a person logs into the system, they enter

the scene. When they log out, they exit the scene. They stop doing one task, say

reading the news, put down the paper, and start doing another task, such as writ-

ing. The user may select a person by clicking on them with a mouse (or touching

a touch-screen), and then ask the application for more speci�c information than

is being shown (such as the exact name of the task being run by the person). The

information being presented could be varied. A voice-mail system where the user

sending the mail actually reads the mail to you is a simple extension. Or a \talk"

utility where the person actually turns around and does that, on your screen.

4.1.1 Video Finger as a Synthetic Movie

Video Finger synthesizes the image sequence displayed in response to changes in

remote user activity. The description of the sequence is generated by a routine that

monitors the activity of the remote users. The descriptions of the objects/persons

in the sequence reside in local storage in the receiver, although they could be

obtained from a remote �le server over the same local area network used to monitor

the remote user information.

The image sequence being synthesized by Video Finger can be visualized as the

output of a software camera being aimed at the computer system. Occasionally,

when the system is at rest, the output of the camera will be still and nothing in

33

Figure 4.2: Video Finger Display

the sequence will be changing. At other times, when the many users are logging

in or out, the camera will record the �ve o'clock rush and show much action in

the sequence.

4.2 Basic Design Issues

The hardware platform chosen for Video Finger was the Apple Macintosh IIx

personal computer, equipped with the IranScan video card. The Mac II was chosen

because it is a personal computer, yet it supports a graphics oriented user interface

well suited to integration with image sequences. The IranScan video card is the

34

result of a joint e�ort by the Media Laboratory and Apple Computer to develop a

system capable of decoding and displaying compressed image sequences. IranScan

is designed to decode vector quantized images, but may be used to display color

quantized images with up to 4096 colors as well.

4.2.1 Hardware Capabilities

The Macintosh IIx is a 32 bit microcomputer, with a 16 MHz Motorola 68030 and

up to 8 MByte of RAM. It has a
oating point coprocessor, the Motorola 68882.

A SCSI mass storage interface allows the use of hard disks and CD-ROM opti-

cal drives. An expansion bus, the NuBus, allows additional memory, processors,

and peripherals to be integrated into the system. Video display devices are con-

nected to the NuBus. System expansion normally includes separate, specialized

processors connected to the NuBus to accelerate sound and graphics synthesis

and processing. Although the theoretical data transfer rate over the NuBus is in

excess of 35 MByte/sec., actual data rates obtained between the Mac II processor

and a peripheral on the NuBus are much lower, on the order of 4 MBytes/sec

[Baumwell88]. Due to the lack of a DMA controller, the Mac IIx is not capable

of sustaining this rate.

The IranScan frame bu�er (shown in Fig. 4.3) consists of two frame bu�ers,

one of which may be superimposed over the second. The \top" frame bu�er (Ollie)

is used by the Macintosh operating system to display the Desktop, and supports

35

Spatial
VQ

Decoder
Color

Lookup
Table

ScanRam
Frame Buffer

512K x 12

Ollie
Frame Buffer

512K x 8

C
O
N
T
R
O
L

Macintosh II NuBus

To D/ACs
and Monitor

Figure 4.3: Block Diagram of the IranScan Frame Bu�er

pixels from 1 bit to 8 bits deep. The \bottom" frame bu�er (ScanRam) is used

for display of image sequences. It supports pixels from 8 to 12 bits deep. IranScan

was designed as a tool for exploring vector quantization of image sequences. In

this application, however, I am using IranScan because of
exibility that ScanRam

provides for display of more conventional image sequences. An image displayed in

a ScanRam window may be double bu�ered without redrawing the entire screen.

This requires less screen memory, as well as allowing faster screen updating. In

addition, the pixel depth provided by ScanRam allows the use of realistic color

[Heckbert82]. The color lookup table (CLUT) hardware also supports double

bu�ering, allowing it to be updated without disturbing the displayed image.

The display window generated by Video Finger has a content region of 320x240

pixels, which is one-quarter of the screen. This size reduces the drawing require-

ments to allow real-time animation, yet is still capable of conveying much infor-

36

mation.

If a Macintosh IIx can draw 1 Mpixels per second to the screen, it should

be capable of displaying thirteen frames of video (320x240) per second. If it is

equipped with 8 MBytes of RAM, it can display around seven seconds of such

video. Actual applications introduce overhead, however, making this predicted

frame rate optimistic.

4.2.2 Object Representation

There are several possible representations for the object data, varying in com-

plexity and manipulability. Unfortunately, the Mac II is not powerful enough to

implement even a simple three dimensional rendering in real time, requiring a

larger, less complex representation3. The object representation chosen for Video

Finger is the 2D image set representation. This representation, although restric-

tive and memory intensive, is very simple to display. If desired, the data for the

object representations could be rendered from a more complete, computer graphic

database. This representation also allows a simple description of motion.

3A commercial rendering package, Swivel v2.0, running on a Mac IIx, requires around 15
sec. to render a simple (8000 polygons) image with simple shading. If the image is rendered
anti-aliased, it requires over one minute.

37

4.2.3 Motion Description

The concept of using image views as a description of the object's appearance

suggests a similar approach to motion description, the one used by Video Finger.

Object motion/deformation is described by a series of views, called a \task".

Each object has associated with it a set of tasks, which represent a signi�cant

motion/deformation for that object. An example of the views composing a simple

task is presented is Fig. 4.4.

The tasks are de�ned using a simple interpreted language which de�nes which

object view to use and any independent object motion. The use of a \task" motion

representation constrains the motion of objects to be simple translation, existing

tasks and unions of those tasks.

A \task" can only de�ne the motion of one object. The Task Dispatcher,

along with a signaling mechanism incorporated into the language, provide for the

concurrent object motion necessary for intraframe synthetic movies.

Unfortunately, object descriptions must contain all the views and tasks desired.

In Video Finger, this is not a signi�cant problem, as the required object motion

is limited. Only about a dozen object tasks were considered necessary for Video

Finger4.

4To be more precise: standing, sitting, turning from side to side, falling asleep, waking up,
sleeping, starting to read, reading and stopping reading.

38

Figure 4.4: The Image Views comprising an example Task

4.2.4 Depth

Given the two dimensionality of the object representation being used, other meth-

ods must be used to impose the perception of a projection of a three dimensional

image. Video Finger provides for simple occlusion, as well as perspective. Each

object may have one of 256 discrete depths. The depth indicates the order of

drawing: the objects with larger depth (distance into the screen) are drawn �rst.

This provides for simple occlusion, but complex occlusion5 requires that the ob-

ject be divided into two parts, one in front of the occluding object and the rest

behind. This would be a simple extension to the existing software, but it was not

implemented.

5Complex occlusion is where an object is both occluding and occluded by another object.

39

In addition to occlusion, the size of an object is changed to correspond to the

depth. This simulates the lens parameters used in \recording" the scene. The

scaling value used is derived from the formula for a simple lens: MT = f =zo,

where f is the focal length of the lens being simulated and zo is the depth of the

object [Hecht79]. The focal length used in drawing a frame is determined by the

background image being used. The focal length used is the same as that used to

record the background, so that objects superimposed over the background appear

normal with respect to the background.

40

Chapter 5

Video Finger: Software

Description

The software development environment used for the development of Video Finger

was the Macintosh Programmer's Workshop (MPW). The majority of the software

was written in MPW C. Some hardware dependent or speed restricting parts of

the drawing routines were written in 68020 assembly language. A public domain

library of routines, TransSkel [DuBois89], which abstracts out the interface to the

Macintosh operating system, was used to simplify program development. The User

Interface Toolbox of the Macintosh, along with the Operating System Utilities,

provided support for windowing, mouse actions, menus, and user dialogs. This

allowed the program to easily support those features, while maintaining a user

interface consistent with other Macintosh applications.

41

5.1 Basic Software Overview

The Video Finger software system is diagrammed in Fig. 5.1. The Task Dispatcher

executes any tasks that are being performed, then calls each object to redraw

itself. One of the tasks being performed is the User Task, which polls the state

of the computer environment via the local area network, modifying the movie

generated to match. Each type of object has a software routine (an object handler

) associated with it that is called to manipulate objects of that type. A common

nucleus of drawing and CLUT management routines are provided for use by all

the objects. Parameters of the Video Finger display, such as what background

image is being used, or the update rate of the display, are changeable from user

menus.

5.1.1 Object Handlers

Every instance of a given type of object executes the same object handler routine.

The handler routine is called with a pointer to the data structure de�ning the

object1, a command, and a pointer to optional arguments. All object handlers

recognize a small set of basic commands: open, close, and draw. The open com-

mand opens an object, loading in necessary view and task information from local

storage if needed. The close command closes the object, freeing the associated

memory, and the draw command calls the proper drawing routines to draw the

1The data structure for each object contains a pointer to the appropriate object handler.

42

Drawing Routines

Ethernet

Frame
Buffer

B

Remote Finger
Simulator

(Menu Driven)

User Interface
(Mouse Driven) Remote Finger

Polls

Task Dispatcher

Vertical
Blanking
Interrupt

DisplayCLUT

Color Manager

Object
B

Object
A Background

Object

Frame
Buffer

A

User Task

IranScan

Figure 5.1: Video Finger Software Overview

43

current object view into the frame bu�er.

Optional commands supported by most object handlers are: position, view,

and request-task. The position command allows objects to be positioned either

absolutely or relatively. The view command request a new view of the object,

speci�ed using some characteristic of the view, at a certain scale. The request-

task command queries an object to obtain the description of a particular task for

that object.

The number of object types is quite small. Only one type is used to repre-

sent all the human �gures in Video Finger. The other types include background

objects, prop objects, and test objects.

5.1.2 Task Dispatcher

The task dispatcher is called whenever there are no system events that require

handling. These events are generated by user input, or operating system actions

(such as window refreshes). The dispatcher �rst traverses a linked list of tasks

currently being executed, executing each one in turn. Most of these tasks are

interpreted by the Basic Task Language (BTL) interpreter. Next, it traverses

an ordered linked list of objects in the scene, calling each object with the draw

command. The list is ordered such that the objects farther back in the scene are

drawn �rst, and overlayed by later (ie. closer) objects. After all the objects have

�nished drawing, the task dispatcher sets a semaphore signaling that drawing has

44

�nished on the new frame.

5.1.3 Drawing and Color Routines

Common drawing routines provide
icker free generation of the Video Finger

window. The window is maintained by the Macintosh Window Manager, which

interfaces with the drawing routines. The common drawing routines transpar-

ently provide double bu�ering, as well as decoding of the transparency run-length

encoded images as they are drawn. Since the IranScan video card architecture

includes a second frame bu�er which may be re-positioned without a�ecting the

�rst frame bu�er, double bu�ering is done in the actual frame memory.

The color map is partitioned and maintained by the color manager. Whenever

an object is opened, the object handler requests the needed number of slots from

the color manager. The color manager allocates and reserves the requested slots,

returning the index of the �rst slot allocated. The object is then responsible for

calling the color manager to load the slots allocated when required. If more than

one CLUT is used by the object views, then the object handler is responsible

for calling the color manager to update the color map as needed. The small size

of the typical object CLUT allows sixteen objects to share the IranScan color

map. Since the amount of local memory available usually limits the number of

object displayed to less than sixteen, the color manager does not currently degrade

gracefully upon running out of free slots.

45

A routine is installed in the Vertical Blanking (VBL) Queue for the IranScan

card which refreshes the display bu�ers. When called, this routine checks to see

that a semaphore indicating the availability of a new frame has been set by the

Task Dispatcher. If it has, it repositions the display base address of the ScanRam

to display the drawing bu�er and hide the previous display bu�er. Routines in the

VBL Queue for a video card are called by the operating system upon receiving a

hardware interrupt from the video card signaling a vertical blanking period. The

number of video frames between calls to the VBL routine may be controlled from

one of the user menus. It functions as a Fast Play/Slow Play control.

The internal representation of the object views is signi�cant for several reasons.

Both the drawing time and the memory required for the view are dependent upon

the representation used. In addition, the time required to manipulate the view is

dependent upon the representation.

The statistics of the image view data (around 50% transparent pixels) imply

that run-length encoding the data would provide a signi�cant gain. Due to the

large number of colors allowed each object, however, the non-transparent parts of

the image were not amenable to run-length encoding. The �nal compromise was

to run-length encode the transparent portions of the image, allowing the drawing

code to draw any length of transparency in a very small, constant time. The

non-transparent portions are simply packed into pixels, adjusted for the actual

46

location of the view's CLUT, and transferred to frame memory2. The data was

actually stored in a non-encoded format on disk and encoded upon being read

into local memory. This allowed easy testing of di�erent encoding techniques.

5.2 Basic Task Language Interpreter

The basic unit of object motion, the \task", is de�ned using a very simple in-

terpreted language, the Basic Task Language (BTL). The task description is ob-

tained by calling the appropriate object handler, and then interpreted using the

BTL Interpreter. A command (btlFrame) is provided to mark discrete frame

boundaries. Each frame, the BTL Interpreter sequentially executes the commands

in the task description until a frame marker is reached.

The Basic Task Language consists of a stream of commands with optional

arguments. In order to facilitate interpretation, commands are of �xed size (4

Bytes), as are the optional arguments. A list of the BTL commands with a brief

description of each is provided is Table 5.1.

The BTL commands are the minimum required to describe an object and

its motion in the 2 1=2 D world of Video Finger. The btlDepth command

adjusts not only the depth, but the perceived scale of the object. The btlSignal

command provides a simple way of synchronizing the end of one task with the

2The simple drawing routine was drawing 1 pixel/3.1 �Sec (including transparent pixels).
The transparency run-length decoding algorithm can draw 1 pixel/1.8 �Sec. It requires 5 �Sec
to process a length of transparent pixels. For an average object, the drawing time was halved.

47

Command Description

btlFrame Signals the end of the commands for the

current frame.

btlView Indicates which object view should be displayed.

Requires one argument indicating the resource

number of the object view.

btlPosition Indicates a relative movement of the object.

Requires two arguments indicating the
horizontal and vertical o�sets.

btlDepth Indicates a relative depth movement.
Requires one argument indicating the depth o�set.

btlSignal Provides a mechanism for communicating
between tasks. When a task is executed, a signal

handler is speci�ed. This signal handler is passed
the value of the one argument.

Table 5.1: Basic Task Language Commands

start of another. When a task is executed, a pointer to a signal handling routine

is provided to the BTL Interpreter. If the task contains a btlSignal command,

the signal handler is called with the command's argument. In addition, the end of

a task is automatically signalled to the signal handling routine by the interpreter.

5.3 View Scaling

One of the restrictions imposed by using object views as the object representa-

tion is that the views have a particular scale. One of the more useful object

manipulations that can be implemented is the scaling of these object views.

48

Each view in the object descriptions has a scale speci�ed in an accompanying

header. When the object view is being drawn, the object handler compares the

scale with which the object is currently being drawn with the scale of the view

to be drawn. If they are di�erent, an interpolated view is generated and used for

display.

A major obstacle to interpolating the image views is their internal represen-

tation. Currently the views are stored as transparency run-length encoded color

quantized images. The view image data being interpolated is reconstructed using

the image's CLUT to RGB values. After interpolation, the resulting RGB value

is mapped back into the image's color table using an inverse color lookup table.

The RGB value being mapped is �rst hashed by taking the most signi�cant

5 bits from each channel and using them as an index into a 32 KByte inverse

color table. The number of bits per channel used in the hashing is important in

obtaining acceptable image quality. Anything smaller than 5 bits/channel appears

very quantized3, yet larger inverse tables (6 or 7 bits/channels) consume too much

memory (256 KBytes or 2 MBytes respectively).

The inverse color table is generated using a full search algorithm to �nd the

most accurate rendition of a particular region of color space among the colors

in the object view CLUT. The inverse tables are currently stored as part of the

3The degradation imposed by to small of an inverse CLUT is large enough that the bene�ts
of using interpolation over pixel replication disappear. This is due to the regular mapping of the
inverse table not being �ne enough to discern the low color gradients observed in real images.

49

- Pixel in original image

- Intermediate value

- Interpolated Pixel value

A

B

C D

Figure 5.2: Pixel Interpolation

object description to save time when initializing the object. Alternatively, they

could be generated from the object's color lookup table.

The interpolation algorithm used allows a rapid scaling of the image by an

arbitrary quantity. A depiction of the interpolation algorithm is found in Fig.

5.2. A set of intermediate values is �rst calculated, using a linear interpolation

between two adjacent scan lines of the original image:

Mi;j = AOi;n +BOi;n+1 (5.1)

B = 1� A (5.2)

In these equations M is the array of intermediate values, O is the array of

original pixels, and N is the output array of interpolated pixels.

The �nal output is then calculated by linearly interpolating horizontally be-

tween the two closest intermediate values:

50

Ni;j = CMm;j +DMm+1;j (5.3)

D = 1� C (5.4)

A and C are computed incrementally, by accumulating the vertical and hori-

zontal spacing, respectively, of the new sampling grid N in the original image O.

Only the two intermediate values required for calculating the current pixel are

stored. All calculations are done in �xed point math, using 16 bits of integer and

16 bits of fraction.

A special interpolation routine decodes the run length encoding of the image's

transparent portions while interpolating the view. In addition, the output it pro-

duces is itself transparency run-length encoded. The interpolation is performed

independently on all three color components of the image: R, G, and B. A typical

pixel interpolation requires 12 multiplies and 14 additions per interpolated pixel.

If the scaling factor is less than 0.5, only 9 multiplies and 11 additions per inter-

polated pixel are required. Unfortunately, even using this simple algorithm, the

time required to interpolate a normally sized object view using a Macintosh IIx

is around 0.8 sec.

5.3.1 View Caching

Since the interpolation algorithm is processor intensive, the interpolated views are

cached. Every time an object handler decides that interpolation is necessary, it

�rst checks to see if the desired view (in the desired scale) is present in the View

51

Cache. If not, it caches the desired view in the cache after interpolating it.

The View Cache is organized as a fully associative cache. It is typically 1

MByte in size, divided into 8 KByte pages. Both these values were obtained by

empirical methods. The cache replacement algorithm utilized is a Least Recently

Used algorithm. This is implemented by maintaining for each cache entry a count

of cache fetches since its last usage. When more pages are needed in the cache,

the entry with the largest count is removed.

Without the view cache, the time required for interpolation limits the useful-

ness of view scaling. In order to fully utilize the view cache, however, a pre-fetching

routine should be utilized. This routine would anticipate the use of an object view

that required scaling and utilize idle processor cycles to interpolate the view and

store it in the View Cache before it is needed. Such a routine could utilize the

\task" structure of motion representation in Video Finger to anticipate future

need.

5.4 Network Interface

The network interface software allows Video Finger to communicate with other

machines sharing a common Local Area Network. The network interface cho-

sen was the Transfer Control Protocol/Internet Protocol (TCP/IP), due to its

prevalent use in the Media Laboratory's computing environment. In addition, the

UNIX �nger utility is already a supported service of the TCP interface software

52

on many machines. The actual software package used was Kinetics TCPort for

MPW C v3.0. The physical network interface used was thin-line Ethernet.

Upon initialization, Video Finger starts the User Task, which is responsible

for maintaining the User State Tables. These tables record the remote state

of every user being monitored. The State Table entry for each user contains a

login
ag and a state variable. The valid values for the state variable represent

the current actions of the user, such as editing, reading news, compiling, idle,

etc. The User Task polls the �nger server on remote machines for information

necessary to maintain the User State Tables. The rate of this polling is limited by

the response time of the remote host. It usually requires �fteen to thirty seconds

for most hosts to generate a reply.

53

Chapter 6

Video Finger: Data Preparation

The object representation used for Video Finger requires a set of object views,

from which the desired task sequences can be assembled. This set of object views

may be generated from a computer graphic database or from actual image data

obtained using a real subject. Since one of the goals of Video Finger was to

incorporate real imagery into the graphic interface, the object descriptions used

were constructed from actual image data.

The object view must be separated from the background present in the orig-

inal object image. There are many ways of implementing this separation; the

most common of which is \blue-screening". In \blue-screening", the object to be

�lmed is placed in front of a monochromatic matte background. The color of the

background is highly saturated, usually blue (hence the name). This allows the

background to be separated by post-processing, either by special analog circuitry

54

(a chroma-keyer) or by software. This technique was chosen due to the relatively

high resolution segmentation produced, and the ease of implementation. Other

techniques considered were not suitable for use with image sequences (laser range

camera) or currently provide results with too little resolution (depth-from-focus,

depth-from-shading, etc).

The subjects for the prototype Video Finger were asked to stand in front of

a blue background, and perform a number of tasks. In order to allow natural

motion, the subjects were recorded using a constantly running video camera and

video tape recorder. The tasks were each repeated at least twice in order to assure

that at least one sequence of each task would be acceptable1. The tasks that the

subjects were asked to perform varied from subject to subject, but all included

a small subset of common tasks, namely twirling around in a chair, standing up

and leaving, entering and sitting down, and falling asleep. Other tasks recorded

included walking, reading, and writing.

6.1 Filming

The bluescreen consisted of 3/8" plywood, covered with several coats of chroma

key blue paint. The subjects were placed approx. 24" in front of the bluescreen,

and illuminated by light sources placed inline with (actually about 4" away from)

1Acceptable in terms of being representative of the task being recorded. This implied that
the tasks were neither performed to rapidly for acurate recording on an NTSC video system, or
not separable into single tasks.

55

the camera lens. This was done in order to reduce shadowing. The camera

used was an Ikegami NTSC camera. It was connected directly to an Ampex 1"

videotape recorder used for taping the subjects. Although recording the images in

NTSC was suboptimal, the fact that the images were band-limited and decimated

in later pre-processing lessened the artifacts.

6.2 Pre-Processing

The recorded images of the subjects were examined in order to determine which

frames would be selected to represent the subject. Once selected, the views were

decoded from the NTSC signal from the videotape recorder into RGB compo-

nents using a Faroudja NTSC Decoder. Each component was digitized separately

using a Datacube frame bu�er mounted in a Sun workstation and transferred to

a microVax III for further processing. The resolution of the input images was

768x480. The images were then cropped to 640x480, �ltered using a half-band

lowpass 13-tap 2D Gaussian �lter, and decimated by two in each dimension to pro-

vide a 320x240 RGB original image set. This image set was then color quantized

to provide the actual images used in the object representation. The color lookup

table was generated by applying Heckbert's median cut algorithm[Heckbert82] to

a histogram generated from a small number of representative images from the

image set.

Although the software supports objects having multiple CLUTs, the color

56

statistics of the object views are relatively constant, allowing most objects to

be reasonably encoded using one 256 entry color table. This is not to say that

the color statistics of a single view are representative of the entire sequence. In-

stead, a small number (three or four) of representative views should be sampled

in generating the CLUT.

6.3 Segmentation

The RGB original image set contained images of the objects against a background.

The background region of the image was identi�ed using color segmentation rou-

tines developed for this purpose [Watlington88b]. The particular segmentation

algorithm used was a region merge algorithm which attempted to form clusters in

a two dimensional color space. The color space used for the segmentation was nor-

malized red vs. normalized blue. The output of the segmentation algorithm was

an image showing the di�erent regions that had been identi�ed. The background

regions (the background was usually identi�ed as three to �ve separate regions)

were then combined to generate a mask image. The mask image was used to set

the background region of the color quantized images to a zero pixel value. Zero

was the pixel value used to denote transparency.

The edges of an object are usually a problem with a chroma based image seg-

mentation algorithm, due to object interre
ectances, pixel averaging (lens blur-

ring), and shadows. If the object edges are not properly identi�ed, di�erent yet

57

Figure 6.1: Object View at several di�erent stages during processing

58

similar views will show di�erent object edges where the edge should be the same.

When the images are animated (played), the resulting artifact is an object with

edges that appear to wiggle back and forth.

The color image segmentation algorithm used performed relatively well, yet

still required two steps of hand editing in producing the mask image. One step

was identifying which segmented regions actually belonged to the background,

the second was eliminating edge location errors around the object. An example

object view during several stages of processing is shown in Fig. 6.1. The images

are, in clockwise order from the upper left corner, the original image view, the

segmented regions, the mask generated from the segmentation information, and

the �nal object view, separated from the background.

These problems could both be alleviated if additional information about the

object view was utilized. If another segmentation algorithm is employed, perhaps

utilizing motion over time, or utilizing both range data and luminance data, the

�rst step of hand editing could be eliminated.

The images being processed were often highly similar. Due to the use of a

sequence of object images to represent motion, many of the images di�ered only

in the motion of one small section. Errors in segmentation could be reduced by

using the information about the object edges and areas of shadow gained by the

segmentation of the previous images in the sequence.

The segmentation routine was implemented on the Mac II, as part of PicTool,

59

an image processing utility. PicTool was vital in assembling the image sets, as

it allowed the images to be easily viewed, segmented, cropped, and retouched as

necessary. Additionally, PicTool provided a programming environment for the

quick testing of the view manipulation algorithms used in Video Finger.

6.4 Alternative Means of Data Preparation

The object description may be generated automatically, if additional information

is recorded by the camera(s) being used. One possibility is the model building

camera developed by V. Michael Bove[Bove89]. This camera records range infor-

mation derived using depth-from-focus methods as well as luminance information

for an image. A sequence of these images, or the images recorded by multiple

cameras viewing the same scene are used to generate a three dimensional particle

representation of the object [Linhardt88]. This database may be converted into

other forms for rendering.

Although the computing requirements of rendering a view directly from the

object database generated by the camera are too large to consider doing it on

the Mac II, the representation used by Video Finger could easily be generated.

Unfortunately, a color version of the camera required is not currently available.

60

Chapter 7

Results

Video Finger has been functioning as a Macintosh application for �ve months

now, in one form or another. The early versions were used to test the object

representation, both external and internal. The later versions have included the

ability to generate the movie description and animate the display. A small, but

representative, set of object descriptions has been prepared, including several

backgrounds. The �nal function to be added was the network interface. When

Video Finger �rst started working, I was startled more than once by the sight of

a person entering the window, informing me that a friend had logged in.

7.1 Improvements

There are several areas of the Video Finger implementation that need improve-

ment:

61

� Currently the object descriptions are maintained in memory, not on disk.

This was done due to the time required to transform the view data into the

internal representation used by Video Finger. Now that a suitable internal

representation has been found, the objects may be stored on disk, and pre-

fetched into main memory by the same mechanism proposed for pre-loading

the view cache. The memory usage by large (ie. useful) objects is currently

the limiting factor is determining the number of objects in the movie.

� The use of a color quantized frame bu�er should be re-evaluated. The

di�culties introduced when interpolating color values make the use of an

RGB frame bu�er desirable. The psychophysical limits of the human visual

system suggest that a frame bu�er using a YIQ representation for color

would be more appropriate [Zworykin54]. The peripheral bus bandwidth

would be doubled, however, if a \true" color frame bu�er is used, requiring

a more powerful computer.

� The object edges should be anti-aliased. Unfortunately, anti-aliasing can

only be done as the view is being transferred into the display bu�er. This

could be implemented, using the same technique to interpolate between two

color quantized images as is used in view scaling.

� The time required to interpolate the image views is restrictive. In the current

implementation, the �rst few frames of the sequences tend to be slow, until

62

the required views have been cached. The use of a coprocessor on the NuBus

to perform the interpolations would accelerate the display, but several very

powerful coprocessors would be required to perform the object interpolations

in real time.

� The current object libraries are quite sparse. The acquisition and processing

of the images required for a single object description is currently a formidable

task. The means for improving this have already been discussed, in Sections

6.3 and 6.4.

7.2 Future Work

A more intellegent means of monitoring the external user state is needed. I pro-

pose adding a server at the monitored machines for providing the user status.

The server could be noti�ed of the receiver's desire to monitor a particular user.

Thereafter, the receiver would be noti�ed by the server upon a change in the

state of the monitored user. This would decrease the network tra�c generated by

Video Finger (although this is already quite minimal, especially when compared

to a packet video movie !), and reduce the remote processor workload.

The background image is not restricted to still images; it can be a motion

image sequence itself. This yields the digital video equivalent of �lming a movie

scene in front of a screen upon which is projected the scene background. Similarly,

63

the background may be used to convey additional information; perhaps a window

in the background, showing the current state of the weather, somewhere in the

world.

The addition of sound to synthetic movies is a necessity. Ideally, the sounds

associated with a synthetic movie must themselves be synthetic. Two di�erent

types of synthetic sound are being investigated: video synchronized speech syn-

thesis and object associated sounds. The synchronization of a synthetic actor

with synthetic speech (usually generated by a dedicated speech synthesizer) is

not a new idea, it has been illustrated previously. The association of sounds in

the soundtrack with particular objects in the video sequence, however, requires

interframe synthesis. Video Finger provides a starting point for experimenting

with object associated sounds.

7.3 Future Hardware

Video Finger is a very simple example of a synthetic movie, due to the restrictive

object representation chosen. A more complex object representation would require

a correspondingly more powerful hardware system.

Such systems exist now [Akeley88][Apgar88][Goldfeather89], but the special-

ized hardware required is very costly. This is changing, however, thanks to ad-

vances in VLSI technology. As the chart in Fig. 7.11 shows, the personal com-

1The data in the chart was obtained from Morris & Dyer[Morris88]

64

1 10 100 1,000 10,000

100

10

1

P
er

fo
rm

an
ce

, i
n

 m
eg

af
lo

ps
 (

64
-b

it
 L

in
pa

ck
 b

en
ch

m
ar

k)

Base price, thousands of dollars

Sun 3/260

Sun 3/50

DEC 8700

Convex

DEC 8200

Cray XMP-4

Cray 2

DSP96000

TMS32030

i860

Alliant FX/8

IBM 3090-200

NEC SX-1

Figure 7.1: Computer Price/Performance Comparison - 1990

puters of the early 1990s will bene�t from microprocessors that outperform many

large computers of the 1980s. The development of more realistic synthetic movies

on personal computers will be helped tremendously.

65

Chapter 8

Conclusion

This thesis was an exploration of synthetic movies. Synthetic movies are not a new

phenomenon, having been present in one form or another since the appearance of

the �rst computers. Until recently, however, synthetic movies had been limited to

either entertainment (games) or to relatively expensive, dedicated systems. The

entrance of the microprocessor, accompanied by cheap high-density memory and

optical storage media, marked the beginning of a new era for synthetic movies.

The digital medium is ideal for the transmission of synthetic movies, allowing

a manipulability not found in analog media. Synthetic movies may now be in-

tegrated into the user interface and applications of the personal computer. The

future is bright.

66

Bibliography

[Akeley88] K. Akeley, T. Jermoluk, \High Performance Polygon Rendering",

ACM Computer Graphics, Vol. 22, No. 4, Aug. 1988, p.239.

[Apgar88] B. Apgar, B. Bersack, A. Mammen, \A Display System for the Stellar
Graphics Supercomputer Model GS1000", ACM Computer Graphics, Vol.
22, No. 4, Aug. 1988.

[Backer88] D.S. Backer, \Structures and Interactivity of Media: A Prototype for
the Electronic Book," PhD Dissertation, Massachusetts Institute of Technol-

ogy, June 1988.

[Baumwell88] M. Baumwell, C. Birse, R. Collyer, \NuBus Interrupt Latency (I
was a teenage DMA junkie)", Macintosh Technical Note #221, Apple Pro-

grammers and Developers Association, Dec. 1988.

[Bove88] V.M. Bove, \Pictoral Applications for range sensing cameras", Proc.
SPIE, 1988.

[Bove89] V.M. Bove, \Synthetic Movies Derived from Multi-Dimensional Image

Sensors", PhD Dissertation, Massachusetts Institute of Technology, June

1989.

[Brett87] C. Brett, S. Pieper, D. Zeltzer, \Putting It All Together: An Integrated

Package for Viewing and Editing 3D Microworlds", Proc. 4th Usenix Com-

puter Graphics Workshop, Cambridge, Massachusetts, Oct. 1987.

[Br�ndmo89] H.P. Br�ndmo, G. Davenport, \Creating and Viewing the Elastic

Charles - A Hypermedia Journal", MIT Media Laboratory, Film/Video Sec-

tion working paper, July 1989.

[Brush89] Discussion with Dr. George Brush, College of Aeronautics, New York,

July 1989.

[DSPatch] |, \The Lamborghini of ADSP-2100 Applications", DSPatch, Analog

Devices, No. 11, Spring 1989.

67

[DuBois89] DuBois, P.,\TransSkel: A Transportable Application Skeleton",

TransSkel v2.0 documentation, Wisconsin Regional Primate Research Center,

Feb. 1989.

[Feiner82] S. Feiner, D. Salesin, T. Bancho�, \Dial: A Diagrammatic Animation

Language", IEEE Computer Graphics, Vol. 2, Num. 7, Sept. 1982, p. 43.

[Foley83]

J.D. Foley, A. Van Dam,Fundamentals of Interactive Computer Graphics,

Addison Wesley, Reading, Massachusetts, 1984, p. 3.

[Fortin83] D. Fortin, J.F. Lamy, D. Thalmann, \A Multiple Track Animator Sys-

tem for Motion Synchronization," Proc. ACM SIGGRAPH/SIGART Inter-
disciplinary Workshop, Toronto, Canada, April 1983, p. 180.

[Ginsberg83] C. Ginsberg, \Human Body Motion as Input to an Animated Graph-

ical Display", S.M. Thesis, Massachusetts Institute of Technology, May 1983.

[Goldfeather89] J. Goldfeather, H. Fuchs, S. Molnar, G. Turk, \Near Real-Time

CSG Rendering Using Tree Normalization and Geometric Pruning", IEEE
Computer Graphics, Vol. 9, No. 3, May 1989, p. 20.

[Hecht79] E. Hecht, A. Zajac, Optics, Addison-Wesley, Reading, MA, 1979, p.112.

[Heckbert82] P. Heckbert, \Color Image Quantization for Frame Bu�er Display,"
ACM Computer Graphics, vol. 16, no. 3, pp. 297-305, July 1982.

[Ixion] Information booklet, Ixion Systems, Seattle, Washington.

[Kay77] A. Kay, A. Goldberg, \Personal Dynamic Media", Computer 10(3),
March 1977, p. 30.

[Levy84] Steven Levy, Hackers: Heroes of the Computer Revolution, Anchor

Press/Doubleday, Garden City, New York, 1984, p.45.

[Linhardt88] P.M. Linhardt, \Integration of Range Images from Multiple View-

points into a Particle Database," MSVS Thesis, Massachusetts Institute of
Technology, Feb. 1989.

[Lippman80] A. Lippman, \Movie Maps: An Application of the Optical Videodisc

to Computer Graphics Laboratory," Proc. ACM SIGGRAPH, 1980.

[Lippman81] A. Lippman, \The Computational Videodisc," IEEE Trans. on Con-

sumer Electronics, vol. CE-27, no. 3, Aug. 1981.

[Lippman87] A. Lippman, W. Bender, \News and Movies in the 50 Megabit Living

Room," IEEE Globecom, Tokyo, Japan, Nov. 1987.

68

[Maxwell83] D. Maxwell, \Graphical Marionette: A Modern-Day Pinocchio",

MSVS Thesis, Massachusetts Institute of Technology, June 1983.

[Mohl81] R. Mohl, \Cognitive Space in the Interactive Movie Map: An Inves-

tigation of Spatial Learning in Virtual Environments," PhD Dissertation,

Massachusetts Institute of Technology, Sept. 1981.

[Morris88] L.R. Morris, S.A. Dyer, \Floating Point Signal Processing Chips: The

End of the Supercomputer Era ?", IEEE Micro, Vol. 8, No. 6, Dec. 1988, p.

86.

[Netravali89]

A. Netravali, B. Haskell, Digital Pictures: Representation and Compression,
Plenum Press, New York,1989.

[Pentland89] A. Pentland, J. Williams, \Good Vibrations: Modal Dynamics for

Graphics and Animations", ACM Computer Graphics, Vol. 23, No. 3, July
1989, p. 215.

[Platt88] J. Platt, A. Barr, \Constraint Methods for Flexible Models", ACM
Computer Graphics, Vol. 22, No. 4, Aug. 1988, p. 279.

[Pratt78] W.K. Pratt, Digital Image Processing, John Wiley and Sons Inc., New

York, 1978.

[Reeves83] W.T. Reeves, \Particle Systems - A Technique for Modeling a Class

of Fuzzy Objects", ACM Trans. on Graphics, vol. 2, no. 2, April 1983, p.91.

[Reynolds82] C.W. Reynolds, \Computer Animation with Scripts and Actors",
ACM Computer Graphics, Vol. 16, No. 3, July 1982, p.289.

[Schreiber86] W.F. Schreiber, Fundamentals of Electronic Imaging Systems,

Springer-Verlag, New York, 1986.

[Sturman89] D. Sturman, D. Zeltzer, S. Pieper, \The Use of Constraints in the
bolio System", Course Notes, Tutorial #29, ACM SIGGRAPH 1989, Boston,

Massachusetts, August 1989.

[Terzopoulos88] D. Terzopoulos, K. Fleischer, \Modeling Inelastic Deformation:
Viscoelasticity, Plasticity, Fracture", ACM Computer Graphics, Vol. 22, No.

4, Aug. 1988, p.269.

[Watlington87] J. Watlington, \A Decoder for Vector Quantized Color Motion

Image Sequences", S.B. Thesis, Massachusetts Institute of Technology, May

1988.

69

[Watlington88a] J. Watlington, \Movie Player Technical Description", MIT Me-

dia Laboratory, Movies of the Future Group, Internal Memo, Fall 1988.

[Watlington88b] J. Watlington, \Color Image Segmentation for Separation of

Background Surfaces", MIT 4.906 Final Project Report, Fall 1988.

[XEROX Star] \Designing the Star User Interface", Byte, 1982, p242-282.

[Zeltzer85] D. Zeltzer, \Towards an Integrated View of 3-D Computer Anima-

tion", Procs. Graphics Interface '85, Montreal, May 1985.

[Zeltzer88] D. Zeltzer, S. Pieper, D.J. Sturman, \An Integrated Graphical Simu-
lation Platform", Submitted for publication, November 1988.

[Zworykin54] V. K. Zworykin, G. Morton, Television, 2nd Edition, John Wiley &
Sons, Inc., New York, 1954, p. 817-818.

70

