Bibliography

 

[1]   S. Abdallah and M. Plumbley. Unsupervised onset detection: a probabilistic approach using ICA and a hidden markov classifier. In Proceedings of Cambridge Music Processing Colloquium, Cambridge, UK, 2003.

[2]   D. Adams. The Hitchhiker’s Guide to the Galaxy. Pocket Books, New York, NY, 1979.

[3]   V. Adan. Hierarchical music structure analysis, modeling and resynthesis: A dynamical systems and signal processing approach. Master’s thesis, MIT Media Laboratory, 2005.

[4]   M. Alonso, B. David, and G. Richard. Tempo and beat estimation of musical signals. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), Barcelona, Spain, October 2004. Universitat Pompeu Fabra.

[5]   A. S. Association. American standard acoustical terminology. definition 12.9. timbre, 1960.

[6]   J.-J. Autouturier and F. Pachet. Finding songs that sound the same. In Proceedings of IEEE Workshop on Model based Processing and Coding of Audio. University of Leuven, Belgium, November 2002. Invited Talk.

[7]   J.-J. Autouturier and F. Pachet. Improving timbre similarity: How high is the sky? Journal of Negative Results in Speech and Audio Sciences, 1(1), 2004.

[8]   M. A. Bartsch and G. H. Wakefield. To catch a chorus: Using chroma-based representations for audio thumbnailing. In Proceedings of IEEE Wokshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 15–18, Mohonk, NY, October 2001.

[9]   S. Baumann and T. Pohle. A comparison of music similarity measures for a p2p application. Proceedings of the 6th International Conference on Digital Audio Effects (DAFx-03), Septembre 2003.

[10]   J. P. Bello and M. Sandler. Phase-based note onset detection for music signals. In proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003.

[11]   A. Berenzweig, D. Ellis, B. Logan, and B. Whitman. A large scale evaluation of acoustic and subjective music similarity measures. In Proceedings of the 2003 International Symposium on Music Information Retrieval, Baltimore, MD, October 2003.

[12]   J. A. Bilmes. Timing is of essence. Master’s thesis, Massachusetts Institute of Technology, 1993.

[13]   C. M. Bishop, editor. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

[14]   M. Boden. The creative mind: Myths and mechanisms. Behavioural and Brain Sciences, 17(3), 1994.

[15]   J. Bonada. Automatic technique in frequency domain for near-lossless time-scale modification of audio. In Proceedings of International Computer Music Conference 2000, Berlin, Germany, 2000.

[16]   J. Bonada. Audio Time-Scale Modification in the Context of Professional Post-Production. PhD thesis, Universitat Pompeu-Fabra, Barcelona, 2002.

[17]   M. Bosi and R. E. Goldberg. Introduction to Digital Audio Coding and Standards. Kluwer Academic Publishers, Boston, December 2002.

[18]   K. Brandenburg and G. Stoll. ISO MPEG-1 audio: A generic standard for coding of high quality digital audio. Journal of the Audio Engineering Society, 10:780–792, October 1994.

[19]   A. Bregman. Auditory Scene Analysis: The Perceptual Organization of Sound. MIT Press, 1990.

[20]   J. Brown and M. Cooke. Computational auditory scene analysis. Computer Speech and Language, 8(2):297–336, 1994.

[21]   R. G. Brown and P. Y. Hwang. Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Sons, New York, 2nd edition, 1991.

[22]   C. J. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121–167, June 1998.

[23]   P. Cano, E. Batlle, T. Kalker, and J. Haitsma. A review of algorithms for audio fingerprinting. In In International Workshop on Multimedia Signal Processing, US Virgin Islands, December 2002.

[24]   P. Cariani. Neural timing nets for auditory computation. In S. Greenberg and M. S. (Eds.), editors, Computational Models of Auditory Function, pages 235–249, Amsterdam, 1999. IOS press.

[25]   P. Cariani. Temporal codes, timing nets, and music perception. Journal of New Music Perception, 30(2), 2001.

[26]   W. Chai. Melody retrieval on the web. Master’s thesis, MIT Media Laboratory, 2001.

[27]   W. Chai. Automated Analysis of Musical Structure. PhD thesis, MIT Media Laboratory, 2005.

[28]   W. Chai and B. Vercoe. Music thumbnailing via structural analysis. In Proceedings of ACM Multimedia Conference, November 2003.

[29]   H. Cohen. The further exploits of AARON, painter. Stanford Humanities Review, Constructions of the Mind: Artificial Intelligence and the Humanities, 4(2), 1997.

[30]   M. Cooper and J. Foote. Summarizing popular music via structural similarity analysis. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Mohonk, NY, October 2003.

[31]   D. Cope. New Directions in Music. William C. Brown, Dubuque, Iowa, 1984. 4th edition.

[32]   D. Cope. Experiments in Music Intelligence. A-R Editions, Madison, WI, 1996.

[33]   T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (Second Edition). MIT Press and McGraw-Hill, Cambridge, MA, 2001.

[34]   T. Cover and J. Thomas. Elements of Information Theory. John Wiley & Sons, Inc., New York, 1991.

[35]   T. Dartnall. Artificial Intelligence and Creativity: an Interdisciplinary Approach. Kluwer, Dordrecht, 1994.

[36]   I. Deliège. Grouping Conditions in Listening to Music: An Approach to Lerdhal and Jackendoff’s grouping preferences rules. Music Perception, 4:325–360, 1987.

[37]   P. Desain and H. Honing. Computational models of beat induction: the rule-based approach. Journal of New Music Research, 28(1):29–42, 1999.

[38]   S. Dixon. Automatic extraction of tempo and beat from expressive perfomances. Journal of New Music Research, 30(1), March 2001.

[39]   S. E. Dixon. An empirical comparison of tempo trackers. In Proceedings of 8th Brazilian Symposium on Computer Music, Fortaleza, Brazil, July 2001.

[40]   M. Dolson. The phase vocoder: a tutorial. Computer Music Journal, 10(4):14–27, 1986.

[41]   I. Drori, D. Cohen-Or, and H. Yeshurun. Fragment-based image completion. In Siggraph 2003, Computer Graphics Proceedings, New York, NY, USA, 2003. ACM Press / ACM SIGGRAPH / Addison Wesley Longman.

[42]   R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley Interscience, New York, 2nd edition, 2000.

[43]   C. Duxbury, M. Davies, and M. Sandler. Improved time-scaling of musical audio using phase locking at transients. In Proceedings of the 112th AES Convention, Munich, Germany, May 2002.

[44]   Ear anatomy, 2004. Medical Encyclopedia website ADAM, accredited by the American Accreditation HealthCare Commission. http://www.nlm.nih.gov/medlineplus/ency/imagepages/1092.htm.

[45]   D. Eck. A positive-evidence model for rhythmical beat induction. Journal of New Music Research, 30(2):187–200, 2001.

[46]   D. P. Ellis and J. Arroyo. Eigenrhythms: Drum pattern basis sets for classification and generation. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), Barcelona, Spain, October 2004.

[47]   D. P. Ellis, B. Whitman, A. Berenzweig, and S. Lawrence. The quest for ground truth in musical artist similarity. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), Paris, France, October 2002.

[48]   J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[49]   H. Fletcher. Auditory patterns. Rev. Mod. Phys., 12:47–55, January 1940.

[50]   H. Fletcher and W. Munson. Relation between loudness and masking. Journal of Acoustic Society of America, 9(1):1–10, July 1937.

[51]   J. Foote and M. Cooper. Automatic audio segmentation using a measure of audio novelty. In Proceedings of IEEE International Conference on Multimedia and Expo, pages 452–455, New York, USA, 2000.

[52]   J. Foote and M. Cooper. Visualizing musical structure and rhythm via self-similarity. In Proceedings International Computer Music Conference, La Habana, Cuba, 2001.

[53]   N. A. Gershenfeld and A. S. Weigend. The future of time series: Learning and understanding. In A. S. Weigend and N. A. Gershenfeld, editors, Time Series Prediction: Forecasting the Future and Understanding the Past, pages 1–63, Reading, MA, 1993. Addison–Wesley.

[54]   A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith. Query by humming: Musical information retrieval in an audio database. In ACM Multimedia, pages 231–236, 1995.

[55]   M. Gibbs. Bayesian Gaussian Processes for Regression and Classification. PhD thesis, University of Cambridge, 1997.

[56]   F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7:219–269, 1995.

[57]   B. R. Glasberg and B. C. J. Moore. A model of loudness applicable to time-varying sounds. J. Audio Eng. Soc., 50:331–342, 2002.

[58]   S. Godsill, P. Rayner, and O. Capp’e. Digital audio restoration. In Applications of Digital Signal Processing to Audio and Acoustics, Norwell, MA, 1996.

[59]   M. Goto. An audio-based real-time beat tracking system for music with or without drum sounds. Journal of New Music Research, 30:159–171, 2001.

[60]   M. Goto. Smartmusickiosk: music listening station with chorus-search function. In Proceedings of the 16th annual ACM symposium on User interface software and technology, pages 31–40, November 2003.

[61]   M. Goto and Y. Muraoka. Real-time beat tracking for drumless audio signals: Chord change detection for musical decisions. Journal of Speech Communication, 27:311–335, 1999.

[62]   F. Gouyon, L. Fabig, and J. Bonada. Rhythmic expressiveness transformations of audio recordings: Swing modifications. In Proceedings of the 6th International Conference on Digital Audio Effects (DAFx-03), London, UK, September 2003.

[63]   F. Gouyon and P. Herrera. A beat induction method for musical audio signals. In In Proceedings 4th WIAMIS Special Session on Audio Segmentation and Digital Music, Queen Mary University, London, 2003.

[64]   F. Gouyon, P. Herrera, and P. Cano. Pulse-dependent analysis of percussive music. In Workshop on Digital Audio Effects, DAFx-98, pages 188–191, Barcelona, Spain, 1998.

[65]   F. Gouyon, P. Herrera, and P. Cano. Pulse-dependent analysis of percussive music. In Proceedings of the AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio, 2002.

[66]   J. Grey. Timbre discrimination in musical patterns. Journal of the Acoustical Society of America, 64:467–472, 1978.

[67]   M. Gruhne, C. Uhle, C. Dittmar, and M. Cremer. Extraction of drum patterns and their description within the MPEG-7 high-level-framework. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), Barcelona, Spain, October 2004. Universitat Pompeu Fabra.

[68]   S. Handel. LISTENING: An Introduction to the Perception of Auditory Events. MIT Press, Cambridge, Massachusetts, 1989.

[69]   J. Herre, E. Allamanche, and C. Ertel. How similar do songs sound? towards modeling human perception of musical similarities. In Proceedings of IEEE Wokshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Mohonk, NY, October 2003.

[70]   P. Herrera, X. Serra, and G. Peeters. Audio descriptors and descriptor schemes in the context of MPEG-7. In Proceedings of International Computer Music Conference, Beijing, China, 1999.

[71]   D. Hosmer and S. Lemeshow. Applied Logistic Regression. Wiley and Sons, New York, 1989.

[72]   X. Huang, A. Acero, and H.-W. Hon. Spoken Language Processing: A Guide to Theory, Algorithm and System Development. Prentice-Hall, Englewood Cliffs, N.J., 2001.

[73]   A. Hunt and A. Black. Unit selection in a concatenative sound synthesis. In Proceedings ICASSP, Atlanta, GA, 1996.

[74]   V. S. Iyer. Microstructures of Feel, Macrostructures of Sound: Embodied Cognition in West African and African-American Musics. PhD thesis, University of California, Berkeley, 1998.

[75]   T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. Advances in Neural Information Processing Systems 12, 1999.

[76]   A. K. Jain, J. C. Mao, and K. M. Moniuddin. Artificial neural networks: A review. IEEE Computer Special Issue on Neural Computing, March 1996.

[77]   T. Jebara. Discriminative, Generative and Imitative Learning. PhD thesis, Massachusetts Institute of Technology, February 2002.

[78]   T. Jehan. Music signal parameter estimation. Master’s thesis, IFSIC, Rennes, and CNMAT, Berkeley, September 1997.

[79]   T. Jehan. Perceptual synthesis engine: an audio-driven timbre generator. Master’s thesis, MIT Media Laboratory, September 2001.

[80]   T. Jehan. Perceptual segment clustering for music description and time-axis redundancy cancellation. In Proceedings of the 5th International Conference on Music Information Retrieval, Barcelona, Spain, October 2004.

[81]   T. Jehan. Hierarchical multi-class self similarities. In Proceedings of IEEE Wokshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Mohonk, NY, October 2005. (submitted).

[82]   T. Jehan, T. Machover, and M. Fabio. Sparkler: An audio-driven interactive live computer performance for symphony orchestra. In Proceedings International Computer Music Conference, Göteborg, Sweden, 2002.

[83]   T. Jehan and B. Schoner. An audio-driven, spectral analysis-based, perceptual synthesis engine. Journal of the Audio Engineering Society, 2001.

[84]   F. V. Jensen. An Introduction to Bayesian Networks. Springer-Verlag, New York, 1996.

[85]   T. Joachims. Learning to Classify Text Using Support Vector Machines. Kluwer, Boston, MA, 2002.

[86]   Joe. War president, 2004. Posted at http://amleft.blogspot.com on April 1st.

[87]   M. Jordan, editor. Learning in Graphical Models. MIT Press, Cambridge, Massachusetts, 1998.

[88]   M. Jordan and R. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6:181–214, 1994.

[89]   H. Kantz. Noise reduction by local reconstruction of the dynamics. In A. Weigend and N. Gershenfeld, editors, Time Series Prediction: Forecasting the Future and Understanding the Past, pages 475–490, Reading, MA, 1993. Addison–Wesley.

[90]   A. Klapuri. Sound onset detection by applying psychoacoustic knowledge. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 3089–3092, 1999.

[91]   A. P. Klapuri. Musical meter estimation and music transcription. In In Proceedings Cambridge Music Processing Colloquium, pages 40–45, Cambridge University, UK, 2003.

[92]   A. P. Klapuri, A. J. Eronen, and J. T. Astola. Analysis of the meter of acoustic musical signals. IEEE Transaction on Speech and Audio Processing (in Press), 2005.

[93]   T. Kuusi. Set-Class and Chord: Examining Connection between Theoretical Resemblance and Perceived Closeness. PhD thesis, Sibelius Academy, 2001.

[94]   J. Laroche. Time and pitch scale modification of audio signals. In M. Kahrs and K. Brandenburg, editors, Applications of Digital Signal Processing to Audio and Acoustics, pages 279–310. Kluwer Academic Publishers, Boston, 1998.

[95]   J. Laroche. Estimating, tempo, swing, and beat locations in audio recordings. In Proceedings of IEEE Wokshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 135–138, Mohonk, NY, October 2001.

[96]   J. Laroche. Efficient tempo and beat tracking in audio recordings. Journal of the Audio Engineering Society, 51(4):226–233, April 2003.

[97]   J. Laroche and M. Dolson. Improved phase vocoder time-scale modification of audio. IEEE Transactions on Speech and Audio Processing, 7(3):323–332, May 1999.

[98]   A. Lazier and P. Cook. Mosievius: Feature driven interactive audio mosaicing. Proceedings of the 6th International Conference on Digital Audio Effects (DAFx-03), Septembre 2003.

[99]   C. S. Lee. The Perception of Metrical Structure: Experimental Evidence and a Model, pages 59–127. Academic Press, London, 1991.

[100]   F. Lerdahl and R. Jackendoff. A Generative Theory of Tonal Music. MIT Press, Cambridge, Mass., 1983.

[101]   F. Lerdhal. Timbral hierarchies. Contemporary Music Review, 2:135–160, 1987.

[102]   S. Levine. Audio Representations for Data Compression and Compressed Domain Processing. PhD thesis, CCRMA, Stanford University, 1998.

[103]   G. E. Lewis. Too many notes: Computers, complexity and culture in Voyager. Leonardo Music Journal, 10:33–39, 2000.

[104]   B. Lincoln. An experimental high-fidelity perceptual audio coder. Technical report, CCRMA, Stanford University, 1998.

[105]   L. Lu, H. Jiang, and H.-J. Zhang. Robust audio classification and segmentation method. In Proceedings of the 9th ACM International Multimedia Conference and Exhibition, pages 103–211, 2001.

[106]   L. Lu, L. Wenyin, and H.-J. Zhang. Audio textures: Theory and applications. IEEE Transactions on Speech and Audio Processing, 12(2), march 2004.

[107]   L. Lu, L. Wenyin, H.-J. Zhang, and Y. Mao. Audio textures. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 1761–1764, 2002.

[108]   T. Machover. Hyperinstruments: A progress report 1987-1991. Technical report, MIT Media Laboratory, 1992.

[109]   M. Maher and J. Beauchamp. Fundamental frequency estimation of musical signals using a two-way mismatch procedure. Journal of the Acoustical Society of America, 95(4):2254–2263, 1994.

[110]   M. Marolt, A. Kavcic, and M. Privosnik. Neural networks for note onset detection in piano music. In Proceedings International Computer Music Conference, Göteborg, Greece, September 2002.

[111]   K. D. Martin. Sound-Source Recognition: A Theory and Computational Model. PhD thesis, MIT Media Lab, 1999.

[112]   S. McAdams. Contributions of music to research on human auditory cognition. In Thinking in Sound: the Cognitive Psychology of Human Audition, pages 146–198. Oxford University Press, 1993.

[113]   M. McKinney and J. Breebaart. Features for audio and music classification. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), Baltimore, MD, October 2003.

[114]   E. Métois. Musical Sound Information: Musical Gestures and Embedding Synthesis. PhD thesis, MIT Media Lab, 1996.

[115]   T. M. Mitchell. Machine Learning. The McGraw-Hill Companies, Inc., Singapore, 1997.

[116]   B. C. J. Moore. An Introduction to the Psychology of Hearing. Academic Press, New York, 1997.

[117]   B. C. J. Moore and B. R. Glasberg. A revision of zwicker’s loudness model. Acta Acustica, 82:335–345, 1995.

[118]   Moving Picture Experts Group. The official MPEG website. http://www.chiariglione.org/mpeg/.

[119]   B. A. Myers. Peridot: Creating user interfaces by demonstration, pages 125–153. MIT Press, Cambridge, MA, 1993.

[120]   A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems, Vancouver, Canada, December 2001. MIT Press.

[121]   J. Oswald. Plunderphonics’ web site: audio piracy as a compositional prerogative, 1999. http://www.plunderphonics.com.

[122]   F. Pachet. The continuator: Musical interaction with style. In Proceedings International Computer Music Conference, Göteborg, Sweden, 2002.

[123]   F. Pachet. Knowledge Management and Musical Metadata. Idea Group, 2005. In Encyclopedia of Knowledge Management, edited by Diemo Schwarz.

[124]   F. Pachet, J.-J. Aucouturier, A. L. Burthe, A. Zils, and A. Beurive. The cuidado music browser: an end-to-end electronic music distribution system. Multimedia Tools and Applications, 2004. Special Issue on the CBMI03 Conference.

[125]   F. Pachet, G. Westerman, and D. Laigre. Musical data mining for electronic music distribution. In Proceedings of the 1st WedelMusic Conference, 2001.

[126]   F. Pachet and A. Zils. Evolving automatically high-level music descriptors from acoustic signals. Springer Verlag LNCS, 2771, 2003.

[127]   T. Painter and A. Spanias. A review of algorithms for perceptual coding of digital audio signals. In Proceedings of the International Conference of Digital Signal Processing, pages 179–205, July 1997.

[128]   E. Pampalk, S. Dixon, and G. Widmer. Exploring music collections by browsing different views. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), Baltimore, MD, October 2003.

[129]   M. Parry and I. Essa. Rhythmic similarity through elaboration. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), Baltimore, MD, October 2003.

[130]   J. Paulus and A. Klapuri. Measuring the similarity of rythmic patterns. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), pages 175–176, Paris, 2002. IRCAM.

[131]   S. Pauws. Musical key extraction from audio. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), Barcelona, Spain, October 2004. Universitat Pompeu Fabra.

[132]   G. Peeters, A. L. Burthe, and X. Rodet. Toward automatic music audio summary generation from signal analysis. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), Paris, 2002. IRCAM.

[133]   G. Peeters, S. McAdams, and P. Herrera. Instrument description in the context of mpeg-7. In Proceedings of International Computer Music Conference, Berlin, Germany, 2000.

[134]   R. M. Pirsig. Zen and the Art of Motorcycle Maintenance. Morrow, 10th edition, May 1974.

[135]   W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York, 2nd edition, 1992.

[136]   T. F. Quatieri. Discrete-Time Speech Signal Processing, Principles and Practice. Prentice Hall, Upper Saddle River, NJ, 2002.

[137]   L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[138]   S. Rossignol, X. Rodet, J. Soumagne, J.-L. Collette, and P. Depalle. Automatic characterization of musical signals: Feature extraction and temporal segmentation. Journal of New Music Research, 28(4):281–295, 1999.

[139]   R. Rowe. Interactive Music Systems. MIT Press, 1992.

[140]   S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, Inc., Upper Saddle River, New Jersey, 1995.

[141]   E. Scheirer. Tempo and beat analysis of acoustic musical signals. Journal of the Acoustic Society of America, 103(1), January 1998.

[142]   E. Scheirer. Music Listening Systems. PhD thesis, MIT Media Laboratory, 2000.

[143]   A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa. Video textures. In K. Akeley, editor, Siggraph 2000, Computer Graphics Proceedings, pages 33–42. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

[144]   B. Schoner. State reconstructiion for determining predictability in driven nonlinear acoustical systems. Master’s thesis, MIT/RWTH Aachen, 1996.

[145]   B. Schoner. Probabilistic Characterization and Synthesis of Complex Driven Systems. PhD thesis, MIT Media Laboratory, 2000.

[146]   M. Schroeder, B. Atal, and J. Hall. Optimizing digital speech coders by exploiting masking properties of the human ear. Journal of the Acoustical Society of America, 66:1647–1652, 1979.

[147]   D. Schwarz. The caterpillar system for data-driven concatenative sound synthesis. In Proceedings of the 6th International Conference on Digital Audio Effects (DAFx-03), Septembre 2003.

[148]   J. Seppänen. Tatum grid analysis of musical signals. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Mohonk, NY, October 2001.

[149]   X. Serra. A system for Sound Analysis/Transformation/Synthesis Based on a Deterministic Plus Stochastic Decomposition. PhD thesis, CCRMA, Department of Music, Stanford University, 1989.

[150]   X. Serra and J. O. Smith. Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition. Computer Music Journal, 14(4):12–24, 1990.

[151]   P. Smaragdis. Redundancy Reduction for Computational Audition, a Unifying Approach. PhD thesis, MIT Media Lab, 2001.

[152]   J. O. Smith. Physical modeling using digital waveguides. Computer Music Journal, 6(4), 1992.

[153]   J. O. Smith and J. S. Abel. Bark and ERB bilinear transforms. IEEE Transactions on Speech and Audio Processing, 7(6):697–708, November 1999.

[154]   J. O. Smith and P. Gosset. A flexible sampling-rate conversion method. International Conference on Acoustics, Speech, and Signal Processing, 2:19.4.1–19.4.2, 1984.

[155]   B. Snyder. Music and Memory: an Introduction. MIT Press, Cambridge, MA, 2000.

[156]   A. Stenger, K. Younes, R. Reng, and B. Girod. A new error concealment technique for audio transmission with packet loss. In Proceedings European Signal Processing Conference (EUSIPCO 96), pages 1965–1968, Trieste, Italy, September 1998.

[157]   F. Takens. Detecting strange attractors in turbulence. In D. Rand and L. Young, editors, Dynamical Systems and Turbulence, volume 898 of Lecture Notes in Mathematics, pages 366–381, New York, 1981. Springer-Verlag.

[158]   A. S. Tanguiane. Artificial Perception and Music Recognition. Springer-Verlag, New York, 1993.

[159]   D. Temperley. The Cognition of Basic Musical Structures. MIT Press, Cambridge, 2001.

[160]   E. Terhardt. Calculating virtual pitch. Hearing Research, 1:155–182, 1979.

[161]   G. Tzanetakis. Manipulation, Analysis, and Retrieval Systems for Audio Signals. PhD thesis, Princeton University, June 2002.

[162]   G. Tzanetakis and P. Cook. Multifeature audio segmentation for browsing and annotation. In Proceedings IEEE Workshop on applications of Signal Processing to Audio and Acoustics, October 1999.

[163]   G. Tzanetakis and P. Cook. Automatic musical genre classification of audio signals. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), Bloomington, USA, October 2001.

[164]   V. N. Vapnik. Estimation of Dependences Based on Empirical Data [in Russian]. Nauka, Moscow, 1979. (English translation: Springer-Verlag, New York, 1982).

[165]    B. Vercoe. Computational auditory pathways to music understanding. In I. Deliège and J. Sloboda, editors, Perception and Cognition of Music, pages 307–326. Psychology Press, Hove, UK, 1997.

[166]   Y. Wang. A beat-pattern based error concealment scheme for music delivery with burst packet loss. In Proceedings International Conference Multimedia and Expo (ICME’01), pages 73–76, 2001.

[167]   M. Welsh, N. Borisov, J. Hill, R. von Behren, and A. Woo. Querying large collections of music for similarity. Technical report, Computer Science Division, University of California, Berkeley, 1999.

[168]   D. L. Wessel. Timbre space as a musical control structure. Computer Music Journal, 3(2):45–52, 1979. Republished in Foundations of Computer Music, Curtis Roads (Ed., MIT Press).

[169]   B. Whitman. Learning the Meaning of Music. PhD thesis, MIT Media Laboratory, 2005.

[170]   B. Whitman and S. Lawrence. Inferring descriptions and similarity for music from community metadata. In Proceedings International Computer Music Conference, pages 591–598, Göteborg, Greece, September 2002.

[171]   B. Whitman and R. Rifkin. Musical query-by-description as a multiclass learning problem. In Proceedings of the IEEE Multimedia Signal Processing Conference, St. Thomas, USA, December 2002.

[172]   Wikipedia website. Definition of: Disc Jockey, May 2005. http://www.wikipedia.org/wiki/DJ.

[173]   T. Winkler. Composing Interactive Music: Techniques and Ideas Using Max. MIT press, 1998.

[174]   M. Wright, A. Chaudhary, A. Freed, S. Khoury, and D. Wessel. Audio applications of the sound description interchange format standard. In Proceedings of the 107th AES Convention, New York, New York, September 1999.

[175]   M. Wright and A. Freed. OpenSound control: A new protocol for communicating with sound synthesizers. In Proceedings International Computer Music Conference, pages 101–104, Thessaloniki, Greece, 1997.

[176]   L. Wyse, Y. Wang, and X. Zhu. Application of a content-based percussive sound synthesizer to packet loss recovery in music streaming. In MULTIMEDIA ’03: Proceedings of the eleventh ACM international conference on Multimedia, pages 335–338, Berkeley, CA, USA, 2003. ACM Press.

[177]   J. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. Advances in Neural Information Processing Systems, 2000.

[178]   T. Yoshioka, T. Kitahara, K. Komatani, T. Ogata, and H. G. Okuno. Tempo and beat estimation of musical signals. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), Barcelona, Spain, October 2004. Universitat Pompeu Fabra.

[179]   G. U. Yule. On a method of investigating periodicities in disturbed series with special reference to Wolfer’s sunspot numbers. Philosophical Transactions Royal Society London Ser. A, 226:267–298, 1927.

[180]   D. Zicarelli. An extensible real-time signal processing environment for Max. In Proceedings International Computer Music Conference, pages 463–466, Ann Arbor, Michigan, 1998.

[181]   A. Zils and F. Pachet. Musical mosaicing. In Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFx-01), Limerick, Ireland, December 2001.

[182]   A. Zils and F. Pachet. Automatic extraction of music descriptors from acoustic signals using eds. In Proceedings of the 116th AES Convention, May 2004.

[183]   E. Zwicker and H. Fastl. Psychoacoustics: Facts and Models. Springer Verlag, Berlin, 2nd edition, 1999.