Musical Signal Parameter Estimation

Under the direction of:
Adrian Freed (CNMAT)
Jean–jacques Fuchs (IRISA)

Tristan Jehan
DIIC – TST
1997
to my parents...
Preface

Personal Thought
Staying in California for six months was an incredible and deeply enriching experience. Leaving my country gave me the opportunity to discover new cultures and landscapes which had been my wish. I really enjoyed living in Berkeley and especially sharing an apartment with the perfect roommate. The entire San Francisco Bay Area is very beautiful, definitely more sunny than Brittany and remarkably rich in culture. I am glad I had the chance to work on my thesis in such an interesting part of the United States.

Where and Why?
As a child I began playing the piano and experimenting electronics. My education drew me logically more and more towards the interdisciplinary field of “Computer Music”. I finally had the opportunity to combine my two main interests through my research work, the last stage of the Diplôme d’Ingénieur en Informatique et Communication, or DIIC. The Center for New Music and Audio Technologies¹ (CNMAT²) at the University of California, Berkeley (UCB³) provided the ideal environment for this project. I was very inspired beyond learned a lot from the many people I met with an outstanding knowledge of computers issues.

The Work
The schedule was not defined in advance. My work started by reading recent papers about the topic and learning to use tools that exist at CNMAT and are used every day: Matlab, CAST (see section 1.5), Melvyl and Gladys (Universities of California’s library online catalogs⁴), etc. After spending a lot of time at the UCB libraries and downloading papers from library databases through the internet, I finally oriented my research towards the two main methods developed in this paper: a statistical approach for segmentation and a wavelet based approach for pitch detection. The rest of my time has been spent developing programs, testing them with many sounds and improving results. I also have attended various seminars and the summer workshop of CNMAT. I used high quality recording materials and made a web page.

Although this thesis is submitted at the Institut de Formation Supérieure en Informatique et Communication (IFUSIC) at the Université de Rennes 1, France, it is written in English since all the research was done at an American University. I’d like to mention that many parts of this paper come from different publications, books or web pages. They are signaled by quotes and are in italic. However, they might have been a bit modified or summarized.

¹http://www.cnmat.berkeley.edu/
²pronounced “senn’mat”
³also simply called “Cat”
⁴http://www.lib.berkeley.edu/Catalogs/
Aknowledgements

A lot of people have supported this project in many different ways. At this point, I would like to thank all of them for their contribution.

Adrian Freed for offering me the opportunity to realize this research project in computer music and for supervising me. He has helped immensely in clarifying many points and suggesting interesting and fruitful directions to research. He has also helped a lot in creating me a comfortable work environment.

Matthew Wright for being available every time I needed assistance with programming or UNIX. His effectiveness in fixing problems was amazing to me. He’s also good at choosing restaurants.

I especially thank Régine André-Obrecht and Michèle Basseville (from France) for their advice, for sending me source codes and for communicating with me through e-mail messages. Without them, the statistical part of this thesis wouldn’t have been possible.

Thanks to Raphael A.Irizarry who helped me a lot to understand the auto-regressive algorithms and to Michael Goodwin who spent time with me to understand the wavelets based algorithm. I really appreciated this assistance.

Cyril Drame and Andreas Lücke have also been very helpful in my work, along with Pierre Kozzilius, made my internship at CNMAT and my life in Berkeley more fun. Thank you all. Special thanks to Cyril for communicating to me his thoughts.

This work would also not be possible without personal support from others. My deepest thanks go to my wonderful roommate Amy Mayeno who made my internship in United States become six months of vacation. She always supported me and worried about my feelings. I really loved our trips around California that made me relax a lot.

My french friends who e-mailed me often and replied to my questions: Olivier Alloyer, Vincent Deshayes, Mehdi Hannouz and Jad Kfouri. Without them, I would have been very home sick for France,

CNMAT people for their warm hospitality and their availability. Special thanks to Vijay Iyer who lent me his Fender Rhodes for these few months,

All my friends in United States for their friendship, and

Finally, I would like to thank those who have been my best teachers, the ones who inspired me to learn and to continue learning: my parents.
Abstract

This thesis is result from research on two essential elements of Analysis/Synthesis of musical signals: segmentation and pitch detection. In music, segmentation means extracting information of the onset and offset of events in a sound signal. Pitch detecting (or tracking) means following the trajectory of the pitch of sounds in a continuous way.

For segmentation, two main ideas have been exploited: the first one, in the frequency domain, is based on the Energy and the FFT; the second one, in the time domain, is a statistical approach based on the comparison between two auto-regressive models of the signal. The study of pitch detection is closely related to the extraction of the fundamental frequency detectable in the spectral domain. The studied and improved method relies on a wavelet decomposition and on zero-crossing detection by a derivative filtering function.

The programs have been written in Matlab, except for the divergence algorithm that I obtained in C. Good results have been obtained for a large variety of sounds. Therefore, this thesis serves real-time applications being developed at CNMAT.

Ce rapport de stage résulte d’une recherche sur deux éléments essentiels de l’Analyse/Synthèse de signaux musicaux: la segmentation et la détection des hauteurs de notes. En musique, segmenter signifie extraire l’information de début et de fin d’événements dans un signal sonore. Détecter (ou poursuivre) une hauteur de note signifie suivre la trajectoire de hauteur de note du son de manière continue.

Pour la segmentation, deux idées principales ont été exploitées: la première, dans le domaine fréquentiel, est basée sur l’énergie et la FFT, la deuxième, dans le domaine temporel, est une approche statistique basée sur la comparaison de deux modèles auto-régressifs du signal. L’étude de la hauteur des notes est étroitement corrélée à l’extraction de la fréquence fondamentale observable dans le domaine spectral. La méthode étudiée et améliorée s’appuie sur une décomposition en ondelettes et sur la détection des passages par zéro à l’aide d’une fonction dérivative filtrante.

Les progammes ont tous été écrits en Matlab, sauf l’algorithme de divergence qui m’a été fourni en C. Des résultats significatifs ont été obtenus pour une grande variété de sons. Aussi, ce travail est dédié aux applications temps-réel en cours de développement au CNMAT.
Contents

Preface ... 1
Aknowledgements 2
Abstract ... 3
Contents .. 4
List of Figures 6

1 Introduction 7
 1.1 Presentation of CNMAT 7
 1.1.1 Activities 7
 1.1.2 Facility 7
 1.1.3 Software 7
 1.1.4 Set .. 8
 1.2 History of Music Synthesis 8
 1.2.1 Origins 8
 1.2.2 Digital Development 8
 1.3 Digital Musical Sound Synthesis Issues 9
 1.3.1 Computer Approach 9
 1.3.2 Sound Control 9
 1.4 Additive Synthesis 9
 1.4.1 Signal Model 9
 1.4.2 Reconstruction 10
 1.5 CAST Project 11
 1.5.1 CAST Analyser 11
 1.5.2 CAST Synthesizer 12

1 SEGMENTATION OF EVENTS 14

2 A Frequency-domain Study 16
 2.1 The Detection Function 16
 2.1.1 An Energy and HFC based method 16
 2.1.2 Results 17
 2.2 Filtering the HFC 18
 2.3 Difference of spectra 19
 2.4 Brightness 19
CONTENTS

3 **A Statistical Time-domain Approach**
3.1 The Brandt’s Algorithm .. 22
3.1.1 Principles of the Approach ... 22
3.1.2 The Algorithm description .. 23
3.1.3 The Durbin-Levinson’s Algorithm 24
3.1.4 Results ... 25
3.2 The Divergence Test .. 26
3.2.1 The Test ... 26
3.2.2 The practical implementation 27
3.2.3 Parameters and Results .. 28

II **PITCH DETECTION**

4 **Wavelets**
4.1 Wavelet Transform .. 33
4.2 Multiresolution Analysis .. 34
4.3 A comparison between STFT and WT 35
4.4 A Pitch Determination Algorithm 36
4.4.1 A simple principle .. 36
4.4.2 The proposed method ... 36
4.4.3 Maxima Detection ... 37
4.4.4 Error Detection ... 39
4.4.5 Unpitched and Error Rejection 40

Conclusion

III **IMPLEMENTATION**

A **Segmentation**
A.1 Frequency-Domain ... 44
A.2 Time-Domain .. 46
A.2.1 Brandt Program ... 46
A.2.2 Divergence Test Program .. 48

B **Pitch Detection**

Bibliography

42

43

44

46

48

70

76
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Block diagram of the sinusoidal analysis system</td>
<td>10</td>
</tr>
<tr>
<td>1.2</td>
<td>Time-domain additive synthesis</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>Actual CAST harmonic-based analyser architecture</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Actual CAST synthesizer architecture</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Example of result with the detection function</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Onset and offset of notes detection by filtered HFC</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Difference of two successive FFTs</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Example of a brightness controlled sound</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>High-hat extraction in drum sounds</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Location of the three windows</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Segmentation by the Brandt's method</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Location of the two models</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Variations of the cumulative sum test: (a) The statistics (W_n), (b) The statistics coupled to Hinkley's stopping rule (\hat{W}_n)</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Segmentation with the Divergence Test</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>Segmentation of the singing voice: "I am sitting in the morning"</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Basic cell for the wavelet transform process</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Iterated filter scheme for the multi-scale transform</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Basic cell for one-dimensional inverse transform</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of STFT and WT in the time-frequency domain</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>Detail of the filtered signal with maxima detection</td>
<td>38</td>
</tr>
<tr>
<td>4.6</td>
<td>Parabolic approximation</td>
<td>38</td>
</tr>
<tr>
<td>4.7</td>
<td>Unwanted undulation in the filtered signal</td>
<td>39</td>
</tr>
<tr>
<td>4.8</td>
<td>Pitch error correction</td>
<td>40</td>
</tr>
<tr>
<td>4.9</td>
<td>Example of pitch detection after error detection and incorrect pitch rejection</td>
<td>41</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Presentation of CNMAT

"The Center for New Music and Audio Technologies1‘s mission is to promote, produce and present the creative interaction between music and technology. A satellite of the UC Berkeley Department of Music, CNMAT is an interdisciplinary research center, drawing participants from many university departments including physics, mathematics, electrical engineering, psychology, computer science, cognitive science and music.

1.1.1 Activities

The center presents concerts that cross cultural and musical barriers and could just as easily feature traditional ethnic music as state of the art computer music. It also provides a forum for diverse lectures and demonstrations for students and the community. The research focuses on new performance technology and performance-related research issues and problems such as real-time synthesis and control. Some of the current research activities are focused on the study of the perceptual and cognitive aspects of music, the creation of new computer architectures for synthesis and audio signal processing, and the development of software for composition and live performance. The main research project (the one I worked on) called CAST will be developed in section 1.5.

1.1.2 Facility

The CNMAT facility includes research labs, seminar rooms, performance spaces, offices, and digital audio recording, analysis and synthesis facilities. Computing resources available to faculty, researchers, students, and staff include Macintosh and Silicon Graphics computers (Indy and O2). A wide variety of music and audio peripherals is also available including various digital signal processing boards (single and multi-processor), MID2 synthesizers, and assorted MIDI and non-MIDI controllers and instruments.

1.1.3 Software

Due in part to close affiliations with Stanford University’s CCRMA3 and France’s IRCAM4, CNMAT also maintains an unusually broad array of software tools for various musical and research uses. For example, users have access to the standard software synthesis programs (such as

\begin{itemize}
 \item 1founder: Richard Felsinno
 \item 2Musical Instrument Digital Interface
 \item 3Center for Computer Research in Music and Acoustics
 \item 4Institut de Recherche et Coordination Acoustique/Musique
cmusic, csound, and cmix), sound analysis software, DSP software (filter design programs, signal analysis, and real-time instrumentation and control), various programming environments (C, C++, Common Lisp, Smalltalk, Max®, Mathematica, Matlab, etc). Real-time control of music synthesis, both MIDI and at the DSP level, is possible through the use of the Max programming environment. CNMAT is pre-eminent in Max development, tools, and production.”

1.1.4 Set

Principals and staff are David Wessel (Director), Adrian Freed (Research Director), Matthew Wright (Musical Applications Programmer), Edmund Campion (Composer in Residence) and Richard Andrews (Administrator). And about a twenty people (Graduate Researchers, Graduate Composers, Musicians, Undergraduate Students, Visiting Scholars and Collaborators...) take part in the development of CNMAT.

1.2 History of Music Synthesis

1.2.1 Origins

“The history of electronic music synthesis dates back at least to the late 1800’s when Thaddeus Cahill introduced the Telharmonium, a 200-ton keyboard-controlled assemblage of pipes and wheels designed to generate musical sounds and distribute them over telephone lines. In the 1920’s, the Russian physicist Leon Theremin presented a device that incorporated advances in electromagnetic technology into a musical instrument consisting of two antennae; the output depended on the proximity of the performer’s hands to the antennae, one of which controlled pitch and the other loudness. Despite the commercial failure of these inventions, the two fundamental concepts have endured into present-day music technology: from the Theremin, the capability of synthesizing recognizable sounds as well as novel sounds not present in the repertoire of classical instruments; from the Theremin, the use of an alternate control mechanism without keys, frets, or other traditional interface utilities.

1.2.2 Digital Development

In the modern age, due to the maturation of high-speed digital signal processing devices and algorithms, electronic musical instruments are “readily” available. The combination of mathematical modeling with real-time computation enables simulation of unique instruments, for instance a hybrid clarinet-trombone, a parametric interpolation between the two instruments. It is essentially the power of the modern computer that creates opportunities for advances in music technology. The computer provides a tool for analysing and understanding musical signals, an interface for alternate controllers and gestural input devices, and a platform for simulating new and possibly adaptive instruments - instruments that could either aid in the instruction of their own use or even conceivably learn how to be played by a particular performer. The composer’s desire is to use the analysis results to drive a musically meaningful resynthesis process.” [37]

6 music oriented graphical programming environment from IRCAM/Opcode
6 CNMAT's web page
7 Signal analysis is the process by which a signal is transformed from one representation into another. Our input signal is a sampled time-domain waveform.
8 Reconstruction of sounds using analysis parameters
1.3 Digital Musical Sound Synthesis Issues

A sound synthesis technique maps time-varying musical control information into sound. Each different synthesis method can be evaluated not only in terms of the class of sounds it is able to produce, but also in terms of the musical control it affords to the musician. However, certain fundamental ideas for sound synthesis are shared by multiple techniques.

1.3.1 Computer Approach

Computers can store and replay prerecorded, digitized sound, so we can use computers as a passive recording medium like a tape recorder or compact disc. Computers also allow us to synthesize sounds that we could never hear in nature and don't know how to produce any other way, either by processing and modifying natural sound or by generating sound entirely from mathematical formulae. Computers also provide us with new ways to control sound, to shape rhythm, loudness, timbre\(^{10}\); and other features as sound is created. An essential feature of a sound synthesis technique is the type of degree of control it affords of the sound produced. Finally, computers allow and force us to make a distinction between the mechanism for control of sound and the musical parameter being controlled.

1.3.2 Sound Control

A note-oriented model\(^{11}\), that supports the concept of starting and stopping notes with a fixed pitch and overall loudness determined when the note begins, is the fundamental concept of MIDI. But music is poorly represented with this kind of musical control modes. Many other gestural transducers can also be mapped to control sound synthesis: joystick, wheels, knobs, sliders, pressure- and position-sensitive ribbons, breath or wind controllers, etc... CNMAT for instance has taken the pen-based digitizing tablets (which are used mainly by computers artists) and mapped their multidimensional output (three dimensions of pen position, pressure, orientation, tilt and rotation) to control musical processes.

Using these mechanisms for control, multiple parameters are then controllable: timing of events, pitch, loudness, brightness, timbre, morph position\(^{12}\), etc... A sound synthesis technique takes in time-varying these musical control information and produces sound.

1.4 Additive Synthesis

At CNMAT, for the musical control reasons described in the previous section, the analysis-synthesis system does not use a physical modeling approach\(^{13}\). Instead, it uses an arguably more general approach that is loosely termed signal modeling; here the mathematical properties of the input signal are explored, possibly without regard for the originating mechanism.

1.4.1 Signal Model

"A viable model for a musical signal is that it consists of a deterministic component and a stochastic component. The deterministic part corresponds to the pitched part of the sound. The stochastic part accounts for such intrinsically random musical characteristics such as breath noise…"

\(^{9}\)expressivity

\(^{10}\)or tone color

\(^{11}\)electronic keyboards for example

\(^{12}\)position in the interpolation between 2 sounds

\(^{13}\)the analysis is concerned with the physical properties of the input mechanism
and how noise. The deterministic part, then, is modeled as a sum of sinusoids of time-varying amplitudes, frequencies, and phases, referred to as partials. Mathematically, this signal model can be expressed as a sum of the deterministic component \(d(t) \) and the stochastic process \(s(t) \):

\[
x(t) = d(t) + s(t) \tag{1.1}
\]

\[
d(t) = \sum_{i=1}^{Q} A_q(t) \cos(w_q(t)t + \phi_q(t)) \tag{1.2}
\]

where \(Q \) is the number of partials, and where \(A_q(t), w_q(t) \) and \(\phi_q(t) \) are the amplitude, frequency and phase of the \(q \)-th partial at time \(t \). In the discrete-time version of this model, it is assumed that these functions vary at a rate substantially slower than the sampling rate. This is called a sinusoidal signal model.

For this model to be useful, these parameters must be accurately estimable by some analysis method. One such analysis is depicted in figure 1.1.

![Block diagram of the sinusoidal analysis system](image)

Figure 1.1: Block diagram of the sinusoidal analysis system

1.4.2 Reconstruction

![Time-domain additive synthesis](image)

Figure 1.2: Time-domain additive synthesis

The sinusoidal analysis derives a set of analysis parameters that characterize the input sound. In the synthesis process, these parameters are used to reconstruct the original signal. In the event that modifications are made to the parameters, the synthesized signal is an altered version of the input. The reconstruction can be carried out either in the time-domain (see figure 1.2) or the
In the frequency-domain; in either case, however, the process is referred to as additive synthesis because the partials are additively accumulated to create the deterministic component of the output signal. Then, as shown in the signal model of equation (1.1), some noise is added to the synthesised sound: an appropriate amount and variety of noise is necessary for realistic music synthesis; without noise, the synthesized signal generally sounds unnatural and sometimes even unpleasant.

1.5 CAST Project

The CNMAT Additive Synthesis Tools project (CAST), has developed a suite of tools at CNMAT. It is polyphonic and multtimbral. Its architecture is based on the client/server principle. It is controlled by messages in the OpenSoundControl protocol also under development at CNMAT. It is written in C and C++ for efficient, reliable, real-time and reactive control.

1.5.1 CAST Analyser

![Diagram of CAST Analyser](image)

Figure 1.3: Actual CAST harmonic-based analyser architecture

14 It can play multi notes simultaneously

15 It can have multi sounds (or multi voices) simultaneously

OpenSoundControl (OSC) is an open, efficient, transport-independent, message-based protocol developed for communication among computers, sound synthesizers, and other multimedia devices. Also it is optimized for modern networking technology.
• findpeak is a peak finder and estimator,
• crible is a harmonic matching sieve: picks largest peak within a frequency band around estimated harmonics,
• lissage is a harmonic track smoother,
• .fl , .format , .aiff , .noise , .sf , .gab are the file extensions.

Most of actual harmonic-based analysis software come originally from Xavier Rodet’s and Philippe Depalle’s analysis/synthesis group at IRCAM. My research work took place at this level of the CAST project: I looked for better ways for analysing music with real-time application objectives. The CAST analysis tool (analsf) is now outlined in Figure reffig:analsf. Another tool, developed at CCRMA by Xavier Serra, exists for non-harmonic sounds (i.e. drums) and is called SMS (Spectral Modeling Synthesis).

1.5.2 CAST Synthesizer

![Figure 1.4: Actual CAST synthesizer architecture](image)

The second component of CAST is the real-time synthesizer. It is a synthesis server that can be controlled in real-time, from the ethernet, by clients as Max (on Macintosh), Tcl/Tk, Matlab, Java, etc. After the synthesizer starts up, it listens for control messages from clients and interprets those messages to produce sound. It actually runs on SGI machines and can generate more than 1000 sinusoids partials at 44.1 KHz sampling rate on a O2. It offers real-time and expressive timbral control. A new feature currently in development, is a real-time control tool
of timbre by neural network; my project is related to this promising tool in a way that I am extracting parameters that are required as inputs of the neural network. The Figure 1.4 shows the CAST synthesiser architecture.

The synthesizer can be divided into three parts:

- The *client* controls the commands that are sent to the synthesizer through the OSC protocol,
- *BYO* (Bring Your Own) is a layer between high level programming tools (i.e. Max) and interpolated additive synthesis. It contains a set of functions that have been optimized for manipulations of spectral descriptions (partials and noise) of sound (transpose, vibrato, brightness, Filter/drop partials, inharmonicity, formant spectral envelopes, mixer, etc...)
- *HTM* (Hear The Music) is the low level of the synthesizer. It contains unit generators and converters. It schedules and rules messages to each generator.

Many elements of CAST have been ignored here. It doesn’t seem very useful to detail it more since it is in a constant evolution. Also, many works actually under development have not been integrated to the CAST software yet: visualization tools or video features for example.

This thesis is loosely organized into two sections. The first part deals with “segmentation of events” while the second one is about “pitch detection”. These two main areas of music analysis were studied independently but we’ll see that the wavelet based pitch detection algorithm also offers a way for segmenting music.
Part I

SEGMENTATION OF EVENTS
Introduction

It has long been known that the onset of a note, the *attack*, plays an important role in our perception of timbre. In traditional instruments, it is the phase during which resonances are building up, but before the steady state condition of standing waves has been established. Where the attack is short, there are many rapid changes, so that it can sound like a noise burst. For this reason, the attack transient is difficult to study. It is not surprising therefore, that attacks are not well understood and are not well represented within analysis-synthesis models. However, this study goes farther than a single segmentation of notes: beyond the onset and the offset of musical notes, the developed algorithms here may detect many other kind of *event* in musical signals. An event is a part of the sound signal that extends over time and perhaps frequency. It has been defined in [47] as “an auditory phenomenon that exhibits constancy or at least continuity for its relatively short duration. It has an onset and an offset and represents the lowest time-extensive perceptual entity”. It includes such things as single notes, change of timbre from a sound into another or even finer variations that a performer can control on his instrument. For instance, in singing voice, we may want to know when a change of vowel occurs, when the sound is voiced or unvoiced17; we want to detect unpitched sound events like percussive sounds; but the change can also simply be loudness or brightness. All these parameters belong to our signals and are musically useful.

At the beginning of the internship, I mainly worked in the frequency-domain, observing *Energy, HFC, Centroid*, etc. This is the topic of the next chapter. Then my approach of the segmentation issue has been to look for a time-domain method that could be fine enough to extract any event. I took inspiration from speech segmentation, already well advanced. After a few weeks of documentation research, I decided upon the statistical approaches described in a paper by Régine André Obrecht [12]. This is developed in chapter 3.

17 “wwww” and “zzzzz” are the voiced equivalent of unvoiced “ffff” and “sssss” sounds: the first ones have definite pitch while other ones don’t.
Chapter 2
A Frequency-domain Study

Most current analysis-resynthesis models represent sounds through a set of features, which are extracted from a time-frequency representation. So that each time-frame can present a good approximation to the instantaneous spectrum, it is necessary to analyse the waveform in short segments. This is achieved with a window function whose position is advanced by a fixed amount between frames. When the window encompasses a transient event, such as the percussive onset of a note, it contains information both before and after the event. These partially correlated spectra often become confused during analysis and cause audible “diffusion” upon resynthesis. The following algorithm [7], based on the energy observation, is a simple technique to avoid the problem. By synchronising the analysis window to transients events, the diffusion effect may be canceled.

2.1 The Detection Function

"Basically, the idea is that event locations are identified by observing short-term changes in the spectrum. The detection method was designed to recognise two signal properties associated with a sharp attack: the suddenness of the signal change and the increase in energy. A frequency domain method was chosen because of its ability to reveal both changes in overall energy and in energy concentration in the frequency-domain. The frequency location of energy is important because the sudden change to the signal will cause phase discontinuities; in the frequency spectrum this appears as high frequency energy. Naturally, the time resolution for detecting transient events must be smaller than that of the main analysis STFT, if any advantages is to be gained. This necessitates a reduction in frequency resolution, but fine frequency resolution is not an issue here; only the broad spectral envelope is required. A Hamming window function is used and the hop distance is set to half the window-length so that the maximum value that ensures each transient event will appear toward the center of the window in at least one frame.

2.1.1 An Energy and HFC based method

The energy function is calculated as the sum of the magnitude squared of each frequency bin\(^1\) (in the specified range):

\[
E = \sum_{k=2}^{N+1} |X(k)|^2
\]

\(^1\)result from the FFT
CHAPTER 2. A FREQUENCY-DOMAIN STUDY

\[
E \text{ is the Energy function for the current frame}, \\
N \text{ is the FFT array length} \\
\left(\text{so} \frac{N}{2} + 1 \text{ corresponds to the frequency} \frac{F_s}{2}, F_s \text{ is the sample rate}, \right) \\
X(k) \text{ is the kth bin of the FFT.}
\]

The function to measure high frequency content was arbitrarily set to a weighted energy function, linearly increased toward the higher frequencies:

\[
HFC = \sum_{k=2}^{\frac{N}{2}+1} \left(|X(k)|^2 \ast k \right)
\]

where \(HFC \) is the High Frequency Content function for the current frame, other symbols as defined above.

In both cases, the lowest two bins are discarded, to avoid unwanted bias from DC or low frequency components.

The condition for detection combines the results from each pair of consecutive frames thus:

\[
\frac{HFC_r}{HFC_{r-1}} \ast \frac{HFC_r}{E_r} > T_D
\]

where subscript \(r \) denotes current frame (equals latter of two in detection function), subscript \(r - 1 \) denotes the previous frame, \(T_D \) is the threshold, above which a hit is detected.

Note that \(HFC_{r-1} \) and \(E_r \) are constrained to have a minimum value of one, to avoid the potential “divide by zero” computation error.

The detection function is the product of the rise in high frequency energy between the two frames and the normalised high frequency content for the current frame. For attacks whose growth is slightly slower, but whose onset is nevertheless sudden, the detection function could be triggered on more than one frame. To avoid multiple detections, the algorithm is given with a parameter for the minimum closeness of two hits. In practice, setting this to two frames is adequate for the majority of sounds (i.e. only disallowing consecutive hits).

The synchronised analysis is not the interest of this study and will not be explained in this paper. The principle behind the method is that the spectra before and after an attack transient should be treated as different, the change happening instantaneously at the transient onset.” [7]

2.1.2 Results

For the result outlined below I used a saxophone phrase from Steve Coleman. This two second phrase is composed of 10 notes more or less loud with more or less sharp attacks. The detection of note onsets seems closely tied to the sharpness of the attacks. In this example, a 400 sample long Hamming window with 50% overlapping has been used. Notice that the energy has been multiplied by 10 before plotting in order to have a better way of comparison. This method seems poorly performance.
2.2 Filtering the HFC

As we learned in the previous section, the HFC is able to give us some information about the spectral envelope. The HFC result depends on the energy location in the spectrum. The HFC values become bigger if the energy is more important in the high part of the spectrum. It specially happens when sharp transients occur in the signal. We are able to detect these events in the HFC result if we can detect strong variations in the HFC time evolution. I drew my inspiration from edge detection in image processing. To detect strong variations in the grey scale between two pixels, it is common to use a single highpass filter which the one dimensional pattern is simply \([-1 \ 0 \ 1]\). Applied on the HFC, it is able to detect onset (positive peaks) and offset (negative peaks) of notes. The example in the Figure 2.2 uses the same sound that the one used previously with the detection function (the original signal is actually showed in the Figure 2.1).
2.3 Difference of spectra

Another way to detect variations in the spectrum is to compute a single difference between two successive FFTs. As for the energy, the FFT results are linearly weighted in the high frequencies, in order to detect transients. The result is a distance measure. We use a sign detection of the energy gradient of slope to make the difference between onset (the gradient is positive) and offset (the gradient is negative).

\[
\text{Distance}_j = \text{sign}(E_j - E_{j-1}) \ast \left(\sum_{k=2}^{N+1} [X_j(k) - X_{j-1}(k)]^2 \ast k \right)
\]

where \(E_j\) is the energy and \(X_j(k)\) the \(k\)-th bin of the FFT\(_j\).

The example in the Figure 2.3 shows the single subtraction and the onset/offset distinction results. Nine over ten notes are clearly detectable here; the fourth one doesn’t appear at all. I used a 800 sample long hamming window in order to have enough precision in the frequency domain. Using a wide window, we unfortunately lost accuracy in the time domain.

2.4 Brightness

Brightness is a psychoacoustic perceptual notion which is not mathematically precisely defined. It has been shown by David Wessel in [49] that it is very well correlated to the centroid. The
CHAPTER 2. A FREQUENCY-DOMAIN STUDY

Figure 2.3: Difference of two successive FFTs

centroid is equivalent to a mean of a transformed spectral energy distribution\(^2\). It is defined in \[^5\] as follows:

\[
\text{centroid}(t) = \frac{\sum_{b=1}^{m} f_b(t) \cdot a_b(t)}{\sum_{b=1}^{m} a_b(t)}
\] \(2.4\)

where \(f\) is frequency (in Hz) and \(a\) is linear amplitude of frequency band \(b\) up to \(m\) bands which are computed by FFT.

An example of centroid calculation is given in Figure 2.4. A saxophone musical phrase has been resynthesized using neural network technique as described by Cyril Drane in \[^48\]. The neural network allows the real-time control of additive synthesis in a very meaningful way. For instance, it allows the control of the timbral perceptual attribute: brightness. In this example, we changed it linearly from bright to dark\(^3\).

The centroid gives us useful information for segmenting bright events in a signal. The second example, is a four-four kick drum (dark) pattern with syncopated high-hats\(^4\) (bright). The centroid clearly enables extracting the high-hat events from the original signal.

\(^{\text{a}}\) a transformation on the acoustical spectrum that compensates properties of the auditory system

\(^{\text{b}}\) term used for opposite of bright

\(^{\text{c}}\) means four times "kick drum then high-hat"
Figure 2.4: Example of a brightness controlled sound

Figure 2.5: High-hat extraction in drum sounds
Chapter 3

A Statistical Time-domain Approach

"The main idea is to model the signal by an autoregressive (AR) statistical model and to use tests statistic to sequentially detect changes in the parameters of the model\(^1\). The two segmentation algorithms presented here differ in the assumption of the excitation of the model and in the choice of the test statistic. Basically, a fixed and a growing window are used and then a suitable distance estimation compares the two spectra.

3.1 The Brandt's Algorithm

The Generalized Likelihood Ratio (GLR) test of Brandt \([1]\) is an efficient simplified realization of the GLR method of Willsky \([2]\), which is the basic statistical approach for sequential signal segmentation \([24]\).

3.1.1 Principles of the Approach

The signal is assumed to be described by a string of homogeneous units, each of which is characterized by a statistical model of the form:

\[
y_n = \sum_{i=1}^{P} a_i y_{n-i} + \epsilon_n
\]

(3.1)

where \(\epsilon_n\) is the excitation of the acoustic channel and \((\epsilon_n)\) is an uncorrelated zero mean Gaussian sequence with \(\text{var}(\epsilon_n) = \sigma_n^2\).

The model is parametrized by the vector \(\Theta\) defined by:

\[
\begin{align*}
\Theta^T &= (\theta^T, \varphi^T) \\
\theta^T &= (a_1, \ldots, a_p)
\end{align*}
\]

where \(\varphi\) is a parameter vector which determines the sequence \(\sigma_n\).

The method consists in performing on line a detection of changes in the parameter \(\Theta\) starting from the location of the previously detected.

\(^1\)Parametric AR methods are finer than Fourier
So the algorithm \(\begin{align*} 1. \text{Detect when a change occurs,} \\
2. \text{Estimate the location of the change.} \end{align*} \)

3.1.2 The Algorithm description

Let’s take \(\sigma_n^2 = \sigma^2 \) (i.e. \(\varphi = \sigma \)) \hspace{1cm} (3.3)

which means that the noise variance is assumed to be a constant inside homogeneous units.

The test is then:

To monitor \((y_1, \ldots, y_n) \), decide between the hypothesis:

\[
\begin{align*}
\mathcal{H}_0 & : \Theta = \Theta_0 \quad \text{for } 1 \leq k \leq n \\
\mathcal{H}_1 & : \exists r \text{ such that } \Theta = \Theta_1 \text{ for } 1 \leq k \leq r \\
& \quad \text{and } \Theta = \Theta_2 \text{ for } r < k \leq n
\end{align*}
\]

We have to manage three windows as shown in Figure 3.1.

![Figure 3.1: Location of the three windows](image)

According to the GLR method, the decision is based on the likelihood ratio between these two hypotheses, where the time instant \(r \) and the \(\Theta_i \)’s are replaced by their maximum likelihood estimates, so that a change is detected if the distance:

\[
D_n = \max_r \max_{\Theta_1, \Theta_2} \max_{\Theta_0} \log \left(\frac{p[y_1, \ldots, y_n|\mathcal{H}_1]}{p[y_1, \ldots, y_n|\mathcal{H}_0]} \right) \geq \lambda \hspace{1cm} (3.4)
\]

where \(\lambda \) is a threshold.

Then the estimate of the change instant \(\hat{r} \) is the argument of the maximum in the relation (3.4). The maximum likelihood estimates of the \(\Theta \)’s are given by the formulae:

\[
\hat{\theta}(W_j) = \arg \min_{\theta} \sum_{k \in W_j} \left(Y_k - \sum_{i=1}^p a_{ij}y_{k-i} \right)^2 \hspace{1cm} (3.5)
\]

\[
\hat{\sigma}^2(W_j) = \frac{1}{\text{card}(W_j)} \sum_{k \in W_j} \left(Y_k - \sum_{i=1}^p a_{ij}y_{k-i} \right)^2 \hspace{1cm} (3.6)
\]
where \(j \in \{0, 1, 2\} \)

\(W_j \) denotes one of the tree windows depicted in Figure 3.1.

This finally yields the following formula for \(D_n \):

\[
D_n = \max_r D_n(r) \tag{3.7}
\]

\[
D_n(r) = n \log \hat{\sigma}_0 - r \log \hat{\sigma}_1 - (n - r) \log \hat{\sigma}_2 \tag{3.8}
\]

As you can see, the same identification of AR parameters is used for each of the three different windows. For each of them, we can write the signal as a vector \(\mathcal{Y}^T = (y_1, \cdots, y_m) \).

The equation (3.1) gives us:

\[
\begin{aligned}
y_t &= a_1 y_{t-1} + a_2 y_{t-2} + \cdots + a_p y_{t-p} + e_t \\
y_{t+1} &= a_1 y_{t+1} + a_2 y_{t-1} + \cdots + a_p y_{t-(p-1)} + e_{t+1} \\
& \vdots \\
y_{t+m} &= a_1 y_{t+(m-1)} + a_2 y_{t+(m-2)} + \cdots + a_p y_{t+(m-p)} + e_{t+m}
\end{aligned}
\]

which can be written in the matrix form: \(\mathcal{Y} = \mathcal{X} \theta + \mathcal{E} \) where \(\mathcal{X} \) is similar to Toeplitz matrix:

\[
\mathcal{X} = \begin{pmatrix}
y_{t-1} & y_{t-2} & \cdots & y_{t-p} \\
y_t & y_{t-1} & \cdots & y_{t-(p-1)} \\
\vdots & \vdots & \ddots & \vdots \\
y_{t+(m-1)} & y_{t+(m-2)} & \cdots & y_{t+(m-p)}
\end{pmatrix}
\quad \text{and} \quad
\mathcal{E} = \begin{pmatrix}
e_t \\
\vdots \\
e_{t+m}
\end{pmatrix}
\]

In the theorem, \(\hat{\theta} \) is simply given by the expression:

\[
\hat{\theta} = (\mathcal{X}^T \mathcal{X})^{-1} \mathcal{X}^T \mathcal{Y} \tag{3.9}
\]

Unfortunately, this computation takes a long time because of the matrix inversion. The result also may be inaccurate because of rounding errors by the machine. Thus, in the practical implementation, the different parameters \(\Theta_0, \Theta_1 \) and \(\Theta_2 \) are identified by a sample-by-sample growing memory covariance ladder method: the Durbin-Levinson algorithm, an exact least squares method. [12]

3.1.3 The Durbin-Levinson's Algorithm

The linear prediction is a powerful analysis tool for the AR process that is extensively used in many areas. Efficient algorithms have been proposed to calculate the model parameters (i.e. the linear prediction coefficients of the AR process). However, in the real world, the AR process is often contaminated by noise. The estimation of model parameters by directly using Yule-Walker equations [22] on the noisy process may resulting errors. The Durbin-Levinson recursion presented allows us to cope with the problems of noise.

In the general case \(p = n \), the expression (3.1) can also be written:
\[
\hat{y}_{n+1} = a_{n1}y_n + \cdots + a_{nn}y_1, \quad n \geq 1
\]

(3.10)

The mean square error of prediction will be denoted by \(v_n \). Thus

\[
v_n = E(y_{n+1} - \hat{y}_{n+1})^2, \quad n \geq 1
\]

(3.11)

and clearly \(v_0 = \gamma(0) \), where \(\gamma() \) is the autocovariance function\(^2\).

If \(\{y_t\} \) is a zero mean stationary process with autocovariance function \(\gamma() \) such that \(\gamma(0) > 0 \) and \(\gamma(h) \to 0 \) as \(h \to \infty \), then the coefficient \(a_{nn} \) (where \(n \in \{1, \ldots, m\} \)) and mean squared errors \(v_n \) as defined by (3.11) satisfy \(a_{11} = \gamma(1)/\gamma(0) \) and \(v_0 = \gamma(0) \).” \(^{[22]}\)

\[
a_{nn} = \left[\gamma(n) - \sum_{l=1}^{n-1} a_{n-1,l} \gamma(n-l) \right] v_{n-1}^{-1}
\]

(3.12)

\[
\begin{pmatrix}
a_{n1} \\
\vdots \\
a_{nn,n-1}
\end{pmatrix}
= \begin{pmatrix}
a_{n-1,1} \\
\vdots \\
a_{n-1,n-1}
\end{pmatrix} - a_{nn} \begin{pmatrix}
a_{n-1,n-1} \\
\vdots \\
a_{n-1,1}
\end{pmatrix}
\]

(3.13)

\[
v_n = v_{n-1}(1 - a_{nn}^2)
\]

(3.14)

3.1.4 Results

The Matlab implementation of the brandt’s method is not completely written yet. I still have to threshold properly the result in order to get the wanted segmentation information. In the current version of the program, I can adjust three parameters:

- The length of the sliding window \(n \),
- the model order \(p \),
- the number of computation per window \(s \)

The length of the sliding window must be chosen long enough to give a reliable parameter estimate, but not too long in order to detect small units. In the following example, the compromise led me to \(n = 800 \) corresponding to approximately 18 ms (which is too long for real-time applications). The order \(p \) can be incredibly small. Several trials were performed (until \(p = 2 \)). For instance, I run my example with a model order \(p = 6 \). Finally, to make the computation time shorter, I chose \(s = 12 \), corresponding to 1200 points in the output vector with a 80000 sample long signal. It is almost 67 times faster and it gives me much enough resolution that I need for the graph.

We can observe a few peaks that correspond to onsets or offsets of notes. We could separate them looking at the slope of the energy at these moments (onset=positive slope and offset=negative slope). But no more work has been done with this method since I had a C version of an apparently better algorithm called the divergence test, now explained in the following section.

\(^2\)For a stationary process \(\gamma(r,s) = \gamma(r-s,0) \) thus \(\gamma(h) \equiv \gamma(h,0) \)
3.2 The Divergence Test

"This procedure uses the J-divergence of conditional distributions as a measure of distance between models. The model set is the same as for Brandt’s GLR method, so that the reader is again referred to the equations (3.1) to (3.3).

3.2.1 The Test

The test is based on the monitoring of a suitable distance measure between the two models Θ_0 and Θ_1 located as indicated in Figure 3.3. This distance measure is derived from the cross entropy between the conditional distributions of these two models.

Consider $\mathcal{Y}_m = (y_1, \ldots, y_m)$ and denote by $g_0(y_m \| \mathcal{Y}_{m-1})$ and $g_1(y_m \| \mathcal{Y}_{m-1})$ the two conditional densities corresponding to the models of the Figure 3.3. Introduce the conditional cross entropy between the two models, g_0 and g_1:
\[w_m = \int g_0(y \| Y_{m-1}) \log \frac{g_1(y \| Y_{m-1})}{g_0(y \| Y_{m-1})} \, dy - \log \frac{g_1(y_m \| Y_{m-1})}{g_0(y_m \| Y_{m-1})} \]

(3.15)

which is in the Gaussian case [35] given by

\[w_m = \frac{1}{2} \left[2 e_0 m e_{1.m} - \left(1 + \frac{\sigma_0^2}{\sigma_1^2} \right) \frac{e_0 m^2}{\sigma_0^2} + \left(1 - \frac{\sigma_0^2}{\sigma_1^2} \right) \right] \]

(3.16)

where \(e_{q.m} = y_m - \sum_{i=1}^{p} a_{q,i} y_{q-i}, \quad q = 0, 1 \)

are the prediction errors corresponding to the 2 different models. Finally, we introduce the cumulative sum

\[W_n = \sum_{m=1}^{n} w_m \]

(3.17)

It can be shown that, under the hypothesis

\(\mathcal{H}_0 : \Theta = \Theta_0, \)

the statistics \((W_n)_{n \geq 1} \) have a zero conditional drift, while under the hypothesis

\(\mathcal{H}_1 : \Theta = \Theta_1, \)

the conditional drift is negative and equal to the opposite of the conditional Kullback’s divergence

\[E_{H_1}(w_n \| Y_{n-1}) = - \int g_0 \log \frac{g_0}{g_1} \, dy - \int g_1 \log \frac{g_1}{g_0} \, dy. \]

The behavior of the cumulative sum \(W_n \) is depicted in Figure 3.4(a).

3.2.2 The practical implementation

In practical implementations, the long term model parameter \(\Theta_0 \) is identified using a sample-by-sample growing memory Burg algorithm, while the short term parameter \(\Theta_1 \) is identified using the autocorrelation method. So we apply approached-least-squares parameter estimation methods instead of the exact one used for Brandt’s algorithm. Michèle Basseville [11] and Régine André-Obrecht [34] showed that results are often the same and are much faster with approximated algorithms.

To obtain first estimates of the parameters \(\Theta_0 \) and \(\Theta_1 \), an initialization stage is performed for \(n = 1, \ldots, L \) before the below-described detection procedure starts. A change detection occurs when the long term models disagree in the sense of the cumulative sum statistics (3.17). According to Figure 3.4(a), we have to detect the occurrence of a negative drift in \(W_n \). This detection is performed as follows. Add to \(w_m \) a positive bias \(\delta \), so that the modified cumulative sum has a positive drift. The task is then to detect the occurrence of a negative drift as indicated
Figure 3.4: Variations of the cumulative sum test: (a) The statistics \(W_n \), (b) The statistics coupled to Hinkley’s stopping rule \(\tilde{W}_n \)

in Figure 3.4(b); this is done by comparing to a threshold the deviations of the current biased cumulative sum from its past maximum. This procedure, known as the Page-Hinkley rule is now given:

\[
\tilde{W}_n = \sum_{m=1}^{n} (w_m + \delta) \quad (3.18)
\]

\[
\max_{1 \leq r \leq n} \tilde{W}_r - \tilde{W}_n > \lambda \quad (3.19)
\]

where \(\lambda \) is a threshold, and \(\delta \) is a bias chosen to let the cumulative sum behave as depicted in Figure 3.4(b). The estimated change time \(r \) is selected as the argument of the max in (3.19).”

3.2.3 Parameters and Results

The C program offers various controllable parameters such as:

- The model order \(p \),
- The voicing option control (0 for no special treatment, 1 for using voicing estimation for bias and threshold in the initialisation phase of each segment, 2 to also add the voicing estimation as a failure test),
- The window size (by default equivalent to 20 ms)

In a general way, it seems that the effect of these parameters depends on the structure of the sound and the note itself. In the tested examples, higher was the order, higher was the number of the voicing test, shorter was the sliding window and more there were segments. Best results were obtained using the voicing option #1. I had this remarkably good result with the saxophone lick (Figure 3.5) using a very short 56 sample long window and a second order model, which make the process really efficient in real-time. The segmentation shows the onset and offset of every notes but also the attack time and release of some of them. The difficulty now, would be to analyse the meaning of these segments in a musical and useful way.
Figure 3.5: Segmentation with the Divergence Test

Figure 3.6: Segmentation of the singing voice: "I am sitting in the morning"
The second example (Figure 3.6) is the beginning of the Susan Vega’s song "Tom’s diner". She sings a capella the words "I am sitting, in the morning"... The segmentation, originally built for speech analysis, seems working well in the case of singing voice too. It gives us the information of onset of notes even if the energy doesn’t change in the original signal (for example, "I" and "AM" are two separate notes and the energy is constant). In this example, I used a 200 sample long sliding window (about 4.5 ms) and a eighth order model.
Part II

PITCH DETECTION
Introduction

The search for the perfect pitch tracker for musical applications has been underway for many years. This device can provide a close link between the musician and the computer. Whatever the application, the ideal pitch tracker described in [23] has no discernible delay, a stable and accurate output, a tolerance for noise and works for any monophonic instrument. Unfortunately, under these constraints, finding the pitch of musically interesting sounds is extremely difficult. Musical instruments, unlike speech, have an extremely large frequency range, so the pitch-tracking algorithm has to deal with a very large bandwidth. Musical sounds are harmonically rich and can contain inharmonic partials. For a minimum delay, the pitch has to be determined during the attack of a note, where the sound is noisiest and most harmonically complex. The pitch can also vary constantly without onset of notes. Many ambiguously pitched sounds exist, such as multiphonics, key clicks or unpitched sounds, which must be dealt with in a consistent manner. The wavelet based pitch tracker introduced in this thesis is able to estimate the pitch trajectory much more precisely and quickly than many classical techniques.
Chapter 4

Wavelets

Wavelets are a powerful mathematical tool for hierarchically decomposing functions. They allow a function to be described in terms of a coarse overall shape, plus details that range from broad to narrow: they offer an elegant technique for representing the levels of details present\(^1\). Signal characteristics can be efficiently located in the space and frequency domains. Thus, unlike the Short Time Fourier Transform (STFT), wavelets are adequate for the study of nonstationary and unpredictable signals with both low frequency components and sharp transitions. The wavelet transform is a multiresolutional, multi-scale analysis which has been shown to be very well suited for music processing because of its similarity to how the human ear processes sound. My approach has been to study algorithms for pitch detection of speech signals and one of them has been improved and applied to music signals.

4.1 Wavelet Transform

"The Wavelet Transform (WT) basic cell is shown in Figure 4.1. This simple filter scheme performs a one-dimensional one-scale wavelet transform on any one-dimensional input signal. The \(G\) filter is a highpass wavelet filter and \(H\) is the complementary lowpass wavelet filter. The outputs are the lowpass residue for the \(H\) filter branch, represented by \(A_x\) called the scaling function and the highpass subband for the \(G\) branch, represented by \(D_x\) called the wavelet function.

![Figure 4.1: Basic cell for the wavelet transform process](image)

The one-dimensional multi-scale scheme is achieved by iterating the basic cell on the lowpass residue of each of the previous cells, as shown in the Figure 4.2 for the 3-scale case.

The synthesis or reconstruction process is performed using the filter cell, shown in Figure 4.3, with the appropriate reconstruction filter set. The multi-scale reconstruction is performed with the same cell iterated so as to obtain the successive lowpass residue for the following stage. \([41]\)

\(^1\) No information is lost by this process
4.2 Multiresolution Analysis

In this section, a more general mathematical notation is used to widen the theory to any wavelet bases. We develop a mathematical framework known as multiresolution analysis for studying wavelets. We use the concept of a vector space from linear algebra. A one-sample sound is just a function that is constant over the entire interval \([0, 1]\). We’ll let \(V^0\) be the vector space of all these functions. A two-sample sound has two constant pieces over the intervals \([0, 1/2]\) and \([1/2, 1]\). We’ll call the space containing all these functions \(V^1\). If we continue in this manner, the space \(V^j\) will include all piecewise-constant functions defined on the interval \([0, 1]\) with constant pieces over each of \(2^j\) equal subintervals. Thus, the starting point for multiresolution analysis is a nested set of vector spaces:

\[
V^0 \subset V^1 \subset V^2 \subset \ldots
\]

As \(j\) increases, the resolution of functions in \(V^j\) increases. The basis functions for the space \(V^j\) are the scaling functions. The next step in multiresolution analysis is to define wavelet spaces. For each \(j\), we define \(W^j\) as the orthogonal complement of \(V^j\) in \(V^{j+1}\). This means that \(W^j\) includes all functions in \(V^{j+1}\) that are orthogonal to all those in \(V^j\) under some chosen inner product\(^2\). The functions we choose as a basis for \(W^j\) are the wavelets. [32] [33]

\(^2\) \(V^{j+1} = V^j \cup W^j\)
4.3 A comparison between STFT and WT

The WT is of interest for the analysis of non-stationary signals, because it provides an alternative to the classical STFT or Gabor Transform (GT). The basic difference is as follows. In contrast to the STFT, which uses a single analysis window, the WT uses short windows at high frequencies and long windows at low frequencies. This is in the spirit of so-called “constant-Q” or constant relative bandwidth frequency analysis. While the STFT tiling is linear, the WT tiling is logarithmic.

In order to get a better feeling about the difference between STFT and WT, let’s look at a simple example. Suppose that we have a signal that contains two time pulses and two frequency pulses, such as

\[s(t) = \delta(t - t_1) + \delta(t - t_2) + e^{ju_1t} + e^{ju_2t} \]

Then its frequency presentation is

\[S(w) = e^{ju_1t} + e^{ju_2t} + 2\pi\delta(w - w_1) + 2\pi\delta(w - w_2) \]

Figure 4.4 compares STFT and WT for the signal (4.1). While time and frequency resolutions of STFT are uniform in the entire time-frequency domain, they vary in WT. At high frequencies, we have better time resolution and bad frequency resolution. At low frequencies, we have better frequency resolution and bad time resolution. However, the ratio of bandwidth and center frequency is constant. In terms of sound signals, it allows us to decompose the sound like the human hearing.” [25]

![Diagram of STFT and WT](image)

(a) STFT
(b) WT

Figure 4.4: Comparison of STFT and WT in the time-frequency domain

²like the human ear response
4.4 A Pitch Determination Algorithm

As for music analysis, pitch determination is an important part of speech recognition and speech processing in general. Pitch detection algorithms can be classified in two separate categories, spectral-domain based and time-domain based period detection. Spectral pitch detectors such as Cepstrum, Maximum Likelihood, and Autocorrelation methods, estimate the pitch period of a signal directly using windowed segments of speech, applying a Fourier-type analysis to determine a pitch average. A time based pitch detector, however, estimates the pitch period by determining the Glottal Closure Instant (GCI) and measuring the time period between each “event”. Thus the speech signal is processed period-by-period. Many good results are obtained for speech with existing methods, but generally they are not very satisfactory when applied to music. Often they are inadequate to music signals because of the large range of the fundamental frequency values or the variety of spectra encountered.

As I was interested in the non linearity of the WT (cf. 4.3), which seems to me a more natural way for windowing a large bandwidth signal, my research went to wavelet based speech oriented algorithms. We’ll see however, that after improvements, good results have been obtained for many kind of sounds.

4.4.1 A simple principle

"In [30], a wavelet based pitch determination algorithm is proposed, based on Mallat’s work on images [31]. Mallat showed that when analyzing images, the use of wavelet functions with derivative characteristics produces maxima in the wavelet transform across many coincident scales along sharp edges. In [30], Kadmsh and Boudreau-Bartels used the assumption that when a GCI occurs in a speech waveform, maxima also occur in the adjacent scales of the WT. The method proposed below improves reliability and further simplifies computation. In contrast with the method in [30], which chooses maxima if they occur in two adjacent wavelet coefficient scales, Wendt and Petropulu in [28] chose to utilize a single derivative filtering function defined to contain a specific bandwidth of voiced speech. This wavelet function when convolved with a speech signal will produce a filtered signal containing well defined local maxima where GCIs (or zero-crossing) occur in the speech (or music) signal. This method provides good results, a dramatic simplification in processing, utilizing only convolution and requiring only one set of coefficients to analyze and is robust to noise.

4.4.2 The proposed method

The choice of the mother wavelet, \(\psi(t) \), is important because it defines the characteristics of the wavelet transform and coefficients. A voiced speech segment is often modeled as a filtered impulse train where the period between each impulse represents a pitch period. During each period of voiced speech, the glottis is excited and a GCI occurs. In the signal this phenomena corresponds with a zero-crossing in the waveform. In order to detect a zero-crossing or GCI, a derivative function can be used. If the signal is filtered by a derivative function (such as Daubechies filters), a maximum will occur at each zero-crossing. Thus the time period between each maximum represents the pitch period of the signal at that moment.

In order to construct a filtering function, the idea is to use a wavelet with the derivative properties, described by Mallat [31], that also combines the bandwidth properties of the wavelet

4 vocal string effect
transform at different scales. Let $\psi(t)$ be the mother wavelet with derivative properties. The functions

$$\psi(t) = 2^{k/2} \psi(2^k t)$$ \hspace{1cm} (4.2)
$$\varphi(t) = 2^{k/2} \varphi(2^k t)$$ \hspace{1cm} (4.3)

represent both the wavelet and scaling functions respectively at each scale. $\varphi(t)$ is a lowpass function and is the conjugate mirror filter of $\psi(t)$, which is a highpass function. Since the range of voiced speech is between the 2 frequencies\(^5\) f_1 and f_2 (Hz), the final filtering function constructed should have a similar bandwidth. Therefore, we determine the lowpass scaling function for the scale k_a, corresponding to approximately f_1, i.e.

$$2^{k_a} = \frac{F_s}{f_1}$$ \hspace{1cm} (4.4)

where F_s is the sampling rate of the signal, and the highpass wavelet function for the scale k_b corresponding to approximately f_2, i.e.

$$2^{k_b} = \frac{F_s}{f_2}$$ \hspace{1cm} (4.5)

The filtering function $\rho(t)$ is obtained as:

$$\rho(t) = \psi_{k_a}(t) \ast \varphi_{k_b}(t)$$ \hspace{1cm} (4.6)

where \ast is a linear convolution and k_a and k_b were given in 4.4 and 4.5.” [28]

4.4.3 Maxima Detection

The filtered signal is a pseudo-sinusoid as shown in figure 4.5 and researched pitch at a given time t corresponds to the time period T separating both maxima in the function, before and after t. In order to detect these time locations properly, we approximate tops by parabolic functions: because of sampling restrictions, maxima can’t be found by looking at simple highest samples (see figure 4.6). The parabola shall fit three points. Highest samples are detected by derivative filter\(^6\) and signed-slope zero-crossing detection. Then with both samples arround it, we are able to compute the parabolic approximation $y = ax^2 + bx + c$ as follows:

$$\begin{align*}
A: & \quad y_1 = ax_1^2 + bx_1 + c \\
B: & \quad y_2 = ax_2^2 + bx_2 + c \\
C: & \quad y_3 = ax_3^2 + bx_3 + c
\end{align*}$$ \hspace{1cm} (4.7)

subtracting A with B and A with C:

\(^5\)30–500 Hz is commonly used in speech analysis
\(^6\)three sample long $[-1 \ 0 \ 1]$ filter
CHAPTER 4. WAVELETS

Figure 4.5: Detail of the filtered signal with maxima detection

\[
\begin{align*}
\{ (y_1 - y_2) &= a(x_1^2 - x_2^2) + b(x_1 - x_2) \\
(y_1 - y_3) &= a(x_1^2 - x_3^2) + b(x_1 - x_3) \\
\frac{y_1 - y_2}{x_1 - x_2} &= a(x_1 + x_2) + b \\
\frac{y_1 - y_3}{x_1 - x_3} &= a(x_1 + x_3) + b
\end{align*}
\]

subtracting these 2 relations:

\[
\frac{y_1 - y_2}{x_1 - x_2} - \frac{y_1 - y_3}{x_1 - x_3} = a(x_2 - x_3)
\]

and finally,

\[
a = \frac{y_1 - y_2}{x_1 - x_2} \frac{x_1 - x_3}{x_2 - x_3}, \quad b = \frac{y_1 - y_2}{x_1 - x_2} - a(x_1 + x_2) \quad \text{and} \quad c := 0 \quad (4.8)
\]
then the maximum of this parabola is \(\text{max} = \frac{-b}{2a} \)

4.4.4 Error Detection

The filtered signal may not be perfectly smooth. For some reasons (noise, large bandwidth, etc.), undesirable short undulations or irregularities might appear in the signal as shown in Figure 4.7. Two different methods have been applied to eliminate unwanted maxima: a median filter and a case by case treatment. Both methods work on the time location of maxima previously detected. The program actually gives the number of corrections as information.

![Unwanted maximum](image)

Figure 4.7: Unwanted undulation in the filtered signal

Median Filter

This nonlinear filter is good for reducing “salt-and-pepper” noise\(^7\). Also, it tries to preserve transients while acting much like a lowpass filter. For each sample, it assigns the median value of samples within a prespecified window size to the sample. The main inconvenience of this method is the unnecessary modification of original samples. To minimize the distortion effects, I used a single three sample long window. Note that because of its interpolation effect, pitch result is never rejected but smoothed out by the filter.

Case by Case Treatment

Many different cases of irregularities have been noticed. Their elimination is based on the variation checking of two consecutive durations (each of them being the time between two successive maxima) and dynamic threshold. A maximum rate of variation of this duration is fixed in the program (for example 20%). Then, the processing eliminates samples that do not fit in the acceptable range, checking however that we do not have a real strong change of the pitch. The advantage of this method is that no modification of values occurs. The disadvantage is that the complete process requires knowledge of five successive maxima. Nevertheless, good results have been obtained with this method. The following figure is a good example of error correction. I selected a very short interval of time in order to show the filtering function. Note that in the second window, the two pitch trajectories have been separated by 10 Hertz before plotting (the scale is logarithmic).

\(^7\text{speckly noise}\)
Figure 4.8: Pitch error correction

4.4.5 Unpitched and Error Rejection

This step tries to reject incorrect parts of the pitch result. There are three main reasons to reject the pitch:

- There is no Energy in the signal
- There is no Energy in the filtered signal
- The pitch estimation is wrong

Another dynamic threshold has been used to detect too strong variations in the pitch (we still work on the time maxima location but after error detection). A zero value is given to wrong pitch estimation. Also, the control of the energy by threshold on the signal and on the filtered signal\(^8\) allowed us to reject incorrect pitch. An example is given in Figure 4.9. It is from a shakuachi phrase, an indonesian blowing instrument. Note that vibrato and fast changes of the pitch are clearly visible. A range from 600 to 4000 Hz has been used in this example. The threshold on the energy that determines the rejected pitch was 1% of the maximum of the energy.

\(^8\)there is no energy in the filtered signal if the sound is unpitched
Figure 4.9: Example of pitch detection after error detection and incorrect pitch rejection
Conclusion

What I did

In this thesis I approached two important features of sound signal processing: the segmentation and the pitch tracking. For both of them, I drew my inspiration from speech analysis oriented algorithms. Also, real-time issues have been considered: all algorithms work with very local parts of the signal. The segmentation of sound events has been studied in the frequency-domain and the time-domain. Better results were obtained in the time-domain using a parametric autoregressive method: the divergence test. For instance, it has been shown that very short windows and order models can give good results. A wavelet approach were preferred for the pitch detection. Several improvements allowed the pitch tracking to work with many sounds and it is robust to noise. Since it is implemented in Matlab, no real-time application is predictable yet. These new methods in the music area may offer much interest in the CAST project.

What I learned

These results wouldn't have been possible without learned many features of computer music, including analysis, synthesis, real-time and control issues, psychoacoustics, etc. I also spent a lot of time understanding the statistical methods, the Fast Fourier Transform and the wavelet theory. I learned to work in a laboratory of research using many efficient tools and I learned to program in Matlab.
Part III

IMPLEMENTATION
Appendix A

Segmentation

All the programs are written in Matlab or C.

A.1 Frequency-Domain

The HFC and the Centroid functions are not given because they are very similar to the Energy. Here are the main lines to change:

```matlab
HFC = sum(spec_abs(2:window_size).^2 .* weigh(2:window_size)) / window_size;
centroid = ( sum(freqs .* spec_abs1) / sum(spec_abs1) );
```

```matlab
function [time,out,maxi,stride] = Energy(signal,Fs)
```

%% PARAMETERS
window_size = 512; % window length
jump = 50; % per cent
stride = window_size * jump/100; % part of window_size
window = hamming(window_size); % hamming window vector

%% MEMORY ALLOCATION
spec_full = zeros(1,window_size);
spec_pos = zeros(1,window_size);
spec_abs = zeros(1,window_size);

%% INITIALISATION
frames = floor(length(signal)/stride);
weigh = [1:window_size];
scale_a = scale_analysis(window); % function from M.Goodwin
out = [];

%% ANALYSIS LOOP
for i = 0:frames-2,
 in = signal(i*stride+1:i*stride+window_size);
in = scale_a * window’.* in; % normalisation

%% ENERGY CALCUL
spec_full = fft(in,window_size); % X(k) vector (bins)
spec_pos = spec_full(1:window_size); % positive values vector
spec_abs = abs(spec_pos); % magnitude vector
Energy = sum(spec_abs(2:window_size).^2) /window_size;

%% BUILDING THE VECTORS
 time = [0: stride*(1/Fs) : (frames-2)*stride*(1/Fs)];
out = [out Energy];
end
maxi = max(out);

The Detection Function section would be written like this:

%% BUILDING THE DETECTION FUNCTION

 column = size(vec_time,2);
vec_detect = [vec_HFC(1)/vec_E(1)];
vec_squared = vec_HFC .* vec_HFC;
vec_multipl = vec_HFC(1:column-1) .* vec_E(2:column);
vec_detect = [vec_detect vec_squared(2:column) ./ vec_multipl];

A.2 Time-Domain
A.2.1 Brandt Program

%%
%% - AUTO REgressive SEGMENTATION USING BRANDT'S GLR METHOD -
%%
%% This function detects transients in musical phrases by Auto Regressive
%% process (Brandt's Generalized Likelihood Ratio method). This function calls
%% the sub-function lpc.m (Linear Predictive Coefficients) that computes the
%% estimation of coefficients 'A' for each window (3 per slide) by using the
%% Levinson-Durbin algorithm.
%%
%% Input Argument
%% in : The complete original signal vector
%% p : The Auto Regressive model order
%% W_size : Length of the sliding window
%% sample : Number of computations per window (<= W_size)
%%
%% Note that Fs must be defined as a global variable out of this function
%%
%% Output Argument
%% out : The 2 dimensional output signal
%% 1st dimension : time
%% 2nd dimension : amplitude
%%
%% Written by Tristan JEHAN at CNMAT
%% Last modifications: 07/97
%%

function out = brandt(in, p, W_size, sample)

global Fs % Sample rate

%% INITIALISATION
jump = W_size/sample;
index_time = W_size; % Time control
V_size = length(in); % Number of samples in the signal
Yplus = zeros(1, W_size+p); % Memory allocation [t-p ... t+W_size-1]
time = (1/Fs)*[0:V_size-1]; % Time vector construction
out = [];
%% MAIN LOOP
while index_time <= V_size

Yplus(p+1 : p+W_size) = in(index_time-W_size+1 : index_time);

%% MAIN WINDOW COMPUTATION
X = toeplitz(Yplus(p : W_size+p-1), flipr(Yplus(1:p)));
A = lpc(Yplus(p+1 : p+W_size), p);
Yhat = X * A(2:p+1)';
sigma0 = sum((Yplus(p+1 : p+W_size) - Yhat').^2)/W_size;

%% 2 OTHER WINDOWS LOOP
for i = p+1: jump : p+W_size-1,

r = i-p; % Index into the sliding window

%% FIRST WINDOW COMPUTATION
X1 = toeplitz(Yplus(p : i-1), flipr(Yplus(1:p)));
A1 = lpc(Yplus(p+1 : i), p);
Yhat1 = X1 * A1(2:p+1)';
sigma1 = sum((Yplus(p+1 : i) - Yhat1').^2)/r;

%% SECOND WINDOW COMPUTATION
X2 = toeplitz(Yplus(i : p+W_size-1), flipr(Yplus(r+1 : i)));
A2 = lpc(Yplus(i+1 : p+W_size), p);
Yhat2 = X2 * A2(2:p+1)';
sigma2 = sum((Yplus(i+1 : p+W_size) - Yhat2').^2)/(W_size-r);

%% DETECTION
Dr = W_size * log10(sigma0) - r * log10(sigma1) - ...
 (W_size-r) * log10(sigma2);

%% OUTPUT MATRIX (2,x) BUILDING
out = [out [time(index_time-W_size+r) Dr]'];

end %% 2 other windows loop

Yplus(1:p) = Yplus(W_size+1 : W_size+p); % Copy of the p last samples
index_time = index_time + W_size; % Adjust time

end %% main loop

%% PLOT SECTION
set(0,'defaultaxesfontsize',6);

subplot(211), plot(time,in);
title('Original Signal','fontsize',9,'color','w');
xlabel('Time');
ylabel('Amplitude');

subplot(212), plot(out(1,:),out(2,:));
title('The Brandt Detection','fontsize',9,'color','w');
xlabel('Time');
ylabel('Amplitude');

A.2.2 Divergence Test Program

This program has been written in C by Régine André-Obrecht. It is the translation of a Fortran program. It is composed by Divergence.c that calls ModelARIdent.c and ReadFile.c. An file example of parameters param.div is also given.

/*
/* SEGMENTATION USING DIVERGENCE TEST AND VOICING TEST (optional)
/*
/* This program needs ReadFile2.c, ModelARIdent2.c to build the segmentation
/* based on Auto-Regressive process (Divergence test).
/*
/* Input:
/* * The binary/integer/16 bits signal file (maxi 600000 samples)
/* which name is in param.div and which extension is ".sig"
/* * The file param.div where are all the parameters.
/*
/* Output:
/* * the file with the extension ".seg" which contains positions of samples
/* (in ascii) where are the segmentation borders.
/*
/* Written by Regine Andre-Obrecht
/* Last modifications: June 2nd 1997
/*
/* Notice that this C program is translated from Fortran.
/*

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
define TAILLEBLOC 128
define BEGINNING 0
#define EXT SIGNAL ".sig"
#define EXT SEG ".seg"

/* GLOBAL VARIABLES */

char NomPC[30];
char NomSig[30];

float COR[22], VARF[22], RESF[22], RESB[22], VARB[22], RC[22];
float SIGNAL[6000000];
float R[22], XA[500];

/* THE FUNCTION */

main (nb, argument)

int nb;
char *argument[];
{

int M;
int nopt, i, NbBloc;
int NLIM;
int NMAX, M1, NO, N2, NRUPT, NRUPTO, NN, NbEffectLu;
int KPL, MQ, ECH, KMIN, KFECH, IEC, IECH, KM1;
int NRU, ANTV, AFTERV, PREDV, NTOT, NVOISC, NVOISP;
int PREDVA, ANUM;
int XK[500], X1[500];
int NUM[500], NAL;
int I, J, K, IAU;
int NBMAX, NTEST, nv;

float B, BB, BV;
float LAM, LAMB, LAMV;
float ALPH;
float NFECH;
float U, Q, ZAU, Z1, Y, XX2;
float VARA, RES, XAU, MAXI;

char temp[30], temp1[30];

FILE *pFile, *pcResul, *pParam;
pParam = fopen("param.div","r");

/* OPENING AND READING THE SIGNAL */

fscanf(pParam, "%s\n", NomSig);
fscanf(pParam, "%s\n", NomSig);
APPENDIX A. SEGMENTATION

```c
strcat(NomSig,temp);
strcat(NomSig,EXTSIGNAL);

pFile=fopen(NomSig,"r+b");

if (pFile)
{
    printf(" File %s successfully opened...\n",NomSig);
}
else
{
    printf(" File opening error in %s\n",NomSig);
}

fscanf(pParam,"%s\n",NomPC);
strcat(NomPC,temp);
fscanf(pParam,"%s\n",temp1);
strcat(NomPC,temp1);
pcResul=fopen(NomPC,"w");

fscanf(pParam,"%d\n",&M);
fscanf(pParam,"%d\n",&nopt);
fscanf(pParam,"%d\n",&NbBloc);

printf(" First sample: %d\n",0);
printf(" Number of blocs to read: %d\n",NbBloc);

NbEffectLu=EchLireFl(SIGNAL,0,NbBloc,pFile);
printf(" Number of blocs completely read: %d\n",NbEffectLu);
if (NbBloc != NbEffectLu)
    printf(" End of file... \n");

NMAX = NbEffectLu * TAILLEBLOC;
printf(" Number of samples: %d\n",NMAX);
fclose(pFile);

/* END OF SIGNAL DATA
   KMIN THEORETICALLY DEPENDS ON THE SAMPLE RATE, BUT HERE IT IS 20ms
   USERS CAN CHANGE IT: "NFECH" IS THE SAMPLE RATE IN KHz.
   */

fscanf(pParam,"%f\n",&NFECH);
fscanf(pParam,"%d\n",&KMIN);

KFECH = (int) (NFECH*20.);
if(KMIN==0) KMIN=KFECH;
printf(" Initialisation phase: %d\n",KMIN);

/* INITIALISATION OF CONSTANS (WINDOWS, THRESHOLDS, BIAS...)
   THEY CAN BE CHANGED BY USERS.
*/
```
```c
/*

LAMB = 80.;
LAMV = 40.;
BB = -0.8;
BV = -.2 ;

printf(" Voicing: %d\n",nopt);
if (nopt == 0)
{
    ANTV= 2;
    AFTERV=2;
    PREDV=2;
    PREDVA=2;
}

ALPH=0.;
MQ=M+1;
KM1=KMIN-1;
N1=0;
N2=1+N1;
NRUPT=N1;
NRUPT0=N1;
NO=N1;
NAL=0;
IECH=KMIN/2;
IIECH=KMIN/4;

/* NEW INITIALISATIONS AFTER EACH FAILURE */

13:    KPL=0;
    ZAU=0.;
    MAXI=0.;
    N1=NO;
    N2=NO+1;
    for (I=1; I <= 21; I=I+1)
    {
        VARF[I]=1.;
        VARB[I]=1.;
        RESF[I]=0.;
        RESB[I]=0.;
        COR[I]=0.;
    }
    VARF[MQ]=1.;
    VARB[MQ]=1.;

    /* PARAMETERS FOR DETECTION OF VOICING AND CALCUL OF BIAS, THRESHOLDS... */

    if (nopt != 0)
```
{ECH=0;
NRU=0;
NTOT=0;
PREDVA=PREDV;
NLIM=(int)(1.5*KFECH);
NN=N2;
XK1[1]=SIGNAL[NN];

for (K =1 ; K <= (IECH-1); K=K+1)
{
 NN=N2+K;
 Y=SIGNAL[NN];
 XK[K]=Y;
 XK1[K+1]=Y;
}

NN=N2+IECH;
XK[IECH]=SIGNAL[NN];

nv=VOIS(XK,XK1,&PREDV,&ANTV,&AFTERV,&NTOT,&NVOISP,&NVOISC,NFECH,&NRU);

if (AFTERV == 2)
{
 B=BV;
 LAM=LAMV;
}
else
{
 LAM=LAMB;
 B=BB;
}
}
else
{
 LAM=LAMB;
 B=BB;
}

/* ENERGY CONTROL DURING INITIALLISATION IN CASE THERE IS A VOICING CONTROL (nopt=2) */

if (nopt == 2)
{
 NO=NN;
 XK1[1]=SIGNAL[NN];

 for (K=1; K <= (IECH-1); K=K+1)
 {
 NN=NO+K;
 Y=SIGNAL[NN];
 XK[K]=Y;
 XK1[K+1]=Y;
 }
APPENDIX A. SEGMENTATION

}
NN=NO+IECH;
XK[IECH]=SIGNAL[NN];
nv=VOIS(XK,XK1,&PREDV,&ANTV,&AFTERV,&NTOT,&NVOISP,&NVOISC,NFECH,&NU);
}

/* END OF CONTROL */

NO=N2+KMIN-1;
goto l31;

/* TRAITING CURRENT SEGMENT */

l131: ZAU=Z1;
l31: N1=N1+1;
 if(N1 > NMAX) goto 1998;
 KPL=KPL+1;
 Z1=0.;
 XX2=SIGNAL[N1];
 TREILV(KPL,XX2,M,&VARA,&RES);
 if(KPL < 0) goto l131;
 if(KPL > KMIN) goto l181;
 XA[KPL]=SIGNAL[N1];
 if(KPL < KMIN) goto l131;
 IAU=1;
 XAU=0.;
goto l19;

l181: IAU=0;
 XAU=XA[1];
 I=0;
 for (I=1; I <= KM1; I=I+1)
 XA[I]=XA[I+1];
 XA[KMIN]=SIGNAL[N1];

l19: NTEST=AUTOV(KMIN,IAU,M,&ALPH,&XAU);

/* VOICING TEST EVERY 5ms (if nopt=2) */

if (nopt == 2)
{
 if ((ECH-IECH) >= 0)
 {
 NN=N1-IECH;
 XK1[1]=SIGNAL[NN];
 for (K=1; K<=(IECH-1); K=K+1)
{
 NN=NN+1;
 Y=SIGNAL[NN];
 XK[K]=Y;
 XK1[K+1]=Y;
}

NN=NN+1;
XK[IECH]=SIGNAL[NN];
N=VOIS(XK,XK1,&PREDV,&ANTV,&AFTERV,&NTOT,&NVOISP,&NVOISC,NFECH,&NRU);
ECH=0;
if (NRU != 0)
 {
 if ((ANTV != 2) & (AFTERV != 2)) goto 1401;
 N0=NN-NRU*IECH;
 goto 1800;
 }
else
 {
 1401:
 ECH=ECH+1;
 }
}

/* DIVERGENCE-HINKLEY TEST */

QV=ALPH/VARA;
U=(2.*XAU*RES/VARA-(1.+QV)*RES*RES/VARA+QV-1.)/(2.*QV);
ZI=ZAU+U-B;

if (MAXI > ZI) goto 1500;
MAXI=Z1;
NO=N1;
1500: if ((MAXI-Z1) < LAM) goto 1131;

1800: NAL=NAL+1;
NUM[NAL]=NO;
if (NO+KMIN <= NMAX) goto 13;

1999: N1=NO;
1998: N1=N1+1;

if (N1 > NMAX) goto 1997;
goto 1998;

/* WRITING BORDERS AND VOICING RESULTS
 RESULTS ARE IN NUM
*/
1997: printf(" The borders are:\n");
 for (J=1; J<NAL; J=J+1)
 {
 fprintf(pcResul,"%d\n",NUM[J]);
 printf(" %d \n",J,NUM[J]);
 }

 printf(" Number of alarms: %d\n",NAL);
 if (NUM[NAL] < NMAX)
 fprintf(pcResul,"%d\n",NMAX);
 printf(" The end...
");
}

/*
 SEGMENTATION USING DIVERGENCE TEST AND VOICING TEST (optional)
*/
/*
/* This program needs ReadFile2.c, ModelARIdent2.c to build the segmentation
/* based on Auto-Regressive process (Divergence test).
/*
/* Input:
/* * The binary/integer/16 bits signal file (maxi 600000 samples)
/* * which name is in param.div and which extension is ".sig"
/* * The file param.div where are all the parameters.
/*
/* Output:
/* * the file with the extension ".seg" which contains positions of samples
/* (in ascii) where are the segmentation borders.
/*
/* Written by Regine Andre-Obrecht
/* Last modifications: June 2nd 1997
/*
/* Notice that this C program is translated from Fortran.
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#define TAILLEBLOC 128
#define BEGINNING 0
#define EXTSIGNAL ".sig"
#define EXTSEG ".seg"

/* GLOBAL VARIABLES */
char NomPC[30];
char NomSig[30] ;

float COR[22],VARF[22],RESF[22],RESB[22],VARB[22],RC[22];
float SIGNAL[600000];
float R[22],XA[500];

/* THE FUNCTION */

main (nb,argument)
{

int nb;
char *argument[];
{

int M;
int nopt,i,NbBloc;
int NLIM;
int NMAX,N1,N0,N2,NRUPT,NRUPTO,NN,NbEffecLu;
int KPL,MQ,ECH,KMIN,KFECI,IECH,IIECH,KM1;
int NRU,ANTV,AFTERV,PREDV,NTOT,NVOISC,NVOISP;
int PREDVA,ANUM;
int XK[500],XK1[500];
int NUM[500],NAL;
int I,J,K,IAU;
int NBMAX,NTEST,nv;

float B,BB,BV;
float LAM,LAMB,LAMV;
float ALPH;
float NFECI;
float U,VQ,ZAU,Z1,Y,XX2;
float VARA,RES,XAU,MAXI;

char temp[30],temp1[30];

FILE *pFile, *pResul, *pParam;
pParam=fopen("param.div","r");

/* OPENING AND READING THE SIGNAL */

fscanf(pParam,"%s\n",NomSig);
fscanf(pParam,"%s\n",temp);
strcat(NomSig,temp);
strcat(NomSig,EXTSIGNAL);
pFile=fopen(NomSig,"r+b");
if (pFile)
{
 printf(" File %s successfully opened...\n",NomeSig);
}
else
{
 printf(" File opening error in %s\n",NomeSig);
}

fscanf(pParam,"%s\n",NomePC);
strcat(NomePC,temp);
fscanf(pParam,"%s\n",temp1);
strcat(NomePC,temp1);
pcResult=fopen(NomePC,"w");

fscanf(pParam,"%d\n",&M);
fscanf(pParam,"%d\n",&n0pt);
fscanf(pParam,"%d\n",&NBloc);

printf(" First sample: %d\n",0);
printf(" Number of blocs to read: %d\n",NbBloc);

NbEffectLu=EchLireFl(SIGNAL,0,NbBloc,pFile);
printf(" Number of blocs completely read: %d\n",NbEffectLu);
if (NbBloc != NbEffectLu)
 printf(" End of file... \n");

NMAX = NbEffectLu * TAILLEBLOC;
printf(" Number of samples: %d\n",NMAX);
fclose(pFile);

/* END OF SIGNAL DATA
 KMIN THEORICALLY DEPENDS ON THE SAMPLE RATE, BUT HERE IT IS 20ms
 USERS CAN CHANGE IT: "NFECH" IS THE SAMPLE RATE IN KHz.
 */

fscanf(pParam,"%f\n",&NFECH);
fscanf(pParam,"%d\n",&KMIN);

KFECH = (int) (NFECH*20.);
if(KMIN==0) KMIN=KFECH;
printf(" Initialisation phase: %d\n",KMIN);

/* INITIALISATION OF CONSTANTS (WINDOWS, THRESHOLDS, BIAS...)
 THEY CAN BE CHANGED BY USERS.
 */

LAMB = 80.;
LAMV = 40.;
BB = -0.8;
BV = -.2 ;

printf(" Voicing: %d
", nopt);
if (nopt == 0)
{
 ANTV= 2;
 ATERV=2;
 PREDV=2;
 PREDVA=2;
}

ALPH=0.;
MQ=M+1;
KM1=KMIN-1;
N1=0;
N2=1+N1;
NRUPT=N1;
NRUPT0=N1;
NO=N1;
NAL=0;
IECH=KMIN/2;
IIECH=KMIN/4;

/* NEW INITIALISATIONS AFTER EACH FAILURE */

13: KPL=0;
 ZAU=0.;
 MAXI=0.;
 N1=NO;
 N2=NO+1;
 for (I=1; I <= 21; I=I+1)
 {
 VARF[I]=1.;
 VARB[I]=1.;
 RESF[I]=0.;
 RESB[I]=0.;
 COR[I]=0.;
 }
 VARF[MQ]=1.;
 VARB[MQ]=1.;

/* PARAMETERS FOR DETECTION OF VOICING AND CALCUL OF BIAS, THRESHOLDS... */

if (nopt != 0)
{
 ECH=0;
 NRU=0;
 NTO=0;
PREDVA=PREDV;
NLIM=(int)(1.5*KFECH);
NN=N2;
XK1[1]=SIGNAL[NN];

for (K =1 ; K <= (IECH-1); K=K+1)
{
 NN=N2+K;
 Y=SIGNAL[NN];
 XK[K]=Y;
 XK1[K+1]=Y;
}
NN=N2+IECH;
XK[IECH]=SIGNAL[NN];
nv=VOIS(XK,XK1,&PREDV,&ANTV,&AFTERV,&NTOT,&NVOISP,&NVOISC,NFECN,NRU);

if (AFTERV == 2)
{
 B=BV;
 LAM=LAMV;
}
else
{
 LAM=LAMB;
 B=BB;
}
else
{
 LAM=LAMB;
 B=BB;
}

/* ENERGY CONTROL DURING INITIALIZATION IN CASE THERE IS A VOICING CONTROL (nopt=2) */

if (nopt == 2)
{
 NO=NN;
 XK1[1]=SIGNAL[NN];

 for (K=1; K <= (IECH-1); K=K+1)
 {
 NN=NO+K;
 Y=SIGNAL[NN];
 XK[K]=Y;
 XK1[K+1]=Y;
 }
 NN=NO+IECH;
 XK[IECH]=SIGNAL[NN];
nv=VOIS(XK,XK1,&PREDV,&ANTV,&AFTERV,&NTOT,&NVOISP,&NVOISC,NFECN,NRU);
APPENDIX A. SEGMENTATION

} /* END OF CONTROL */

NO=N2+KMIN-1;
goto 131;

/* TRATING CURRENT SEGMENT */

1131: ZAU=Z1;
131: N1=N1+1;
 if(N1 > NMAX) goto 1998;
kpl=kpl+1;
 Z1=0.;
 XX2=SIGNAL[N1];
 TREILV(KPL,XX2,M,&VARA,&RES);
 if(KPL < 0) goto 1131;
 if(KPL > KMIN) goto 1181;
 XA[KPL]=SIGNAL[N1];
 if(KPL < KMIN) goto 1131;
 IAU=1;
 XAU=0.;
goto 119;

1181: IAU=0;
 XAU=XA[i1];
 I=0;

 for (I=1; I <= KM1; I=I+1)
 XA[i]=XA[i+1];
 XA[KMIN]=SIGNAL[N1];

119: NTEST=AUTOV(KMIN,IAU,M,&ALPH,&XAU);

/* VOICING TEST EVERY 5ms (if nopt=2) */

if (nopt == 2)
 {
 if ((ECH-IIECH) >= 0)
 {
 NN=N1-IECH;
 XK1[1]=SIGNAL[NN];
 for (K=1; K<=(IECH-1); K=K+1)
 {
 NN=NN+1;
 Y=SIGNAL[NN];
 XK[K]=Y;
 }
APPENDIX A. SEGMENTATION

XK1[K+1]=Y;
}
NN=NN+1;
XK[IECH]=SIGNAL[NN];
nt=VOIS(XK, XK1, &PREV, &ANTV, &AFTERV, &NTOT, &NVOISP, &NVOISC, NFECN, &NRU);
ECH=0;
if (NRU != 0)
{
 if((ANTV != 2) & (AFTERV != 2)) goto 1401;
 NO=NN-NRU*IIECH;
 goto 1800;
}
else
{
1401:
 ECH=ECH+1;
}

/* DIVERGENCE-HINKLEY TEST */

QV=ALPH/VARA;
U=(2.*XAU*RES/VARA-(1.+QV)*RES*RES/VARA+QV-1.)/(2.*QV);
Z1=ZAU+U-B;

if (MAXI > Z1) goto 1500;
MAXI=Z1;
NO=N1;
1500: if((MAXI-Z1) < LAM) goto 1131;

1800: NAL=NAL+1;
 NUM[NAL]=NO;
 if((NO+KMIN) <= NMAX) goto 13;

1999: N1=NO;
1998: N1=N1+1;

 if(N1 > NMAX) goto 1997;
goto 1998;

/* WRITING BORDERS AND VOICING RESULTS
 RESULTS ARE IN NUM
*/

1997: printf(" The borders are:\n");
 for (J=1; J<=NAL; J=J+1)
{
 fprintf(pcResult,"%d\n",NUM[J]);
 printf(" %d %d\n",J,NUM[J]);
}

printf(" Number of alarms: %d\n",NAL);

if (NUM[NAL] < NMAX)
 fprintf(pcResult,"%d\n",NMAX);

printf(" The end...\n");
}

/*

 SUB PROGRAM FOR READING THE SIGNAL FILE

 This program is called by Divergence.c and reads a signal raw file
 (integers/16 bits). His logic name is pFile.

 Written by Regine Andre-Obrecht
 Last modifications: June 2nd 1997
 */

/* DECLARATIONS */

#include <stdio.h>
#include <memory.h>
#include <stdlib.h>
#define TAILLEBLOC 128
#define BEGINNING 1

int SigPositionEch (pFile, EchDep)

FILE *pFile;
int EchDep;

{
 int status;
 unsigned long roffset;
 roffset = (unsigned long) (EchDep) * (unsigned long) (sizeof(short int));
 status = fseek(pFile, roffset, BEGINNING);

 if (!status)
 {
 printf(" Status: %d\n",status);
 return (status);
 }
}
int EchLireFl (Buffer, EchDep, NbBloc, pFile)
int EchDep, NbBloc;
float *Buffer;
FILE *pFile;

{
 int status, i, j,Nmax,neffect;
 short int Signal[600000];
 status = SigPositionEch (pFile, EchDep);

 i=0;
 neffect = NbBloc;
 while (i < NbBloc)
 {
 memset (Signal+(i*TAILLEBLOC),'\0',TAILLEBLOC*sizeof(short int));
 status=fread((char *)(Signal+(i*TAILLEBLOC)),sizeof(short int),
 TAILLEBLOC,pFile);
 i++;
 if(status < TAILLEBLOC)
 {
 neffect = i-1;
 goto l222;
 }
 }

l222: Nmax = i*TAILLEBLOC;
 for (j=1; j<=Nmax; j=j+1)
 Buffer[j]= (float) Signal[j-1];
 return (neffect);
}

extern float XA[500],R[22];
extern float VARF[22], COR[22], VARB[22], RC[22], RESF[22], RESB[22];
extern float SIGNAL[600000];

int AUTOV(N, IAU, M, ALPH, XAU)
int N, IAU, M;
float *ALPH, *XAU;

{
int MQ, NK, NP, I;
int MINC, IB, IP, MH;
float AT, S;
float AU[22], RCA[22], VALPH, VXAU;

VALPH=0.;
VXAU=*XAU;
MQ=M+1;
if (IAU == 0) goto l11;

for (K=1; K<=MQ; K=K+1)
{
 R[K]=0.;
 NK=N-K+1;
 for (NP=1; NP<=NK; NP=NP+1)
 R[K]=R[K]+XA[NP]*XA[NP+K-1];
}
goto l12;

l11: for (K=2; K<=MQ; K=K+1)
 R[1]=R[1]-VXAU*VXAU+XA[N]*XA[N];

l12: if (R[1] <= 0.) R[1]=1.;
 RCA[1]= -R[2]/R[1];
 AU[1]=1.;
 AU[2]=RCA[1];
 VALPH=R[1]+R[2]*RCA[1];
 if (M <= 1) goto 151;

for (MINC=2; MINC<=M; MINC=MINC+1)
{
 S=0.;
 for (IP=1; IP<=MINC; IP=IP+1)
 S=S+R[MINC-IP+2]*AU[IP];
 RCA[MINC]= -S/VALPH;
 MH=MINC/2+1;
 for (IP=2; IP<=MH; IP=IP+1)
 {
 IB=MINC-IP+2;
 AT=AU[IP]+RCA[MINC]*AU[IB];
 AU[IB]=AU[IB]+RCA[MINC]*AU[IP];
 }
APPENDIX A. SEGMENTATION

```c
AU[IP]=AT;
}
AU[MINC+1]=RCA[MINC];
VALPH=VALPH+RCA[MINC]*S;
if(VALPH <= 0.) return (-1);
}

151: VALPH=VALPH/ (float)(N-1);
     *ALPH=VALPH;
     VXAU=0.;

    for (I=1; I<=MQ; I=I+1)
        VXAU=VXAU+ AU[I]*XA[N-I+1];
     *XAU=VXAU;
    return (1);
}

/* IDENTIFICATION PROGRAM OF AR MODEL BY THE BURG METHOD (LONG TERM MODEL) */

void TREILV (K,Y,M,VARA,RES)
int K,M;
float Y;
float *VARA,*RES;
{
    float RESBP[22], GAINV, GAINC;
    int IK,I,KK;

    if (Y == RESF[1]) Y=Y+1.;
    GAINV=1./ (float)(K);
    VARB[1]=VARF[1];
    RESF[1]=Y;
    IK=M;

    if ((K-1) < M) IK=K-1;
    if(K == 1) goto 12;

    for (I=1; I <= IK; I=I+1)
        RESBP[I]=RESB[I];

    for (I=1; I<=IK; I=I+1)
    {
        KK=K-I;
        GAINC=1./ (float)(KK);
        COR[I]=COR[I]+GAINC*(RESBP[I]*RESF[I]-COR[I]);
        RC[I]=2.*COR[I]/ (VARF[I]+VARB[I]);
        RESF[I+1]=RESF[I]-RC[I]*RESBP[I];
        RESF[I+1]=RESBP[I]-RC[I]*RESF[I];
        VARF[I+1]=VARF[I+1]+GAINC*(RESF[I+1]*RESF[I+1]-VARF[I+1]);
```
VARB[I+1]=VARB[I+1]+GAIN*(RESB[I+1]*RESB[I+1]-VARB[I+1]);
}

 *VARA=VARF[IK+1];
 *RES=REF[IK+1];
}

int VOIS (XK,XK1,PREDV,ANTV,AFTERV,NTOT,NVOISP,NVOISC,NFECH,NRU)

/* SUB PROGRAM FOR VOICING CALCUL DURING INITIALIZATION PHASE AND CHECKING OF
THIS VALUE BY "NRU" (NRU, DIFFERENT OF 0, MEANS A VARIATION OF THE VOICING
DURING THE SEGMENT
*/

int *XK,*XK1,*PREDV,*ANTV,*AFTERV,*NTOT,*NVOISP,*NVOISC,*NRU;
float NFECH;

{
 int IECH,KMIN,NLONG,NANT,NAFT,I,NZERO,NVOIS;
 float LSEUI1,LSEUI2,LSEUI3,LSEUI4,LSEUI5;
 float AU,EN,XKK,XXK1,Y,Z,H;

 KMIN= (int) (NFECH*20.);
 IECH=KMIN/2;

 /* THRESHOLD ON ENERGY */
 LSEUI1=210000./128;
 LSEUI2=8500000./128;

 /* THRESHOLD ON AUTOCORRELATION OF THE SIGNAL */
 LSEUI3=190000./128;
 LSEUI4=5500000./128;
 LSEUI5=80./256.*IECH;
 NLONG=IECH;
 *NTOT= *NTOT+1;
 EN=0.0000001;
 AU=0.0000001;
 NZERO=0;
 NAFT=1;
 if(XK[1] < 0) NAFT=-1;

 for (I=1; I<=IECH; I=I+1)
 {
 XKK=XK[I];
 NANT=NAFT;
 NAFT=1;
 if(XKK < 0) NAFT = -1;
APPENDIX A. SEGMENTATION

if (XKK == 0) NAFT= NANT;
if (NANT != NAFT) NZERO=NZERO + 1;
XKK1=XK1[I];
EN=EN+XKK*XKK/NLNG;
AU=AU+XKK*XKK1/NLNG;
}

if (EN <= LSEUI1)
{
 Z=0.;
}
else
{
 if (EN <= LSEUI2)
 {
 Z=1.;
 }
 else
 {
 Z=2.;
 }
}

if (AU <= LSEUI3)
{
 Y=0.;
}
else
{
 if (AU <= LSEUI4)
 {
 Y=1.;
 }
 else
 {
 Y=2.;
 }
}
NVOIS=(int)((Z+Y)/2);

/* VOICING CORRECTION DEPENDING ON THE REFLEXION COEFFICIENT AND THE NUMBER
OF ZERO-CROSSING
*/

H=1.*AU/EN;
if (NVOIS == 2)
{
 if (AU < 0) NVOIS=1;
 if (((H < 0.85) && (EN < (10000000./128))) NVOIS=1;
 if (((Z == 2.) && (NZERO >= LSEUI5)) NVOIS=1;
}
if ((EN > (20000./128)) && (NVOIS == 0) && (H < 0.70)) NVOIS=1;

/* NTOT IS THE NUMBER OF BLOCS TRAITEM DURING THE SEGMENT
NRU IS THE NUMBER OF BLOCS SINCE THE LAST VOICING VARIATION IN THE SEGMENT
WITHOUT FAILURE NRU=0 */

if (*NTOT == 1) {
 *ANTV=NVOIS;
 *PREDV=NVOIS;
 *AFTERV=NVOIS;
 *NVOISC=1;
 *NVOISP=0;
} else {
 if (NVOIS == *AFTERV) {
 *NVOISC = *NVOISC + 1;
 if (*NVOISC == *NTOT) return(1);
 if (*NVOISC > 4) *NRU=*NVOISC;
 } else {
 *NVOISP=*NVOISC;
 *PREDV=*ANTV;
 *ANTV=*AFTERV;
 *AFTERV=NVOIS;
 *NVOISC=1;
 if (*PREDV == *ANTV) return(1);
 if (*PREDV == *AFTERV) {
 *NVOISC=*NTOT;
 *ANTV=*AFTERV;
 } else {
 *NRU= *NVOISP+1;
 }
 }
}

/* FILE EXAMPLE OF PARAMETERS */

/usr/people/tristan/PROGRAMS/SEGMENTATION/
coleman
/usr/people/tristan/PROGRAMS/SEGMENTATION/
.seg
2
1
1500
44.1
56

/* WHAT'S THAT? */

1. Path for the signal file (char)
2. Signal file name without extension (char)
3. Path for result file (char)
4. extension for result file
5. Order (int) of the estimated autoregressive model
6. Voicing option: 0 = No special treatment
 1 = Voicing used for bias and threshold for the
 initialisation phase of each segment.
 2 = like 1 + voicing used as a failure test
7. Number of blocs to read (int) (limited to 4780)
8. Sample rate (float in KHz)
9. New window size (int)
 if the size is equivalent to 20ms, put 0
 else put the size (number of samples)
Appendix B

Pitch Detection

This section is composed by the wavelet pitch tracking program in Matlab which is divided in several functions. Some of them are available in the UVI-Wave wavelet toolbox [41]. And the reader can also refer to Appendix A.1 for the function Energy.

```matlab
% THE PITCH DETECTION FUNCTION
% This function computes the pitch and the Energy of the signal and the filtered signal and then build and plot a pitch segmented detection based on the pitch estimation and the Energy amplitude.
% Arguments input:
% signal: name of the signal vector
% Fs: sample rate
% fmin: The minimum freq
% fmax: The maximum freq
% threshold: on energy, for pitch segmentation
% Arguments output:
% pitchseg: 2 columns vector containing time and associated pitch
% Written by Tristan JEHAN at CNMAT
% Last modifications: 07/97

function pitchseg = SegPitch(signal,Fs,fmin,fmax,threshold)

% COMPUTES THE SIGNAL ENERGY
[E_time_signal,E_signal,E_maxi_signal,E_stride_signal] = Energy(signal,Fs);

% COMPUTES THE PITCH
[maxima,pitch,maxima3,pitch3,pitch4,filt] = Pitch(signal,Fs,fmin,fmax);

% COMPUTES THE FILTERED SIGNAL ENERGY
[E_time_filt,E_filt,E_maxi_filt,E_stride_filt] = Energy(filt,Fs);
```
%% BUILD THE TIME VECTOR
len0 = length(signal);
time = [0:len0-1]*(1/Fs);

%% BUILD THE SEGMENTED PITCH
len1 = length(maxima);
len2 = length(E_filt);
len3 = length(E_signal);
pitch2 = pitch;
for i=1:len1,
 j=ceil(maxima(i)/(E_stride_signal*(1/Fs)));
 if j<len2 & j<len3
 if E_filt(j) < E_maxi_filt*threshold/100 & E_signal(j) < ...
 E_maxi_signal*threshold/100
 pitch2(i)=0;
 end
 end
end
pitchseg = [maxima, pitch2];

%% PLOT PARAMETERS
set(0,'defaultaxesfontsize',6);
E_maxsig_filt = max(filt);
E_maxsig_signal = max(signal);
E_norm_filt = E_maxsig_filt/E_maxi_filt;
E_norm_signal = E_maxsig_signal/E_maxi_signal;
trace = max(filt)/2;
maxpitch = max(pitch2);

%% PLOT SECTION
subplot(311), plot(time,signal,'w',E_time_signal,E_signal*E_norm_signal,'k');
title('Original Signal and Energy','fontsize',9,'color','w');
ylabel('Amplitude');

subplot(312), plot(time,filt(1:len0),'y',maxima,ones(1,len1)*trace,'g',maxima3, ...
 ones(1,length(maxima3))*(trace-1),'b',E_time_filt,E_filt*E_norm_filt,'r');
title('Filtered Function, Energy and maxima detection (before and after ...
 processing)','fontsize',9,'color','w');
ylabel('Amplitude');

subplot(313), semilogy(maxima,pitch,'r',maxima,pitch2,'y',maxima3,pitch3+10,'g', ...
 maxima3,pitch4+20,'b');
axis([-inf time(len0) fmin-50 (maxpitch+50)]);
title('Original Pitch (b), median filter (g) and Traited and Segmented ...
Pitch (y'), 'fontsize', 9, 'color', [0 0.5 1]);
ylabel('Amplitude');
xlabel('Time');
zoom on;

%%%%
%%%% THE PITCH DETECTION FUNCTION
%%%%
%%%% This function detects the GCI (Glotal Closure Instant) which is usually used in
%%%% speech detection. It uses a wavelet based method. Then it detects maxima in the
%%%% filtered signal and computes the pitch signal.
%%%%
%%%% Arguments input:
%%%% in: The original signal
%%%% Fs: The sample rate
%%%% fmin: The minimum freq
%%%% fmax: The maximum freq
%%%%
%%%% Arguments output:
%%%% maximal1: maxima of the pseudo-function with the case-by-case method
%%%% pitch: complete pitch vector with the case-by-case method
%%%% maxima: maxima of the pseudo-function before treatment
%%%% pitch2: complete pitch vector with the median filter method
%%%% pitch3: complete pitch vector before treatment
%%%% out: the filtered function
%%%%
%%%%
%%%% Written by Tristan JEHAN at CNMAT
%%%% Last modifications: 07/97
%%%%
%%%%

function [maximal1,pitch,maxima,pitch2,pitch3,out] = Pitch(in,Fs,fmin,fmax)

%%%% WAVELET AND SCALE FUNCTIONS CONSTRUCT PARAMETERS

Ka = floor(log10(Fs/fmin)/log10(2));
Kb = ceil(log10(Fs/fmax)/log10(2));

%%%% WAVELET FILTERING FUNCTION

[h,g] = daub(8); % generate Daubechies filters
[s,w] = wavelet(h,g,Kb); % Determination of scaling function S (High cut-off freq)
[s1,w1] = wavelet(h,g,Ka); % Determination of wavelet function W1 (Low cut-off freq)
filt = conv(s,w1); % Filtering function
out = conv(filt,in); % Filtered signal

%% TIME VECTOR

len = length(in);
time = [0:len-1] * (1/Fs);

%% MAXIMUM DETECTION

filt_size = 3;
filter = [-1 0 1]; % Derivation filter
deriv = zeros(1,len);
maxa = [];
X = (filt_size-1)/2;

%% FILTERING

for i = (filt_size+1)/2 : len-X,
deriv(i) = sum(filter .* (out(i-X : i+X))); % Derivation
if i>1
 if ((deriv(i-1)>0) & (deriv(i)<0)) % Zero-crossing detection

 %% PARABOLIC APPROXIMATION

 a = (((out(i-1)-out(i)) / (time(i-1)-time(i))) - ...
 ((out(i-1)-out(i+1)) / (time(i-1)-time(i+1)))) / (time(i)-time(i+1));
b = ((out(i-1)-out(i)) / (time(i-1)-time(i))) - a * (time(i-1)-time(i));

 maxa = [maxa (-b/(2*a)) + time(i)];

 end
end
end

%% PEAKS CLEANING 1

len2 = length(maxa);
newlen2 = len2;
precision = 15; % percentage of pitch error
precision2= 30;
errors = 0;
maxima1 = maxa;

for i=1:len2-5,
 if i==newlen2-4
 break;
 end

 D1=maxima1(i+1)-maxima1(i); % Durations between 2 Zero-crossing
APPENDIX B. PITCH DETECTION

D2=\text{maxima}(i+2) - \text{maxima}(i+1);
D3=\text{maxima}(i+3) - \text{maxima}(i+2);
D4=\text{maxima}(i+4) - \text{maxima}(i+3);
D5=\text{maxima}(i+5) - \text{maxima}(i+3);

\text{if } \text{abs}(1-(D2/D1)) > \text{precision}/100 \text{ and } \text{abs}(1-(D3/D2)) > \text{precision}/100 \text{ and } ...
\text{abs}(1-(D4/D1)) < \text{precision}/100 \text{ or } \text{abs}(1-(D5/D1)) < \text{precision}/100
\text{then}
\text{maxima}(i+2) = [];
\text{newlen}2=\text{newlen}2-1;
\text{errors}=\text{errors}+1;
\text{end}
\text{end}
\text{errors}

%%% PITCH ESTIMATION 1

\text{pitch} = \text{zeros}(1,\text{newlen}2); % Pitch vector

\text{for } i=2:\text{newlen}2-2,
\text{D1} = \text{maxima}(i) - \text{maxima}(i-1);
\text{D2} = \text{maxima}(i+1) - \text{maxima}(i);
\text{if } \text{abs}(1-(D2/D1)) < \text{precision}/100
\text{pitch}(i) = 1/((\text{maxima}(i+2) - \text{maxima}(i-1))/3);
\text{else}
\text{pitch}(i) = 1;
\text{end}
\text{end}
\text{maxima}2 = \text{maxima};

%%% PEAKS CLEANING 2

\text{for } i=2:\text{len}2-2,$$
\text{D1} = \text{maxima}(i) - \text{maxima}(i-1); % Durations between 2 Zero-crossing
\text{D2} = \text{maxima}(i+1) - \text{maxima}(i);
\text{D3} = \text{maxima}(i+2) - \text{maxima}(i+1);
\text{maxima}2(i) = \text{median}([\text{D1} \text{ D2} \text{ D3}]);$$
\text{end}

%%% PITCH ESTIMATION 2

\text{pitch}2 = \text{zeros}(1,\text{len}2); % Pitch vector

\text{for } i=2:\text{len}2-2,$$
\text{pitch}2(i) = 1/((\text{maxima}2(i-1)+\text{maxima}2(i)+\text{maxima}2(i+1))/3);$$
end

%% PITCH ESTIMATION 3: THE NON FILTERED

pitch3 = zeros(1,len2); % Pitch vector

for i=2:len2-2,
 pitch3(i) = 1/((maxima(i+2)-maxima(i-1))/3);
end

Other many small programs have also been written for converting, loading or saving sound files with Matlab.
Bibliography

[1] A. Von Brandt,
Detecting and estimating parameters jumps using ladder algorithms and likelihood ratio test
Proc. ICASSP, Boston, MA, 1983, p. 1017–1020

[2] A. Willsky,
A survey of design methods for failure detection

[3] John R. Pierce and Scott A. Van Duyne,
A passive nonlinear digital filter design which facilitates physics-based sound synthesis of
highly nonlinear musical instruments
Center for Computer Research in Music and Acoustics (CCRMA), Stanford University
Acoustical Society of America, February 1997

[4] Thomas P. Krauss, Lauren Shure and John N. Little,
Signal Processing TOOLBOX User’s guide (for use with MATLAB)
http://www.mathworks.com/

[5] John Hajda,
A new model for segmenting the envelope of musical signal: the relative salience of steady
state versus attack, revisited
University of California, presented at the 101st convention 1996 November 8–11, Los Angeles
AES (an Audio Engineering Society preprint)

[6] Ludger Solbach and Rolf Wohrmann,
Sound onset localization and partial tracking in gaussian white noise
ICMC Proceedings 1996, p. 324
{ludger, rolf}@tick.ti6.tu-harburg.de

[7] Paul Masri and Andrew Bateman,
Improved modelling of attack transients in music analysis-resynthesis
Digital Music Research Group, University of Bristol
ICMC Proceedings, 1996
http://www.fen.bris.ac.uk/elec/dmr/
Paul.Masri@bristol.ac.uk

[8] Andrew Choi,
Real-time fundamental frequency estimation by least-square fitting
IEEE Transactions on Speech and Audio Processing, vol 5 no 2, March 1997

[9] Duane Hanselman and Bruce Littlefield,
Mastering MATLAB (A comprehensive tutorial and reference)
Prentice-Hall, Inc. 1996
[10] Alan Wesley Peevers,
A real-time 3D signal analysis/synthesis tool based on the overlap add Short Time Fourier Transform
Department of Electrical Engineering, University of California, Berkeley

Detection of abrupt changes, Theory and Application
1993

[12] Régine André-Obrecht,
A new statistical approach for the automatic segmentation of continuous speech signals
IEEE ASSP vol. 36 no 1, January 1988

[13] Jonathan Foote,
A similarity measure for automatic audio classification
Institute of systems science national University of Singapore
http://repulse.iss.nus.sg:8080/ jtf@iss.nus.sg

[14] C.S. Burrus and T.W. Parks,
DFT/FFT and convolution algorithms (Theory and Implementation)
Wiley-Interscience, 1985

[15] H.J. Nussbaumer,
Fast Fourier Transform and convolution algorithms (second corrected and updated edition)
Springer-verlag (Berlin), Heidelberg (New-York)

[16] Christopher E. Reid and Thomas B. Passin,
Signal Processing in C
1992, John Willey & Sons, Inc.

Numerical recipes in C (The art of scientific computing, Second edition)
Cambridge University Press, 1992

[18] Jae S. Lim and Alan V. Oppenheim,
Advanced topics in signal processing
Edited by Jae S. Lim and Alan V. Oppenheim

[19] Thomas F. Coleman and Charles Van Loan,
Handbook for matrix computations
SIAM, 1988

[20] Eric Métois,
Dossier long de troisième année: Plusieures approches de la détection et de l’estimation du pitch d’un signal
CNMAT, (Telecom PARIS), 1991

[21] John Kitamura, Boris Doval and Xavier Rodet,
A robust pitch tracker
IRCAM, 1990

[22] Peter J. Brockwell and Richard Davis,
Time Series: Theory and Methods, Second Edition
Springer-Verlag, 1991
[23] Boris Doval and Xavier Rodet,
Fundamental frequency estimation and tracking using maximum likelihood harmonic matching and HMMs
IRCAM, April 1993

[24] Michèle Basseville and A. Benveniste,
Detection of abrupt changes in signals and dynamical systems
New York, Springer-Verlag, 1986

[25] Shie Qian and Dapang Chen,
Joint time-frequency analysis (methods and applications)
Prentice Hall PTR, 1996

[26] Sukandar Kartadinata,
Thesis: Algorithms for combined sound analysis and synthesis and their implementation in a multi-processor environment
CNMAT, 1996

[27] Lee-Min Lee and Hsiao-Chuan Wang,
An extended Levinson-Durbin algorithm for the analysis of noisy Autoregressive process

[28] Christopher Wendt and Athina P. Petropulu,
Pitch determination and speech segmentation using the discrete wavelet transform
Chris@cbis.ece.drexel.edu

[29] Glenn A. Shelby, Christopher M. Cooper and Reza R. Adhami,
A wavelet-based speech pitch detector for tone languages

[30] Shubha Kadambe and G. Faye Boudreaux-Barrels,
Application of the wavelet transform for pitch detection of speech signals

[31] S.G. Mallat and S. Zhong,
Characterization of signals from multiscale edges

[32] Eric J. Stollnitz, Tony D. Derose and David H. Salesin,
Wavelets for computer graphics: A primer, part 1

[33] Eric J. Stollnitz, Tony D. Derose and David H. Salesin,
Wavelets for computer graphics: A primer, part 2

[34] Régine André-Obrecht,
Segmentation automatique du signal de parole
Thèse de 3ième cycle, Université de Rennes 1, May 1985

[35] Michèle Basseville and A. Benveniste,
Sequential detection of abrupt changes in spectral characteristics of digital signals
[36] Olivier ROUL and Martin VETTERLI,
Wavelets and Signal Processing
IEEE SP Magazine, October 1991

[37] Michael GOODWIN,
Frequency-domain analysis-synthesis of musical sounds
CNMAT and Department of Electrical Engineering and Computer Science, UCB
michaelg@cnmat.berkeley.edu

[38] Michael GOODWIN and Martin VETTERLI,
Time-frequency signal models for music analysis, transformation and synthesis
CNMAT and Department of Electrical Engineering and Computer Science, UCB

[39] Paolo PRANDONI, Michael GOODWIN and Martin VETTERLI,
Optimal time segmentation for signal modeling and compression
LCAV, Ecole Polytechnique Fédérale d Lausanne, Switzerland
EECS, University of California, Berkeley, USA
prandoni@de.epfl.ch, michaelg@eecs.berkeley.edu, vetterli@de.epfl.ch

[40] Michael GOODWIN and Xavier RODET,
Efficient Fourier synthesis of nonstationary sinusoids
CNMAT and IRCAM
michaelg@cnmat.berkeley.edu and rod@ircam.fr

[41] Nuria GONZALEZ PRELCIC and Sergio J. GARCÍA GALAN,
UVI-Wave, Wavelet TOOLBOX for use with MATLAB (Version 1.0.2)
Grupo de Teoría de la Señal, Universidad de Vigo

[42] Wing-kei YIP, Kwong-sak LEUNG and Kin-hong WONG,
Pitch detection of speech signals in noisy environment by wavelet
Chinese University of Hong Kong, Department of Computer Science, Shatin, Hong Kong
SPIE vol. 2491

[43] Matthew WRIGHT,
A pedagogical catalog of musical sound synthesis techniques and the control of sound they afford
CNMAT, 1997
matt@cnmat.berkeley.edu

[44] Ph. DEPALLE, G. GARCÍA and X. RODET
The recreation of a castrato voice, Farinelli’s voice
IRCAM
{phd, garcia, rod}@ircam.fr

[45] Matthew WRIGHT and Adrian FREED
Open SoundControl: A new protocol for communicating with sound synthesizers
CNMAT, ICMC 1997
matt,adrian@cnmat.berkeley.edu
http://cnmat.CNMAT.Berkeley.EDU/People/

[46] Adrian FREED
Bring Your Own control to additive synthesis
BIBLIOGRAPHY

CNMAT, ICMC 1995
adrian@cnmat.berkeley.edu
http://www.cnmat.berkeley.edu/~adrian/

[47] David K. MELLINGER
 Event formation and separation in musical sound
 CCRMA, Department of music, December 1991

[48] Cyril DRAKE
 Contrôle du timbre et de la synthèse additive par réseaux de neurones
 IRCAM, INT, CNMAT Thesis, 1996

[49] David L. WESSEL
 Timbre space as musical control structure

[50] David R. BRILLINGER and Rafael A. IRIZARRY
 An investigation of the second-and higher-order spectra of music
 Statistics Department University of California Berkeley

[51] Mickael LEE and David WESSEL
 Connectionist models for real-time control of synthesis and compositional algorithms
 CNMAT
 wessel,lee@cnmat.berkeley.edu

[52] David WESSEL
 Instruments that learn, refined controllers, and source model loudspeakers
 Computer Music Journal, vol. 15, no 4, winter 1991, MIT wessel@cnmat.berkeley.edu