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Partitioning data into clusters

A partition is a division of the dataset into clusters which are ideally compact, separated,
and balanced. Finding a good partition requires a good mathematical definition and trade-
off between these qualities. Like similarity search, partitioning hinges on a good definition of
distance between data objects.

We start with an algorithm which produces good results, and then look at how it achieves
compactness, separation, and balance.

The K-means algorithm:

1. Guess the number of clusters, K

2. Guess the location of cluster means

3. Assign each point to the nearest mean
4. Compute new means

5. Tterate back to (3)

K-means tries to minimize a sum-of-squares objective:
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m, is the mean for cluster ¢. This formula is the variance of the cluster times the size of the
cluster, summed over all clusters. Minimizing it clearly wants clusters to be compact. It also
wants balance, because big clusters cost more than small ones with the same variance.

Each step of K-means reduces the sum-of-squares. The sum-of-squares is always positive.
Therefore K-means must eventually stop. However, it may not stop at the best solution.

K-means is a local search algorithm: it makes small changes to the solution that improve the
objective. Local search is also called hill-climbing, by analogy to an impatient hiker who tries
to find the highest peak by always walking uphill. This strategy can stop at local optima,



where the criterion is not optimized but no improvement is possible by making small changes.
Which local minimum you stop at depends on where you started. Hence K-means gives different
results depending on how you make the initial guess. A typical initial guess is to pick K data
points at random to be the means.

Ward’s method for hierarchical clustering

Ward’s method is another algorithm for finding a partition with small sum of squares. Instead
of starting with a large sum of squares and reducing it, you start with a small sum of squares
(by using lots of clusters) and then increasing it.

1. Start with each point in a cluster by itself (sum of squares = 0).

2. Merge two clusters, in order to produce the smallest increase in the sum of squares (the
smallest merging cost).

3. Keep merging until you’ve reached K clusters.

The merging cost is the increase in sum of squares when you merge two clusters, and has a
simple formula:
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This formula reveals the tradeoff between separation and balance. For clusters which are the
same distance away, it is better to merge the smaller ones. Consider the case where one cluster
is just a single point: it wants to join not just the closest cluster but one with a small number
of points already in it.

The merging cost provides a suggestion of the number of clusters in the data. If the cost jumps,
you’ve probably merged too far. So a good number of clusters is the number before a jump in
the merging cost.

The partitions produced by Ward’s method are nested: the partition of size K is contained
within the partition of size K + 1. Ward’s method also does not do local search. These two
properties mean that Ward’s method generally does not produce a sum-of-squares as small as
K-means. However, we can run the K-means search starting from the Ward’s method solution,
to get a competitive sum-of-squares. Note that Ward’s method does not rely on a random
starting guess, so its answer is unique.

Ward’s method produces not just a single partition but an entire hierarchy of clusters, which
is usually more informative and doesn’t require a choice of K.



Ward’s method on the flower/tiger/ocean images:
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Only one mistake is made (flower5). The clustering was computed using all colors, but to
enhance interpretation, each cluster has been labeled with a “joining” color (one which both
subgroups have in common but is rare in the rest of the data). This is similar to finding colors
with high information content.



The merging cost suggests that there are 3 clusters (also 6 or 8):
o

Other examples: (x’s are cluster means)
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The sum of squares measures distance equally in all directions, so it wants the clusters to be
round. This can sometimes be a disadvantage.

Single-link clustering can handle any cluster shape:

1. Start with each point in a cluster by itself (sum of squares = 0).

2. Merge the two clusters with smallest gap (distance between the two closest points)

3. Keep merging until you’ve reached K clusters.

This algorithm only wants separation, and doesn’t care about compactness or balance. This
can lead to new problems, as shown below. Current research focuses on algorithms, such the
Jarvis&Patrick algorithm, which blend the advantages of single-link and Ward’s method.
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