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Time-series of purchases

Today’s dataset describes the purchase dates and amounts for 14,000 different customers of an
online grocer during the years 1996-1998. Here is the data for one of the customers (aa16755):
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Time is in days and has been standardized so that the first purchase date is 0. Amount is in
dollars.

The grocer wants to be able to predict the time and amount of future purchases. Unfortunately,
the only thing you can really see in this plot is that the amounts are generally high in the
beginning and low at the end.

A better approach is to plot the amount versus the lagged amount and versus the time since
the last purchase:
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This shows a strong connection with time and a lesser positive correlation with the previous



amount. A linear autoregressive model, which predicts Amount based on the previous purchase
amount and the time since, can explain 36% of the variance.

However, an autoregressive model is not an intuitively appealing model of purchasing.
Restocking model

Intuitively, the purchase amounts should be related to the customer’s needs at the time. In
other words, they should be related to the customer’s stock. Of course, the store never observes
the customer’s stock, but by making some assumptions about the customer, it is possible to
infer their stock. Consider the basic stock equation:

Stock = Initial.stock + Total.purchases - Consumption
The first assumption is that the customer has a constant consumption rate:
Consumption = Rate * Time

The second assumption is that the customer makes purchases in order to minimize the variance
of their stock. In other words, the customer minimizes the sum of squares of the stock over time.
The third assumption is that the customer is loyal, i.e. they always purchase these particular
products at this particular store. Hence the store knows the customer’s total purchases. Because
we know the total purchases and we know the time, we can rewrite the stock equation into a
linear regression problem:

Total.purchases = Rate * Time - Initial.stock + Stock

where Rate is the slope, ~-Initial.stock is the intercept, and Stock is the "noise” (the residual
of the fit).
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To check that these assumptions are valid,
it is sufficient to plot the customer’s total
purchases over time, and see if it is linear.
This curve turns out not perfectly linear,
but it does follow locally linear trends.
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Estimating stock

To get a more detailed picture, it helps to look at the residuals of the model (which is the stock
immediately after each purchase):
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Stock is only recoverable up to an additive constant, so don’t take the stock values literally.
This plot is based on a consumption rate of 21, chosen to give residuals which are locally flat.
There are intervals in which the stock is roughly constant. In between these intervals, the stock
suddenly changes, suggesting a change in consumption rate, or equivalently a change in loyalty.
Most likely, the customer shopped elsewhere during these periods.

An interesting by-product of the restocking model is that we can estimate exactly when the
customer shopped elsewhere and how much they spent. To do this, we add extra terms to
the regression model representing a sudden change in stock at a particular time. Stepwise
regression can automatically tell us which terms are useful. Doing this for the above customer
produces the model

(Intercept) Time Time.402 Time.362

251.72 20.57 -382.36 -213.14
Time.96 Time.225 Time.202
-246.77 -237.19 -229.81

The coefficient for Time is the consumption rate. The Time.X terms are step functions which
begin at a particular time. This implies disloyalties at times 96, 202, 225, 362, and 402, with
values $247, $230, $237, $213, and $382.

The learned model leads to the following estimate of stock over all time (disloyal periods
omitted):
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The assumption of constant consumption rate is evident in the zigzag shape.

Time

Predicting purchase times

Using this new stock variable, we can try to predict when the customer will make a purchase.
(For this to be valid, the stock on a purchase date must be the pre-purchase stock.) The
approach taken here is simply a logistic regression which predicts, per day, whether a purchase
will be made that day. The predictors are stock and time since the last purchase. Here is the
result:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -4.471736  0.469943 -9.515 < 2e-16 **x
Stock -0.011797 0.003809 -3.097 0.00195 *x*
Time.since 0.220338 0.067869 3.247 0.00117 =*x

The probability of purchase depends on both time and stock, in the expected directions: a
purchase is more likely when the time since is long and the stock is low.

Predicting purchase amounts
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Linear regression to predict the amount: (R? = 0.42)
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Estimate Std. Error t value Pr(>lt|)
(Intercept) 68.1482 15.0875 4.517 4.09e-05 **x
Stock -0.3915 0.1021 -3.835 0.000365 *x**
Time.since 2.9479 1.3462 2.190 0.033428 x*

Note that stock is the most significant predictor.

Not only does the model give information about loyalty, it also gives a better fit than autore-
gression. The actual predictive performance, however, is unknown since the stock was estimated
from the entire dataset, not just the data prior to each amount. A full treatment of this latent-
variable model would estimate stock sequentially, and perhaps allow the consumption rate to
change over time.

Other customers

This analysis involved only one out of 14,000 customers in the dataset. Other customers show
various different behavior. For example, some have purchase frequencies which depend on
stock but the amounts do not. Others have purchase amounts which depend on stock but the
frequency does not. Some have a very non-constant consumption rate and cannot be handled
at all.

A next step would be to automate fitting the restock model and recover coefficients for each
customer, describing the extent to which their purchases depend on stock versus time, and their
loyalty. This would give a map of the typical purchasing behavior for the customers of this
online grocer.
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