36-350: Data Mining Handout 26 November 24, 2003

Modeling time-series data

e Predict the value as a function of time (change-point model)

e Predict the value as a function of previous values (auto-regression)

It is common for a time series to hover around one value, then abruptly change to another
value, and so on. These change-points can be found by clustering or by building a regression
tree. In the clustering method, we repeatedly merge neighboring points, as in Ward’s method.
After determining the right number of clusters, the cuts that remain are the change-points.

In the regression tree method, we simply predict the value as a function of time. After pruning
the tree to determine the right number of splits, those that remain are the change-points.

Annual measurements of the level, in feet, of Lake Huron 1875-1972.
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This locally-constant model can be treated as a regression model. Use the residuals from that
model to find unusual values.
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After removing the change-points, we can apply other modeling techniques. For example, here
is an autoregression:
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The revenue passenger miles flown by commercial airlines in the United States for each year
from 1937 to 1960. What is the best model, and where are the outliers?
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Instead of guessing different models and fitting each one, we use the residuals to guide us to
the right model. The initial curvature suggests a transformation, eventually leading us to a
fourth-root model. A linear model on the untransformed response gets R = 0.91, while a linear
model on the fourth-root gets R? = 0.99.

One interpretation of this model is that people look at the year before deciding to fly. A more
sensible explanation is that the airlines were growing each year. But that suggests a different
model, where the number of miles is determined primarily by last year’s total, not by the
absolute year.



Markov model—The current value is a function of previous values, instead of time. These
models are fit by auto-regression (regressing the time series on lagged versions of itself).
Some examples of Markov data:
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Notice how the Markov model behaves when there is a sudden change. It starts a new trend,
instead of returning to the old one (which would happen if it were a function of time alone).
The airmiles data does seem to follow this pattern. To see for sure, we do an auto-regression:
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The residuals from least-squares still show a trend, because of two outliers. The residuals
become flat with a coefficient of 1.15, so the correct model is airmiles = 1.15xlag(airmiles)
+ noise. In other words, airmiles increase by (an average of) 15% each year. This model has
R? = 0.99 and makes sensible predictions after a sudden change (above right).

As an example of how powerful this technique is, consider a sinewave (left). As a function of
time, it is nonlinear, but as a function of the past, a simple linear model suffices:

Ty = 1.961L't_1 — Tt—2
By using multiple lags, more complex repeating patterns can be modeled (right):

Ty = 3.95It_1 — 5.9It_2 + 3.95It_3 — T—4
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This time-series appears random:
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but actually it follows a simple autoregression:
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