36-350: Data Mining Handout 23 November 12, 2003

Pruning a tree and assessing its quality

When constructing a tree, it is important to know when to stop. A tree which is too big will fit
the training data very well, but predict future data badly. On the other hand, a tree which is
too small will perform consistently badly. To make the decision, you need a way of estimating
how well a tree will perform on future data (not just the training data).

Computational learning theory—Construct a sampling distribution for the training error rate
given the population error rate and type of model. From the sampling distribution, derive
a confidence interval on the population error rate. AIC (handout 17) is an instance of this
method.

Holdout method and cross-validation (handout 19)—Train on part of the data, test on the rest,
to estimate the performance of a given model type. For a given tree size, these methods will
estimate how well it will perform on future data. Do this for several tree sizes, pick the best,
and then fit a tree of that size to all the data.

Suppose you have a tree of size 5. How do you get a tree of size 47 Starting from scratch
is wasteful. Instead you can prune away the least informative split. Even fancier is to use
cross-validation to decide which split to prune.

Scoring a tree on a test set:

Misclassification rate does not account for costs.

1
Misclass = N Z I(predicted class of point i # actual class of point 7)

Misclassifiation cost requires you to know the costs in advance.

1
Cost = N > Cost(predicted class of point i|actual class of point )
i

Deviance evaluates the probabilities themselves, making the tree suitable for any cost matrix.
It also provides a more precise score than the other two.

-2
Deviance = N > " log p(actual class of point 7|point i, model)

K3

For example, if a future customer did churn, and the tree gave a churn probability of 0.4 for that
customer, then the deviance is —2log(0.4). If the tree gives probability 1 to the correct answer,
it has deviance zero. If the tree gives probability 0 to the correct answer, it has deviance oc.
Thus it is good to be confident if you are right and bad to be confident if you are wrong.
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To minimize misclassification rate, you only need to know if p(Yes) > 0.5 (the decision
boundary). This can be done with a small tree. To minimize deviance, you need accurate
probabilities, which requires a bigger tree. In this case, cross-validation suggests 4 groups as
providing the best fit without over-fitting.



An extreme example of overfitting:
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This tree makes no errors on the training set. But in fact the y values were generated randomly,

so on test data the error rate will be 50%, no matter what the tree is.
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Churn dataset, holdout method, train on 10% of data:

training set testing set

21 leaves, misclass 6% 13%
21 leaves, deviance 0.23 1.15
4 leaves, misclass 10% 12.5%
4 leaves, deviance 0.61 0.72
3 leaves, misclass 13% 13.5%
3 leaves, deviance 0.66 0.72

The default tree has 21 leaves, which is apparently too much. Cross-validation on misclassifi-
cation rate (based on the training set alone) picks 4 leaves. Cross-validation on deviance picks
3 leaves.
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The basic nearest-neighbor classifier doesn’t provide probabilities. But suppose we
nearest neighbors, instead of 1, to estimate the local class probabilities.
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Cross-validation picks k£ = 25. Leave-one-out is normally used with k-NN because it is especially

simple.

Using & > 1 tends to give lower misclassification rate as well, due to noise averaging. An

example in two dimensions:
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The decision boundary gets smoother with larger k. On a test set, k¥ = 1 has 28% misclassi-
fication error, while k¥ = 46 has 22%. k-NN is good at rough and curvy decision boundaries.
What would the decision boundary look like for a tree?



