36-350: Data Mining Handout 23 November 12, 2003

Pruning a tree and assessing its quality

When constructing a tree, it is important to know when to stop. A tree which is too big will fit
the training data very well, but predict future data badly. On the other hand, a tree which is
too small will perform consistently badly. To make the decision, you need a way of estimating
how well a tree will perform on future data (not just the training data).

Computational learning theory—Construct a sampling distribution for the training error rate
given the population error rate and type of model. From the sampling distribution, derive
a confidence interval on the population error rate. AIC (handout 17) is an instance of this
method.

Holdout method and cross-validation (handout 19)—Train on part of the data, test on the rest,
to estimate the performance of a given model type. For a given tree size, these methods will
estimate how well it will perform on future data. Do this for several tree sizes, pick the best,
and then fit a tree of that size to all the data.

Suppose you have a tree of size 5. How do you get a tree of size 47 Starting from scratch
is wasteful. Instead you can prune away the least informative split. Even fancier is to use
cross-validation to decide which split to prune.

Scoring a tree on a test set:

Misclassification rate does not account for costs.

1
Misclass = N Z I(predicted class of point i # actual class of point 7)

Misclassifiation cost requires you to know the costs in advance.

1
Cost = N > Cost(predicted class of point i|actual class of point)
i

Deviance evaluates the probabilities themselves, making the tree suitable for any cost matrix.
It also provides a more precise score than the other two.

-2
Deviance = N > " log p(actual class of point 7|point i, model)

K3

For example, if a future customer did churn, and the tree gave a churn probability of 0.4 for that
customer, then the deviance is —2log(0.4). If the tree gives probability 1 to the correct answer,
it has deviance zero. If the tree gives probability 0 to the correct answer, it has deviance oc.
Thus it is good to be confident if you are right and bad to be confident if you are wrong.

. 2 groups . 3 groups
Slf = o] GO0 GO @EBEIODOO @ O 0D Slf — o] DG G QEENCHO-O-@p—O—OSm
> >
2 om o0 © : : 2 om o0 © : :
- 1 - 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
® 4 groups ® 5 groups
o - o] D0 G OEERCHO-O-@mp—O—OSm o - o] D0 G QEENCHO-O-@p—O—OSm
> >
> >

o _| o
z T I z T I
0.0 0.2 0.4 0.6 0.8 1.0 0.8 1.0
X X
10 fold cross-validation ~ 10,fold cross-validation
? - 3
o B 3 o |
o] c — —
8 8- g 7
£ 3]
& $
o | _
N o
T T T T T T T I ~ T T T T T T T I
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
size size

To minimize misclassification rate, you only need to know if p(Yes) > 0.5 (the decision
boundary). This can be done with a small tree. To minimize deviance, you need accurate
probabilities, which requires a bigger tree. In this case, cross-validation suggests 4 groups as
providing the best fit without over-fitting.

An extreme example of overfitting:

y
No Yes
I
o]
Yes
¥ ‘:’ °
°
g — ° No °
°
[J
b Yes o
o °
© J ° o Y e °
o | Yed\Yebld Yes|® No
No Yes No
Al °
° °
< | ° ° ® o °
° N ®
| e ® a e
® Yes o e ..
g -1-® ® \Via) e P
¢ Yes
o
© | e ¢
o
[[[[[[
0.0 0.2 0.4 0.6 0.8 1.0
f1

This tree makes no errors on the training set. But in fact the y values were generated randomly,

so on test data the error rate will be 50%, no matter what the tree is.
[|10 fold cross-validation | | |

deviance
100 120 140
|

80

size

Churn dataset, holdout method, train on 10% of data:

training set testing set

21 leaves, misclass 6% 13%
21 leaves, deviance 0.23 1.15
4 leaves, misclass 10% 12.5%
4 leaves, deviance 0.61 0.72
3 leaves, misclass 13% 13.5%
3 leaves, deviance 0.66 0.72

The default tree has 21 leaves, which is apparently too much. Cross-validation on misclassifi-
cation rate (based on the training set alone) picks 4 leaves. Cross-validation on deviance picks
3 leaves.

L 1 1 110 fold,cross-validation| | | | | | < 110 fold cross-validation
3 4
o —
S |
N o
g o g
s 8 7 © -
H 2
S o € ©
8 7 |
o o |
Q- \ T T T N T T T T
5 10 15 20 5 10 15 20
size size

The basic nearest-neighbor classifier doesn’t provide probabilities. But suppose we
nearest neighbors, instead of 1, to estimate the local class probabilities.

5-nearest neighbor
o @ma ao

10-nearest neighbor
o @a ao

Yes
1
Yes
1

2 o D @ 24 0 0 O0 ®

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

15-nearest neighbor 25-nearest neighbor
o @ma ao @EODOTO O.

@
o o W @
>

0.0 0.2 0.4 0.6 0.8 1.0 0.0

50-nearest neighbor
o 00 O @mIOmO

C@d 0 oab

y
misclass

50

X number of neighbors (k)

take k

Cross-validation picks k£ = 25. Leave-one-out is normally used with k-NN because it is especially

simple.

Using & > 1 tends to give lower misclassification rate as well, due to noise averaging. An

example in two dimensions:

class 1-nearest neighbor
No Yes
e e |
- o e0o ® ° o & - °
° ° o
pY ° P 000 © °% ™) Py
) ° [) b
o % * ®e
0 | ° o ° . i oo 0 |
o ° o e o o [] b ° L]
% ° e 9 LY
-:. o® .
[Y :. . o P 8
S g4 . ot S g4
o 0% L d ° hd
o. ¢ o
' LY °
° %o ® Qo e o % ° °
7o) ° @ ° ° 0 °
S s o 0% N I I e o0 < 7
°e® ® ° .'. o o .o. °
° o . ° o o .
) ° % o ®
o o % o o ° %o * o
: T T T T T : T
-1.0 -0.5 0.0 0.5 1.0 -1.0
M Vi

10-nearest neighbors 46-nearest neighbors
No Yes No Yes

1.0

7 o oe0o ® . o &

0.5
|

V2

V2

0.0
|

-1.0

50 52
|

48

V2
misclass
46
|

40

0 10 20 30 40 50

V1 number of neighbors (k)

The decision boundary gets smoother with larger k. On a test set, k¥ = 1 has 28% misclassi-
fication error, while k¥ = 46 has 22%. k-NN is good at rough and curvy decision boundaries.
What would the decision boundary look like for a tree?

