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Variable selection for a linear model

As you add predictors to a model, some of the predictors you previously added may become
unimportant, and should be deleted. This can be done by inspecting its p-value, the condensed
sum of squares, or a partial residual plot.

Partial model—A model where one predictor has been removed, by clipping or condensing.
Clipped model—The predictor is removed by setting its coefficient to zero. Other coefficients
are the same.

Condensed model-—The model is re-fitted without the predictor. All coefficients may change.
Clipped partial residuals—Residuals of the clipped model.

Condensed partial residuals—Residuals of the condensed model.

In this class, “partial residual” always means “condensed partial residual.”

Besides making the model simpler, deleting predictors can make the model better, because it
prevents overfitting a small data set. We should only keep predictors that have a significant
impact on the predictions made by the model.

To construct a linear model with only the most important predictors:

1. Plot the response versus each predictor. Add the most important to the model.

2. Plot the residuals versus each predictor not in the model. Add the most important to the
model.

3. Plot the partial residuals versus each predictor in the model. Delete unimportant predic-
tors from the model.

4. Tterate back to 2.



Partial residual plot—Each predictor is plotted versus the residuals of a condensed model
with that predictor left out. The plot shows the importance of each predictor in the model
(like a visual p-value), as well as what predictors need to be added.

Partial residuals of the model Sold.6 ~ Price.l1 + Price.3 + Price.6:
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A condensed model will always have a larger residual sum of squares. But the difference is
statistically significant only when the ratio exceeds e %™, where n is the number of cases. A
simple way to keep track of this is to compute the AIC number of each model:

AIC = nlog(RSS/n) + 2(number of coefficients)

The model with smallest AIC number is the smallest model with best expected performance.
However, this result assumes:

e The response actually is linear
e There are no outliers
e There are no interactions

e The predictors are uncorrelated (!)

Because these assumptions are frequently violated, the visual method is more reliable.

Stepwise selection adds and deletes predictors in an effort to minimize the AIC number.

Start: AIC= -63.51

Sold.6 ~ Price.6

Step: AIC= -71.54

So0ld.6 © Price.6 + Price.3

Step: AIC= -76.67

Sold.6 ~ Price.6 + Price.3 + Price.8

Step: AIC= -89.7
So0ld.6 ~ Price.6 + Price.3 + Price.8 + Price.2 + Price.16 + Price.14 +
Price.13 + Price.1

RSS AIC
<none> 93.697 -89.703
- Price.1 94.906 -89.474
- Price.13 95.226 -88.887
Price.7 93.153 -88.717
Price.10 93.274 -88.491
Price.15 93.353 -88.343
Price.11 93.577 -87.926
Price.9 93.597 -87.891
Price.12 93.600 -87.885
Price.4 93.661 -87.772
- Price.14 95.846 -87.758
+ Price.5 93.697 -87.704

+ 4+ + + + + 4+



- Price.6 96.285 -86.964
- Price.8 96.575 -86.440
- Price.2 97.201 -85.316
- Price.3 98.277 -83.400

- Price.16 99.644 -80.997

n = 174

AIC does not do well here. The chosen model has too many predictors, including Price.8
which should be redundant given Price.6. But it did find Price.3,13,14 which we know are
important.

An overview of the derivation of AIC is provided by Joseph E. Cavanaugh, “Unifying the
Derivations for the Akaike and Corrected Akaike Information Criteria,” Statistics & Probability
Letters 33:201-208, 1997. http://citeseer.nj.nec.com/cavanaugh97unifying.html



How to determine the coefficients of a linear model

A linear model for the response y as a function of predictors (x1, z3):
Y = a121 + a2 + b+ (noise)

The residual is the difference between the actual response and the predicted response:
residual =y — a1x1 — asxo — b

Given training data in the form of triples (x;, Z;2,¥;), there are many ways to estimate the
coefficients (aq, as, b). Least-squares minimizes the residual sum of squares:

RSS = Z(yz — Q1731 — A2 — b)z

As a function of any parameter (ai, ao, or b), RSS is a quadratic bowl. The minimum can
be found by hill-climbing, and it is unique (no need for random restarts). Backfitting is a
hill-climbing method:

—_

. Guess values for all parameters.

2. Update a; by solving a one-dimensional least-squares problem:

RSS, = Z((yz — AT — b) — a1ﬂfi1)2 = Z(Tﬂ - G1$i1)2

2 2

where r;; is the clipped partial residual for predictor 1. Minimizing RSS; is easy—just
set the derivative equal to zero.

3. Update ay by solving an analogous problem:

RSS; = Z((yz — 1% —b) — (123%'2)2 = Z(Tza - a233i2)2

2 2

4. Similarly for b.

5. Iterate back to 2.

In other words, each predictor repeatedly tries to approximate the residuals left by the other
predictors. Eventually, no further progress can be made, and you are at the optimum.

However, if two predictors are identical and you are not careful, then backfitting can get stuck
in a bad solution. To avoid this, you should always start with zeros. Once one predictor is
added, the other will not be added. This is the basis of our visual scheme for adding predictors.



