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Abstract

When human listeners are confronted with musical sounds, they rapidly and automatically
orient themselves in the music.  Even musically untrained listeners have an exceptional ability
to make rapid judgments about music from very short examples, such as determining the
music’s style, performer, beat, complexity, and emotional impact.  However, there are
presently no theories of music perception that can explain this behavior, and it has proven
very difficult to build computer music-analysis tools with similar capabilities.  This
dissertation examines the psychoacoustic origins of the early stages of music listening in
humans, using both experimental and computer-modeling approaches.  The results of this
research enable the construction of automatic machine-listening systems that can make
human-like judgments about short musical stimuli.

New models are presented that explain the perception of musical tempo, the perceived
segmentation of sound scenes into multiple auditory images, and the extraction of musical
features from complex musical sounds.  These models are implemented as signal-processing
and pattern-recognition computer programs, using the principle of understanding without
separation.  Two experiments with human listeners study the rapid assignment of high-level
judgments to musical stimuli, and it is demonstrated that many of the experimental results can
be explained with a multiple-regression model on the extracted musical features.

From a theoretical standpoint, the thesis shows how theories of music perception can be
grounded in a principled way upon psychoacoustic models in a computational-auditory-scene-
analysis framework.  Further, the perceptual theory presented is more relevant to everyday
listeners and situations than are previous cognitive-structuralist approaches to music
perception and cognition.  From a practical standpoint, the various models form a set of
computer signal-processing and pattern-recognition tools that can mimic human perceptual
abilities on a variety of musical tasks such as tapping along with the beat, parsing music into
sections, making semantic judgments about musical examples, and estimating the similarity of
two pieces of music.
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CHAPTER 1  INTRODUCTION

This is a dissertation about listening to music.  The kinds of listening that I will explore fall
into two main areas: people listening to music, and machines listening to music.  In order to
teach machines how to listen to music, we must first understand what it is that people hear
when they listen to music.  And by trying to build computer machine-listening systems, we
will learn a great deal about the nature of music and about human perceptual processes.

Music is one of the most striking activities that separates humans from animals.  People
everywhere and at every time throughout history have made music.  The significance of this
universality is undiminished—rather, accentuated—by music’s seeming purposelessness.
Music is also a rich source of inspiration for critical thinkers of all sorts.  Everywhere that we
can find historical records, we find that scholars and scientists have created religious,
aesthetic, psychological, philosophical, cultural, scientific, spiritual, and (recently)
computational theories regarding the analysis,  function, and operation of music.

Music works its way into every aspect of human culture.  Composers, performers, and
listeners shape music to fill new cultural niches as soon as they arise.  In the West, we bring
music into movies, sporting events, religious ceremonies, nightclubs, living rooms, and
shopping malls.  There is no other form of expression that we use so broadly and in as many
ways as music.  Most relevant to the research that I present in this dissertation, interest in
music has recently exploded on the Internet.  Companies built around music have a pressing
need for new kinds of music technology to support the growing passion for online music in
the networked world.

Scholars and scientists have already written many books and dissertations about the
perception of music.  The highest-level question that motivates my work—what is it that
people hear when they listen to music?—is shared by most of the research in the existing
literature.  But there is a major difference between the approach I will present here and most
of the previous work in music psychology.  This difference is an emphasis on sound and its
centrality in the music-listening process.

Music is ineffably a phenomenon rooted in sound.  Music is built from sound (Bregman,
1990, p. 455); without sound, there is no music.  All the musics of the world arise through an
elaborate interaction between the sound-generating properties of physical objects (termed
instruments of music) and the sound-analysis properties of the human auditory system.  The
auditory system was not adapted to music; rather, music is the way it is because of the nature
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of the human hearing process.  Thus, I submit, we can only really understand human music-
listening when we understand it as something to do with sound.

Psychoacoustics, the science of sound perception, connects the physical world of sound
vibrations in the air to the perceptual world of the things we hear when we listen to sounds.
My dissertation can be seen as an attempt to make music perception rest on a foundation of
psychoacoustics.  But this is not easy, because most previous inquiries into psychoacoustics
only treat very simple sounds, like tones and buzzes and clicks.  These test sounds are far
removed from the elegant and emotion-laden sounds that we perceive as music.   And so in
order to build the right sort of psychoacoustic foundation, I will present some new theories of
sound perception that are better-equipped to handle the complexities of real musical sound.
These ideas will be presented through the development of new computational models for
sound processing.

From a scientific perspective, it is crucial to develop stronger connections between music
perception and psychoacoustics.  A theory of musical listening cannot really be said to be a
theory of perception at all unless it connects the musical perceptions to the sound.  Drawing
this connection firms up the theoretical rigor of music-perception research in general.  But as
well as this scientific advantage, there is a practical advantage to understanding music
perception through psychoacoustics: the possibility of giving computers more advanced
musical abilities.

Most music today is represented at one time or another in digital form; that is, as a sequence
of bits whose values correspond to the sound-pressure levels in an analog acoustic waveform.
It is easy to make computers process these bits in order to tell us simple things about the
sound, such how much acoustic power it contains.  But it has proven amazingly difficult to
build computer systems that can understand the things that human listeners understand
immediately and unconsciously when they hear music, such as the musical genre, or the
instruments that are being played, or the beat in the music.

I submit that there is a straightforward reason for this difficulty.  This is that people hear the
things they do in music because of the basic sound-processing capabilities they possess.
People have evolved sophisticated tools for processing and understanding sources of sound in
the world.  People use sound to sense danger and locate each other in the dark and in places
that are visually obscured.  The auditory capabilities that we use to process music are exactly
the same—the same ears, the same cochleae, the same auditory brain—as those we use to get
by in the world.  Composers and musicians have learned, through a complex sociocultural
evolution, to create special kinds of sounds that tickle these capabilities in interesting ways.

It’s no good to try to approach the construction of music-listening computer systems through
engineering alone.  In order to understand the nature of music and how it is perceived, we
must understand the functioning of the perceptual system.  Further, from a more philosophical
viewpoint, we must refer to human listening to know what a computer music-listening system
should do in the first place. There is no ground truth that tells us what the computer is
“supposed” to hear in the sound when it listens to music.  Rather, the things that the computer
should hear are just those things that people hear upon listening to the same music.

This means that in order to understand why music is the way it is, and in order to make
computers able to process music more like people, we must first understand the way in which
people hear music.  The more we learn about human listening, the easier it will be to build
machine music-listening systems that solve useful problems on our behalf.  And it will be
only when we understand human music listening as a psychoacoustic behavior that scientific
results will translate naturally into new algorithms for music processing.

So my thesis makes contributions to three areas of inquiry that bear a complex overlapping
relationship to one another.  In order to understand music perception, we must understand it as
a special kind of psychoacoustics.  In order to understand this complex kind of
psychoacoustics, we must build computer models that embody new theories of hearing.  And
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in order to build more musically-intelligent computers, we must understand the human
perception of music.  This three-way connection is at the heart of the results I will present in
the rest of the dissertation.

1.1. Organization

My dissertation is divided into eight chapters. In chapter 2, Background, I review relevant
research from the fields of psychoacoustics, music perception, auditory scene analysis, and
musical signal processing.  This review will present the fundamentals of the science and
engineering I am engaged in, and some reasons why I think the previous research has not been
particularly successful.  In chapter 3, Approach, I explain more formally the problems I am
trying to solve, the theory of listening that I am defending, and the implications of this theory
for the construction of computational models.  These two chapters present the context of the
dissertation and set the stage for the presentation of new results.

Chapter 4, Musical Tempo, presents a simple model that demonstrates the music-listening-
system concept.  The model that I introduce in this chapter is capable of listening to music
and hearing the beat in it.  I present the model in signal-processing terms, compare it to other
psychoacoustic models, and demonstrate with a short listening experiment that the results
produced by the model are similar to the results given by human listeners when asked to find
the beat in a piece of music.  The simplicity of this model will make it easy to reflect upon the
way it embodies my approach.

In chapter 5, Musical Scene Analysis, I present a much more complex model of a much more
complex human perceptual behavior—the sense that music is made of multiple “instruments”
or “voices” that are being played at the same time, overlapping but still individually salient.
The model is based on new ideas about the psychoacoustic processing of complex scenes.  In
this chapter, I present the model and demonstrate extensively its capabilities to model human
percepts on a variety of basic psychoacoustic stimuli.  I also discuss the connections between
this model and other sound-segregation models in the literature.  This is the most technical
chapter of the dissertation, in both computational and psychoacoustic details.

Chapter 6, Musical features, extends the models in Chapter 4 and 5 by introducing techniques
for extracting perceptually-motivated features from the musical scene.  I show how a number
of simple features can be readily extracted from the psychoacoustic models.

Chapter 7, Musical Perceptions, presents the results of two human listening experiments and
two computer models that can predict these results.  The experiments are about the ability of
human listeners to react with “first impressions” immediately upon hearing a musical
stimulus, such as that the music is fast, loud, and complex.  The computer models presented in
this chapter are thus music-listening systems that can make immediate judgments about music
like people can.  I also briefly demonstrate how this model might be applied to practical
problems such as automatically classifying music into genre categories and performing music
similarity-matching.

Chapter 8, Conclusion, summarizes the contributions made in the dissertation and suggests
directions for further research.





CHAPTER 2 BACKGROUND

Three areas of previous research bear the most direct relationship to my dissertation.  The
literature on psychoacoustics describes the relationship between acoustic sound signals, the
physiology of the hearing system, and the perception of sound.  The literature on music
psychology explores the processes that govern how composers and performers turn intentions
into music, how listeners turn musical data into models of musical structure, and how
cognitive music structures give rise to affective response.  The literature on musical signal
processing reports previous attempts to build computer systems that can process music,
extract features from acoustic signals, and use them in practical applications.

In this chapter, I will present an in-depth discussion of previous research in these areas.  I will
not attempt to include all research in these disciplines, but only those I see as most current and
most directly connected to the main direction of the new results that I will present in
subsequent chapters.  After this, in Section 2.4, I will discuss projects that cross this
(somewhat arbitrary) division of boundaries.  The projects in that final subsection are the ones
closest to the research reported in the main body of my dissertation.

2.1. Psychoacoustics

Psychoacoustics as a field of inquiry has been in existence for more than a century.  Some of
the earliest studies recognizable as psychological science in the 19th century were concerned
with the perception of the loudness and pitch of sounds.  Even before scientific methods
developed, philosophers engaged in speculation about the nature of sound.  Psychoacoustic
thinking dates all the way back to the ancient Greeks; Pythagoras is credited with recognizing
that strings whose lengths are related as the ratio of small integers sound good when plucked
at the same time.

Modern psychoacoustics, since the work of Stevens, Wegel, Fletcher and others in the early
20th century (Fletcher’s research is reviewed in Allen, 1996), has evolved sophisticated
understanding of the early stages of hearing.  Robust and well-tested models have been
developed, especially of single perceptual features (such as pitch and loudness) of simple
stimuli, and the way in which one simple sound masks (hides) another depending on the time-
frequency relationship between the two sounds.  There is also a large body of research
treating the perception of “roughness” in sounds, which relates to the study of musical
consonance; I will discuss these results in Section 2.2 in the context of other studies on
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musical harmony.  More recently, a research focus has developed to study the perceptual
grouping and segregation of sounds under the broad heading of “auditory scene analysis”
(Bregman, 1990).  I provide a brief review of theories of pitch and of auditory scene analysis
in this section; I do not view masking models as directly relevant to my research.  Finally,
there is a new area of psychoacoustic research dealing with spectral-temporal pattern
integration that may lead in the future to a better understanding of how auditory scene
analysis is grounded in low-level behavior.  I will conclude this section with a review of these
studies.

2.1.1. Pitch theory and models
“Pitch” is the perceptual correlate of the frequency of a simple tone (in Chapter 3, Section 3.1,
I will expand more on the relationship between perceptual and physical attributes of sounds).
It is the feature of a sound by which listeners can arrange sounds on a scale from “lowest” to
“highest.”  The early days of pitch research dealt primarily with understanding the exact
capabilities and psychophysical discrimination accuracy for pitch; more recently, research has
focused on the construction of computational (or at least functional) models that mimic the
human ability to determine pitch from acoustic signals.

In the process of building and testing such models, researchers can draw on the wealth of
existing knowledge about the types of signals that generate a pitch sensation.  Licklider
(1951a) provided an early review of the research that examined such signals; Zwicker and
Fastl (1990) and Hartmann (1996) have provided more recent reviews of the data. Zwicker
and Fastl gave a list of no less than eleven different types of pitched sounds—even more have
been discovered since.  The primary task in building functional models of pitch processing is
to explain this data by showing how, given an acoustic signal as input, the ear and brain
generate the pitch percept. Stated another way, the goal of a functional pitch model is to
explain why different sounds have the pitches that they do.

Place models of pitch
There are two main types of pitch models: place models of pitch, and temporal models of
pitch.  In a place model of pitch, pitch is explained as the result of pattern-recognition analysis
of a sound spectrum.  The cochlea acts as a spectrum analyzer, and passes a set of “spectral
peaks” to a central processor, which determines the pitch of the sound from the relationships
of the peak positions.

A fine example of this traditional view of pitch perception was the Goldstein optimum
processor model (Goldstein, 1973).  In this model, the instantaneous spectral peaks of a signal
were extracted, and a maximum-likelihood processor (Therrien, 1989) was used to decide
which pitch best explains the spectrum under analysis.  The model could explain a wide range
of phenomena, including the pitch of sounds with missing fundamental, the percept of
dichotic pitch (where only some harmonics are presented to each ear), and the “musical
intelligibility” (capacity for describing musical intervals) of various pitch percepts.  It was
also presented in a rigorous mathematical formalism, which was viewed as more of a positive
feature at the time than today.

Similar mechanisms have been proposed by Wightman (1973), Terhardt (1974), and Hermes
(1988), among others.  There are several disadvantages of such models.  First, they require
more spectral resolution in the front end of analysis than is known to exist in the ear.  Signals
with closely-spaced spectral peaks can still give rise to a pitch sensation even though they are
not resolved separately by the cochlea.  Second, place models do not easily explain certain
pitch phenomena, such as iterated noise signals, that are spectrally flat.  Additionally, they
make scant predictions about the nature of the “central processor” that actually performs the
analysis, and thus it is very difficult to evaluate this part of these models.
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An advantage of central models is that they can naturally explain the phenomenon of dichotic
pitch (Moore, 1997, pp. 202-203), in which part of a sound is presented to one ear and part to
the other.  Neither part, heard in isolation, is perceived to have a pitch, but when both ears
hear the correct sounds at once, a clear pitch is perceived.  It would seem that some sort of
central mechanism is required to integrate the percepts from the two ears.  However, whether
the central mechanism must be strictly place-based, or could have important temporal-
dynamics aspects, is not presently clear.

Temporal models of pitch
In a temporal model of pitch, pitch is explained as the result of temporal processing and
periodicity detection on each cochlear channel.  The cochlea acts as a spectrum analyzer, but
rather than extracting spectral peaks from this representation, the band-passed signals that are
output from the cochlea are inspected in the time domain.  Pitched signals have periodic
fluctuations in the envelopes of the subband signals.  These fluctuations are viewed as a
reflection of the percept of pitch.  A variety of methods have been proposed for measuring the
periodicity of subband-envelope fluctuations.

The first temporal model of pitch was presented by Licklider (1951b), who proposed an
analysis technique based on a network of delay lines and coincidence detectors oriented in a
two-dimensional representation.  The first dimension corresponded to the spectral height of
the signal, as analyzed by the cochlea, and the second to the autocorrelation delay, over the
range of periods that evoke a pitch sensation.  This construction calculated a running
autocorrelation function in each channel; the peak of the function within a channel indicated
the primary pitch to which that channel responded.  Presumably, the information from
multiple channels would then be integrated to give rise to a single sensation of pitch, but
Licklider did not provide explicit details or predictions.  Licklider termed this the duplex
model of pitch.

Since Licklider’s formulation, this technique has been rediscovered several times, first by van
Noorden (1983), who cast it in terms of the calculation of histograms of neural interspike
intervals in the cochlear nerve.  In the last decade, the model was reintroduced by Slaney and
Lyon (1990), Meddis and Hewitt (1991), and others; it has since come to be called the
autocorrelogram method of pitch analysis (see below) and is today the preferred model.

Meddis and Hewitt (1991) specifically proposed that the cross-band integration of periodicity
took the form of a simple summation across channels.  They presented a number of analytic
and experimental results showing that this model can quantitatively explain a great deal of the
psychoacoustic data regarding pitch perception of isolated sounds.

Patterson and his collaborators have spent several years recently developing a so-called
Auditory Image Model that can achieve the same results with a somewhat different processing
structure (Patterson et al., 1995). In this model, after cochlear filtering and inner-hair-cell
transduction, a set of threshold detectors strobe and trigger integrators in each channel.
Patterson has shown that such triggering rules, although simpler to compute than
autocorrelation, can still be highly effective at “stabilizing” the acoustic data and explaining
psychophysical pitch experiments.  He claims as a major advantage that the model is
asymmetric with regard to time, and has presented some experimental evidence (Irino and
Patterson, 1996) that seems to show that humans may indeed be sensitive to temporal
asymmetries in pitched signals.

Slaney (1997) presented a review of psychoacoustic and neurophysiological evidence for and
against various types of correlogram processing: the modulation spectrogram (in which a
short-time Fourier transform is calculated within each cochlear channel to analyze
periodicity), the “true” autocorrelogram, and Patterson’s model.  He concluded that there was
little direct neurophysiological evidence for any of these methods, but that the explanatory
power of the models with respect to the available psychoacoustic evidence (especially that
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taken from the literature on pitch phenomena) was such that it seemed likely that some
temporal integration method similar to these was indeed used in the brain.  In contrasting the
models, he concluded that autocorrelation is less neurophysiologically plausible than a
method like Patterson’s, and that the modulation spectrogram accounted less well for the
psychoacoustic data than the other two.

Recently, de Cheveigné (1993; 1998b) proposed a “cancellation” model of pitch perception,
in which the multiplication operators used in calculating the autocorrelogram are replaced
with half-wave rectified subtractions.  He showed that this model is nearly equivalent to the
autocorrelogram, except that it preserves certain temporal asymmetries; he has also shown
that the cancellation model is a useful way to explain the perception of multiple-pitch stimuli
(de Cheveigné, 1997).

Details of the autocorrelogram
The autocorrelogram and related representations are important to my research because their
use is not restricted to the analysis of pitch in acoustic signals.  As there is now reasonably
strong (albeit circumstantial) evidence that an important part of early auditory processing uses
a periodicity-detection representation, examining such a framework to see “what else it’s
useful for” in other auditory models is appropriate.  For example, several recent
computational auditory scene analysis systems (Section 2.1.2) have used the autocorrelogram
as the front end.

Analysis of the dynamics of subband periodicity will form an important part of Chapters 4
and 5, so I will go a bit deeper here and explain the exact form that this important framework
takes when it is implemented as a computational theory.  The basic subband-periodicity
model, as described by Meddis and Hewitt (1991), is shown in Figure 2-1.  A monaural sound
signal is processed by, first, passing it through a bank of filters that approximate the passive
filtering process in the cochlea; second, applying smoothing and rectification to the signal as a
model for transduction of the motion on the basilar membrane to neural impulses by the inner
hair cells; and finally, determining the periodicity of the output of each cochlear subband
through the use of autocorrelation or a similar mechanism.

The output of the first stage, the filterbank processing and rectification, is sometimes called
the cochleagram because it is a first-order model of the average or ensemble firing rate of
nerve fibers at various positions along the cochlea.  A cochleagram for a test signal (the
“McAdams oboe”) is shown in Figure 2-2.1

The output of the second stage is termed the autocorrelogram when the periodicity detection
is performed using autocorrelation.  The autocorrelogram is the 3-D volumetric function
mapping a cochlear frequency channel, temporal time delay (or lag), and time to a periodicity
estimate in that frequency band at that lag and time (Slaney and Lyon, 1990).  The
autocorrelogram is most often visualized as a sequence of frames, each a constant-time slice
through the full figure (Figure 2-3).    Each row in one frame of the autocorrelogram is the
autocorrelation of the recent history of the corresponding row in the cochleagram.

In order to model the perception of pitch, each frame is summed vertically to arrive at the
summary autocorrelogram (SAC) as shown in the bottom panels of each frame in Figure 2-3.
Meddis and Hewitt (1991) demonstrated that the peaks in the summary autocorrelogram
account for the perception of pitch in a wide variety of stimuli.  In the  variant shown here, the
samples of the lag (periodicity) axis are spaced logarithmically. Ellis (1996a) suggested this,
arguing that it more accurately reflects human pitch perception.   This variant has additional
processing advantages that will become clear in Chapter 5.

                                                          
1 A more complete description of the sound appears in Section 5.4.1.  Synthesis code for
this example and the other test sounds used in Chapter 5 is included in Appendix B.
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Figure 2-1: The subband-periodicity model of pitch detection, following Meddis and Hewitt
(1991).  A cochlear filterbank separates the input acoustic signal into subbands.  A rectifying
nonlinearity is used to track the envelope energy in each band.  Periodicity detection (for example,
autocorrelation) is applied to each envelope, and the resulting periodicity estimates are summed
across frequencies to give a summary of the periodicity in the signal.  The pick of the summary
autocorrelogram function corresponds well to the human perception of pitch in the input signal.
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Figure 2-2: The output of a computational model of the cochlear filterbank and hair-cell
transduction—the  cochleagram—of part of the “McAdams oboe” sound (McAdams, 1984).  This
sound is comprised of the first ten harmonics of a 220 Hz fundamental with coherent vibrato (10%
depth, 4 Hz) applied to the even harmonics only (this is a great deal of vibrato; it is used here to
make the diagram clearer).  The percept is that of a clarinet-like sound with pitch at 220 Hz and a
soprano-like sound with pitch at 440 Hz.  The main panel shows the broad frequency resolution of
the filterbank; the vibrato in the second and fourth harmonics can be easily seen.  The small panel
presents a closer view of the time range around 280 ms; phase-locking in the middle frequencies
and lack of phase-locking in the high frequencies is observed.
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An important thread of research that has recently been connected to pitch-modeling is the
study of neural mechanisms for auditory processing.  New reports suggest evidence of the
information needed to extract pitch (Cariani, 1996; Cariani and Delgutte, 1996), temporal
envelope (Delgutte et al., 1997), modulation spectrum (Langner, 1992), and other musically-
relevant information is present in the neural anatomy (although this is different from
demonstrating that this information is actually used the way we think it is).  However, the
neurological study of stimuli with any complexity is still in its infancy, and I do not view
connections to neurophysiology as an important goal of my research.

2.1.2. Computational auditory scene analysis
Since the 1970s, the work of Bregman, his collaborators, and others has resulted in a new
body of psychoacoustic knowledge collectively known as auditory scene analysis (ASA).
The goal of this field is to understand the way the auditory system and brain process complex
sound scenes, where multiple sources that change independently over time are present.  Two
sub-fields are dominant: auditory grouping theory, which attempts to explain how multiple
simultaneous sounds are partitioned to form multiple “auditory images”; and auditory
streaming theory, which attempts to explain how multiple sequential sounds are associated
over time into individual cohering entities, called streams of sound.
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Figure 2-3: Three frames of the log-lag autocorrelogram of the McAdams oboe.  For each frame,
the main panel shows a constant-time slice through the autocorrelogram volume, calculated as
described in the main text; the bottom panel shows the summary autocorrelogram, which is the
sum across frequencies of the periodic energy at each lag (the sum is calculated in the linear-energy
domain and then converted to dB scale for presentation); and the right panel shows the energy
spectrum, which is the zero-lag energy in each channel.  The three frames highlight different
portions of the vibrato phase for the even harmonics; the first shows a point in time at which the
even harmonics are sharp relative to the odd harmonics, the second at which the even harmonics
are in tune with the odd harmonics, and the last when the even harmonics are flat.  Readers familiar
with pitch-based source separation techniques will observe the difficulty in distinguishing the in-
tune from detuned partials using only the information in the summary autocorrelation.
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Bregman summarized his pioneering work in a classic text that named the field (Bregman,
1990).  He and his colleagues and students conducted dozens of experiments in which
different grouping cues were put into conflict.  In the generally-accepted Bregman model, the
sound organization system groups primitive components of sound into sources and sources
into streams.  These grouping processes utilize rules such as “good continuation,” “common
fate,” and “old + new” to decide what components belong together in time and frequency.  In
many ways, Bregman’s articulation of perceptual grouping cues can be seen as a
formalization and principled evaluation of quasi-scientific ideas proposed by the school of
Gestalt philosophy/psychology in the early part of the century.

Bregman and his colleagues typically proposed grouping models in which the mid-level
representation of sound—that is, the theorized representation lying between the signal and the
final percept—was a collection of sinusoidal tones.  This is a somewhat problematic view for
constructing a proper functional model.  On the front end, it seems that the cochlea does not
provide sufficient time-frequency resolution to produce such a representation.  In computer
modeling, it has proven difficult to extract components robustly enough in the presence of
noise or interfering sounds to build systems that can function for complex sound scenes.

The approaches reported over the last 15 years in the ASA literature have been strongly
functionalist and computational in nature.  Brown and Cooke (1994a) termed the discipline of
constructing computer models to perform auditory source segregation computational auditory
scene analysis (CASA).

In his dissertation and follow-on work, McAdams (1983; 1984; 1989) showed the important
role of temporal modulation in the perceptual segregation of sounds.  He demonstrated in
psychoacoustic experiments that frequency modulation applied to one source from a mixture
of synthetic vowels makes it “pop out” perceptually.  Also, complex tones in which all
partials are modulated coherently are perceived as more fused (see Section 2.2) than tones in
which partials are modulated incoherently.  McAdams subsumes these results into a general
interpretation and model of the formation of “auditory images.”

Unlike most other ASA researchers, McAdams had explicitly musical motivations for his
research.  He presents his interests not only in terms of the scientific problems, but also in
terms of providing advice to composers.  For example, he identifies the following as a
primary question:

What cues would a composer or performer need to be aware of to effect the
grouping of many physical objects into a single musical image, or, in the case of
music synthesis by computer, to effect the parsing of a single musical image into
many?  (McAdams, 1984, p. 3)

Weintraub (1985) used a dynamic programming framework around Licklider’s (1951b)
autocorrelation model to separate the voices of two speakers whose voices interfere in a single
recording.  His goal originated in speech recognition and enhancement—he wanted to “clean
up” speech signals to achieve better speech recognition and performance.  The goal of
enabling more robust speech recognition and speaker identification continues to be the
strongest motivation for conducting research into CASA systems.

Summerfield, Lea, and Marshall (1990) presented a convolution-based strategy for separating
multiple static vowels in the correlogram.  By convolving a two-dimensional wavelet kernel
possessing the approximate shape of the “spine and arches” of the pitch structure in a
correlogram frame with an image representing the whole frame, they showed that multiple
pitches with differing F0 could be recognized.  The stimuli used were simple synthesized
vowels with F0 not harmonically related.

Summerfield et al. drew an explicit contrast between “conjoint” grouping strategies, in which
energy from each correlation channel is split up and assigned to several sources, and
“disjoint” strategies, in which the channels themselves are partitioned between channels.
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Their method was a disjoint method; they do not provide psychoacoustic evidence for this
decision, but base it on the grounds of physical acoustics (“when sounds with peaked spectra
are mixed, energy from one or other source generally dominates each channel.”)  Bregman
(1990) argued for a disjoint model, which he called the principle of exclusive allocation.

One of the key directions for my research is the finding of Duda et al. (1990) that coherent
motion can be seen and easily used to visually segregate sources in an animation of an
autocorrelogram moving over time.  The excellent examples on Slaney and Lyon’s video
“Hearing Demo Reel” (Slaney and Lyon, 1991) make this point very clear—anytime we
perceive sounds as segregated in the ear, the moving correlogram shows them separated with
coherent motion.  There has been relatively little work on operationalizing this principle in a
computer system; this is the starting point of the system discussed in Chapter 5.

Mellinger’s (1991) thesis contains a brief exploration of motion-based separation in the
correlogram, but the techniques he developed for autocorrelogram analysis were never
integrated into the main thrust of his system.  McAdams also used this idea of coherent
motion to drive his fusion research, but in the sinusoidal domain, not the correlogram domain.
One might consider this a “place model” of grouping-from-motion, to contrast with the
“timing model” suggested by Duda et al.

Over the last decade, a great number of psychophysical results for the so-called “double
vowel” paradigm, in which two synthetic vowels are superposed and played to a listener, have
accumulated.  The listeners are required to report both vowels, properties of the vowels and
the manner of the mixing are modified, and the effect on the accuracy with which the vowels
are reported is tested.  Certain of the pitch-processing algorithms above have been extended to
allow the separation of simultaneous sounds as well as their analysis of their pitch (Meddis
and Hewitt, 1992; de Cheveigné, 1993).

Once sounds are separated from mixtures with CASA systems, it is useful to be able to
resynthesize the separands in order to compare them to the perceived sources in the mixture.
This is easy with a sinusoidal representation, where additive synthesis regenerates the
components after they have been isolated; however, it is more difficult when using the
autocorrelogram.  Slaney and colleagues (1994) presented a method for accomplishing
correlogram inversion, and reported that the sound quality of resynthesis is very good for the
simple analysis-resynthesis loop, where no separation or modification occurred.  It is difficult
to modify and “play back” correlograms, because an arbitrary three-dimensional volumetric
function is not necessarily the correlogram of any actual sound.  Nonlinear internal-
consistency properties of the correlogram must be used to create correct functions in order to
allow resynthesis, and there is little research on this topic.

A system allowing guided (or constrained) analysis-modification-resynthesis from
correlograms would be extremely valuable for examining the perceptual segregation and
motion properties of the representation.  For example, we could “by hand” eliminate certain
channels or other structures, and listen to the perceptual effect on the reconstructed sound.  On
the other hand, the auditory system itself does not perform resynthesis; attempts to separate
and resynthesize sound are not precisely research into perceptual modeling.  A. Wang (1994)
presents a discussion of these two tasks in the introduction to his thesis on signal-processing
and source separation.

D. P. W. Ellis has been a leading proponent of the prediction-driven model of computational
auditory scene analysis (Ellis, 1996a; Ellis, 1996b).  In this framework (abbreviated
PDCASA), expectations are developed using source models that “guess” what is about to
happen in the signal.  A bottom-up signal analysis is used to confirm, deny, or augment the
current set of expectations about the sound scene.  The top-down expectations and bottom-up
signal analysis continuously interact to give rise to a percept of sound.  Such models are
required to explain a number of known psychoacoustic effects, such as illusory continuity,
phonemic restoration (Warren, 1970; Warren et al., 1972), and other auditory illusions.
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Ellis’ dissertation (1996a) described a system that could analyze sound and segregate
perceptual components from noisy sound mixtures such as a “city-street ambience.”  This is a
difficult problem, since cues based on pitch or tracking of sinusoids are not always present.
His system was the first to demonstrate an ability to be fooled by illusory-continuity stimuli.
He conducted a psychoacoustic investigation to determine what humans hear in such noisy
scenes, and concluded that his system showed equivalent performance.  His research was also
the first to consider the perception of such complex sounds.

S. H. Nawab and his collaborators developed a robust testbed for the construction of
PDCASA systems, called IPUS for Integrated Processing and Analysis of Sound (Klassner et
al., 1998; Nawab et al., 1998).  This system allows prototypes of rule structures and signal-
processing methods to be quickly integrated and tested on sound databases.  Klassner (1996)
used this system in his dissertation to demonstrate robust segregation of known, fairly
constrained environmental sounds (clocks, buzzers, doors, hair-dryers, and so forth).  This
system was not a perceptual model; Klassner used engineering techniques and constraints to
perform segregation.

K. D. Martin, drawing on the work of Ellis, demonstrated in his dissertation (Martin, 1999)
that autocorrelogram-based front-end processing can be used to support the model-based
perception of sound.  This is an important step forward, because in a prediction-driven
approach, it is essential that the system maintain robust models of what sound-producing
objects are present in the world and what sounds they are contributing to the overall acoustic
scene.  Martin showed how to connect autocorrelogram-based parameters to the physical
properties of musical instruments, and thereby was able to construct a computer system
capable of robustly recognizing instruments from their sounds.  He attempted no
segregation—although he used complex real-world examples of monophonic performance for
evaluation—but it is clear how a system like his and a system like Ellis’s might be integrated.

A second type of computational-auditory-scene-analysis system of recent interest is the model
based on oscillatory segregation.  In this model, input units (artificial neurons) respond with
periodic behavior to an input signal with certain properties, such as possessing strong
response at a certain point in the autocorrelogram.  The input nodes influence, through a
connectionist network, a highly cross-coupled set of internal resonators.  The synchronization
structures that result (in the internal resonators) can be shown to correspond to certain
perceptual source-grouping behavior.  Models of this sort have been presented by D. Wang
(1996) and by Brown and D. Wang (1997).  A recent model by McCabe and Denham (1997)
used a similar structure and also included elements meant to simulate attentional focus.

Recent work in psychological auditory scene analysis has led to a reexamination of the
“classical” view of perceptual properties of sounds—such as loudness, pitch, and timbre—in
an attempt to understand how such sound qualities are influenced by the perceptual grouping
context.  For example, McAdams et al. (1998) have elicited compelling evidence that
loudness is not a property of an overall sound, but rather of each sound object in a perceived
scene, and further, that fundamental auditory organization (the division of the scene into
streams or objects) must precede the determination of loudness.  I will return to this point in
Chapter 3, Section 3.1.3 et seq.

2.1.3. Spectral-temporal pattern analysis
In the last fifteen years or so, several new psychoacoustic phenomena have been discovered
that seem to point to connections between low-level aspects of hearing such as the basic
transduction of sound into neural impulses, and higher aspects such as those discussed in the
previous section.  These have been called phenomena of spectral-temporal pattern analysis
because they are exhibited only in psychoacoustic tests with sufficiently complex, patterned
stimuli.  I will discuss two important such phenomena: comodulation release from masking
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and profile analysis.   The experimental data on both phenomena have been recently reviewed
by Hirsh and Watson (1996).

Comodulation release from masking (CMR, for “comodulation masking release”) is a
recently-discovered auditory phenomenon that is very important in drawing connections
between theories of low-level psychoacoustics and theories of the analysis of auditory scenes.
In its most basic form, CMR can be demonstrated by determining the masking level of a pure-
tone signal by a fluctuating (random or periodic) narrow band of noise.  That is, using
psychometric tests, the threshold of audibility (in terms of SNR) of a pure tone in a modulated
band of noise is measured.  When additional (“flanking”) bands of noise that are coherently
modulated with the masker are added to the signal-plus-masker stimulus, the masking level
increases.  That is, the comodulated flanking noise “releases” the signal from masking.   This
is true whether the flanking bands are nearby (in frequency) to the signal band, or far away.
However, a corresponding release from masking does not occur if the flanking bands are
modulated independently from the masking band.  The CMR phenomenon depends critically
on the temporal correspondence of different frequency bands.

It is believed that CMR is evidence that the auditory system can compare sounds across
cochlear channels in the formation of early auditory percepts.  (The scene-analysis model that
I will present in Chapter 5 depends on this assumption as well.)  CMR was first discovered by
Hall et al. (1984) and has since been the subject of dozens of studies.  Reviews of the
experimental data have been presented recently (Moore, 1997, pp.121-127); several
processing models have also been developed (Berg, 1996; Verhey et al., 1999).  There is a
general lack of agreement in the literature regarding whether the experimental CMR data are
indicative of one main form of the phenomenon or several subforms.

Profile analysis (Green, 1996) is another phenomenon that apparently reveals cross-frequency
processing in early stages of audition.  In the basic form of this paradigm, two pure tones with
the same pitch but slightly different loudness are presented sequentially, one after the other
with a short delay between them.  The just-noticeable-difference (JND) in level between the
two tones is measured with standard psychometric procedures.  Then, several other frequency
components are added surrounding each tone, exactly the same for each.  The only difference
between the first stimulus and the second remains the slight change in loudness of a single
component.  In this condition, the JND becomes smaller—it is apparently easier to hear the
differences between the target components when the unchanged components are present for
contrast.

Further, when the flanking tones are added, the effect of the interstimulus delay time becomes
smaller.  That is, with tones in isolation, the more distance in time there is between the
stimuli, the more difficult it is to hear differences in their level (the subject “forgets” the
level).  But with flanking tones, it is no more, or only slightly more, difficult to hear
differences with long delays as compared to short ones.

It is thought that the results of profile-analysis experiments may be explained by some kind of
spectral-shape hearing, as in the perception of vowels, or perhaps by a sort of subtractive
comparison between the target and flanking tones.

The importance of CMR and profile analysis is that neither of these phenomena is directly
compatible with the simple classical model of sound perception.  In the classical model, the
cochlear filterbank separates the sound into frequency components or spectral bands, and this
frequency-based separation of sound is preserved throughout further processing.  Both CMR
and profile analysis seem to require a stage of cross-frequency processing in the early
auditory system.  The auditory-scene-analysis model I will present in Chapter 5 will be shown
to explain one particular form of the CMR phenomenon.

It is striking that, as soon as we began the detailed study of stimuli with properties that were
not pathologically simple, we immediately learned things about psychoacoustic processing
that could not be reconciled with previous models of the ear and auditory system.  It is likely
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that there is more to be learned by continuing the study of still-more complex sounds.
However, experimental work on such sounds is very difficult (since the degrees of freedom
are so numerous), and so principled research can proceed only at a modest pace.

From a practical standpoint, previous advances in psychoacoustic knowledge have led directly
to great advances in telecommunications technology.  The early study of perceptual limits and
intelligibility at Bell Laboratories was instrumental in the development of the US telephone
network system (Allen, 1996).  More recently, spectral models of loudness and masking
behavior have led directly to advances in low-bitrate perceptual coding of sound and music
(Brandenberg, 1998), enabling a multimillion-dollar industry in Internet music delivery.  It is
reasonable to believe that continuing advances in psychoacoustic knowledge will present
attendant gains in our ability to engineer systems for the use and manipulation of speech,
music, and other sounds.

2.2. Music Psychology

There is a vast literature on music psychology, and many volumes have been written to survey
it.  In this section, I provide a highly selective overview of the work that is most relevant to
my dissertation in six areas: pitch, tonality, and melody; tonal consonance and fusion; the
perception of musical timbre; music and emotion; the perception of musical structure; and
musical epistemology.  A note on the use of musically experienced and inexperienced
listeners in music-perception experiments concludes the section.

My proposed research does not fit directly into the mainstream of these sorts of endeavors; in
fact, my own views (see Chapter 3, Sections 3.2 and 3.4) are generally contrary to those most
often articulated by music psychologists.  However, I believe that my dissertation is relevant
to questions posed by psychologists as well as those posed by psychoacousticians, and so I
will articulate the relationship of my research to the relevant sub-disciplines of music
psychology.

Many of these areas have more complete review articles in the literature.  An extensive
review of the research in the first two sections has been presented by Krumhansl (1991b).
McAdams (1987) presented an excellent critical overview of connections between music
psychology, music theory, and psychoacoustics.  A more selective overview and critical essay
regarding the relationship between music theory and music psychology has been presented by
Rosner (1988).

2.2.1. Pitch, melody, and tonality
One of the central areas of research into the psychology of music during the last 25 years has
been an exploration of the use of pitch in music.  This includes the way multiple notes group
horizontally into melodies, vertically into chords, and in both directions into larger-scale
structures such as “harmonies” and “keys.”  These latter concepts are somewhat theoretically
nebulous (Thomson, 1993), but crucial in the theory of Western music; the preponderance of
formal music theory deals with the subsumption of notes into melodies and harmonic
structures, and harmonic structures into areas of “key” or “tonality.”

Early work in this field explored hypotheses regarding pitch relationships drawn directly from
music theory (discussed in Rosner, 1988).  This includes the now-classic presentation of the
pitch helix by Shepard (1964), as shown in Figure 2-4.  The helical model of pitch provides a
geometric representation of the two-dimensional nature of pitch similarity: tones are similar in
pitch to other tones that are close in frequency (C is similar to C#)—the direction around the
helix—and also similar to other tones whose frequency stands in an octave relationship (A440
is similar to A880)—the vertical direction on the helix.  This paper by Shepard also developed
the “Shepard tone” or “octave-complex” stimulus, which clearly shows that pitch chroma (the
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position of tones within an octave, which Western music denotes with letters A-G) is to some
degree perceptually separable from pitch height.  Various other geometric models of pitch
similarity have been reviewed by Shepard (1982).

C. L. Krumhansl has done a great deal of work extending these ideas into a rich and robust
framework.  She developed, with Shepard, the crucial probe-tone technique for investigating
the influence of what she terms tonal context (a music theorist might term this “local key
sense”) on pitch relationships (Krumhansl, 1979).  In this method, a short context-determining
stimulus (for example, a chord or scale) is played to a subject, and then a probe tone taken
from the entire chromatic pitch set is played.  The listener is asked to judge how well the
probe tone completes or continues the stimulus; by testing each of the chromatic pitches in
turn, a hierarchy of pitch-context relatedness can be measured.

The tonal hierarchy characterizing the relatedness of pitch and harmonic context turns out to
be a very stable percept.  Under a variety of context stimuli, including chords, scales, triads,
harmonic sequences, and even individual notes, very similar response functions for the tonal
hierarchy can be measured.  Krumhansl modeled the dynamic motion of listeners through
“key space” as the ebb and flow of predominating tonal hierarchies (Krumhansl and Kessler,
1982).  An excellent book by Krumhansl (1990) summarized her work on this topic.  It
included, interestingly, an algorithm for determining the dynamic key progression of a piece
of music by correlating the pitch-chroma histogram with the tonal hierarchy of each of the 24
major and minor keys.

More recent work in these directions explores the importance of the rhythmic relations among
notes in the formation of a sense of key (Schmuckler and Boltz, 1994; Bigand et al., 1996),
the relationships between melody, harmony, and key (Povel and van Egmond, 1993;
Thompson, 1993; Holleran et al., 1995) and the development of these processes in infants.
Several researchers have also focused on the key-finding algorithm, attacking it as a practical
engineering problem somewhat distinct from its origins in perceptual science (Ng et al., 1996;
Vos and Van Geenen, 1996; Temperley, 1997).

Much of the work on tonality took as its goal an understanding of melodic continuation; the
general conclusion is that melodies need to have a certain harmonic coherence if they are to
be judged as pleasing.  That is, there is an important interaction between the sequential nature
of melodic continuation and the synchronic nature of harmonic sense.  A different approach to
melody perception has been presented by Narmour (1990), who developed what he terms an
“implication-realization” model of melodic understanding.
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Figure 2-4: The Shepard (1964) helical model of musical pitch.  Pitch in this model is expressed in
two dimensions.  The chroma direction, around the helix, relates notes that are chromatically near
each other.  The height direction, up the vertical axis, relates notes that have the same chroma
across octaves.
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Narmour’s model drew heavily from Gestalt theories of psychology and from the work of L.
B. Meyer (discussed in Section 2.2.4).  He proposed several rules that describe what listeners
prefer to hear in melodies, based on principles of good continuation, closure, and return-to-
origin.  He claimed that these rules represent universal guidelines for note-to-note transitions
in melodic motion and that as such, they apply to atonal and non-Western musics as well as to
Western tonal music.  From the rules, he developed an extensive symbolic-analysis model of
melody and proposed several experiments to analyze its predictions.  An extension to this
model, described in a second volume with which I am less familiar, presented a technique for
the analysis of more complex melodic structures such as sequences (where the same figure is
repeated in several registers, forming a hierarchically superior melody).

Some psychological experiments to evaluate Narmour’s model have recently been conducted
along the lines he suggested (Schellenberg, 1996; Krumhansl, 1997).  These experiments have
found general support for his principles, but also have found that his model can be simplified
significantly without affecting its ability to explain perceptual data.  Thus, it seems at the
moment that Narmour’s model of melodic continuation is somewhat more elaborate than it
needs to be.

The heavily structuralist nature of all of the work discussed in this section—building as it
does from geometric and rule-based models—has made it attractive to computer scientists
seeking to build “good-old-fashioned AI” models of music perception.  For example,
Longuet-Higgins (1994) developed several models of musical melody and rhythm around
phrase-structure grammars (often used in linguistics and computer-language theory).
Steedman (1994) discussed similar ideas, and also the use of various distance metrics in
“tonality space” to describe the relationship between pitch, key, chord, and tonality.

Such models are typically very good at explaining a small subset of well-chosen examples,
but make few testable predictions and are rarely considered in light of the full weight of
experimental data available.  They also typically make very strong claims about what
constitutes musical competence.2  These issues are typical of the tradition in generative
linguistics many of these theorists draw from.  This is less of a concern in linguistics, since
one of the fundamental tenets of modern linguistic theory is that judgments of grammaticality
are shared by all native speakers of a language.  An analogous argument does not hold for
music listening.

The relationship between pitch considered as a perceptual property of sound and examined
through psychoacoustic experiments (as discussed in Section 2.1.1), and pitch as a musical
property that is subsumed into larger structures like melodies, has not been addressed in a
principled way.  Music psychologists generally treat the analysis of pitch as a “preprocessing”
step and assume (usually implicitly) that the pitches of sounds that are heard in a musical
scene are made available to a central cognitive mechanism.  Such a stance has strong
implications for the sorts of processing models that must be used; I will return to this point in
Chapter 3, Section 3.3.

2.2.2. Perception of chords: tonal consonance and tonal fusion
Relatively few reports in the literature have examined the perception of vertical music
structures such as chords.  This is somewhat surprising; given the music-theoretic importance
of the roots of chords (discussed by Thomson, 1993), and of the invariance of chords under
inversion, it would be revealing to have experimental data confirming or disputing these

                                                          
2 “A sure sign of musical competence is the ability to transcribe into stave notation a tune
one hears played on the piano” (Longuet-Higgins, 1994, p. 103) – a criterion which
surely eliminates all but a vanishingly small proportion of the listening population from
his consideration, not to mention the large number of musical cultures that have no
canonical written form for their music.



30 Chapter 2: Background

theories.  However, the related concepts of tonal consonance and tonal fusion have received
some attention.

The term tonal consonance is used to refer to the sense of “smoothness” or “pleasantness”
that results when two sounds with certain properties are played together.  Typically, this
property results when the pitches of the sounds are in a simple integer ratio relationship such
as 2:1 (an octave) or 3:2 (a fifth).  The term tonal fusion refers to the sense of two sounds
“merging” into a single sound in a musical context.  This concept is very important in the
theory of orchestration in music.  The German word introduced by Stumpf and used in
contexts where I say “tonal fusion” is Verschmelzung, literally “melting,” a charming way of
denoting the intermingled character of fused sounds.  The early work by Stumpf on
Verschmelzung is reviewed by Schneider (1997) in light of modern psychoacoustic theory.

The view of consonance developed in antiquity and carried forward by Galileo and Descartes
into the Renaissance held that the concept of consonance was just as simple as the statement
above: consonance is that percept that results from the playing of sounds with frequency
ratios in small-integer relationship.  However, this statement seems to miss certain important
characteristics of tonal consonance, for example that low tones in a major-third interval sound
less consonant than high tones in the same interval.  It also ignores the relationship between
harmony and timbre; spectrally rich sounds are often less consonant with other sounds than
spectrally simple sounds.

Terhardt (1974) drew the important distinction between musical consonance and
psychoacoustic consonance.  That is, functionally (according to music theory) a major third is
a consonant interval regardless of other concerns; this sort of consonance is termed musical
consonance.  However, as discussed below, depending on the height of the tones involved and
their timbre, the major third may be relatively more or less psychoacoustically consonant.
Terhardt (1982) viewed psychoacoustic consonance as a sensory aspect of sound, and musical
consonance as a cultural aspect of sound.

Helmholtz (1885), in his fundamental 19th century work on tone perception, recognized that
the true cause of consonance and dissonance was conflict between overtones, not
fundamentals; tones with fundamental frequencies in a simple harmonic ratio share many
overtones.  Helmholtz viewed the sharing of overtones as the origin of the pleasing sound of
consonant intervals.

A reexamination of the relationship between frequency ratios and consonance was undertaken
by Plomp and Levalt in a now-classic paper (Plomp and Levelt, 1965). They developed a
model in which not only the ratio of fundamentals, but the overall spectral composition, was
taken into consideration in analyzing consonance.  They related the quality of consonance to
the critical-band model of the cochlea, producing compelling evidence that consonant pairs of
complex tones are ones in which there are no (or few) harmonics competing within the same
critical band, and dissonant pairs ones in which harmonics compete and cause a sensation of
roughness.  Finally, they demonstrated through statistical analysis of a small set of musical
scores (J.S. Bach Trio Sonata for Organ no. 3 and the 3rd movement of A. Dvorák String
Quartet op. 51) that the statistical frequency of occurrence of  various vertical intervals in
musical works can be explained by a model in which composers are attempting to reduce
critical band “clashes” among overtones.  This work was highly influential and still stands as
one of the few successful unifications of theories of music and psychoacoustics.

David Huron has conducted a number of studies of the musical repertoire (of the sort Plomp
and Levalt did on a smaller scale in the study cited above) using computerized tools.  These
studies examine the relationship between psychological hypotheses and the statistical
patterning of occurrence of musical constructs.  One paper (Huron and Sellmer, 1992)
criticized Plomp and Levalt (1965) on methodological grounds, but arrived at the same
conclusions with a more robust methodology.  Another paper (Huron, 1991) considered tonal
consonance and tonal fusion—Huron analyzed a sample of keyboard works by J. S. Bach and
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found that Bach’s use of vertical intervals could be viewed as a tension between the principle
of “avoid tonal fusion”, and the principle of “seek tonal consonance.”  He distinguished,
following Bregman and Terhardt, the cases of “sounding smooth” (i.e., consonant) and
“sounding as one” (i.e., fused).  A valuable extension to this sort of project would be to
develop similar rules in acoustic analysis and recreate Huron’s experiments using acoustic
signals.  To conduct such an analysis only from the written notation misses the crucial fact
that a listener is not perceiving the notation directly, but is perceiving a sound that may or
may not be somehow perceptually converted to a notation-like form.

There has been relatively little work relating traditional music-theoretical views of musical
elements such as “melody” and “accompaniment” to the acoustic signal.  A paper by Povel
and van Egmond (1993) claimed to provide evidence that melodic perception and harmonic
perception are processed separately and interact little (which is highly contrary to traditional
musical thinking).  However, their study suffered greatly from not considering the possible
interactions between timbre, tonal fusion, and harmonic/melodic processing.

2.2.3. The perception of musical timbre
In all of the cases discussed in the previous section, the view of the relationship between
timbre and harmonic structure was somewhat simplistic.  Plomp and Levalt used a timbre
model in which all sounds are represented by nine even-strength sinusoids with no temporal
evolution; Huron (1991) failed to consider an interaction between harmony and timbre at all
in one study; and used a single “average” timbre computed from static spectra of a range of
musical instruments in another (Huron and Sellmer, 1992).

Integrating timbre into music-psychological studies, in the sense of controlling and
understanding its effects on other phenomena has proven to be a difficult problem.  There is,
of course, an extensive literature on the perception of timbre as an isolated property of
musical sounds (Martin (1999) has provided a thorough review).  Most of the work in this
literature focuses on geometric models of  “timbre space” (Grey, 1977), in which the
multidimensional-scaling paradigm is used to discover the underlying dimensions of variation
in a set of stimuli.  This has been a popular method of inquiry, but the psychological reality of
the timbre-space model has never been compellingly demonstrated, in my opinion.

More promising is research based in ecological acoustics that attempts to discover how it is
that listeners can learn about characteristics of physical objects from their sounds.  Listeners
seem to naturally make judgments about the underlying physical reality of complex sounds,
even with impoverished stimuli.  For example, Warren and Verbrugge (1984) showed that
listeners can readily distinguish “bouncing” sounds from “breaking” sounds.   Freed (1990)
showed that listeners can identify the hardness of the mallet used to strike a vibraphone from
its sound.  Li et al. (1991) showed that listeners can accurately classify the gender of a person
from listening to the sound of his/her footsteps. Finally, Cabe and Pittenger (2000) showed
that listeners can keep track of a vessel being filled with liquid and estimate the point at which
the vessel will be full, from sound cues only.   Such results lead naturally to a model-based
theory of timbre, in which the goal of sound perception is to associate properties of immanent
sound models with their perceived realizations in sound, and thereby to understand the
physical world.  The recent dissertations of Casey (1998) and Martin (1999) take this
approach to some degree in their construction of computational systems.

The difficulty in effectively integrating timbre into music-psychological theories stems from
two basic problems.  The first is that there is no standard music-theoretical approach to
timbre.  Most music-psychology studies take Western music theory and the organizational
principles it provides (notes and chords, rhythms and melodies and harmonic structures,
hierarchical relationships in music) as a starting point.  The result of experimental study may
be to criticize the tenets of music theory as lacking psychological reality, but the concerns and
questions posed by music psychologists have nearly always been borrowed from the concerns
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of music theorists.  And so, since there is no well-organized Western theory of timbre and its
use in music, music psychologists have had a difficult time finding a foothold on which to
begin rigorous study.

The second problem, related to the first, is that timbre seems as though it is an aspect of music
that is more intimately connected to the perception of sound than it is to cognitive/symbolic
processing.  (I say “seems as though” because I believe that, in fact, other aspects of musical
perception are just as intimately connected, although they are not typically treated this way).
Since we have no convenient symbolic representation of timbre, it becomes difficult to work
timbre into theories of music perception that are based on structural manipulation.  Thus it is
possible for theories that purport to discuss the large-scale perceptual organization of music to
never discuss timbre at all.  This is surely backwards from the way most music is perceived
by most listeners in most situations.

Sandell (1995) conducted one of the few studies integrating timbre, vertical structure, and
acoustic data.  He analyzed several acoustic features, including onset asynchrony, spectral
centroid, and envelope shape in an attempt to determine what makes some pairs of tones
“blend” better than other pairs (for example, why clarinet and horn blend but oboe and
trumpet clash).  He concluded that there is an important role for the spectral centroid—in
cases where the tones formed a minor-third interval, both the overall spectral height and the
distance between the individual tone centroids correlated negatively with “blend” as judged
directly by musicians.  He did not evaluate time-domain or correlation models of the acoustic
signal in relation to his findings; a natural extension would be to examine whether the
centroid interactions he found in his data can be explained using more fundamental operations
on correlograms.  He also considered his results in comparison to experiments in the “double-
vowel” paradigm.

Composers of the late 20th century have frequently been interested in the relationship between
harmony and timbre.  Some, for example, Erickson (1985) believe that this is a continuum,
and organize their own music to explore its boundaries and the “gray area” in between.
McAdams and Saariaho (1985) published a set of “criteria for investigating the form-bearing
potential of a proposed musical dimension,” which they used to explore the possibilities of
timbrally-organized music and the relationship between harmony and timbre in an analytical
essay.  Many composers are beginning to take results from psychoacoustics and auditory
grouping theory as creative impetus to explore new areas of sonic texture (Hartmann, 1983;
Gordon, 1987; Belkin, 1988; Chowning, 1990).

2.2.4. Music and emotion
There is a long-standing thread in music psychology that tries to understand how it is that
music communicates emotion to listeners.  This is often viewed as the primary function of
music; Dowling and Harwood write:

When we discuss our work with nonpsychologists, the questions that most often
arise concern music and emotion.  Music arouses strong emotions, and they want to
know why ... Not only do listeners have emotional reactions to music, but pieces of
music also represent emotions in ways that can be recognized by listeners.
(Dowling and Harwood, 1986, p. 201)

Much of the early (pre-1950’s) work in musical emotion as reviewed by Dowling and
Harwood focused on theories of musical semiotics—the ways in which listeners receive signs,
indexical associations, and icons when they listen to music, and the ways in which such
entities become associated with significands containing emotional connotations.  Such work,
by necessity, is highly theoretical and generally disconnected from practical issues of
performance and acoustic realization; nonetheless, it has been a fertile and productive area of
study.
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The major organizing force in modern thinking on emotion in music was the work of L. B.
Meyer, particularly an extensive volume on the topic (Meyer, 1956).  Meyer made a number
of key points that continue to influence thinking about the aesthetics and philosophy of music
today.  First, he explicitly denies that music gives rise to a consistent, differentiated affective
behavior (such as a sadness response).  He focuses instead on the notion that the affective
response is mainly a modulation of the listener’s overall level of arousal.   He equates the
affective response to music with arousal, using terms familiar to musicologists such as tension
and release, and attempts to relate the musicological use of this terminology to more rigorous
emotional-psychology definitions.

Second, Meyer denies that the affective response to music is based on designative semiotics in
the sense described above.  Rather, he claims that all (or nearly all) emotion and meaning in
music is intra-musical; music only references itself and thus the excitement and tension in
music are present only insofar as a listener understands the references.  He thus views
expectation and fulfillment or denial of expectation in music as the singular carriers of
emotion in music.

A series of papers by Crowder and various collaborators (Crowder, 1985a; Crowder, 1985b;
Kastner and Crowder, 1990) evaluated the most well-known (not to say well-understood) of
emotional distinctions in music: the association of the major tonality with “happiness” and the
minor tonality with “sadness.”  Crowder et al. explored this issue variously from historical,
experimental, aesthetic, and developmental viewpoints.

More recently, experimentalists have attempted to quantify emotional communication in
music.  For example, Juslin (1997) conducted an experiment in which professional musicians
(guitarists) were instructed to play a short piece of music so as to communicate one of four
basic emotions to listeners.  He then analyzed acoustic correlates of tempo, onset time, and
sound level in the performances, and tried to correlate these physical variables to the
emotional intent of the performers.  While he found that listeners were reliably able to detect
the emotion being communicated, it was hard to determine exactly which physical parameters
conveyed the emotional aspects of the performance.  However, Juslin must be credited for
acknowledging the importance of the acoustic performance to transport and mediate the
emotional material.

Important recent work by Balkwill and Thompson (in press) has examined the cross-cultural
perception of emotion in music.  Balkwill and Thompson elicited musical performances from
musicians of subcontinental India using traditional styles and instruments.  They instructed
the musicians to produce certain emotional qualities in the music.  The resulting stimuli were
played for Western listeners with no previous exposure to this musical culture; the listeners
were still able to reliably distinguish the various emotions.

The authors argue that this indicates that universally-shared surface percepts of music
(probably based on psychophysical cues in the sound) govern the perception of emotion in
music to a significant extent, since it may be assumed that listeners untrained in a musical
style are unable to make useful judgements about the high-level musical structures used in
that culture.  (If this assumption is false, it will require a rethinking of the concept of musical
structure, since the understanding of structure is typically conceived as requiring familiarity
with a particular style).  It is possible, although I do not explore this directly, that the kinds of
surface features I present in Chapter 6 would be sufficient to model the results of Balkwill and
Thompson and thereby explain some aspects of the perception of emotion in music.

A potential application of my research would be an attempt to correlate perceptual models of
music-listening with affective response as measured through physiological measurement.
This would be a valuable contribution to the music-and-emotion literature, which is somewhat
impoverished with regard to serious psychoacoustical approaches, as well as a good
opportunity for interdisciplinary collaboration.  It would also be a useful example of a study
in individual differences in the response to music, a topic that is largely unaddressed in the
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music-psychology literature.  These topics are not addressed directly in my dissertation, but
are left for future study.

2.2.5. Perception of musical structure
One of the primary ways in which both musicians and non-musicians understand music is that
they perceive musical structure.  I use this term to refer to the understanding received by a
listener that a piece of music is not static, but evolves and changes over time.  Perception of
musical structure is deeply interwoven with memory for music and music understanding at the
highest levels, yet it is not clear what features are used to convey structure in the acoustic
signal or what representations are used to maintain it mentally.  I am interested in exploring
the extent to which “surface” cues such as texture, loudness, and rhythm can explain the
available data on the structural perception of music—this is the approach I will discuss in
Chapter 7.  This is in contrast to many theories of musical segmentation that assume this
process is a crucially cognitive one, making use of elaborate mental representations of
musical organization.

Clarke and Krumhansl (1990a) conducted an experiment that analyzed listeners’
understanding of sectional changes and “segmentation” in two pieces of music.  One of the
pieces was atonal or “textural” music (Stockhausen’s Klavierstück XI), and one employed
traditional tonal material (Mozart’s Fantasie, K. 475).  All of their listeners were highly
trained musicians and/or composers.  They present a characterization of the types of musical
changes that tend to promote temporal segregation of one section from another, which include
heuristics such as “Return of first material,” “Arrival of new material,” and “Change of
texture.”  They also find that similar principles govern segmentation in the atonal and tonal
works, and interpret their results as general support for the Lerdahl and Jackendoff grouping
rules (Lerdahl and Jackendoff, 1983), which are discussed below.

Deliège and her collaborators have conducted extensive studies (Deliège et al., 1996 for one)
on long-term cognitive schemata for music; these studies include components similar to the
Clarke and Krumhansl work that analyze musical segmentation.  This research is connected to
my own interests, as results on intra-opus segmentation might be extended to analyze
similarities and differences between musical pieces as well as within pieces.

Clarke and Krumhansl presented their work in the context of theories of time perception and
dynamic attending, and Deliège in terms of long-term memory and music understanding.
These topics fall less within the scope of my dissertation, as they deal essentially with the
long-term development of a single piece over time.  Deliège et al. (1996) were also concerned
with the relationship between “surface structure” and “deep structure” of music, and on the
similarities and differences in processing between musicians and nonmusicians, which are
topics of great interest to me.  In particular, they wrote:

[R]esults reported here can be thought of as providing information about processes
that might be implicated in everyday music listening ... [R]esults for nonmusician
subjects ... are indicative of a reliance on elements of the musical surface in listening
to and manipulating the materials of complete tonal pieces ... [T]he primacy
afforded to harmonic structure in Lerdahl and Jackendoff’s theory may only be
operational for musicians.  (Deliège et al., 1996, p.153)

A different study by Krumhansl (1991a) has revealed data that support the importance of
“musical surface.”  Using an atonal composition with a highly idiosyncratic rule structure
(Messiaen’s Mode de valeurs et d’intensités), she examined the perceptions of skilled musical
listeners regarding the “surface” (pitch-class distribution and rhythmic properties) and
“underlying” (strict correlations between pitch, loudness, and duration) properties of the
music.  She found that listeners were able to reject modifications to the surface structure as
possible continuations of this work, but unable to reject modifications to the underlying
structure.  Listeners rapidly learned the “rules” of the surface structure of the piece—they
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performed as well on the first trial as on repeated trials—and were never able to learn the
underlying structure.  The latter was true even for professional musicians who had a explicit
verbal description of the rule structure provided to them.

N. Cook (1990), in a fascinating book on the topic, explored the relationship between musical
understanding, musical aesthetics, and musical structure.

2.2.6. Epistemology/general perception of music
Several writers—largely music theorists—have brought forth proposals for the manner in
which music is “understood,” or in which a listener “makes sense of it all.”  Many of these
writings come from an attempt by music analysts to take a more perceptual stance by
including aspects of real-time thinking, retrospection, or perceptual limitations in their
theories of music.

The music theorist F. Lerdahl, in collaboration with the linguist R. Jackendoff, developed an
extensive theory of musical “grammar” (Lerdahl and Jackendoff, 1983).  This theory has as
its goal the “formal description of the musical intuitions of a listener who is experienced in a
musical idiom.”  (p. 1) Their study takes the view that “a piece of music is a mentally
constructed entity, of which scores and performances are partial representations by which the
piece is transmitted.”  (p.2) That is, the piece of music has a cognitive status that is neither the
music-on-the-page (which generally concerns theorists) nor the music-in-the-air (which is my
main interest).

The roots of such a theory in Chomskian linguistics are clear: Lerdahl and Jackendoff were
concerned not with performance (in the linguistic sense, which includes operational details of
memory and attention), but with competence: how can we characterize the mental structures
of an idealized listener after listening has been completed?  Their answer was an elaborate
theory involving the integration of rhythm, phrasing, and structural rules with roots in
Schenkerian music analysis.

Lerdahl and Jackendoff’s model was highly influential in the development of the music-
perception community.  As such, it has drawn both support and criticism from experimenters
and from other theorists.  Although Lerdahl and Jackendoff asserted that their theory was not
a theory of written music, in point of fact all of their analyses use only the written score as the
starting point.  Smoliar (1995) made a critical point that I feel is essential: that this theory was
really one of musical structure, not musical perception.  Jackendoff’s linguistic concerns
made these notions central in his thinking; however, Smoliar questioned their relevance to the
“real” perception of music, as contrasted to the analysis of music-on-the-page.  N. Cook
(1990,  Ch. 1) explicates the aesthetic stance represented by this idea when he contrasts the
basic perception (hearing a work that is a sonata) with a more imagined or idealized
perception (hearing a work as a sonata).  Any listener (according to Cook) may easily hear a
sonata, but more expertise is required to hear it as a sonata.  The theory of Lerdahl and
Jackendoff seems to mainly consider the latter case.

Lewin (1986) developed a sophisticated model of the phenomenology of music—that is, what
goes on in the conscious mind during attentive music listening—and the relation between
structural perception, memory, and expectation.  This model was quasi-formalized using a
structure akin to frames as used in artificial intelligence research.  He used it to develop a
theory that connected musical structure, abstracted away from any particular theoretical
framework, to real-time listening and perception.  He was particularly concerned with the
relationship between expectation and realization and the “strange loops” (in the phrase of
Hofstadter (1979)) this relationship creates in the perceptual structuring of music.

Lewin’s theory came out of a larger literature on the phenomenology of time and music with
which I am not generally familiar.  He was especially critical of the conflation of structural
theory with aesthetic theory and with perception theory—he clearly drew distinctions between
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music-as-cultural-artifact, music-as-acoustic-signal, and music-as-mental-object.  He also
drew a strong connection between music perception and music-as-behavior.  He argued in this
article that music is not “perceived” unless it leads to a creative music act by the listener, such
as a composition, an article of criticism, or a performance.  I disagree with this stance,
excepting the circular case where any listening is itself a “creative act.”  However, his crucial
point that listening is a behavior (and thus can only be properly addressed with progressive,
temporally-situated models) is also a central part of my approach.

Minsky (1989) presented a discussion of how music-listening could be viewed in the context
of his well-known and influential “society of mind” theory of intelligence (Minksy, 1985),
although this book did not itself treat music.  In Minsky’s view, music-listening is best
understood as the interaction of musical agents, each with a particular focus.  For example,
feature-finders “listen for simple time-events, like notes, or peaks, or pulses;” and difference-
finders “observe that the figure here is same as that one there, except a perfect fifth above.”
Minsky’s primary concern was with the “highest” levels of musical perception and cognition,
in which the full panoply of human intellectual abilities is used.   He also presented interesting
thoughts on music appreciation—where does “liking” music come from?—and argued that it
is a long-term similarity matching process, that we only like music that is similar to other
music we like in some (unspecified) structural ways (it is not clear how he believes this
process is bootstrapped).

Minsky also argued strongly for linkages between music and emotion as the primary
motivating factor behind music-making; indeed, as the primary reason for the existence of
music.  He argued that music encapsulates emotional experiences and allows us to examine
them more closely.  His arguments are largely drawn from his own intuitions about music-
making (he improvises on piano in the style of Bach) and conversations with music theorists
and others, not from the music literature or experimental evidence.

M. Clynes has spent many years developing an elaborate theory of “composers’ pulses,”
which he claims are important cues to the correct performance of Western classical music in
various styles.  He has recently (Clynes, 1995) presented evidence that listeners may be
sensitive to these systematic performance-time deviations; if true, such a feature might be
used to distinguish the music of composers working within this tradition from one another.

It seems difficult for many theorists involved in this sort of work to avoid making prescriptive
judgments; that is, to use their theoretical stance as an argument for the “goodness” or
“badness” of types of music or types of listeners.  For example, Minsky argued against the
repetitiveness he perceives in popular music:

[W]e see grown people playing and working in the context of popular music that
often repeats a single sentence or melodic phrase over and over and over again, and
instills in the mind some harmonic trick that sets at least part of one’s brain in a
loop.  Is it o.k. that we, with our hard-earned brains, should welcome and accept this
indignity—or should we resent it as an assault on an evident vulnerability? (Minsky
and Laske, 1992, p. xiv)

Lewin complained that not enough music-listeners are music-makers, and alluded to this fact
as emblematic of larger cultural problems:

In other times and places, a region was considered “musical” if its inhabitants
habitually made music, one way or another, to the best of their various abilities;
nowadays and here, regional music “lovers” boast of their “world-class” orchestras
(whose members probably commute), their concert series of prestigious recitalists,
their improved attendance at concerts (especially expensive fund-raising concerts),
their superb hi-fis, their state-of-the-art compact disc players, and so on. (Lewin,
1986, p. 380)

Finally, the composer and computer scientist D. Cope has built several computer systems that
can mimic the style of various composers (Cope, 1991; Cope, 1992).  These systems work
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from a stochastic analysis-synthesis basis: they take several pieces (represented as musical
scores, not as sound) by a composer as input, analyze the style using statistical techniques,
and “recombine” the pieces into new pieces with similar statistical properties.  This work is a
fascinating exploration into the mechanisms of musical style; however, it has received great
popular acclaim (and argued by Cope himself) as an example of “musical artificial
intelligence.”  I disagree with this view.  To me, Cope’s research in this vein serves primarily
as a valuable demonstration of how easy it is to create new works in the style of old
composers—most music students can write simple works in the style of Bach, Mozart,
Beethoven, and so forth—and, especially, how simple and easily-fooled is the perceptual
apparatus that is used to categorize music by composer.  A truly intelligent musical system
would itself be able to evaluate the quality of its compositions, identify composers, or perhaps
innovate new styles rather than only replicating what is given.

2.2.7. Musical experts and novices
As a final note, it is important to emphasize that the vast majority of findings I have
summarized in this subsection are taken from research on musical experts; that is, composers,
music graduate students, and analysts with many years of formal training and scholarship.  It
is not at all clear that these results extend to the perceptions of non-musician “naïve” listeners.
In fact, the evidence is quite the opposite.  An excellent article by Smith (1997) reviewed the
literature on the music perceptions of non-musicians, then made this point incisively:

The situation is that novices do not resonate to octave similarity; they often cannot
identify intervals as members of overlearned categories; they seem not to know on-
line what chromas they are hearing; in many situations, they may even lack abstract
chroma and pitch classes; they seem not to appreciate that the different notes of their
scale have different functional and closural properties; they have little desire for
syntactic deviation or atypicality; they dislike the formal composition elegance that
characterizes much of Western music during its common practice period; indeed,
they reject music by many of the composers that experts value most.  (Smith, 1997,
pp. 251-252)

A paper by Robinson (1993) went even further, to suggest that for non-musical listeners, even
pitch is a cue of low salience compared to “surface” aspects such as broad spectral shape!

This is not to dismiss non-expert listeners as musically “worthless”; rather, it is to say that
unless we want music systems and theories of music perception to have relevance only to the
skills and abilities of listeners who are graduate-level musicians, we must be cautious about
the assumptions we follow.  Naïve listeners can extract a great deal of information from
musical sounds—for example, Levitin and colleagues have shown (Levitin, 1994; Levitin and
Cook, 1996) that non-musician listeners can not only extract, but preserve in long-term
memory and reproduce vocally, the absolute tempo and absolute pitch of popular songs that
they like—and they are likely to be the primary users of many of the applications we would
like to build.   At present, we have no theoretical models of music-listening from acoustic data
that explain the behavior even of the least musically-sophisticated human listener.  This is an
important motivation for my research.

An alternative thread of research that relates to the relationship between novices and experts
with which I am less familiar is the study of the development of musical thinking in children
(Serafine, 1988; Kastner and Crowder, 1990; Bamberger, 1991).

2.3. Musical signal processing

The third area of research I review reports on the construction of musical-signal-processing
systems.  Researchers have attempted to build systems that could analyze and perform music
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since the dawn of the computer age; the motivation of making computers able to participate
musically with humans appears to be a strong one.

By musical signal processing, I mean the study of techniques to apply in the analysis (and
synthesis) of musical signals.  There are overlaps between general audio signal processing and
musical signal processing; for example, the Fast Fourier Transform is useful for analyzing
musical sounds as well as many other sorts of signals.  However, I am especially interested in
signal-processing techniques that are specifically targeted to musical signals.

I review four main areas of research in this section.  Pitch-tracking systems are computer
systems that attempt to extract pitch from sound stimuli.  They differ from the pitch models in
Section 2.1.1 primarily in focus—the systems described here are meant for practical use, not
scientific explication.  A related area is automatic music transcription or polyphonic pitch
tracking; these systems attempt to extract multiple notes and onset times from acoustic signals
and produce a musical score or other symbolic representation as output.  A short digression on
representations for musical signal processing follows.  I also summarize recent research on
tempo and beat analysis of acoustic musical signals; such systems attempt to “tap along” with
the beat in a piece of music.  Finally, I describe a few recent systems that demonstrate
classification of whole audio signals.

While most of these systems are motivated from an engineering viewpoint, not a scientific
one, it is important to appreciate the connection between these goals.  Systems with scientific
goals may have great practical utility in the construction of multimedia systems (Martin et al.,
1998); conversely, the activities involved in prototyping working systems may lead to better
scientific hypotheses regarding music perception and psychoacoustics.  P. Desain and H.
Honing have been among the strongest proponents of the view that research into modeling per
se, or even engineering-oriented “computer music” research, can result in insights about the
music perception process in humans.  They articulated this view in a paper (Desain and
Honing, 1994) that argued on the basis of research into “foot tapping” systems that pursuing
well-organized engineering solutions to certain problems can lead to more robust formal
models of music-listening.

The summary in this section covers only half of the world of musical signal processing; the
other half is that devoted to sound synthesis and sound-effects algorithms.  There is an
extensive literature on these topics that has recently been exhaustively reviewed in tutorial
form by Roads (1996).  Recent papers of a more technical bent are collected in a volume
edited by Roads and three colleagues (1997).

2.3.1. Pitch-tracking
Perhaps the most-studied engineering problem in musical signal processing is pitch-tracking –
extracting pitch from acoustic signals.3  This task has wide practical application, as it is used
both in speech coding as an input to linear-prediction models of speech (Makhoul, 1975), and
in music systems, where it is used to “follow” or “ride” acoustic performances and control
musical input devices.

An early review of pitch detection algorithms (Rabiner et al., 1976) was presented in the
context of speech-processing systems.  Rabiner and his colleagues gave references and
comparatively tested seven methods from the literature on a speech database using a variety

                                                          
3 Most systems of this sort are more properly described as fundamental frequency
tracking systems.  Engineering approaches are typically not concerned with the wide
variety of signals that give rise to pitch sensation as discussed in Section 2.1.1, and the
engineering applications cited actually make better use of fundamental frequency
information that a true “pitch” analysis.  I use the incorrect (“pitch”) terminology in this
section for consistency with the literature.
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of error measurements.  They concluded that no single method was superior overall, but that
different techniques were useful for different applications.  There was no direct comparison
with perceptual models of pitch such as the template-matching or autocorrelogram models
described above.

More recently, studies have focused on developing models of pitch that respect the known
psychoacoustic evidence as discussed in Section 2.1.1, but can still be efficiently implemented
and applied in practical engineering situations.   Van Immerseel and Martens (1992)
constructed an “auditory model-based pitch extractor” that performs a temporal analysis of
the outputs emerging from an auditory filterbank, haircell model, and envelope follower.
They reported real-time performance and robust results on clean, bandpass-filtered, and noisy
speech.

In commercial music systems, pitch-tracking is often used to convert a monophonic
performance on an acoustic instrument or voice to symbolic representation such as MIDI.
Once the signal has been converted into the symbolic representation, it can be used to drive
real-time synthesis, interact with “synthetic performer” systems (Vercoe, 1984; Vercoe and
Puckette, 1985) or create musical notation.  Especially in the first two applications, systems
must be extremely low-latency, in order to minimize the delay between acoustic onset and
computer response.  Vercoe has developed real-time pitch-tracking systems for many years
for use in interactive performance systems (Vercoe, 1984); a paper by Kuhn (1990) described
a robust voice pitch-tracker for use in singing-analysis systems.

2.3.2. Automatic music transcription
In a broader musical context, pitch-tracking has been approached as a method of performing
automatic music transcription.  This task is to take acoustic data, recorded from a multiple-
instrument musical performance, and convert it into a “human-readable” or “human-usable”
format like traditional music notation.    As best I can determine, Piszczalski and Galler
(1977) and Moorer (1977) coined the term contemporaneously.  I prefer not to use it,
however, because it conflates the issue of performing the musical analysis with that of
printing the score (Carter et al., 1988).  It is the former problem that is more related to my
dissertation, and I will term it polyphonic pitch tracking.

There are many connections between the polyphonic pitch-tracking problem, the engineering
approaches to auditory source segregation discussed in Section 2.1.2, and research into sound
representations, which will be discussed in Section 2.3.3.  Many researchers in musical-
signal-processing equate the problems of music scene analysis and polyphonic pitch-tracking.
I do not; scene analysis is a perceptual problem while polyphonic pitch-tracking is an
engineering problem.  Conflating these approaches—by assuming that the goal of the
perceptual scene-analysis system is to produce a polyphonic transcription of the input
sound—has much affinity with structural models of music perception, as I will discuss in
Section 3.4.

The work by Piszczalski and Galler (1977) focused only on single instrument analysis, and
only “those instruments with a relatively strong fundamental frequency.”  Thus, their work
was not that different from pitch-tracking, except that the system tried to “clean up” results
for presentation since it was not operating in real-time.  Their system operated on an FFT
front-end, and tried to measure the fundamental directly from the spectrogram.

Moorer’s system (Moorer, 1977) was the first in the literature to attempt separation of
simultaneous musical sounds.  His system could pitch-track two voices at the same time,
given that the instruments were harmonic, the pitches of the tones were piece-wise constant
(i.e., no vibrato or jitter), the voices did not cross, and the fundamental frequencies of the
tones were not in an 1:N relationship (unison, octave, twelfth, etc).  He demonstrated accurate
analysis for a synthesized violin duet and a real guitar duet obeying these constraints.  His
system, like Piszczalski and Galler’s, worked directly from a short-time spectral analysis.
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The research group at Stanford’s CCRMA did extensive research in polyphonic pitch-analysis
during the early 1980s.  They began with work on monophonic analysis, beat-tracking and
notation systems (Foster et al., 1982); these systems were envisioned as becoming part of an
“intelligent editor of digital audio” (Chafe et al., 1982).  This early work soon gave way to a
concerted attempt to build polyphonic pitch-tracking systems, largely using acoustic piano
sounds for testing and evaluation.  Their reports (Chafe et al., 1985; Chafe and Jaffe, 1986)
were heavy on details of their analysis techniques, which were based on grouping partials in
sinusoidal analysis, but very sketchy on results.  It is unclear from their publications whether
their systems were particularly successful, or whether they attempted validation on music with
more than two voices.

Vercoe (1988) and Cumming (1988) presented sketches of a system that would use a
massively-parallel implementation on the Connection Machine to perform polyphonic
transcription using modulation detectors over the output of a frequency-decomposition
filterbank, but this system was never fully realized.

R. C. Maher’s work (Maher, 1990) resulted in the first system well-described in the literature
that could perform relatively unconstrained polyphonic pitch-tracking of natural musical
signals.  He developed new digital-signal-processing techniques that could track duets from
real recordings, so long as the voices did not cross.

The front-end of his system used McAuley-Quateiri (MQ) analysis (1986), which represents
the signal as the sum of several sinusoids (pure sounds that vary slowly over time in
frequency and amplitude).  He extended the MQ analysis to include heuristics for the analysis
of “beating,” which occurs when the frequency separation of two partials becomes smaller
than the resolution of the short-time Fourier analysis component of the MQ analysis.  He also
developed a “collision repair” technique that could reconstruct, through interpolation, the
damage that results when multiple sinusoids come too close in frequency and cause phase
interactions.  He considered but abandoned the use of spectral templates to analyze timbre.
Finally, Maher performed a meaningful  evaluation, demonstrating the performance of the
system on two synthesized examples and two natural signals, a clarinet-bassoon duet and a
trumpet-tuba duet.

Kashino and his colleagues have used a variety of formalizations to attempt to segregate
musical sounds.  An early system (Kashino and Tanaka, 1992) performed a sinusoidal
analysis and then grouped partials together using synchrony of onset, fundamental frequency,
and common modulation as cues.  The grouping was performed using a strict probabilistic
framework.  A second system (Kashino and Tanaka, 1993) used dynamic timbre models in an
attempt to build probabilistic expectations.  Tested on synthesized random two- and three-tone
chords built from flute and/or piano tones, this system recognized 90% and 55% of the stimuli
correctly, respectively.

More recently, Kashino’s efforts have been focused on the “Bayesian net” formalism.  A
system built by Kashino et al. (1995) used both an analysis of musical context and low-level
signal processing to determine musical chords and notes from acoustic signals.  Operating on
sampled flute, trumpet, piano, clarinet, and violin sounds, their system identified between
50% and 70% of chords correctly for two-voice chords, and between 35% and 60%
(depending on the type of test) for three-voice chords.  They found that the use of musical
context improved recognition accuracy between 5% and 10% in most cases.  An extended
version of this system (Kashino and Murase, 1997) recognized most of the notes in a three-
voice acoustic performance involving violin, flute, and piano.

M. J. Hawley’s dissertation (1993) discussed piano transcription in the context of developing
a large set of simple tools for quick-and-dirty sound analysis.  He used a short-time spectral
analysis and spectral comb filtering to extract note spectra, and looked for note onsets in the
high-frequency energy and with bilinear time-domain filtering.  He only evaluated the system
on one example (a two-voice Bach piano excerpt without octave overlaps); however, Hawley
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was more interested in describing the applications of such a system within a broad context of
multimedia systems than in presenting a detailed working technology, so evaluation was not
crucial.

My own master’s thesis (Scheirer, 1995; Scheirer, 1998b) extended the idea of incorporating
musical knowledge into a polyphonic transcription system.  By using the score of the music as
a guide, I demonstrated reasonably accurate transcription of overlapping four- and six-voice
piano music.  The system used both frequency-domain and time-domain methods to track
partials and detect onsets.   I termed this process “expressive performance analysis,” since the
goal was to recover performance parameters with accurate-enough time resolution to allow
high-quality resynthesis and comparison of timing details between performances.

This system was validated by capturing both MIDI and audio data from the same performance
on an acoustic-MIDI piano (Yamaha Disklavier).  My algorithms were applied to the acoustic
performance; the symbolic data thus recovered was compared to the ground-truth MIDI data.
I tested the system on scales, on a polyphonic piece with many overlaps (a fugue from the
Well-Tempered Clavier of Bach), and on a polyphonic work with pedaling and many
simultaneous onsets (Schubert Kinderszenen).  The system proved accurate enough to be used
for tempo analysis and some study of expressive timing.  It was not generally good enough to
allow high-quality resynthesis.  It stands as a proof-of-concept regarding expectation and
prediction; that is, if the expectations/predictions of a polyphonic pitch-tracking system can be
made good enough, the signal-processing components can succeed.  Of course, building a
system that can generate good expectations is no easy task.

Martin (1996b) has demonstrated use of a blackboard architecture (which was a technique
also suggested at CCRMA) to transcribe four-voice polyphonic piano music without using
high-level musical knowledge.  His system was particularly notable for using the
autocorrelogram as the front end (Martin, 1996a) rather than sinusoidal analysis.  Rossi et al.
(1997) built a system for polyphonic pitch identification of piano music around an
automatically-collected database of example piano tones.  The spectra of the tones were
analyzed and used as matched filters in the spectral domain.  This system also transcribed
four-voice music correctly.  Although neither of these systems has been extensively evaluated
(for example, they were not tested with music containing overlapping notes, only with
simultaneous onsets), they currently stand as the state of the art in polyphonic pitch-tracking.

Most recently, Goto and Hayamizu (1999) have constructed computer programs that can
extract the melody and bass line from real, ecological musical signals.  These programs are
not polyphonic pitch-tracking systems per se, since they do not attempt to derive symbolic
representations of the extracted lines.  Rather, Goto’s system performs frequency-domain
segmentation and continuous transformation of the input signals, in order to produce output
signals with certain desired properties.  He has demonstrated that the system works (although
principled evaluation is very difficult) on a variety of jazz and pop-music examples.  This line
of inquiry must still be considered preliminary, but seems extremely promising.

The recent development of structured audio methods for audio coding and transmission
Vercoe et al. (1998) ties research in musical signal processing (especially polyphonic pitch-
tracking and music synthesis) to new methods for low-bitrate storage and transmission.  In a
structured-audio system, a representation of a musical signal is stored and transmitted using
an algorithmic language for synthesis such as Csound (Vercoe, 1985) or SAOL (Scheirer and
Vercoe, 1999) and then synthesized into sound when it is received.  High-quality polyphonic
pitch tracking, timbre analysis, and parameter estimation are necessary in this framework if
the structured descriptions are to be automatically created from arbitrary sounds.  Currently,
structured audio descriptions must be authored largely by hand, using techniques similar to
MIDI composition and multitrack recording.  Vercoe et al. (1998) reviewed much of the same
literature I have examined here, in the context of articulating the goals of structured-audio
transmission and representation.
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2.3.3. Representations and connections to perception
Every analysis system depends upon representation and transformation.  The representation
used informs and constrains the possible analysis in subtle and potentially important ways.  I
provide a short digression here to discuss the most common signal representations used in
music-pattern-recognition systems.  A recent collection (De Poli et al., 1991) extensively
described many different representations suitable both for music analysis and for music
synthesis.

The earliest discussion of signal processing in the ear was by Ohm and by Helmholtz (1885),
who observed that the ear is like a Fourier analyzer; it divides the sound into spectral
components.  But Gabor (1947)  objected that Fourier theory is an abstract, infinite-time basis
of analysis, while humans understand sound as evolving over time.  He developed a theory
that has now come to be called “wavelet analysis” around the problem of simultaneous
analysis of time and frequency.

Many engineering approaches to signal analysis have utilized one or another time-frequency
transformation with mathematically simple properties, including the Discrete Fourier
Transform (Oppenheim and Schafer, 1989), the “constant-Q” transform (Brown, 1991; Brown
and Puckette, 1992) or various “wavelet transforms” (Kronland-Martinet and Grossman,
1991).  These models have varying degrees of affinity with the current understanding of
perceptual frequency analysis by the cochlea; the gammatone filterbank (Patterson et al.,
1995) is a closer approximation used in perceptual studies.  These representations also have
various properties of time/frequency resolution and efficiency that make them more or less
suitable for use in various applications.  For example, the DFT can be computed using the
Fast Fourier Transform, which is extremely efficient to calculate.  A recent review article
(Pielemeier et al., 1996) compared the properties of various time/frequency representations.

Musical-signal-processing systems have often been constructed around the idea of
transforming a signal into a time-frequency distribution, and then analyzing the resulting
spectral peaks to arrive at a representation that tracks sinusoids through time.  This may be
termed an additive synthesis model of musical sound, and techniques such as the phase
vocoder (Flanagan and Golden, 1966) and McAuley-Quatieri analysis (McAulay and
Quatieri, 1986) can be used to extract the sinusoids.  These techniques have also been used in
a more perceptually-motivated framework; Ellis (1994) used a McAuley-Quatieri front end to
extract sinusoids from musical sound and then developed grouping heuristics based on those
of Bregman to regroup them as sources.

The most sophisticated model to use this approach was the work of A. Wang in his
dissertation (Wang, 1994).  He developed signal-processing techniques for working with a
number of novel types of phase-locked loops (PLLs), including notch-filter PLLs, comb-filter
PLLs, frequency-tracking PLLs, and harmonic-set PLLs.  He applied these techniques to the
separation of voice from musical signals, and evaluated the resulting system on several real-
world musical examples, with quite satisfactory results.  He also discussed the relationship
between this sort of heavy-duty signal processing and models of auditory perception, although
to some degree the question is left hanging in his presentation.  He did provide
straightforward discussion of the practical utility of source separation systems for applications
other than perceptual modeling.

Among the contributions that Ellis made in his dissertation (1996a) was the introduction of a
novel intermediate representation he termed the weft (Ellis, 1997; Ellis and Rosenthal, 1998).
The weft allows simultaneous representation of pitch and spectral shape for multiple
harmonic sounds in a complex sound scene.  Ellis provided algorithms for extracting wefts
from autocorrelograms as well as details on their use in sound-scene analysis.  He also
discussed the general problem of trying to discover the true perceptual representations of
sound.
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2.3.4. Tempo and beat-tracking models
Another commonly-approached problem in musical signal processing is beat-tracking or foot-
tapping; that is, attempting the construction of systems that can find the beat in a piece of
music.  A fair amount of experimental data on special, non-ecological examples has been
collected in studies.  I am not aware, though, of any perceptual data for real music except that
contained in the short validation experiment in my own work (Chapter 4) on this topic.  Beat
perception models are important because the beat of a piece of music is a universal,
immediately-perceived feature of that piece, and is therefore crucial in understanding of how
listeners orient themselves to a new musical stimulus.

There is a large body of work originating in the music-psychology community that attempts to
group musical onsets together into a rhythmic context.  Such models subsume multiple onsets
separated in time into a rhythmic clock, “hierarchy”, grouping, or oscillatory framework.

Povel and Essens (1985) presented research on the association of “internal clocks” with
temporal onset signals.  They described an algorithm that could, given a sequence of inter-
onset intervals as input, identify the clock a listener would associate with it.  Their research
was particularly concerned with the way that perceived accents lead to the internal clock.
Although obviously related to music, their research purports to examine time intervals in
general rather than being restricted to musical stimuli.  Parncutt’s recent work (Parncutt,
1994a) extends this type of model to include many aspects of the structural characteristics of
temporal sequences, such as duration and phenomenal accent.

Desain and Honing have contributed many results to the computational modeling of beat-
tracking.  Their models (Desain and Honing, 1992a; Desain, 1995) typically also begin with
inter-onset intervals and associate a rhythmic pulse with the interval stream.  However, unlike
the Povel/Essens and Parncutt models, these models are process models—they process the
input sequentially rather than all-at-once.  This is an essential aspect of a model of human
rhythmic perception.  Desain’s “(de)composable” model calculates rhythmic expectations due
to each of the possible inter-onset times in a rhythmic stream, and sums them to create an
overall rhythmic expectation.  (Note the similarity here to pitch models based on the
histogram of interspike intervals, as discussed at the end of Section 2.1.1).

Large and Kolen have described a beat-tracking model (Large and Kolen, 1994) based on
non-linear oscillators.  Their model takes a stream of onsets as input, and uses a gradient-
descent method to continually update the period and phase of an oscillator.  In this manner,
the oscillator phase-locks to the input stream.  The resulting oscillation process seems to be a
good match for the human perception of beat.

Longuet-Higgens and Lee have written several papers (for example, Longuet-Higgens and
Lee, 1984) on the induction of rhythmic hierarchies from monophonic time sequences.  They
are more interested in the development of theories describing the relationship of rhythm,
meter, and phrasing than on the boot-strapping process in which tempo and beat percepts
arise.  Tempo perception may be viewed as underlying their models.

These approaches, and several others (Rosenthal, 1992; Brown, 1993), require that robust
onset-detection be a step preceding beat analysis.  This entails important restrictions to their
applicability.  The models cannot operate on acoustic signals, but must be provided with pre-
processed symbolic data such as event lists or MIDI.  The extraction of onsets from
multitimbral, polyphonic music is itself a difficult problem, and one that we have little
perceptual data about.  Thus, relying on event lists is a serious restriction of any model that
claims to treat human rhythm perception.  There has been little attempt to merge these sorts of
models with real-time acoustic pattern recognition to allow them to work with acoustic data.

More recently, there has been some research attempting to extract rhythm and/or pulse
information directly from acoustic signals.  Goto has demonstrated a system that combines
both low-level signal processing and high-level pattern-matching and “agent-based”
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representations to beat-track and find rhythmic groupings in popular music (Goto and
Muraoka, 1998).  His method extracts drum patterns from a signal and uses a template-
matching model to determine the beat from the drum track.  This system runs in real-time on a
parallel-processing computer and was used to control interactive-graphics displays from
ecological music signals.

A further extension to this system used more sophisticated signal-processing (Goto, 1999) to
extract onset times from signals without drums and make judgments similar to those made by
the earlier system.  It used a robust onset-detector and chord-change locator as the
fundamental elements of bottom-up processing.  Goto reported excellent results for both of
these systems on rock-and-roll music, although it is not clear whether his methods were
applicable to other musical genres or to signals with changing tempo.

N.P. Todd’s work (Todd, 1994) has described algorithms that detect onsets in monophonic
music under certain timbral constraints, and group them in a rhythmic framework using a
multi-scale smoothing model.  The onset model used is a simple one based on leaky
integration.  The resulting rhythmogram representation conceives of pulse, and in some cases,
meter and phrase, perception as a very low-level process arising directly from the time- and
loudness-integration properties of the auditory periphery.  The model as presented can be
implemented in an incremental manner, but Todd only tested it using toy examples (although,
interestingly, a speech example was included).

All of the above-mentioned research uses what I have previously described as a transcriptive
metaphor for analysis (Scheirer, 1996).  That is, the music is first segmented, or assumed to
already be segmented, into notes, onsets, timbres, and so forth.  Post-processing algorithms
are then used to group rhythms and track beats.  As high-quality polyphonic music
transcription algorithms are still years in the future—the state-of-the-art systems cannot
transcribe pieces more complex than four-voice piano music, as discussed in Section 2.3.1—it
seems logical for practical reasons to attempt to construct systems that can arrive at a musical
understanding of a piece of music without going through a transcription step.  Further, as the
validity of the transcriptive metaphor as a framework for music perception has been
challenged, it is scientifically appropriate as well.

Vercoe (1997) reported a system for beat-tracking acoustic music that used a constant-Q
filterbank front-end and a simple inner-hair-cell rectification model.  The rectified filter
channels were summed, and a “phase-preserving narrowed autocorrelation” analyzed the
periodicity of the signal.  The output of the model was primarily visual; Vercoe provided
anecdotal verification of its performance on a piece of simple piano music.  This was the first
system to be reported that did not try to detect onsets robustly; the output of Vercoe’s system
is a continuous transformation of the input.

Beat-tracking is of great interest in the construction of general music perception systems; it
has been implicated, especially in the work of M. R. Jones and her colleagues (Jones and
Boltz, 1989) as a strong cue to attentional set.  That is, Jones argued, the rhythmic aspect of
music provides a framework for alternately focusing and relaxing attention on the other
features of the signal.

2.3.5. Audio classification
As well as the specifically music-oriented systems described above (and the great wealth of
speech-recognition and speech-analysis systems not discussed here), there have been a few
efforts to conduct a more general form of sound analysis. Techniques from the broader
pattern-recognition literature can often be leveraged quite effectively to produce solutions to
problems in sound classification when they are considered only as engineering tasks.

I have conducted one well-organized study in sound-signal classification; M. Slaney and I
built a system that could robustly distinguish speech from music by inspection of the acoustic
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signals (Scheirer and Slaney, 1997).  This system was an exemplar of the classical approach
to pattern recognition; we chose 13 features by developing heuristics we thought promising,
and then combined them in several trained-classifier paradigms.  The system performed well
(about 4% error rate, counting on a frame-by-frame basis), but not nearly as well as a human
listener.  This was not a “machine perception” system—there was little attempt to consider the
perceptual process when building it.

There has been some recent work to attempt classification of sounds, musical excerpts, or
even whole soundtracks by type.  E. Wold et al. (1996) described a system that analyzed
sound for pitch, loudness, brightness, and bandwidth over time, and tracked the mean,
variance, and autocorrelation functions of these properties to create a feature vector.  They
reported anecdotally on the use of a simple spatial partition in the resulting feature space to
classify sounds by type and of the use of simple distance metrics to do perceptual similarity
matching.  They included speech, sound effects, and individual musical notes, but did not
report results on musical style classification or speech-vs.-music performance.   They
attempted to justify their feature set on perceptual grounds, but not the combination of
features nor the way they were used in applications.  They also provided a useful list of
potential applications for this sort of system.

In the last few years, this sort of research has gained momentum, as it has been discovered
that for segmentation of broadcast video such as films or news programs, the soundtrack is
often more useful than the video images.  Several recent papers have demonstrated the use of
pattern-recognition methods applied to the soundtrack in order to perform tasks such as scene-
change detection (Liu et al., 1998) and other video-structuring tasks (Minami et al., 1998).

Smith et al. (1998) discussed the time-domain use of zero-crossing statistics to retrieve known
sounds very quickly from a large database.  Any noise in their system had to be minimal and
obey simple statistical properties; their method was not robust under signal transformation or
in the presence of interfering sounds.

Dannenberg et al. (1997) reported on a pattern recognition system that classified solo
improvised trumpet performances into one of four styles: “lyrical,” “frantic,” “syncopated,” or
“pointillistic” (such classes are useful for real-time collaboration in a modern jazz idiom).
They used a 13-dimensional feature set taken from MIDI data acquired through real-time
pitch-tracking with a commercial device.  These features included average and variance of
pitch height, note density, and volume measures, among others.  Using a neural network
classifier, they reported 1.5% error rate on ten-second segments compared to human
classification.

A recent article (Foote, 1999) reviews other systems for automatic analysis of audio
databases, especially focusing on research from the audio-for-multimedia community.  This
review is particularly focused on systems allowing automatic retrieval from speech or partly-
speech databases, and thus makes a good complement to my music-focused approach here.

A fascinating system constructed by Katayose and Inokuchi (1989) attempted to model
emotional reactions as a direct pattern-extraction system.   Their system first transcribed a
musical signal, or scanned a musical score using optical music recognition (Carter et al.,
1988), and then “extract[ed] sentiments using music analysis rules that extract musical
primitives from transcribed notes and rules that describe the relation between musical
primitives and sentiments.”  The report of their system was still highly speculative.  As music
is an important vehicle of emotional communication between humans, the development of
truly “affective” computer systems (Picard, 1997) requires more research of this sort.
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2.4. Recent cross-disciplinary approaches

In this section, I examine some recent studies that report attempts to build computational
systems, with a basis in the study of human perception, that can analyze acoustic musical
signals.    These studies are the most direct background for my research.

E. Terhardt was the first to make a concerted effort at the computational implementation of
perceptual models of musical phenomena.  His research is broad and yet disciplined, with a
constant focus on presenting correct and consistent definitions of terms and maintaining a
separation between structural, physical, and perceptual aspects of music.  He also has a great
knowledge of the broad directions of the field of computer music, as evidenced by an essay on
that topic (Terhardt, 1982).  He is best known today for his “virtual pitch” model, which is a
template-matching model of the pitch of complex tones (Terhardt, 1974).

He extended this model to analyze the roots of musical chords (Terhardt, 1978).  He observed
that the relationship between chord tones and chord roots is very similar to the relationship
between overtones and fundamentals in complex tones.  Thus, his model predicted the root of
a chord as the subharmonic that best explains the overtones as “harmonics.”  While this model
is not without its problems, it has been the most influential model of acoustic correlates of
musical harmony to this point.

R. Parncutt, a student of Terhardt, extended and formalized this model in a number of
important directions (Parncutt, 1989).  His model, based on four free parameters that control
how analytic the modeled listener is, predicts pitch, tonality (how audible the partials of a
complex tone are), and multiplicity (the number of tones noticed in a chord) of individual
sounds and the similarity of sequential sounds.  The model incorporated masking and
loudness effects and a template-matching model.

Parncutt (1989) conducted extensive psychoacoustic tests to determine listeners’ settings for
the model’s free parameters and to psychophysically validate its principles.  He shows that the
model’s predictions are generally accurate and that the model can also be used to determine
musical key and the roots of chords.  The model takes as input a fully-resolved spectrum; that
is, a list of all the harmonic components present in a chord.  Thus, all of his testing was
conducted on synthetic test sounds rather than ecological music examples; a logical next step
would be to attempt the analysis of real music for spectral components and use this as input to
his model.

Recent psychoacoustic experiments have provided further evidence for Parncutt’s model.
Thompson and Parncutt (1997) found that the model alone could explain 65% of the variance
in a human chord-to-tone matching task, and 49% of the variance in a chord-to-chord
matching task.  This indicates that the model is a good predictor of whether subjects (expert
musicians in their case) find two chords (or a chord and a complex tone) “similar” or
“different.”  Again, the chords provided to the human listeners were synthetic, not ecological,
and the model was provided with symbolic lists of components, not sounds, as the input.

Parncutt has continued to study models of the perception of chords.  A recent chapter
(Parncutt, 1997) took a more directly music-theoretical stance, attempting to explain the root
of a chord using a sophisticated model incorporating the pitches in the chord, its voice, the
local key sense (“prevailing tonality”), and voice-leading considerations.  As he admitted, this
model has not been systematically tested.  Neither Parncutt nor Terhardt have yet attempted to
apply their models to real musical signals.

D. K. Mellinger did extensive work in his thesis (1991) attempting to unify contemporaneous
results from music transcription and auditory scene analysis in a robust polyphonic music-
analysis system.  He developed a set of two-dimensional filters that operated on a time-
frequency “cochleagram” image.  By using this technique, solutions to problems in sound
understanding can make use of techniques developed in the image-processing literature.
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Mellinger’s technique was explicitly both perceptual and musical.  He cited Bregman (1990)
and Marr (1982) as influences in the perceptual theory, and considers source grouping only in
music, not in other sounds.  The system was similar to the sinusoidal analysis systems cited in
Section 2.3.2 in that it operated in time-frequency space; however, it used a perceptually
motivated front-end (Slaney, 1994) rather than a spectral analysis, and analyzed large
stretches of time at once through the use of two-dimensional filtering in the time-frequency
plane.  Also notable was his use of modulation-detection kernels that were convolved with the
image to detect frequency variation of partials.

Mellinger analyzed his system’s performance on a few ecological music examples.  The
system performed well on a piano performance with two-voice polyphony, and could separate
simultaneous synthesized complex tones with vibrato, by making use of common-modulation
cues between partials.  It had a much harder time with real instruments with slow onsets – it
could not accurately separate voices from a Beethoven violin concerto or from sections of a
Beethoven octet with two to four woodwinds playing at once.

The approach most similar to mine is that of Leman (1994; 1995).  Leman presented methods
for analyzing acoustic signals and, using the Kohonen-map framework, allowing a self-
organizing architecture to represent tonality in music.  His system consisted of two parts with
interchangeable mechanisms for each:

1. An auditory model, which incorporated either the Terhardt model for pitch analysis
or a cochlear filterbank process based on the model of Van Immerseel and Martens
(1992) and a short-term within-channel autocorrelation (which he called the “tone
completion image” although it was essentially equivalent to the Licklider (1951b)
model for pitch).

2. A self-organizing tone-center cognitive model based on the Kohonen-map formalism
(Kohenen, 1995).  In this technique, the output of the auditory model was presented
as vectors of data to a two-dimensional grid of computational neural-network
elements.  As successive stimuli were presented, the map self-organized, and
topological patterns of regions of grid neurons responding to certain sorts of inputs
began to appear.  At this point, when new stimuli were presented, they activated
certain regions of the self-organizing map strongly; this regional allocation was a
form of classification.

There are interesting comparisons between this sort of connectionism and the sort represented
in the oscillatory grouping system of Wang (1996).  While the latter views the dynamic
evolution of the oscillatory state as critical—since source grouping is represented through
coherent oscillation—the former hopes that the oscillations will die away and the map will
reach stability.

Leman trained the network with a set of synthesized cadence sequences, moving through all
keys.  He viewed this set of training data as representative of the important relationships in
tonal music.   He then analyzed the performance of his methods in two ways.  First, he
examined the internal structure of the Kohonen map after learning had occurred.  Certain
structural equivalencies to theories of tonal music perception as described in Section 2.2.1
were present; the Kohonen map was an accurate reflection of “tonality space” as predicted by
such theories.  Second, he played musical examples to the system after it had been trained,
and let it produce output judgments of tonality moving through listening time.  He included
three examples of real, ecological music (Debussy Arabesque No. 1 and Bartók Through the
Keys for solo piano, and Brahms Sextet No. 2 for string sextet), and found that the judgments
of the model corresponded reasonably well with the analysis of music theorists.

My approach (see the next Chapter) differs from Leman’s in a number of ways.  Most
importantly, Leman had as a goal the analysis of music—the subtitle of his book is “cognitive
foundations of systematic musicology.”  As such, he is interested in musicology and hopes to
provide tools of interest to music theorists in understanding the nature of music.  He is less
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interested in understanding the perceptions of everyday listeners than in showing
correspondence with the predictions of music theorists.  In contrast, I am much more
interested in the perceptions of non-musically skilled listeners; there are serious questions
about whether the kinds of judgments his system can make are perceptually relevant to non-
musicians.

Second, he did not try to incorporate models of source grouping and segregation in his model.
The perception of music with multiple sources surely depends on our ability to segregate the
sound scene into multiple sources and attend to them holistically or selectively.  One of the
important components of my research is a new model of musical source grouping using the
autocorrelogram framework (Chapter 5).  Leman and I share the goal of building what he
terms subsymbolic models of music processing (Leman, 1989)—models that operate directly
on acoustic signals and do not involve an explicit symbolization step.  Leman’s work involves
self-organizing structures as subsymbolic components, whereas mine is based on signal-
processing and pattern-recognition techniques.  Finally, I demonstrate the performance of my
models on a much broader range of stimuli than Leman did.

It is important to understand that I am not criticizing the physiological plausibility of Leman’s
model (or any of the other models I discuss).  It is unlikely that the human perceptual system
analyzes sound in exactly the manner proposed by any existing or near-future model.  My
criticism is only lodged on behavioral grounds; I don’t believe that Leman’s model mimics
the behavior of human listeners accurately, and will show in Chapter 7 that my models do
better at this.

Drawing from the approach of Leman, Izmirli and Bilgen (1996) presented a model for
dynamically examining the “tonal context” (key) of music from acoustical signals.  The
method used was straightforward: they tracked the acoustic strength of fundamental pitches
from audio processed using a constant-Q transform, and measured the note onsets and offsets.
The pitch results were collapsed across octaves to form a 12-element vector that was averaged
over time using leaky integration.  This vector was correlated with the Krumhansl (1990)
tonal-context profiles for various keys, and the low-passed result was taken as the dynamic
key measurement.  This method can easily produce graphs of dynamic key strengths for
various pieces of music taken as acoustic signals; however, its relation to perception is
unclear.  Izmirli and Bilgen made no attempt to validate the results produced by their system
against perceptual data, only against music-theoretical analysis.

2.5. Chapter summary

This chapter has covered a wide range of territory in reviewing pertinent research on music
perception, psychoacoustics, and musical signal processing.  Four threads and cross-discipline
trends present clear starting points for my approach and the research I will present in the
remainder of the dissertation.

The first important trend is what I term the transcriptive model of music processing.  Both in
music signal-processing and in psychological studies, researchers commonly embrace the
viewpoint that first the signal is transcribed into a list of notes, and then the interesting work
happens.  This is true in the construction of automatic polyphonic transcription systems,
which are often motivated as the means to some larger signal-processing end, and also (often
implicitly) in the development of purported theories of music perception that are actually
constructed around processing of the score.  In contrast to this approach, I will present in
Chapter 3 and use throughout the technical parts of my dissertation a new approach that I term
understanding without separation.  In this model, perceptual models, and useful music-
analysis techniques, are developed as continuous signal-processing transformations from
input to output.
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The second important trend is the use of restricted musical domains for music research and
analysis.  Most previous studies have admitted only certain musical styles (two- or four-part
music, music with restricted timbres, music only in the Western classical tradition) as
candidates for explanation.  In contrast, the experimental and computational work that I will
present admits any signal that some human listener might consider music.  In Chapter 7, I
develop a stimulus set for model evaluation by randomly sampling a popular online database.
This allows me to argue that the results I show are applicable to the entire (large) database,
which has no particular restrictions on the types of content included.

The third important trend is the discussion of music as independent of sound, and sound as
disconnected from musical (and other high-level) concerns.  There are many computer-music
studies, and many music-perception studies, that don’t really treat music at all, but rather treat
symbol-manipulation with a claim that doing so is representative of useful, or perceptual,
musical processing.  In the other direction, many (perhaps most) psychoacoustic studies use
test sounds that are so simplified that it is difficult to tell what implications, if any, the results
have on the perception of actual real-world sounds.  Some of this separation of focus is
natural as part of the reductionist approach to scientific inquiry, but ultimately, if theories of
music perception are to be well-grounded, they must rest on principles of sound processing in
the auditory system.

The fourth and final trend is a focus on non-ecological tasks and listening situations.
Judgements that are typically elicited in psychoacoustic and music-perception tests (“is sound
A higher or lower in pitch than sound B?” and “does note X serve as a good continuation for
phrase Y?”, respectively) have little to do with the everyday sorts of judgments made by real
listeners.  Similarly, the overwhelming focus in music signal-processing on pitch-tracking and
polyphonic transcription is far removed from the kinds of practical problems that people
naturally solve when listening to music.  Further, I claim that the kinds of problems people
solve naturally are actually easier to model computationally that are these artificial problems.

It might be argued that in the first case, the experiments actually serve to reveal preconscious
perceptions that underlie more complex behaviors.  However, at the very least such
experiments and computational models should be augmented with the study of percepts that
more closely follow the real behaviors of human listeners.   This is the approach that I will
present and follow in the rest of the dissertation.





CHAPTER 3 APPROACH

In this chapter, I will discuss my approach to the construction of music listening systems, and
the theoretical basis of this approach in music psychology and psychoacoustics.  I will begin
by formally defining terms, in order to be as clear as possible about exactly the sorts of human
behaviors I wish to model.  In Section 3.2, I will present a definition of the perceptual
problem to be solved: that of understanding the properties of the musical surface.  Following
that, I will discuss the use of computer modeling in the creation of psychological and
psychophysical theories.  Finally, in Section 3.4, I outline the basic theoretical stance of my
approach, which I term understanding without separation, and compare it with other theories
of psychophysical processing in the literature.

3.1. Definitions

It is crucial for a formal theory of perception to rest on careful definitions of terms.
Especially in research areas that are relatively young (auditory scene analysis and musical
signal processing), the use of terminology in the literature is not entirely consistent.  This is
particularly true in the literature on the perception of mixtures of sounds.  I will attempt to
define my terms carefully in this section and to follow these definitions throughout the rest of
the dissertation.

3.1.1. The auditory stimulus
The first principle on which all other definitions rest is to take as given the auditory stimulus.
Garner (1978) writes “in the beginning is a stimulus.”  I define the auditory stimulus to be the
complete mixture of sounds presented to the listener’s ear.  The stimulus is not differentiated
in any way a priori.  When multiple sounds, each of which might be stimuli in its own right,
are mixed, the result is still only a single stimulus.  It is never right to say that multiple
auditory stimuli are simultaneously presented; to say this begs many important questions
about the listener’s perception of the multiplicity of the sound.  Regardless of how the sound
mixture was created, a listener only ever receives a single auditory stimulus4.

                                                          
4 Naturally, it is the case that most human listeners have two ears and perceive two sound
signals at once.  However, I prefer to consider the stereo percept a single stimulus, not
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Following Gibson (1986), I emphasize that a stimulus is a sound, not the object in the world
that makes it.  A violin is not a stimulus; rather, a violin is a physical object that makes sounds
that might be mixed with other sounds (through physical superposition).  The mixed sound
that impinges on the listener’s eardrum is the stimulus.  It may or may not be the case that
from the sound stimulus, the listener can determine that there is a violin in the world.  This is
purely an empirical question of psychology.

A stimulus taken as a whole may be casually said to fall along a continuum from simple to
complex.  I won’t use these terms rigorously.  A simple stimulus is one that is not perceived to
change very much over time, and that is perceived to have few components, each with stable
perceptual attributes.  A complex stimulus is one that is perceived to have many components,
with rapidly changing attributes, and where the perceived organization of the attributes and
the relationship between them is also perceived to be rapidly changing.    In this way of
speaking, then, a single pure tone is a very simple stimulus, as are most of the sorts of stimuli
(synthesized vowels, glide tones, bandpassed noise) used in traditional psychoacoustic
experiments.  The sound of a single talker in a quiet environment is a moderately complex
stimulus.  A complete piece of music heard in a concert hall is usually a very complex
stimulus, as is the stimulus presented during a walk around the city streets.

I will term a short, undifferentiated sound stimulus a sound event.  A sound event is anything
that is perceived in context as “the sound of one thing happening.”  The context is important;
in one setting, a single note on a trumpet is considered an event; in another, an entire piece of
music is considered an event.  (“Suddenly, there was a burst of music from the radio.”)  A
stimulus may be said to contain several sound events, but this is a casual use.  When I speak
more rigorously, I will use the term auditory image as discussed below.

I distinguish natural, or ecological, stimuli, from artificial or  laboratory stimuli.  A stimulus
is natural if it is the kind of sound that is part of our everyday listening experience; it is any
sound that a listener might hear outside the laboratory.   This use of natural extends the simple
definition “occurring in nature” to include musical sounds as they are found in the concert hall
or on compact disc.  A stimulus is artificial if it is not the kind of sound that would be heard
outside the laboratory.  This distinction is a continuum to some extent; certain synthesized
sounds (such as those created with sampling synthesis) are laboratory creations intended to
achieve part, but not all, of the complexity of ecological sound.

When I call Gould’s recording of the Well-Tempered Clavier an ecological stimulus, I don’t
mean to say that you might happen to hear it walking through the woods!  Rather, I mean that
this stimulus has not been simplified to assist processing or experimentation in the same way
that a clean performance synthesized from sampled sounds has been.   A typical ecological
recording of music has reverberation, noise, extraneous sounds (Gould sings as he plays, and
his vocalizations are clearly audible to the listener in the recording), equalization,
compression, and other kinds of “artifacts” that add richness for human listeners but are often
difficult for machines to process.  A major goal of my dissertation is to present final results
only on complex ecological musical sounds, rather than on test sounds or on stimuli that have
been specially prepared for easier processing.   When I want to make the further distinction
between “sounds occurring in the real world” and musical sounds, I will use the term
environmental sounds to refer to the former.  Thus, two important sorts of ecological sounds
are environmental sounds and musical recordings and performances.

This dissertation is predominantly concerned with complex ecological musical stimuli.  I will
use laboratory stimuli only as examples and to evaluate psychoacoustic theories (particularly

                                                                                                                                                      

two stimuli, because there are still empirical questions regarding how to relate the cross-
channel properties of the two signals to the perception of the sound.  The kinds of
musical behaviors I am considering in this dissertation are easily enabled by monophonic
signals as well as stereophonic ones.  I do not consider stereo processing directly here.
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in Chapter 5), not to evaluate the listening systems constructed as the larger goal.
Environmental stimuli will only be considered in thought-experiments.

3.1.2. Properties, attributes and features of the auditory stimulus
Following Licklider (1951a), Terhardt (1991), and others who haven written with rigorous
terminology about the hearing process, I will maintain a clear distinction between physical
properties and perceptual attributes of sounds.  However, since I am exploring sounds that
are more complex than are typically considered elsewhere, I must define the terms for the
perceived aspects of complex sounds especially carefully.

The physical properties of sounds are those that can be measured directly using scientific
instruments.  The perceptual attributes of sounds are those that a human listener associates
with the sound.  For some perceived attributes of some sounds, it is relatively easy to
understand the physical correlates of the attributes, by which I mean the physical properties
that lead to the particular percept.  For example, as the frequency of a sine tone varies, the
pitch of the sound varies in a simple way.  However, for other sounds and other properties, the
correlation between the physical and the perceptual is more difficult to understand.  For
example, the physical correlate (or set of correlates) for the perceived timbre of a sound is not
known today, and there is an extensive literature exploring this topic.

I will now list and define some of the most commonly-studied perceptual properties of test
sound and present theories of their physical correlates.  This sets the stage for the discussion
of the perceptual properties of complex sounds in the next section.

Pitch
Many sounds are perceived to have a pitch.  The pitch of a sound is that attribute by which it
may be positioned on a continuum from “low” to “high.”  I prefer to adhere to the strictest
operational definition (Stevens, 1975, p. 230): The pitch of a sound is defined as the
frequency of a sine-tone that is matched to the target sound in a psychophysical experiment
(this is termed the “method of adjustment”).  It is not often clearly enough said, even by
authors who should know better, that this operational definition severely bounds the ways in
which the term can be accurately used.  For example, it is not the case that sounds have a
“correct” pitch that listeners can be asked to “identify.”  The pitch of a sound is simply what a
particular listener, in a particular experimental context, says that it is.  Different listeners may
attribute different pitches to the same stimulus; the same listener may attribute different
pitches at different times.

Also, it is not possible for a stimulus to have more than one pitch.  The question of the pitch
(and other perceived attributes) of mixtures of sounds is something I will consider later in this
section, and in fact throughout the dissertation.  Given an operational definition of pitch, all
we might say is that pitch judgments for simple stimuli have a lower variance (inter-listener,
inter-trial) than pitch judgments for complex ones.   When complex sounds are presented to
listeners as stimuli in operational pitch-judgment trials, the result is a probabilistic histogram
of “pitch likelihood.”  If a pitch must be associated with a complex sound, I would rather call
the entire probability density function the pitch than to impart multiple pitches to a single
stimulus.  (Also see the discussion of “auditory images” below).

This operational definition also entails that the same physical stimulus may be perceived to
have different pitches to different listeners, or to a single listener at different times.  There is
nothing wrong with this—it is simply in the nature of some sounds to be ambiguous in this
way.  For example, consider the sounds shown in Figure 3-1.  The first is unambiguously a
complex tone with pitch of F0.  The second is unambiguously a complex tone with pitch of
2F0.  Thus, if the amplitude of the low partial is ramped so that it slowly fades in (as in the
third stimulus), at some point the stimulus changes from a 2F0 to an F0 pitch (the exact time
and nature of the change depends on the speed of the cross-fade and other factors that are not
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important for this discussion).   There is an intermediate ambiguous stimulus in which some
listeners will judge the pitch as 2F0 and some as F0.

There is clearly no “right” model for the pitch during the time in which it is ambiguous.  It is
an empirical question, relatively unexplored, to what degree such ambiguously pitched stimuli
occur naturally.  It is another one, also little-studied, how they are perceived by listeners.  It is
known that some speech sounds (particularly the glottal stimulation known as “creaky voice”
(Ladefoged, 1982, p. 226)) are ambiguously pitched, which is a source of great difficulty in
building and evaluating pitch-estimating algorithms for voiced speech (Hermes, 1993).

Finally, some authors have written about the concept of “pitchiness” in discussing the way in
which it is easy or difficult to assign a pitch to a stimulus.  A very pitchy sound, like a
harmonic complex tone, has a clear, unambiguous, and immediately-perceived pitch.  For a
less-pitchy sound, like that of repetition noise, the percept is not as immediate and seems
phenomenally weaker in strength.  There is no work of which I’m aware that has studied the
pitchiness of sounds empirically or has tried to define this concept rigorously.

The physical correlate of pitch is often frequency.  Frequency is a physical property of a
sound that can be measured with scientific equipment.  As the frequency of a sound changes,
we can see through experiment that the pitch of the sound is perceived to change in
predictable ways.  However, we cannot measure the pitch directly as we can frequency; we
can only model the pitch by creating mappings from properties that we can measure to
experimentally-derived estimates of pitch.  This is what it means for pitch to be a perceptual
quality, and frequency to be a physical quantity.

We may consider the perceived properties of sounds to create equivalence classes among
sounds; that is, there is (to a given listener) a set of sounds that all have a particular pitch, a
set of sounds that all have a particular tempo, and so forth.  The problem of determining the
mapping from physical properties to perceived qualities then becomes one of determining
aspects of sound that are invariant within each equivalence class.  Gibson, in developing the
field of ecological psychology, wrote extensively on the role of physical invariants in visual
perception (Gibson, 1986).
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Figure 3-1: Three sounds that demonstrate the ease of constructing stimuli that are perceived
to have ambiguous pitch.  Each panel shows a schematic of a spectrogram representation, in which
the intensity of a point on the time-frequency plane indicates the amount of sound energy at that
frequency at that time.  In (a) is a sound that is usually perceived to have pitch F0—it is a four-
component harmonic series that makes up a complex tone with two overtones missing.  In (b) is a
sound that is usually perceived to have pitch at 2F0—it is the first three harmonics of the
fundamental 2F0.  In (c) is the sound creating by cross-fading from (a) to (b)—the three upper
components are steady, but the low component at F0 fades in gradually.  At the beginning of
stimulus (c), the sound is instantaneously the same as (b), while at the end, it is the same (a).  Thus,
the percept changes discontinuously from having pitch at F0 to having pitch at 2F0.  Even given the
simplicity of such a stimulus, little is known about the exact manner of the perceptual shift, the way
on which it depends on the length of the stimulus in time, and how it varies across listeners.
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The strangeness of the set of sounds that all evoke a particular pitch, as listed by Zwicker and
Fastl (1990, p. 125), is evidence that the processing performed by the auditory system must be
quite complex.  Such a wide variety of sounds leads naturally to the hypothesis that there is no
simple (or perhaps even single) method for predicting the pitch of a sound given its physical
attributes.  Further, it suggests that any accurate computational model of pitch is necessarily
going to be messy, hard-to-understand, and full of special cases.

Loudness
The loudness of a sound is that perceptual attribute that allows it to be positioned on the
continuum from “soft” to “loud.”  Via the method of adjustment, loudness can be defined
operationally as the amount of energy in a reference sine tone (or wideband noise) that is
adjusted to be equally loud as a given stimulus.  Loudness is typically correlated with the
physical property power.  The conceptual relationship between loudness and power is very
similar to that between pitch and frequency.  Just as with pitch, each sound has only one
loudness (or one loudness probability distribution) and this loudness is not a veridical
property of the sound.

Pitch and loudness are the two most well-studied attributes of sounds.  There are thousands of
papers in the psychoacoustic literature treating each, and robust models for predicting them
from physical measurements of sounds, at least for moderately simple stimuli.  As we go
farther afield to consider properties that are less rigorously grounded in psychophysical
experiment, the terminology becomes less standard and used rather more irregularly.  There is
little known about the effect of cognitive factors on pitch or loudness judgments.  In one
notable series of studies, Fucci et al. (Fucci et al., 1993; Fucci et al., 1996) found that
listeners who disliked rock music reported it to be consistently louder than subjects who liked
it.

Timbre
Following Martin (1999), I will define the timbre of a sound to be the quality or set of
qualities that allows a listener to identify the physical source of a sound.  I will not use the
word in any more rigorous way than this.  Timbre is a justly-maligned term that is used in
different contexts to mean different things.  There is no simple set of physical properties that
corresponds to timbre, and no clear operational definition.  It is likely that the set of properties
used to determine sound-source identity differs in different circumstances (Martin, 1999).
Timbre is a simpler concept to understand for simple sounds (isolated tones, for example),
than for complex sounds and mixtures of sounds.  Given a definition of timbre that, like this
one, rests upon source identification, it is interesting to say that the qualities that allow us to
decide that one sound is a rock-and-roll power trio, while another is a symphony orchestra,
should be considered the timbre of the power trio and the symphony orchestra respectively.

There is a long-standing hypothesis (Grey, 1977) that the physical properties corresponding to
the timbre of musical instruments can be identified through the psychological paradigm called
multidimensional scaling.5  Numerous studies have been done that purport to identify such
physical properties.  (It is important to recognize that this is only a hypothesis, not part of the
definition of timbre).  However, such studies have generally not undertaken the construction
of computer systems that measure the resulting qualities from sounds and use them as the

                                                          
5 Grey writes: “[The researcher] may start with the perceptual judgments of similarity
among a diverse set of (naturalistic) stimuli, and then explore the various factors which
contributed to the subjective distance relationships.  These factors may be physical
parameters of the stimuli, which then would lead to a psychophysical model; yet,
multidimensional scaling techniques may also uncover any other factors involved in
judgment strategies.”
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basis for automatic classification of timbre.  This, to me, is the key scientific step in such
modeling work; without it, all that is presented is a post-hoc evaluation of individual results
on small experiments.

The testable prediction that is made (often implicitly) by such a research model is that it is
these particular properties that are really used by a listener to identify objects from their
sounds.  It is incumbent upon those researchers who wish to assert the continued utility of the
multidimensional-scaling paradigm for timbre research to conduct such computational studies
to confirm that these properties contain sufficient information to support the behaviors
imputed to them.

In point of fact, computational systems that are capable of classifying instrument identities
with accuracy comparable to that of humans (see the review in Section 6.6 of Martin, 1999)
have not used the sorts of physical properties of sounds that come from multidimensional
scaling research.  To me, this calls into question the continued utility of this research
paradigm for anything other than exploratory studies.

Tempo
The tempo of a sound is the perceptual sense that the sound is recurrent in time at regular
intervals, where the interval length is between about 250 ms and 2 s.  A good operational
definition of tempo would be: the frequency of a click-track adjusted to have the same
perceived speed as the stimulus.  I am not aware of any experiments that use the method of
adjustment for evaluating the perceived tempo of stimuli.  Like pitch and loudness, tempo is a
perceptual attribute that cannot be measured directly from a sound.  A sound does not have a
“real tempo” that a listener might judge “incorrectly.”  The tempo of a sound to a listener is
just whatever the listener thinks it is.  It is not presently well-understood what the physical
correlate of tempo is.  For simple stimuli such as click trains, the tempo corresponds to the
frequency of clicks.  However, listeners also perceive tempo in signals that have little overall
change in amplitude envelopes, such as music that has been dynamic-range compressed for
radio airplay.  I have developed a new model for the perceptual processing of tempo from
physical properties of the sound stimulus; it is presented in Chapter 4.

Other attributes
There are a wide variety of perceptual attributes that have neither a clear operational
definition nor known physical correlates.  It is easy to conduct experiments in which listeners
are asked to rate sounds on many perceptual scales (for example: complexity, ranging from
“more complex” to “less complex”; pleasantness, ranging from “pleasing” to “displeasing”;
familiarity, ranging from “familiar” to “less familiar”).  In general, consistent and
interpretable results can be obtained through this experimental paradigm (see Chapter 7).  But
it is very difficult without more detailed hypotheses to map these attributes back to their
origins in physical attributes of the sound, and seemingly impossible to conduct operational
studies via the method of adjustment.  To do the latter would require a set of reference sounds
defining the range of complexity, pleasantness, etc.

However, just because we don’t know the perceived physical correlates of a particular quality
doesn’t mean that there aren’t any.  Quite the opposite, in fact: formally, any equivalence
relation defines sets of stimuli for which all members are equal under that relation.  Given a
certain “amount” of complexity c, for a particular listener at a particular time there exists a set
of stimuli C such that all the stimuli in the set C have complexity c. Whatever physical
properties can be used to discriminate sounds belonging to C from those not belonging to C
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must be philosophically considered to be the perceptual correlates of the percept of “having
complexity c.”6

One of my primary goals in this dissertation is to open a line of inquiry that considers these
“extra” sorts of perceptual attributes more rigorously.  This is an important contribution to the
ethological study of human listening behavior, because it is these sorts of judgments that are
most frequently made by actual listeners engaged in actual listening to actual music.  Studying
such attributes forms an important connection between the low-level perception of sound, in
which important properties are extracted from the signal but often unavailable to the
conscious mind, and the high-level cognitive processing of sound in the way it is most often
embodied in naturalistic human behavior.  These issues will be considered in more depth in
Chapter 6.

3.1.3. Mixtures of sounds
When a complex stimulus is heard, it is naturally and automatically perceived as the union of
a set of perceptual constituents.  That is, the listener perceives that the sound is not emanating
all from one source, but originates from many different sources.  This is the case both when
this percept is veridical, as when we walk along the street, and when it is not, as when we
listen to the radio (on the radio, all of the sound is originating from the speaker; there is really
only one sound source present.)  Following McAdams (1983) and Yost (1991), I define
auditory image to mean the percept that corresponds to one of these perceived sources.  That
is, a complex stimulus is perceptually segmented into a number of auditory images.  There is
relatively little known about the manner in which this happens; this question is a primary
topic of the present dissertation.  There is also relatively little known about the physical
properties that cause (or allow) the segmentation to occur.  The key perceptual aspect of an
auditory image is that the listener can imagine hearing it in isolation, separated from the rest
of the mixture.

A note in passing for readers already familiar with the literature on this topic:  The term
auditory image is used differently by Patterson (Patterson et al., 1992), who uses it to refer to
a particular processing model for sound.  Patterson’s Auditory Image Model is a variant of the
autocorrelogram processing model presented in Section 2.1.1.  I believe that the term auditory
object, which is sometimes where I use auditory image, is misleading and unsuitable because
it conflates the physical aspect of sound-producing objects in the world with the perceptual
aspect of the perceived images.  If the term object is used for both, the perceptual-physical
distinction is diminished.

In natural sound environments, our hearing system seems remarkably adept at deriving the
veridical segmentation of sounds.  That is, when we are in a location where there are multiple
sounding objects, we seem generally able to associate one auditory image with each object.7

This relationship is deeper than the one that mediates the physical properties of sound and
                                                          

6 This argument holds only so long as perceived complexity is itself a well-defined
equivalence relation on stimuli.  If it is not (for example, if a listener judges sound A and
sound B to be equally complex, and also sound B and sound C to be equally complex, but
not for sound A and sound C), then naturally there are not necessarily coherent physical
correlates.  On the other hand, there is no necessity for complexity as measured on a
perceptual task by a particular listener to correspond neatly with some analytic
conception of complexity; the relation described here still holds as long as the perceptual
judgment is consistent.
7 This is not to say that our perception of what objects exist in the world is static and
fixed.  Depending on context and attentional stance, we can choose to hear “a car” or “the
wheels and the engine and the brakes and the muffler.”  I only mean to say that as we
choose some segmentation of the world, we can generally associate sounds with objects
in the way that matches the physical sound generation mechanisms.
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their perceived attributes.  It relates the interpretation of the perceived attributes to the actual,
physical world of objects.  Theories such as Gibson’s “ecological perception” (Gibson, 1986)
are concerned with this relationship; see also Casey (1998) for one computational approach
and Windsor (1995) for an aesthetic approach to understanding this relationship.

It is unsurprising that this problem is solved effectively by the human auditory system,
because this is the environmental characteristic that has most directly influenced its evolution.
The human auditory system, in its processing capabilities, reflects invariants in the real world
of environmental sounds and uses them to perceive such scenes veridically whenever
possible.

In contrast, when listening to complex musical stimuli, we are much less able to understand
the actual world of objects from the sound.  A symphony orchestra may be made up of dozens
of instruments making sound simultaneously, yet it seems that we perceive no more than a
half-dozen auditory images.  Different listeners have different abilities to “hear out” the
instruments from a mixture, but no one (I submit) has this ability to such an extreme as to be
able to perceive the 24 different violins in the violin section as separate and distinct entities.
The relationship in music between the veridical world, the physical properties of the stimulus,
and the music as perceived is a very complex one.

Another way of stating the two preceding paragraphs is that it seems that complex
environmental stimuli have a particular kind of perceptual linearity that is not shared by
musical stimuli.  That is, up to reasonable limits, the percept that corresponds to the sum of
two environmental sounds is the union of the percepts of the parts.  In contrast, musical
stimuli often fuse together in complicated ways, such that two sounds, each of which would is
perceived in isolation to contain one auditory image, may still only have one auditory image
when they are mixed together.  Both for environment sounds and for musical sounds, it is an
empirical/experimental question how many auditory images are in the sum of a set of sounds,
given the physical properties of the individual sounds in the set.  Like other perceived
attributes, it is logically impossible for the number and properties of auditory images in a
complex stimulus to be judged “incorrectly”—only the perception of the listener matters.

A complex stimulus that is perceived to have a number of auditory images is often termed an
auditory scene.  The perceptual process applied to an auditory scene, particularly with regard
to determining the perceived number and nature of auditory images, is termed auditory scene
analysis (Bregman, 1990).  I will sometimes refer to the complex musical stimulus as a
musical scene in contexts when I am discussing auditory scene analysis as applied to music.

3.1.4. Attributes of mixtures
Individual auditory images in a mixture may be perceived to possess perceptual attributes
such as pitch.  What this means is the following.  A listener hears a complex auditory scene
and perceives that it contains several auditory images.  She is able to imagine that she is
hearing one of the auditory images in isolation, and is able to consistently associate a
particular reference signal with this imaged stimulus.  The pitch of the associated reference
signal may then be termed the pitch of the auditory image.  In such a case, the processing
relationship between the perceptual attribute and the physical stimulus may be very complex
indeed.  As well as pitch, the other qualities of simple stimuli discussed above might also be
associated with individual auditory images.

It is not always the case that a sound possessing certain perceptual attributes when presented
in isolation will have the same attributes when presented as part of a mixture.  That is, even if
a sound is perceived to have pitch p on its own, when the sound is mixed with others, the
auditory image corresponding to the sound (assuming that there is one) might have some pitch
different than p.  It may also be the case that a sound possesses some property like pitch in
isolation, but then when the sound is presented as part of a mixture, the listener is not longer
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able to consistently match the image corresponding to that sound to a reference signal at all.
In this case, I would say that the pitch has been lost.

A particularly strong view of sound-source perception (Yost, 1991) argues that the
fundamental purpose of auditory perception is to determine the attributes of auditory images,
and impart them to objects in the world.  For each auditory image, the listener imagines that it
is separated from the mixture, and associates perceptual attributes with the imagined source-
in-isolation, and thereby determines the number of objects in the world and their identities.
Yost does not extend this viewpoint to musical scenes; to do so might be problematic, since
many of the auditory images in a musical scene do not correspond directly to any particular
object in the world.

At the risk of being repetitive, the judgment of a listener is not open to criticism or evaluation.
It is not the case that the perceived attributes that derive from the imagined source are
“correct” or “incorrect” based on any criteria whatsoever.  It may be the case that the isolated
source is imagined to have the same attributes as the simple source did before it became part
of the mixture, or it may not be the case.  This does not make the perception “wrong”—the
perception is what it is, regardless of the separate physical reality of the sound-producing
objects.  For example, it may be the case that a particular listener is unable to hear out the
notes of a chord.  This listener is therefore unable to imagine these notes in isolation and is
unable to associate perceptual qualities with them.  The goal of a scientist studying the
perception of music must be to understand the implications of these inabilities in the subject’s
judgments and behaviors when presented with musical stimuli.  It is not appropriate to dismiss
such a listener as being “unable” to make the “correct” or “educated” judgments about music.

A valuable contrast to make when discussing properties of mixtures was presented by Garner
(1978).  He distinguished a simple holistic attribute from a configuration attribute.  In this
terminology, a simple holistic attribute is an attribute of a mixture that is in some sense a sum
of the perceptual components of the mixture.  For example, the number of auditory images in
a mixture, or the list of pitches in a melody, is a simple holistic attribute of these stimuli.  A
configuration attribute is an attribute that does not depend on the exact properties of the
components, but rather the relationship between them: “[T]he whole is indeed more than, at
least other than, the sum of the parts....” (Garner, 1978, p. 123).

An attribute like tempo is clearly of this nature.  No individual sound event has a tempo; it is
only through the juxtaposition of many events into a musical scene that tempo arises
(although I do not mean to assert that tempo is perceived as a feature through the
juxtaposition of perceived objects, only that tempo does not arise until there is more than one
event in a musical scene).  The question of the degree to which important musical percepts,
such as the percept corresponding to the physical stimulus of a “chord,” are holistic and to
which they are configurational, is relatively unexplored.  This topic is also put aside for future
research.

3.1.5. The perceived qualities of music
In the preceding several pages, the kinds of properties that I have discussed are those that
have been primarily studied by psychoacousticians.  This sort of study has the advantage of
being extremely rigorous with regard to acoustic properties of the stimuli, and the
disadvantage that these properties are still rather far from our everyday phenomenal
experience of listening to music.  When we listen to music, the perceptions of notes, chords,
melodies, harmonies, rhythms, and emotions are much more important (at least consciously)
than are perceptions of pitches, loudnesses, and timbres.

It is even more important, as I begin to discuss music, to keep in mind the difference between
the physical and the perceptual.  This is especially true because for music there exist several
other levels of interpretation.  In addition to the musical objects in the world producing sound
waves in the air, and the phenomenal percepts of music in the mind, music can be considered



60 Chapter 3: Approach

as a sequence of symbols that a composer wrote upon a page (see Section 3.4), or as a
mythopoetic object with historical effects and aesthetic implications, or as the particular set of
physical actions that a performer must execute in order to create it.  These are all different
levels of interpretation and must not be confused.

Consider a musical chord; that is, several notes played at the same time.  On the page, the
representation of a chord is unproblematic; it is a graphical figure containing symbols that
represent notes for a performer to play (Figure 3-2).

A music theorist may look at the chord and interpret it in some particular way.  For example,
that it is a C dominant chord, a musical tension that could be resolved by an F major chord.
(Another theorist might interpret it as a C7 chord, the home chord of a blues in C major).
When a performer plays this chord, perhaps on a piano, the representation is still
unproblematic—we can use acoustical equipment to measure the physical properties of the
resulting sound in a variety of ways.  It can be very difficult to do this measurement
accurately, and there will be disagreements between acoustical physicists regarding the proper
measuring techniques and the implications of particular results, but the physical signal exists
and can be measured.

When we consider the perception of the chord by a human listener, though, it is imperative to
remember that this demands a different interpretative stance than do the music-theoretical or
physical manifestations of the chord.  As perceptual scientists, we do not know what the
perceptual analogue of the chord is until we have devised experimental means of testing
hypotheses about it.  We do not know that the perceived chord is a single perceptual entity;
we do not know that it is multiple entities.  We do not know the nature and dimensions of the
features of the perceived chord.  We do not know if the percept is the same for all listeners, or
for most listeners, or for some interesting set of listeners, or if the percept differs in some
important way from one listener to another.

An important interpretative stance by psychophysicists was the development of the two
parallel vocabularies for the physical world and the perceptual world: frequency-pitch, power-
loudness, spectrum-timbre (even though the last is not strictly believed to be true any more).
It is unfortunate that we do not have such parallel terms for the immanent components of
music.  The term chord is used variously to refer to the notation on the page, the action by the
performer, the analytic object of artistic interest, the acoustical signal, and the perception that
corresponds to this acoustical signal.  To have a name for the chord-as-perceived, melody-as-
perceived, and cadence-as-perceived would make the distinction between the poetic, physical,
and perceptual interpretations more clear.  Perhaps some of the great confusion regarding the
relationship between music perception and music theory (Clarke, 1986) could have been
avoided altogether.

3.2. The musical surface

What is the surface structure of music as it is perceived
by the human listener?  When we consider listening to
music as a complex perceptual/cognitive behavior, it is
clear that there are many interesting musical behaviors
that seem to stem from the ability of the perception
system to rapidly analyze, segment, and process an
incoming musical stimulus.  Therefore, it is unfortunate
that these aspects of listening are not well understood,
and surprising that there has been relatively little
research treating them.

Figure 3-2: A chord.



Section 3.2: The musical surface 61

I define the musical surface to be the set of representations and processes that result from
immediate, preconscious, perceptual organization of a musical stimulus and enable a
behavioral response8.  There are then three primary questions that immediately concern us.
First, what sorts of representations and processes are these?  Second, what sorts of behaviors
do they afford the human listener?  Third, what is the interaction between the representations
and the processes as the listening evolves in time?

I wish to be quite clear that I view the behavioral definition of musical surface to be essential,
and further, that I consider an ethological approach to such behaviorism the most pressing
research issue right now.  That is, I am predominantly interested in the actual behaviors of the
listening human as manifested in natural settings and situations.  To review the literature on
cognitive music psychology as discussed in Chapter 2, Section 2.2, it is quite clear that little
research has taken this approach directly.  Of course, the goal of most music psychologists has
always been to arrive, in the long term, at a sophisticated model of the music-listening
experience.  But their choices of experimental paradigms have almost always required the
listener to make unnatural judgments on impoverished stimuli.

As an example, let us consider the sorts of musical behaviors that a typical non-musically-
trained listener engages in as part of everyday life.  Imagine that the listener is confronted
with five seconds from the middle of some piece of music that he had never heard previously.
(For example, imagine that the subject has turned on a radio that is tuned to a random station.)
Such a listener can tap his foot, or otherwise move rhythmically, in response to a musical
stimulus.9  He can quickly articulate whether the piece of music is in a familiar style, and
whether it is a style that he likes.  If he is familiar with the music he may be able to identify
the composer and/or performers.  He can list some instruments that he hears in the music.  He
can immediately assess stylistic and emotional aspects of the music, including whether or not
the music is loud, complicated, sad, fast, soothing, or anxious.  He can make complicated
sociocultural judgments, such as suggesting a friend that would like the music, or a social
occasion for which it is appropriate.  All of these judgments interrelate to some degree:
whether a piece of music is fast and loud surely affects whether it is judged to be soothing.

Naturalistic real-world settings exist that provide opportunities to see these behaviors in
action.  Perhaps the most significant today is “scanning the radio dial.”  The listener rapidly
switches from one radio station to another, assessing within scant seconds whether the music
he hears is (a) a piece that he likes, (b) a style that he likes, (c) suggestive that the radio
station will shortly play some other piece of music that he likes, and/or (d) a
piece/style/station that would be liked by other people in the vicinity.  Based on these
judgments, he immediately decides whether to stay with this station or to move onto the next.

A preliminary report on “scanning the dial” behavior and its implications regarding the use of
music to mediate social relationships was recently presented by Perrott and Gjerdigen (1999).
They found that college students were able to accurately judge the genre of a piece of music
(about 50% correct in a ten-way forced choice paradigm) after listening to only 250-ms
samples.  This remarkable result forces us to confront the issue of musical surface directly.
The kind of musical information that is available after only 250 ms is quite different than the
kind of information that is treated in the traditional sort of music-psychology experiment
(notes, chords, and melodies).  250 ms is often shorter than a single note in many genres of

                                                          
8 Although this is not to say a “conditioned” response in the sense of classical
behaviorism.
9 To be sure, it is an empirical question whether this or the other behaviors discussed here
are actually exhibited by listeners when they are engaged with music, and whether they
are actually immediate and preconscious.  I do not mean to posit these behaviors, but to
suggest them as reasonable working hypotheses.  Experimental results for some tasks,
including rhythmic tapping, are presented in Chapters 4 and 7.
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music; therefore, listeners must be making this decision with information that is essentially
static with regard to the musical score (although certainly not stationary in the acoustic
signal).

A crucial motivation for the research I present here is that this is a kind of musical behavior
that is fundamentally inexplicable with present models of music perception. It is not at all
clear what sort of “cognitive structures” might be built that could support this sort of decision-
making.  The stimuli are too short to contain melodies, harmonic rhythms, or much
hierarchical structure.  On the other hand, the frequency content, in many styles, is not at all
stationary even within this short duration.  Thus, it seems quite possible that listeners are
using dynamic cues in the short-time spectrum at least in part to make these judgments.   This
sort of description makes genre classification, at least at these short time-scales, seem very
much like timbre classification.  This viewpoint is in concert with the writing of many recent
composers on the relationship between timbre and orchestration (Erickson, 1985).

Exploration of the concept of musical surface is a primary theme of this dissertation.  This
concept is essential if we wish to connect music psychology to psychoacoustics as discussed
in the introduction (Chapter 1).  That is, the musical surface, as well as enabling important
musical judgments directly, can also be seen as the bridge that allows music psychology to
rest upon a coherent psychoacoustic theory.  There are several other working hypothesis that I
can articulate regarding the musical surface; these will be discussed in passing as the models
and experimental results are presented.

� The musical surface is the crossover point between low-level, bottom-up perceptual
processing and high-level, top-down (or circulant) cognitive processing.  That is, the
processes involved in constructing the musical surface from acoustic input are primarily
automatic and bottom-up, while processes that make use of the musical surface to
exercise cognitive abilities (memory, structural analysis, expectation) may make use of
expectations, goals, and strategic thinking as well.

� Related to this, if a theory in which there is some central symbolic processing agency is
presumed, the musical surface is the crossover point between sensory processing and
symbolic processing.  Processing previous to, and resulting in, the formation of the
musical surface is like signal processing, while subsequent processing that makes use of
the musical surface to enable cognitive behaviors is like the manipulation of symbols.  (I
do not presume such a central processing system; see Section 3.4).

� The musical surface contains only entities (properties and objects) that are calculated
from the acoustic input.  Memories and expectations that do not arise from the acoustic
signal actually impinging on the listener should not be considered part of the musical
surface.

Of course it is the case that top-down, cognitive information is used in making musical
judgments.  That is, for each of the cases discussed above, the exact nature of the behavior
will depend on many factors, only some of which are directly related to the signal.  To take
one simple example, the temporal locations at which a listener taps his foot (that is, the exact
form that the tapping behavior takes) depend not only on the musical surface, but on the
listener’s musical ability, his attentive state, his motor skills, his musical tastes, and his mood.
All of this is incontrovertible.

But what is also clear, and what I am trying to emphasize most in this dissertation, is that the
behavior cannot depend on these factors alone.  Auditory processing of the musical signal
must be involved.  It is an empirical question precisely how much of any particular behavior
can be explained with low-level models, and how much requires high-level models in
addition.  The role of the musical surface (as part of an entire cascade of representations, from
very high to very low) in enabling music behavior has been largely unaddressed, and it is this
problem that I am trying to rectify.
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To avoid confusion, there is no connection intended between the notion of surface structure in
generative linguistics and the notion of the musical surface that I am promoting here.

3.3. Representations and computer models in perception research

An essential part of my approach is the development of computer models as implementations
of perceptual theories.  Of course there has been research on musical signal processing
algorithms for some time, as reviewed in Chapter 2, Section 2.3.  But there has been relatively
little discussion of the interpretative relationship between psychoacoustic theories and
computer signal-processing programs, particularly for theories of the perception of complex
scenes.

In the early days of modern psychoacoustic science (roughly from the 1920s until the 1970s),
research considered only very simple sounds.  Researchers made progress by proposing
theories about the perceptual processing of these sounds, based on experimental evidence, and
using their theories to make new hypotheses that could be tested with new experiments.  The
range of stimuli considered by a theory was very narrow, and as a result a single experiment
or small body of experimental work would often suffice to formally test its implications.

As a new focus of research began to consider mixtures of simple sounds, and sounds that were
not stationary over time, this situation changed.  The number of degrees of freedom of the
stimuli admitted to these theories is very large, and so it takes a great deal of difficult
experimental work to test the theories in a principled way.  It takes the larger part of a career
to conduct the experiments, and lengthy monographs to report the results and discuss their
implications.  The works of Bregman (1990) and Warren (1999) are prime examples of this.

Even the complex stimuli used in perceptual ASA experiments such as those reported by
Bregman are still very simple when compared to real-world sounds, however.  If we wish to
develop theories that are capable of explaining the perceptions of complex stimuli such as
actual recordings of real music, or mixtures of multiple speakers in the presence of
reverberation and ambient noise, it may be necessary to engage in larger leaps of deduction.
It is impossible to perform well-controlled listening experiments that can fully test all degrees
of freedom in a perceptual theory for ecological sounds in full complexity.

In this scenario, the role of computer modeling to implement and test theories of complex
sound perception becomes more critical.  Computer models allow researchers to frame and
test hypotheses regarding the ways that sound is processed by the auditory system.  Even if it
is not possible to explore the actual relationship of a model to current conceptions of the
auditory physiology, it is still possible to understand what aspects of mid-level representation
and processing are necessary and sufficient to account for a given set of observed perceptual
effects.  The implementation of a processing theory as a computer program is a more rigorous
way to present such a theory than is a simple explanation of experimental results.  The
construction of computer models challenges the researcher to explore hidden assumptions
more thoroughly than does arguing for the validity of paper-and-pencil models.

On the other hand, the development of computer models has its own theoretical difficulties.
Most notably, these are a tendency to conflate the computer program that embodies a model
with the computational theory that is being implemented, and an inadequate consideration of
the role of representational choices in the description of a computational theory.  I will discuss
these issues in this section.

3.3.1. Representation and Music-AI
Desain et al. (1998) have presented a valuable critique of computational approaches to the
modeling of music cognition.  They make two key points.  First, they argue, this paradigm too
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often degenerates into a loose “if you want to understand the theory, here, look in my
program” approach.  They correctly observe that a computational theory of music cognition—
indeed, any computational theory of perception or cognition in any modality—must be
validated through comparison to meaningful experimental data.  I would go one step further
on this point, and argue that a computational model must generate novel testable predictions
about the perception of music if it is to be considered with any seriousness as a theory; that is,
a contribution to the scientific discourse.

Desain et al. argue that simply comparing the behavior of two systems does not, itself,
validate a model—“the model builder might have implemented a large lookup table and listed
all the stimulus patterns and the appropriate responses” (p. 156).  They say that the way to
deal with this issue is to get in under the hood of the system, to understand what aspects are
theory-driven, and what aspects are implementation-driven, as seen in Figure 3-3.  I would
respond that the ability to make predictions separates the sorts of systems that Desain et al.
appropriately disparage from models that really embody computational theories.  If we can
understand the input-output function of the model for some interesting class of signals, then
this class of admissible inputs and the input-output mapping become a theory that can be
tested in a perceptual experiment (by treating the model outputs as theoretical predictions).
This can be done, I claim, without recourse to opening the model.
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Evaluating computational models
There are three problems with trying to open the model in the way that Desain et al. suggest.
Because of them, it is not possible to resort to this sort of evaluation as part of the
interpretative process of science.

The first problem is that it can’t be done in a principled way.  Any theorist who opens a model
to see how it works and how it implements a computational theory is bound to bring her own
interpretative biases along. The second point of Desain et al. tries to address this: by applying
results from the theory of computer science, formal semantics, program verification (Gries,
1981), and so forth, we might be able to develop the ability to examine computational theories
in a formal way.  I don’t think this is true, because it’s too difficult to develop a good formal
semantics that ground a computer model with respect to the psychological theory that it
represents.

This sort of grounding would require the development of new formal logics in which

statements can be interpreted as claims and results in the scientific domain at hand (statements
about psychoacoustics).  Then, advanced compilers and program verification tools would
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Figure 3-3: Psychological validation of a computational model, as presented by Desain et al.
(1998).  In (a), the behavior of a computer algorithm is tested against that of a human mental
process; the same stimulus is presented to each and the behaviors that each exhibit are compared.
If the algorithm is a model of the mental behavior, then the results should agree.  However, Desain
et al. argue, this is only a necessary test, not a sufficient one for validating the algorithm as a model
of a mental process.  A stronger test is shown in (b).  The algorithm is “opened up” to reveal that it
has several subprocesses.  Each of these subprocesses is responsible for part of the observed
machine behavior.  If each such machine subbehavior can be seen through experiment to have an
analogous human subbehavior, then this is a very strong sign that the algorithm is indeed modeling
the human mental process.
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relate computer programs in real languages like C++ to structures built in these formal
semantics, so that each computer program can be “translated” into a set of statements and
predictions about psychoacoustics, music perception, and so on.  But unfortunately, neither of
these steps is particularly close to reality at this time.  The required sort of logical semantics
have never (to my knowledge) been developed for any complex inferential system, only very
simple ones like text-processing systems and blocks worlds.  Thus, restricting rigorous
evaluation of computational theories to domains that can be so formalized would force the
same sorts of restrictions as those arising from strict experimentalism.

For the foreseeable future, the relation of theorists to their models will have to remain on the
intuitive level rather than being formalized.  This doesn’t mean that we can’t evaluate models,
but it means that we must be “creative” in doing it: we have to look at models and think hard
about what kinds of experiments would confirm or disprove the hypotheses they suggest.  The
computational model and the psychoacoustic experiment play overlapping and
complementary roles in advancing our knowledge about the world.

A second problem with trying to open models is that it can be difficult to lodge criticisms and
comparisons at an appropriate level of description.  An reviewer of a earlier paper describing
the tempo model presented here (Chapter 4) complained that it failed to embed known data on
the effects of accent structure on beat perception.  This is exactly the danger of opening the
hood in the way Desain and Honing recommend: that we open it with a preconception, based
on readings of the literature, that we “should find” one element or another.  In this case, the
reviewer wanted to see an element in the model that corresponded to the data with which he
or she was familiar regarding accent structures.

But of course, Povel and Okkerman’s (1981) discussion of accent structures makes no claims
that this is a processing element of their theory.  Rather, they present a structural description
that explains post-hoc the outcome of certain perceptual experiments.  Thus, my beat-tracking
model should be able to explain and produce similar results when given the same acoustic
input stimuli, even without an explicit processing element to account for them.  We might call
the relevant data an “emergent behavior” of a certain set of systems that process sounds with
unusual accent structures.

This is not to say that it is an a priori given that my beat-tracking system will produce the
right emergent behavior.  Rather, it is a hypothesis to be tested:

H1: The accent-perception data of Povel and Okkerman (1981) can be explained
with a signal transformation model of beat inference from acoustic signals.

It is an empirical question (once the model is described accurately enough) whether this
hypothesis is confirmed or denied; in either case, we have an addition to the scientific
discussion regarding beat perception and accent structures.

The use of “emergent” in the preceding structure will make some readers think about neural
networks, since this is the processing model that most often uses this terminology.  But this is
just because, due to the black-box nature of neural-network models, it is generally impossible
to open the hood and see what’s inside.  Thus, the search for emergent behavior is the only
way to evaluate such a model.  But this does not mean that the emergent-behavior philosophy
only applies to self-organizing models; a signal-processing or structural model can be
evaluated both from the inside, from an “architectural” point of view, and from the outside, by
examining the emergent behavior of the system in relation to complex or unusual stimuli.

The final problem with trying to evaluate models by opening them and examining their
subpredictions and internal representations is that, for stimuli of interesting complexity, it is
far too difficult to do.  For the sorts of musical sounds I consider throughout the main parts of
this dissertation, we have little psychoacoustic or behavioral data that actually suggests what
internal representations are being used.  To be sure, we are able to introspect about the
process of listening to complex sounds (such as the sound produced by a symphony
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orchestra), but we are a very long way indeed from being able to say anything coherent about
the actual representations that are being used.

One counter-argument to this point is that by studying simple stimuli, we can learn about the
representations that are used in more complex stimuli.  This is the traditional approach of
science, to break a difficult problem down into easier subproblems.  The dilemma here is that,
for the kinds of signal-processing techniques that have been applied to simple musical sounds,
we find that they do not scale to more complex sounds.  Thus, if we are to engage in a
reductionist approach that might allow representations to be examined, we still do not know
what is the right way to reduce and derive subproblems while still leaving ourselves the
ability to induce answers for interesting real-world problems.

This difficulty, like the previous one, points to the necessity of indirect evaluation.  We are
confronted with the need to look at emergent and surface-level behaviors of systems, because
this is the only level at which we can hope to find a basis of comparison.  (More discussion of
this point will be presented much later, in Section 6.2).

The role of representations
The essay by Desain et al. further fails to consider a fundamental aspect of any computational
system, that of the input/output representations.  In their schematic (Figure 3-3), they show an
arrow going from “stimuli” to “mental process” and another one from “stimulus”  to
“algorithm.”  But of course, it’s not the stimulus in an abstract sense that goes to either one of
these processors, it’s some concrete set of inputs.  Typically, in the top panel, the human
system, the stimulus is an acoustic sound.  Thus, this top part leaves out the crucial
transduction stage, wherein the perceptual apparatus takes in a signal and forms a
representation.  And the diagram is misleading, because in the vast majority of models of
music perception and cognition, it is a different stimulus that is applied to both processors.
The acoustic stimulus undergoes some kind of preprocessing before it is presented to the
algorithm; or worse, the preprocessing is implicit and some theory-specific representation is
used to substitute for the stimulus itself.

Most frequently in music perception research, the theory-specific representation that has been
used is the traditional Western musical notation.  The viewpoint to which this leads is
misleading; I have argued the reasons why in great detail elsewhere (Scheirer, 1996), but I
will recapitulate the main points here.   Most models of music perception use what I term a
transcriptive metaphor for music processing.  That is, there is a clear hierarchy of data
representations: the first stage is the sound signal, followed by some early organization such
as harmonic partials or correlation structure, the next stage are the notes in the composition,
and final cognition uses the notes to make structural judgments.  Some authors make this
assumption explicit (Piszczalski and Galler, 1983; Longuet-Higgins, 1994), while others (and
I feel this is more dangerous) implicitly assume it, for example by describing “perceptual
analysis” of written music notation (Lerdahl and Jackendoff, 1983; Narmour, 1990).

 It is a trap set by centuries of musicology and music theory that we believe that symbolic
models that use the score of the music as the starting point have a strong connection with
perceptual music psychology.  This is not to say that we can’t learn anything from scores, but
that perceptual theorists are making a very strong assumption about the early stages of
perceptual organization when they assume the mid-level representation of music is “like” a
score.  This assumption is as yet largely unjustified.

This holds not only for vertical (harmonic/timbral) organization of music, but for horizontal
(rhythmic) organization as well.  To take one case for concreteness, in a paper on rhythm
perception (Johnson-Laird, 1991b) the following example was presented:

The opening phrase of Walkin’, a composition by Miles Davis, has the following
rhythm:
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.

The first phrase ends, not with the first note in the second measure, but with the
accented syncopation at the end of that measure.  (p. 68)

There are many important assumptions buried in this innocuous-looking example.  First,
Davis’ music comes from an oral tradition, not a written tradition.  It is likely that this phrase
was never written down until years after it had been invented.  In addition, there is no
canonical performance of this composition; in ten different recordings, the tempo and rhythm
of this segment of the piece will be performed in ten different ways.  Thus, to say that this is
the rhythm of the piece is to make an analytic choice about which version is the most
important.

Next, the Western-style notation obscures the fact that the actual durations and attack points
are not spaced in an actual performance as they are notated here.  Even for a performance
where this notation would be used by an after-the-fact transcription to represent the rhythm to
a jazz musician, the actual timing—due to swing phrasing and expressive playing—is
potentially much different.  Johnson-Laird, of course, is himself well aware of these
distinctions, as demonstrated by his other writing on jazz (Johnson-Laird, 1991a).

Using the same symbol (the “eighth note”) to represent the third, fourth, ninth, and tenth notes
of the phrase is an indication that, according to the symbolic theory in use,  these notes are
somehow “the same” or that something important is shared by all of them.  This is not a
conclusion, but an assumption, and one that has great ramifications for the analytic results that
follow.  Especially for music like jazz, rock, and the various other oral music traditions of the
world, the acoustic signal is a much better starting point than a notation invented to serve an
entirely different mode of thought.

To emphasize, I don’t wish to argue that this representation of Walkin’ is wrong in the sense
that I prefer some other sequence of symbols as a better transcription.  Rather, it is wrong in
the sense that presenting a sequence of symbols at all involves the use of a number of
unexamined assumptions.  These assumptions play an important role in determining the
nature of the perceptual theories that build on the symbols.  It would be a more rigorous
approach to make perceptual theories relate to the acoustic signal itself rather than to any
particular notation.

Naturally, it can simplify the process of conceiving and describing perception theories to use
notations that are less unwieldy than the acoustic signal.  But when we do so, it should be
essential that we consider in a careful and principled way the assumptions embodied in those
notations, and their connection to the acoustic signal.  The acoustic signal must always be
considered the fundamental basis of music perception.

I am not the first to present an argument like this one warning about note-based music-
perception theories.  Smoliar made it eloquently in a review of a book on “syntactic” music
processing by Narmour (1990):

The problem with a system like music notation is that it provides an a priori
ontology of categories – along with labels for those categories – that does not
necessarily pertain to categories that are actually formed as part of listening
behavior.  If we wish to consider listening to music as a cognitive behavior, we must
begin by studying how categories are formed in the course of perception rather than
trying to invent explanations to justify the recognition of categories we wish to
assume are already present.  (Smoliar, 1991, p. 50)

Nicholas Cook (1994) wrote an incisive essay arguing against what he terms “scriptism” in
music studies (both music theory and music psychology), in which he makes a similar point.

The study of the true perceptual organization of music, as opposed to the study of the
historical remnants of music theory, is the fundamental organizing principle of the research I
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outline here.  I hold firm to the position that most stages of music perception have nothing to
do with notes for most listeners.  My key goal is to move beyond theoretical argument for this
position to practical demonstration that it allows a coherent and predictive theory of music
perception to be constructed around it.

Naturally, in the course of building models and describing theories, I make assumptions and
simplifications myself, but I try to make the essential step of recognizing that they are theory-
specific assumptions.  They may be criticized or falsified, which then damages the theory of
which they are a part.  By not talking about the representations in (for example) their beat-
tracking work, Desain and Honing make it seem as though the representations are “natural”
and somehow theory-independent.  They are not; in fact, a bit of analysis of the operation of
their systems makes it clear how crucial their representational assumptions are.  All of the
models I develop here work from the acoustic signal only.  I hope to make clear how difficult
it is to map from acoustic data to mid-level representations for complex sounds, and what an
essential part of a perceptual theory this mapping process forms.

3.3.2. On components
As computer models have been applied to the study of the perceptual organization of sound
scenes, another representational approach has become common.  This is the use (as outlined
in Section 2.1.2) of a sinusoidal analysis of the input signal as a first stage.  This leads to a
mid-level representation composed of a set of sinusoidal components.  These components,
called “tracks” by Ellis (1994) and “synchrony strands” by Cooke (1993), as well as various
other things, are used as an input to the next stage of processing.  Thus, the sinusoidal analysis
provides a mid-level representation for further analysis of the stimulus.

The impact and influence of this computational theory was probably due to the conjunction of
two factors.  The first was the development of new digital-signal-processing techniques for
forming sinusoidal representations of sound (reviewed in Quatieri and McAulay, 1998),
which provided a new suite of tools for signal-processing researchers to work with.  The
second was the organization of Bregman’s work on perceptual auditory scene analysis.
Bregman (1990) clearly presents the hearing process as consisting of three stages.

1. Identification of components.  Through some unspecified process, the incoming acoustic
waveform is transformed into a set of components.  Components are typically sinusoids
in Bregman’s work, although he treats wideband and narrowband noises at some times as
well.

2. Simultaneous “grouping” of components into events.  Based on “Gestalt grouping rules”
such as proximity, harmonicity, and common fate, at each instant in time the components
are partitioned into a set of sources.

3. Sequential “streaming” of events to form auditory streams.   Bregman presents a number
of rules that depend on the properties of the events and describe the manner in which
humans form auditory streams from the events.

In Bregman’s characterization, the first stage seems generally to precede the second and third
stages.  The second and third stages may operate in parallel or in sequence.

The early computational auditory scene analysis (CASA) systems (Brown and Cooke, 1994a;
Ellis, 1994) can be considered attempts to directly implement the grouping and streaming
rules Bregman suggested.  As a cognitive psychologist, Bregman articulated his theory of
hearing with computational metaphors that seem amenable to direct implementation.  But
when computational studies began, it immediately became clear that handling sinusoidal
components—extracting them, processing them, and maintaining good representations of
them—is the most difficult part of such a system to build. Recent approaches similar in spirit
have developed increasing elaborate ways to extract sinusoids from complex sound scenes
(Mani, 1999), and/or a more complex ontology of sound components (Ellis, 1996a).
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It is worthwhile to consider the psychological status of components like sinusoids.  Just
because they are a convenient representation for explaining human behavior (which was
Bregman’s overt goal), doesn’t mean that they are useful computational entities, or that the
hearing system actually extracts them during the listening process.  As with the discussion of
accent structures above, components are a convenient formalization in which to describe (a)
the way a test sound scene is constructed through synthesis, and (b) the results of
psychoacoustic experiments on these test sounds.  There are no experimental results of which
I am aware that directly demonstrate the psychological reality of sinusoidal components in the
perception of complex sound scenes.

I consider the focus on components in CASA systems to be misdirected.  It has proven very
difficult to get good “componentization” of complex scenes, and the higher-level stages of
previous systems are sensitive to imperfections in the component extraction.  Notably,
modern computational psychoacoustics does not often use this model.  Particularly in the
contemporary pitch literature, the recent emphasis has been on the extraction of perceptual
properties directly from auditory representations of sound (Meddis and Hewitt, 1991).  In
computational studies of double-vowel separation (de Cheveigné, 1997), the analysis is
similarly conducted directly from the autocorrelogram.

We are left with something of a gap in the literature.  On one hand, we have CASA systems,
which attempt to process complex, time-varying acoustic scenes, but which use an awkward
“sound component” model of signal processing.  On the other, we have computational models
of double-vowel perception (as discussed in Section 2.1.1), which seem to be more plausible
models of sound processing in the auditory system, but haven’t been extended to stimuli other
than the most trivial.  The model that I will present in Chapter 5 is an attempt to bridge this
gap—to present a starting point for a theory of the perceptual segmentation of complex sound
scenes that doesn’t include a componentization step.

3.4. Understanding without Separation

This is not a dissertation about polyphonic music transcription.  The goal of my research is
not to recover the score of a piece of music from a performance, or to separate sounds in the
sense of creating multiple output sounds that can be summed to reconstruct a scene.  Rather, it
is to show how incoming sound data may be transformed by simple signal-processing and
pattern-classification techniques directly into judgments about the musical qualities of a
stimulus.  In this section, I will discuss the theoretical implications of this stance.

Many previous authors have described computational and geometric models of the perception
and cognition of music.  With very few exceptions, however, these theories have been not
been grounded in actual sound processing.  Rather, as discussed in Chapter 2, a simplifying
assumption is made, in which the sound to be transformed by some unspecified perceptual
agency into a structural representation suitable for supporting the theory at hand.  Cognitive
psychology, with its emphasis on mental structures and representations, is much better at
forming and testing hypotheses built around high-level representations than it is about
examining critically the notion of high-level representation itself.

What I will demonstrate in Chapters 4-7 is that to make many kinds of interesting musical
judgments, high-level structural representation of the musical scene is unnecessary.  In fact,
given that the systems I will demonstrate are presently the only ones that can make the
judgments they can, a stronger argument is that the use of structural representations is a
fundamentally misleading approach to the construction of perceptual-cognitive models of
musical listening.

Most people do not, I claim, maintain score-like representations of music that are then used to
perform cognition.  There are no mental entities that correspond to events happening in the
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music being heard.  Rather, the process of music listening is one of continuous
transformation, in which different agencies of musical expertise (in the language of Minsky
(1985)) monitor the input signal and produce various output signals in the forms of behavioral
responses.  These responses may be overt, as in foot-tapping behavior, or emotional, as in
tension and relaxation reactions, or entirely immanent, as in recognition and classification of
instruments, genres, and composers.

This argument is so unusual as to seem absurd on the surface.   Of course it must be the
case—the reader may say—that I have a score, or at least some sort of central representation
of a piece of music in my head.  After all, I can imagine music in my head, and reproduce it
upon request, and recognize themes when they recur, and describe the effect of applying
Coltrane changes to a 32-bar standard jazz form.  Perhaps a “simple transformation” can do
something simple like tap a (virtual) foot to the music—goes the argument—but you’ll never
be able to demonstrate a similar system that does X (where X is the reader’s favorite “high-
level” musical behavior).

My reply to this is that the fact that we can do such things (which is not in question) does not
constitute evidence that there are structural representations in the mind.  I believe that, given
time, we will be able to demonstrate systems that do perform all of these tasks without overt
centralized representation.  Structuralism is an incorrect conclusion drawn mostly from
introspection (which, as is well established, is often wrong about what’s really going on in the
mind) and uncritical acceptance of music theory as a starting hypothesis for music psychology
(Cook, 1994).

Structuralism is a fundamental tenet of cognitive science.  Cognitive science has as its very
goal the explication of the mental structures and processes that are used to analyze and
transform internal representations.  As a basic assumption (not as a working hypothesis), the
notion that the external world is somehow converted into symbolic models, and these models
are the basis for rational behavior, is taken as granted.  Krumhansl writes:

Listening to music, we hear the sounds not as isolated, disconnected units, but
integrated into patterns.  Our perceptual experience goes beyond sensory registration
of single musical events.  Sound elements are heard in context, organized in pitch
and time, and are understood in terms of their functions within that context....The
listener appreciates the organization of a musical work by assigning significance to
the sounded elements according to their roles in the musical context, and by
integrating them into the broader pattern. (Krumhansl, 1990, p. 3)

Note the variety of assumptions made regarding the hearing process and the way it relates to
music perception.  There are “sounds” (as reified, immanent entities) that can be treated as
“units,” “events,” and “elements.”  Each sound “element” is perceived in terms of its pitch
and time and is “understood” in terms of “functions.”  The only behavior of the listener
considered directly is that of “appreciation” of the “organization” of a musical work.
Crucially, these statements are not working hypotheses to be tested; rather, they are
assumptions treated as the fundamental starting point of research.   But this description of
music-listening seems very far indeed from the real experience that most (particularly non-
musically-trained) listeners have with real music.  In fact, from this description, it seems
unlikely that non-musicians should enjoy or appreciate music at all!

The immediate response by a cognitive scientist to this argument is that while untrained
listeners may not be consciously aware of their symbol-manipulation abilities, they really
must be using these abilities deep down in order to engage in the behaviors we can observe on
the surface.  But there is no proof of this assertion: there are no structuralist computational
models of music perception that can do anything robustly with a wide variety of audio input
signals.  In all of the functioning structural models that I’m aware of, either the input domain
is greatly simplified and restricted (as in polyphonic transcription research), or the system
takes symbolic input like MIDI as the starting point.  In each case, a hand-waving argument is
presented that the system is really part of a speculated bigger system—in the first case, that
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the lessons learned will someday be used to construct truly general polyphonic pitch-trackers,
and in the second, that an audio segmentation preprocessor will someday be able to produce
the right representations for symbolic processing.  The argument that a transformational
model cannot demonstrate behavior X has no weight, until a structural model can demonstrate
behavior X given a wide variety of audio signals as input.

This criticism is echoed by the writing of several theorists of ecological psychology, who use
a similar argument to criticize the modern tradition of psychology more generally.  For
example, E. S. Reed (1996) writes:

It is striking that to the extent our psychology has been conceived of as “scientific,”
it has tended to shrink from dealing with everyday concerns.  Scientific
psychologists have ceded the territory of the every day to popular psychologists and
even to outright quacks, whom the scientists profess to disdain.  But instead of
mounting a challenge to these inadequate accounts of common life, the vast majority
of scientific psychologists take refuge in a self-justifying myth that science equals
experimental control equals avoidance of the messiness of the real world (p. 7).

It is precisely the “messiness of the real world” that I am primarily concerned with in this
dissertation.  But it is important to recognize that this does not imply that I believe music is
somehow mystical, or impossible to explain scientifically.  I do believe that a rigorous
scientific basis is essential for founding theories of the perception, appreciation, and creation
of music—but structuralism is not the right basis.

Much of the structuralist stance in music-perception research can be seen as stemming from
the continued dominance of the music sciences by ideas and attitudes from music analysis and
theory.  Music analysis has a long tradition of privileging a view of music listening as
rational, symbolic, and refined that is quite out-of-step with the actual listening experience of
most listeners (Cook, 1998).  Western culture still grants that music analysts with their
excruciatingly detailed analyses of score-based minutia are the final authority in musical
interpretation.  Music psychologists posit a listening process that reflects the music analyst in
microcosm: the process by which a listener interprets a heard piece of music mirrors the
process by which an analyst interprets the score of the music.  Perhaps the listener is not as
sophisticated as the analyst, but that is the position to which we all aspire, in this model, as
music-lovers.

For example, Sloboda (1985) writes the following in discussing the results of an experiment
by that failed to find support for a structural theory of emotion in music:

It is natural to suppose that, as one becomes increasingly sophisticated musically,
one becomes attuned to finer emotional nuance.  A hierarchy of emotional cues
seems likely, with primitive cues (such as speed and loudness) available at all levels
of musical sophistication, and with more subtle cues (such as aspects of tonal
relations) available only to those with deeper analytic powers with respect to the
music.  A common experience among many music lovers (including myself) is a
belated appreciated of the emotional diversity and subtlety in the music of a
composer such as Mozart.  The inexperienced listener may find Mozart pale, insipid,
and all vaguely ‘jolly’, especially when set beside the kaleidoscopic turbulence of
the romantic composers.  Closer knowledge of Mozart (and maybe of the emotional
world) results in his music becoming richly and sublimely expressive.  The ability to
‘read’ the emotional language of music is an acquired skill, and we should, perhaps,
not be too surprised that a group of ‘ordinary’ subjects do not show much awareness
of the finer details of this language. (p. 63)

It is hard to interpret such an argument as saying anything other than the reason the
experiment failed to find evidence for the proper emotional relationships is that it used
subjects that were not sophisticated enough to hear the proper emotional relationships.  That
is, that there is a single measure of ability to “read the emotional language,” apparently given
by the theory under test, and that we may pick and choose subjects in testing this theory
according to their ability to measure up accordingly.  It is difficult to see how the original
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theory could ever be falsified under such testing conditions.  Further, this argument denies the
ultimate subjectivity of the emotional response to music, instead suggesting, as Cook (1998)
writes, that:

If you aren’t a composer or performer, or at any rate someone with a musical
training, then you are a non-musician.....Classical aesthetics doesn’t recognize you
as a stakeholder.  (p.83)

A similar philosophical approach stressing the importance of sound separating and “parsing”
can be found in the computational auditory-scene analysis (CASA) literature. In traditional
CASA systems, the goal of sound-processing has been to extract multiple constituent sounds
from a mixture.  The output sounds can then be analyzed independently to compute their
features.  The sounds that are the output should be the same in some perceptually important
way as the sounds that were the constituents of the mixture.  A primary motivating factor for
this approach is its potential application to automated speech recognition (ASR).  ASR
systems today perform passably well on clean speech without interference; this makes it
attractive to imagine “cleaning up” signals with noise or interference in order to use them as
input to unmodified ASR systems.

In Chapter 5, I do present a method for analyzing a complex sound scene into multiple
auditory images.  The goal of the method I develop is not to separate the sound, but to
partition the sound data so that feature analysis and further continuous transformation can be
undertaken.  The difference between the goal represented here and the goal represented by
most previous research into computational auditory-scene analysis (CASA) systems is
represented schematically in Figure 3-4.

It is apparent that sound understanding is easier than sound separation, since less time must be
spent on achieving high-quality synthesis of output sounds, and that it is more similar to the
human hearing process, since it is unlikely that human listeners maintain multiple independent
time-domain signals as an intermediate representation of complex signals.

The advantage of the understanding-without-separation approach is most apparent in the case
when one constituent signal destroys information in another through masking or cancellation.
In a sound-separation system, it is very difficult to deal with this situation properly, since the
obliterated sound must be invented wholesale from models or a priori assumptions.  In a
separationless approach, the required action is one of making feature judgments from partial
evidence, a problem that is treated frequently in the pattern recognition and artificial
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Figure 3-4: Two different models for computational auditory scene analysis.  In (a), a sound
separation system analyzes a sound mixture to discover the constituent sounds that comprise it and
analyze them.  The goal is to extract and reconstruct the exact constituent sounds that went into
making the sound mixture.  In (b), a sound understanding system analyzes a sound mixture to
discover the features of the sounds that comprise it, and use these features to support interesting
behaviors.  The goal is to describe the sound scene at a sufficient level of detail for solving
problems.
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intelligence literature.  Rather than having to invent a answer, the system can delay decision-
making, work probabilistically, or otherwise avoid the problematic situation until a solution
presents itself.

It is worth noting the similarities between this theoretical stance and that of Brooks (1999).
Brooks is a AI researcher and roboticist who worked on vision systems early in his career.
More recently, he has been arguing in favor of a reactive or representationless approach to
building robots, as an alternative to the predominant representational form of such systems.
In the representational model of systems-building, a computer vision system tries to segment
and understand the world visually, and then the robot plans a course of action using the high-
level representation that the vision system produced.  In a reactive system, the robot’s sensors
are wired directly (through a series of transformational stages) to its actuators.  There is no
central plan, map, or agency in such a system—the robot operates in continuous immediate
reaction to the environment.

Even using such simple mechanisms, Brooks’ “creatures” can implement extremely complex
behavior—his robot “Herbert” can wander through a building, enter open offices, find empty
soda cans, and pick them up and return them to a recycling facility.  Most interestingly,
observers of such systems typically impart a systemic planning agency to the robot—that it, it
looks like the robot is planning, deciding, and forming representations of its environment.
Since it is not, this is valuable evidence that simple inspection of a system cannot reveal its
representations aspects clearly.  (Philosophically, the idea that representations and intentions
are something imparted from without by an observer, rather than imbued within an organism
or other active system, is termed the intentional stance; Dennett (1987) among others has
written extensively about this.)

The parallels between Brooks’ arguments and mine are striking.  Brooks argues that the focus
on representationalism has led AI research into a path of making oversimplifying assumptions
and hand-waving through an argument that someday, the vision system will be able to
produce such a representation.  This argument is the same as mine—that a focus on score-
based processing has led psychologists and music-signal-processing researchers to make
oversimplifying assumptions, with associated hand-waving that someday, high-quality
polyphonic transcription will be able to produce this representation.  Brooks has provided
evidence that the “reactive” philosophy of systems-building more directly leads to robust
systems that embody behaviors than does a centralized vision-based approach.  The systems I
will demonstrate in Chapters 4 through 7 parallel this—they operate more robustly and
produce more interesting musical behaviors than other systems in the literature.

Brooks’ writing on the philosophy of his systems is directly applicable to my approach, with
only a few word changes.  For example, he lists four characteristics of his constructions
(Brooks, 1999, pp. 138-139):

Situatedness: The robots are situated in the world—they do not deal with abstract
descriptions, but with the here and now of the world directly influencing the
behavior of the system.

Embodiment: The robots have bodies and experience the world directly—their
actions are part of a dynamic with the world and have immediate feedback on their
own sensations.

Intelligence: They are observed to be intelligent—but the source intelligence is not
limited to just the computational engine.  It also comes from the situation in the
world, the signal transformation within the sensors, and the physical coupling of the
robot with the world.

Emergence:  The intelligence of the system emerges from the system’s interaction
with the world and from sometimes indirect interactions between its components—it
is sometimes hard to point to one event or place within the system and say that is
why some external action was manifested.
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My music-listening systems are situated in that they do not deal with abstract descriptions of
musical sounds, but with the sounds themselves.  Just as Brooks says that “[t]he world [is] its
own best model” (ibid, p. 81), I believe that the sound signal is its own best description.  My
music-listening systems might be considered to be musically intelligent in simple ways, but
the intelligence does not come from a set of rules that describe “how music works.”  Rather,
the intelligence comes from continuous transformations of the signal, and the way that these
transformations are manifested as musical behaviors.  The intelligence emerges from the
interaction of many (usually highly parallel) processing elements and the rich properties of the
input signal.  There is no function in which it is decided what is the “right thing to do”  as the
signal is being processed.

The major aspect of difference for the systems that I present here is Brooks’ characterization
of his systems as essentially embodied.  Brooks’ form of embodiment crucially means that
when the robots make changes to the world, they perceive the changes via the world.  This is
a difficult problem for music-listening systems, since so many aspects of musical listening are
immanent rather than manifested in external behaviors.  In some ways, this makes the results
of the beat-tracking system more satisfying that the high-level description system, since it is
much clearer what the observed manifestation of signal understanding should be—an act of
tapping along with the signal.  Some other system could listen to the taps and make judgments
on that basis.  Beat-tracking is unusual in this regard; it is unclear what sorts of behaviors
should be evoked by the perceptual act of recognizing the musical genre and how they could
affect other perceptions.

Perhaps it is better to see the kinds of systems I produce as the perceptual components of
larger systems.  In this manner of thinking, it is not possible at all to evaluate the systems in
their own right, but only in the functionality that they provide to a larger intelligent system
(perhaps an automated composer, or interactive synthetic performer).  Brooks’ theory places
great weight on the capability of the perceptual subsystems in his creatures; thus, it is
attractive to imagine constructing robust perceptual models using the same philosophy and
integrating them into his creatures.

This argument takes us a bit further away from the view of computer system as perceptual
model.  We are beginning to lose the notion that music-listening systems should be evaluated
by comparing their behavior to that of human listeners.  Rather, the suggestion is that
evaluation is according to engineering criteria.  For Brooks, this is natural, as he works in the
field of artificial intelligence, with an additional interest in the engineering of computational
vision systems.10  He has no specific interest in the perceptual abilities of humans except
insofar as learning about humans will help him build better robots.  But I believe that the
basic tenets of his theory form a strong candidate for a kind of perceptual psychology that
draws together aspects of the mind that are normally considered “sensory” with those that are

                                                          
10 As an aside, it is surprising how differently weighted are “machine vision” and
“machine listening” within the AI community.  Machine vision has always been a central
problem of AI—at times, it has been the central problem of AI.  Every AI lab and
program maintains a concentration in machine vision.  And yet there is essentially no
organized parallel in the hearing sciences.  Only a few enclaves of researchers could be
said to take an analogous approach in building sound systems, and these researchers are
not part of the mainstream AI community.   The construction of vision systems is viewed
as a problem of fundamental importance in the attempt to build intelligent machines, yet
the construction of hearing systems is viewed as a marginal aspect of the improvement of
speech-recognizers.  This disparity is striking and unfortunate—as students of sensory
systems that are complementary in functioning organisms, hearing and vision researchers
have much to learn from each other.  It is also likely that the problems with which sound
research must always deal (for example, the fact that sounds are embedded in time)
would provide interesting fodder and inspiration for AI research.
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normally considered “cognitive.”   As mentioned earlier, the tradition of ecological
psychology has also developed theories of this sort, although typically not computationally.

It is not surprising that many of the problems and difficulties suffered by cognitive
psychology (including music cognition)  parallel those suffered by “good old fashioned”
artificial intelligence, as the historical connections between these disciplines are well-
understood (Gardner, 1985).  Reactive models are a way to avoid the dangers of excess
symbolization, both in the construction of operational systems and in the conception of
psychological theories.

3.4.1. Bottom-up vs. Top-Down Processing
An important theoretical contribution that Ellis made in his dissertation (1996a) was a careful
consideration of the relationship between bottom-up and top-down processing.  His discussion
continues a lengthy chain of debate on this topic in the sensory-systems literature.  The debate
originates most explicitly with Pamela Churchland’s critique (1994) of Marr (1982) and other
“pure vision” theories of seeing.  Marr presented, in an influential and wide-ranging book, the
first coherent computational theory of vision.  Analogous to the CASA research on which this
dissertation draws, his was a project that drew from (and had implications for) psychophysical
theories and theories of perception as well as the construction of perceptual-computing
systems.

Marr’s primary theoretical contribution was to highlight the kinds of theories that can be built
with computer models.  In doing so, he highlighted the notion of the mid-level representation,
and thus made explicit an idea that had been present implicitly in the perceptual-computing
literature for some time.  Namely, that perceptual processing can be seen as a chain of
computational stages in which the voluminous and close-to-the-signal sensory data are
resolved with more and more abstraction in succeeding stages.  As the processing goes from
one stage to the next, the representations become less verbose, more semantic (in the sense of
providing direct affordance of behavior), and less directly related to the specific sensory input.
The specific mid-level representations that Marr proposed were edge maps and illumination
gradient functions (for visual processing), but his theoretical model is more general than this.
For example, the naïve model of speech understanding forms such a processing chain: a sound
signal enters the auditory system, and is converted to a spectrogram, which is converted into a
sequence of phonemes, which is converted into a sequence of words, which are understood.

Marr’s viewpoint is attractive for a number of reasons.  First, it makes the problem separable,
or reducible into independent sub-problems.  This matches both the traditional reductionistic
approach to science, and the standard approach to computer programming (“divide and
conquer,” as it is sometimes called).  Under the assumption that a problem can be separated
into independent stages, the stages can be researched and modeled independently.  As long as
the representations match up in the middle, the whole system should work when we put it
together.  This is the reason for the primary important of the mid-level representation in
Marr’s theory.

Second, all of the processing (perception) is done locally.  That is to say, to process a local
region of the visual image, we need only be concerned with the sensory information coming
from that region.  We can process all of the sections in parallel, and then put the
representations together at the end.  For speech, this corresponds to the notion that to model
the perception of speech at one point in time, we are only concerned with that particular
temporal location in the signal.  Earlier and later segments of the signal do not affect the
perception of that local part.  This is another sort of separability, and has an equally
simplifying effect on the construction of computational models.

Churchland’s critique of Marr was based on psychophysical evidence that had been known for
some time, including the perception of bistable quartets and motion correspondence, and the
effect of semantic information on shape perception.  These phenomena suggest that vision
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cannot simply proceed in a chain of isolated connections; in some way “global” information,
or at least non-local information, comes to influence the formation of even low-level
representations.  Churchland called such influence a “top-down” flow of information,
complementing Marr’s strictly bottom-up approach.  Analogues in the auditory domain were
drawn by Slaney (1998) in a critique of Bregman, and Ellis (1996a) in a critique of early work
in CASA.

There is also psychoacoustic evidence of the importance of non-local processing in hearing.
For example, Warren in a classic and important set of experiments, demonstrated what is now
known as phonemic restoration.  If a short segment of a speech signal is silenced (gated out),
so that the sound has a hole in it, listeners are readily aware of the gap and distracted by it.
However, if the gap is replaced with a noise (such as the sound of a cough), listeners no
longer notice the gap, and in fact are typically unable to accurately place the location of the
cough in the sentence.  That is, listeners have no ability to tell which segment of sound was
removed and replaced by the noise.  Warren argued that the missing sound was perceptually
restored to the signal based on higher-level (for example, word-level) cues in the speech.
This restoration process must occur strictly before the final analysis or inspection of the
speech features, because the lack of speech features for the missing segment cannot be
perceived.

More striking still is the extension known as semantic restoration.  In this experimental
paradigm, the segment removed from the speech signal is the one that creates maximal
semantic uncertainty in the local meaning.  For example, the listener hears one of the
following sentences:

� The *eel is on the axle.

� The *eel is on the orange.

� The *eel is on the shoe.

(The * indicates the part of the signal that is obliterated.)  Each of these sentences starts out
the same. In fact, to assure that there were no intonational cues, Warren (1970) created these
stimuli by copying the same sound for the beginning of each sentence.  Remarkably, subjects
when presented with these sentences restore the sound that gives the sentence its most
semantically logical form in each case.  That is, the subject hears wheel in the first case, peel
in the second, and heel in the third.  It is to be emphasized that the subject does not feel as
though he is deducing the answer in retrospect.  Rather, the phenomenal percept is the same
as before: the subject does not even realize that part of the signal has been removed, and
cannot say which part of the sentence is synchronous with the cough.

The implication is that the phonemic-restoration process can make use of extremely high-
level information—the meanings of words and their networks of semantic associations—in
order to fill in the gaps.  This is an extremely lengthy (in the sense of a Marrian processing
chain) flow of information from a high to a low level of representation.

The construction of computer models that can make use of top-down information in this way
is very difficult.  A model of processing that only contains a single flow of information, with
layers of representation proceeding from more detailed to more abstract, is well in-line with
traditional approaches to computer programming and signal processing.  It is much harder to
build signal-processing systems that can use multiple layers of representation in concert to
form judgments.  The only serious attempt is a recent thread of work using blackboard
systems, with various approaches taken by Klassner (1996), Ellis (Ellis, 1996a), and Mani
(1999).  The blackboard system is a knowledge-representation model developed in the
artificial-intelligence literature (Engelmore and Morgan, 1988) that represents multiple
hypotheses, as well as evidence for and against them, in a large data structure called the
blackboard.  As computation proceeds, representations at any stage may be reprocessed to
affect representations at other stages, both “above” or “below” them in the representation
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chain.  There are a number of strategies known successful for ordering the processing in such
a scheme.

While not strictly a blackboard system, another successful system to integrate multiple levels
of representation was Martin’s (1999) timbre-classification system. Martin demonstrated that
this system could classify musical instruments by their sounds with accuracy competitive with
skilled humans.  Martin also drew interesting connections between human abilities in
taxonomic classification and the processing-stage models represented by layered-processing
theories.  That is, if the entire pyramid of representations is available to the conscious mind,
and representations from any level of processing can support judgments, then the result is a
framework that very similar to the one that perceptual psychologists have suggested as the
basis of taxonomic categorization and classification.

In fact, Martin demonstrated that his system made the same sorts of errors in categorizing
musical-instrument sounds as did humans: it was more successful at judging the family of an
instrument (that is, whether the instrument was one of the brasses or one of the strings) than at
judging the particular identity of the instrument (that is, whether the instrument was a violin
or a viola).  As did humans, Martin’s system made more successful judgments at higher levels
of abstraction than at lower, more specific levels.  This is striking, albeit indirect, evidence in
favor of something like this layered-abstraction model as a part of the human perceptual-
cognitive apparatus.

A different sort of interaction between bottom-up and top-down processing is represented by
the present state-of-the-art in automated speech-recognition systems.  In these systems, low-
level acoustic processing of the signal interacts with high-level probabilistic modeling of
likely utterances determined from a language model.  These systems are different in flavor
than the other systems discussed in this section because they are not psychoacoustically- or
perceptually-motivated.  There is no particular connection between most of the stages in an
ASR system and the present theories of human speech perception (which suggests a reason
that human performance is so much better than ASR performance in difficult conditions).
Nonetheless, from an engineering viewpoint, ASR systems are well worth examining as an
example of methods allowing low-level and high-level information to interact in a principled
way to solve interesting problems.

It is common, when trying to develop sound-processing systems, that we focus an inordinate
amount of attention on the bottom-up aspects.  I think this is a mistake, but a natural one—in
order to feel like the system is “doing something right,” we often pay most attention to the
lowest level of performance (for example, componentization or pitch-tracking) and try to
make that stage “perfect.”  But in light of the kinds of insults to signals that are readily
accepted by the human hearing system, there must be a great amount of leeway in the
accuracy of the representations at low levels.  The slack in such a system must be borne by
pattern-recognition at higher levels.

This is difficult system-building terrain, falling in the area of “AI systems” rather than “digital
audio processing,” and so we often shy away from it in order to focus on things with which
we feel more comfortable (signal processing).  I think that the emphasis on components can
be partly understood in these terms.  The proper way to build music-analysis systems that can
process complex audio scenes robustly is to develop new kinds of pattern recognition that can
deal with messy, incomplete, noisy, and obscured sound data.

3.5. Chapter summary

In this chapter, I have presented a wide-ranging collection of material, starting from basic
definitions and proceeding to an articulation of my computational and philosophical approach.
I assert that this approach is the right one for the development of theories of musical hearing
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and for the construction of machine-listening systems.  I have also discussed the role of
computational representations in computer models and psychoacoustic and music-
psychological theories.

It is worth contrasting the approach I have presented in this chapter with the summary of
previous research that I presented in Chapter 2.  To do so will give a clear picture of where
the rest of my dissertation is headed.

1. I propose that rather than focus on the study of musical transcription, we should build
systems and theories based on the principle of understanding without separation.  In this
model, perceptions of sound, and digital-signal-processing programs, are developed as
continuous transformations from input (sound) to output (judgment).  I assert that this
approach is both easier, since we then don’t have to deal with the practical impossibilities
of separating sounds, and closer to human perception, since the human listener surely
doesn’t maintain independent time-domain waveforms as an intermediate representation
of sound.

2. I propose that, to be maximally relevant to the full spectrum of listening situations and
practical applications, we must embrace a broader range of musical sound.  Our
experimental materials and processing inputs must reflect the actual musics that real
people listen to, not music-theoretical biases about what kinds of music are sophisticated
or well-structured.

3. I propose that the study of music-listening in humans and machines must focus on sound
processing; and further, that present theories of sound processing in humans and
machines must be updated to deal with the messiness of real sounds in the real world.
We must maintain strict attention to the relationship between perceptual theories and the
primitive sound-processing functions and representations they assume.  We must also try
to build computational systems that are capable of dealing automatically with a wide
range of complex sound signals, even if the initial capabilities of such systems seem
limited compared to those that only apply to a more limited domain or that assume fancy
preprocessing.

4. I propose that the study of music-listening in both humans and machines must focus on
the ecological perception of sounds; that is, the sorts of judgments made by everyday
listeners about everyday sounds as part of the natural music-listening experience.  It is
still an open question exactly what the nature of such judgments is, but it is a pressing
question for both theoretical and practical reasons.  We must try to elicit these judgments
in perceptual experiments, and model them in computational approaches.

Now that I have articulated the approach and philosophical stance that underlies my research,
the stage is set for me to introduce new results.  The remainder of the dissertation is taken up
with the presentation of several signal-processing models of sound, and their use in creating a
feature-based theory of immediate musical perception.





CHAPTER 4 MUSICAL TEMPO

The beat of a piece of music is one of the most important immediately-perceived aspects of
the sound.  Every musical culture organizes sound in time through the creation of rhythmic
emphasis.  Further, nearly every listener, whether skilled or not according to traditional
criteria, can find the beat in a piece of music and clap her hands or tap her feet to it. In this
chapter, I will present a new signal-processing model of the perception of beat and tempo by
human listeners. 11  The model is constructed as a direct transformation from complex input
sounds into percepts of beat and tempo.  I will demonstrate that the model performs similarly
to human listeners in a variety of musical circumstances, and that it is has certain similarities
to existing theories of sound perception that make it attractive as a psychoacoustic model of
tempo perception. The model serves as a simple demonstration of the principle of
understanding without separation as discussed in Chapter 3, Section 3.4.

Automatic extraction of rhythmic pulse from musical excerpts has been a topic of active
research in recent years.  Also called beat-tracking and foot-tapping, the goal is to construct a
computational algorithm capable of producing behaviors that correspond to the phenomenal
experience of beat or pulse in a human listener.

Rhythm as a musical concept is intuitive to understand, but somewhat difficult to define.
Handel writes “The experience of rhythm involves movement, regularity, grouping, and yet
accentuation and differentiation” (Handel, 1989, p. 384) and also stresses the importance of
the phenomenalist point of view: there is no ground truth for rhythm to be found in simple
measurements of an acoustic signal.  The only ground truth is what human listeners agree to
be the rhythmic aspects of the musical content of that signal.  This places tempo and rhythm
into the domain of perceptual attributes of sound as discussed in Chapter 3, Section 3.1.  A
pressing question for psychoacoustians and music-signal-processing researchers is to discover
the physical properties that correlate with this perceptual attribute.

As contrasted with rhythm in general, beat and pulse correspond only to “the sense of equally
spaced temporal units” (Handel).  Where meter and rhythm are terms associates with qualities
of grouping, hierarchy, and a strong/weak dichotomy, pulses in a piece of music are only
periodic at a simple level.  For my purposes, I will define the beat of a piece of music as the
sequence of equally-spaced phenomenal impulses that defines a tempo for the music.  To use

                                                          
11 Much of the material in this chapter was previously published as a stand-alone paper
(Scheirer, 1998a).
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an operational definition, if a listener is allowed to adjust the phase and frequency of a
metronome so that its clicks seem well-matched to a musical stimulus, the frequency of the
metronome is the perceived tempo of the signal.  The locations in time of the metronome’s
clicks indicate the temporal location of beats in the music.  This chapter is only concerned
with beat and tempo.  The grouping and strong/weak relationships that define rhythm and
meter are not considered.

It is important to note that there is no simple relationship between polyphonic complexity—
the number of notes played at a single time, and the number of instruments on which they are
played—in a piece of music, and rhythmic complexity of that music.  There are pieces and
styles of music that are texturally and timbrally complex, but have straightforward,
perceptually simple rhythms.  There also exist types of music with less complex textures but
that are more difficult to rhythmically understand and describe.

The former sorts of musical pieces, as contrasted with the latter sorts, have a “strong beat,”
and my primary concern is with them in this chapter.  For these kinds of musical examples,
the rhythmic response of listeners is simple, immediate, and unambiguous, and every listener
will agree on the rhythmic content.  Because of this, the beat of a piece of music is a
constituent of the perceptual musical surface, as defined in Chapter 3, Section 3.2.
Rhythmically complex music, in which different listeners might disagree on the beat or
tempo, or in which some listeners might have a difficult time deciding where the beat is, is
discussed only briefly at the end of the chapter.

The chapter is organized as follows.  In Section 4.1, I will describe a psychoacoustic
demonstration that indicates that only the temporal envelopes of the subbands of a musical
signal convey the beat of the signal.  From this demonstration, it appears that pitch and pitch-
like information is not a necessary constituent of a theory of tempo perception.  Following
that, I will describe the signal-processing techniques used to implement the model.  The basic
principle is the detection of periodic energy fluctuations within a subband representation.  In
Section 4.4, I will provide evidence that the algorithm performs similarly to human listeners
on a variety of musical examples, first qualitatively, through simple demonstration on real
musical signals, and then quantitatively, with a formal listening test.

Finally, in Section 4.5, I will discuss the implications of the model, focusing on its
significance in the understanding-without-separation approach, a comparison with other
models in the literature, and speculations on the connections to psychoacoustics.  This section
includes a brief reimplementation of the model as a variant of the subband-periodicity model
of pitch.

4.1. A Psychoacoustic Demonstration

One of the key difficulties with most previous models of rhythmic perception, as described in
Chapter 2, Section 2.3.4, is that they operate from an onset sequence, assuming that the input
signal has been parsed into notes or other time-positioned events.  As I discussed at length in
Chapter 3, this stance is theoretically suspect, since there is no good evidence that such
accurate segmentation is performed by the human listener, or even that it is possible at all.
From an engineering standpoint, the difficulty with this assumption is the complexity of
grouping harmonic partials together to form notes, and determining the onset times of those
notes.  Even if simplifying assumptions about the pitch and timbral content are made,
identifying attack and release times is no easy task (Scheirer, 1998b).

A psychoacoustic demonstration on beat perception shows that certain kinds of signal
manipulations and simplifications can be performed without affecting the perceived tempo
and beat of a musical signal.  Consider the signal flow network shown in Figure 4-1.  An
amplitude-modulated noise can be constructed by vocoding a white noise signal with the
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subband envelopes of a musical signal.  This is accomplished by performing a subband
analysis of the music, and also of a white-noise signal from a pseudo-random generator.  The
amplitude of each band of the noise signal is modulated with the amplitude envelope of the
corresponding band of the musical filterbank output, and the resulting noise signals are
summed together to form an output signal.

For many frequency filterbanks and envelope calculations, the resulting noise signal has a
rhythmic percept that is very similar to the original music signal.  Even if there are very few,
very broad bands (for example, four three-octave bands covering the audible spectrum), and
the subband envelopes are low-pass filtered at 10 Hz, the tempo and beat characteristics of the
original signal are instantly recognizable (Sound Example 3-1)12.

The only thing preserved in this transformation is the amplitude envelopes of the filterbank
outputs.  Therefore, only this information is necessary to extract tempo and beat from a
musical signal.  Algorithms for beat extraction can be created that operate only on the
envelope signals, and notes are not a necessary constituent for hearing rhythm.  This is a vast
reduction of the input data from the original signal.   Shannon (1995) has reported a similar
effect for the perception of speech.

Some other simplifications are not possible without changing the rhythmic perception of the
stimulus.  For example, if only one band is used, or the subband envelopes are linearly
combined before modulating the noise (Figure 4-2), a listener can no longer perceive the
rhythmic content of many signals (Sound Example 3-2).  Thus, it seems that separating the
signal into subbands and maintaining the subband envelopes separately is necessary for
accurate rhythmic processing.

                                                          
12 Audio examples for my dissertation can be found on my Media Lab WWW site at
http://sound.media.mit.edu/eds/thesis/ .
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Figure 4-1: Creating a "modulated noise" signal by vocoding a noise signal with a music signal.
An input musical sound is divided into frequency bands and the envelopes of the subband signals
calculated.  In parallel, a broadband noise signal is divided into subbands using the same filterbank.
Each filtered-noise band is modulated by the envelope of the corresponding band from the musical
signal, and these modulated noises are added together.  The output sound, for most sorts of music
and many sorts of frequency filterbanks, is perceived to have the same rhythm as the input music
signal, indicating that the amplitude envelopes of the bands are a sufficient representation for
rhythmic analysis.
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Stated another way, the algorithm in Figure 4-2 is a method for generating new signals whose
representation under a filterbank-envelope-and-sum process is the same as a given piece of
music.  However, since these new signals are generally not perceptually equivalent to the
originals, the filter-envelope-sum framework must be inadequate to represent data in the
musical signal that is important for rhythmic understanding.  This fact immediately leads to a
psychoacoustic hypothesis regarding rhythmic perception: some sort of cross-band rhythmic
integration, not simply summation across frequency bands, is performed by the auditory
system.

4.2. Description of a Beat-tracking Model

The beat-tracking algorithm that I will present in this section bears most resemblance to the
method of Large and Kolen (1994), in that it uses a network of resonators to phase-lock with
the beat of the signal.  However, my method is somewhat different.  The resonators I use are
analytically much simpler than theirs, a bank of resonators is used rather than gradient descent
with a single adaptive resonator, and more pre- and post-processing of the signal is necessary,
as the present model operates on acoustic data rather than an event stream.

A rhythmic beat is described in terms of its frequency and phase, just as a periodic sound
waveform is.  The frequency of the beat in a rhythmic musical signal is the tempo or
perceived rate of the music, and the phase of the beat indicates where the downbeat of the
rhythm occurs.  That is, if the times at which a pulse occurs are defined to have zero phase,
then the points in time exactly in-between pulses have phase of π radians.

While human pitch-recognition is only sensitive to signal phase under certain unusual
conditions (Moore, 1997, pp. 97-100), rhythmic response is crucially a phased phenomenon.
Tapping on the beat is not at all the same as tapping against the beat, or slightly ahead of or
behind the beat, even if the frequency of tapping is accurate.  Even when no overt behavior
such as tapping is exhibited, it seems from introspection that during the presentation of signals
with strong beats, listeners are aware of the current phase of the beat most of the time.

Σ

Music

Source

Filterbank

Envelope
Extraction

Output

Noise

Source

Figure 4-2: A noise signal that does not have the same rhythmic characteristics as the musical
input, indicating that the sum of the amplitude envelopes is not a sufficient representation for
rhythm analysis.  Certain types of nonlinear combination by frequency channel are evidently
present in the beat perception facility.
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Figure 4-3 shows an overall view of my tempo-analysis algorithm as a signal flow network.  I
will describe its method of operation briefly here, and then present more details piece-by-
piece in the subsequent sections.  These techniques were developed empirically via
experimentation; however, in Section 4.5 I will discuss their relationship to other models of
rhythm perception and other psychoacoustic behaviors.

As the signal comes in, a filterbank is used to divide it into six bands.  For each of these
subbands, the amplitude envelope is calculated and the derivative taken and half-wave
rectified.  Each of the envelope derivatives is passed on to another filterbank of 150 tuned
resonators.  In each resonator filterbank, one of the resonators will phase-lock—the one for
which the resonant frequency matches the rate of periodic modulation of the envelope
derivative.

The outputs of the resonators are examined to see which ones are exhibiting phase-locked
behavior, and this information is tabulated for each of the bandpass channels.  The tabulations
are summed across the frequency filterbank to arrive at the frequency (tempo) estimate for the
signal, and reference back to the peaks in the phase-locked resonators is used to determine the
beat phase of the signal.

4.2.1. Frequency analysis and envelope extraction
As discussed in Section 4.1, envelopes extracted from a small number of broad frequency
channels are sufficient information to rhythmically analyze a musical signal, at least for
human listeners.  Further, I have found through empirical studies of the use of various

Energy Energy

Sound Input

Differentiator

Envelope

Extractor

Filterbank

Frequency

Rectifier
Half-Wave

Filterbank
Resonant

Energy Energy

Differentiator

Envelope

Extractor

Rectifier
Half-Wave

Filterbank
Resonant

Tempo Output

ΣΣ

Peak-Picking

(150 Resonators)(150 Resonators)

(6 Bands)

Figure 4-3: Schematic view of the beat-extraction algorithm.
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filterbanks with this algorithm that it is not particularly sensitive to the particular frequency
tunings or filter implementations used.  I expect that psychoacoustic investigation into
rhythmic perception of amplitude-modulated noise signals created with various vocoder
filterbanks would confirm that the same is true of human rhythmic perception.

The filterbank implementation used in the final version of the algorithm has six bands; each
band has sharp cutoffs and covers roughly a one-octave range.  The lowest band is a low-pass
filter with cutoff 200 Hz; the next four bands are band-pass, with cutoffs at 200 Hz and 400
Hz, 400 Hz and 800 Hz, 800 Hz and 1600 Hz, and 1600 Hz and 3200 Hz.  The highest band is
high-pass, with cutoff frequency at 3200 Hz.  Each filter is implemented using a sixth-order
elliptic filter, with 3 dB of ripple in the passband and 40 dB of rejection in the stopband.
Figure 4-4 shows the magnitude responses of these filters.

The envelope is extracted from each band of the filtered signal through a rectify-and-smooth
method.  The rectified filterbank outputs are convolved with a 200 ms half-Hanning (raised
cosine) window.  This window has a discontinuity at time t=0, then slopes smoothly away to
0 at 200 ms.  It has a low-pass characteristic, with a cutoff frequency about 10 Hz
(“frequency” in this case referring to envelope spectra, not waveform spectra), where it has a
-15 dB response, and 6 dB/octave smooth rolloff thereafter.

The window's discontinuity in time means that it has nonlinear phase response; it passes slow
envelope frequencies with much more delay than rapid ones.  High frequencies, above 20 Hz,
are passed with approximately zero delay; 0 Hz is delayed about 59 ms and 7 Hz advanced
about 14 ms.  Thus, there is a maximum blur of about 73 ms between these envelope
frequencies.  This spectral smearing is probably not enough to affect the tempo
measurements, since the cross-band integration doesn’t happen until after the within-band
periodic energy estimation (see below).
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Figure 4-4: Magnitude response of the frequency filterbank used in the system, plotted in two
pieces for clarity.  The upper plot shows the first, third, and fifth bands; the lower, the second,
fourth, and sixth.  Each filter is a sixth-order elliptic filter, with 3 dB of passband ripple and 40 dB
of stopband rejection
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This window performs energy integration in a way similar to that in the auditory system,
emphasizing the most recent inputs but masking rapid modulation.  Todd (1994) has
examined the use of similar temporal-integration filters that are directly motivated by known
psychoacoustic properties.  After smoothing, the envelope can be decimated for further
analysis; the next stages of processing operate on the envelopes downsampled to 200 Hz.
There is little energy left in the envelope spectra at this frequency (since the smoothing filter
is rejecting most envelope energy above 20 Hz), but it aids the phase-estimation process (see
below) to maintain oversampled resolution for the envelopes.

After calculating the envelope, its first-order difference function is calculated and half-wave
rectified; this rectified difference signal is what will be examined for periodic modulation.
The derivative-of-envelope function performs a type of onset filtering process (see, for
example, Smith’s work on difference-of-Gaussian functions for onset segmentation in (Smith,
1994)) but the explicit segmentation, thresholding, or peak-peaking of the differenced
envelope is not attempted.  The modulation detectors in the next stage of the algorithm are
sensitive to imperfections in an onset track.  The half-wave rectified envelope difference
avoids this pitfall by not making strict decisions, instead having broad (in time) response to
onsets in the input signal.  This process is similar to detecting onset points in the signal bands,
and then broadening them via low-pass filtering.

Figure 4-5 shows the envelope extraction process for one frequency band in each of two
signals, a 2 Hz click track and a polyphonic music example.  The lowest band is shown for the
click track, and the second-highest for the music track.

4.2.2. Resonators and tempo analysis
After the envelope has been extracted and processed for each channel, a filterbank of comb-
filter resonators is used to determine the tempo of the signal.  While comb filters are often
used in reverberators and other sorts of audio signal processing, they also have properties that
make them suitable resonators in the phase-locking pulse extraction process.

We can understand the resonant properties of comb filters by stimulating them with pulse
trains of various rates.  Depending on the relationship between the rate of the input pulse train
and the “best resonance” of the comb filter, the long-term magnitude of response differs.
Suppose that we stimulate a comb filter having delay T and gain α  (|α| < 1) with a right-sided
pulse train of height A and period κ (that is, the sequence whose value is A at time 0, κ, 2κ, ...
and 0 elsewhere).  The comb filter resonates best to this input sequence when T = κ.

Let xt and yt be the input and output signals at time t; the equation of the filter is then

yt =  α yt-T + (1-α) xt (4-1)

and so, by expanding the recurrence and plugging in the input signal,

                    

∑ =
−=

++−=

+−=−+−=
−=

n

i

i
n Ay

Ay

AAAy

Ay

0

2
2

0

).()1(

)1()1(

)1()1()1()1(

)1(

αα

ααα
ααααα

α

κ

κ

κ

M

(4-2)

Thus,

lim
( )

.
n

y
A

A
→∞

= −
−

=κ
α
α

1

1

(4-3)



88 Chapter 4: Musical Tempo

On the other hand, if T ≠ κ , the convergence is to a smaller value.  Let λ be the least common
multiple (common period) of T and κ; then there is only reinforcement every T / λ periods,
and by a similar logic as the above,
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−λ λ
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α

1

1

Α
, (4-4)

and since |α | < 1 if the filter is to be stable, and T / λ ≥ 1,

1 1− ≥ −α αλT / . (4-5)

So a filter with delay matching (or evenly dividing) the period of a pulse train will have larger
(more energetic) output than a filter with mismatched delay.
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Figure 4-5: Envelope extraction process, for a 2 Hz click track (left) and a polyphonic music
example (right).  The top panels show the audio waveforms; the middle panels, the envelopes; and
the bottom, the half-wave rectified difference of envelopes.  The lowest filterbank band is shown
for the click track, the second-highest for the music.  Note that for the clean signal, the envelope
difference corresponds closely to the signal onsets.  However, this is not the case for the polyphonic
music signal.  If we picked onsets from the envelope signal, we would discard information that is
present in the rectified envelope difference shown.  This information, once discarded, cannot be
recovered at later stages of processing.
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This is true not only for pulse trains, but for any periodic signal, as can be seen by doing a
similar analysis in the frequency domain.  The comb filter with delay T and gain α has
magnitude response
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which has local maxima wherever α e-jωΤ  gets close to 1. This occurs near the T-th roots of
unity, which can be expressed as

e n Tj n T− ≤ <2 0π / , . (4-7)

These frequency-domain points are exactly those at which a periodic signal of period T has
energy.  Thus, the comb filter with delay T will respond more strongly to a signal with period
T than any other, since the response peaks in the filter line up with the frequency distribution
of energy in the signal.

For each envelope channel of the frequency filterbank, a filterbank of comb filters is
implemented, in which the delays vary by channel and cover the range of possible pulse
frequencies to track.  The output of these resonator filterbanks is summed across frequency
subbands.  By examining the energy output from each resonance channel of the summed
resonator filterbanks, the strongest periodic component of the signal may be determined.  The
frequency of the resonator with the maximum energy output is selected as the tempo of the
signal. This is shown schematically in Figure 4-6.
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Figure 4-6: The resonant filterbanks that are used to match the tempo of the signal.  Within each
subband, a bank of comb filters consists of several parallel filters, each tuned to a different resonant
frequency.  This schematic shows two bands with five comb filters each; in the actual
implementation, there are six bands with 150 resonators each.  In this schematic, the lengths of the
delay lines in the comb filters indicate the delay of the filter.  The gain on each comb filter is tuned
so that all filters have equal half-energy time in their impulse responses.  The outputs from
corresponding comb filters are summed across frequencies, and the resonant frequency with the
strongest response is determined.  The period of this resonator is the tempo of the signal, and the
summed resonator outputs are used to determine the phase of the beat.



90 Chapter 4: Musical Tempo

The α parameter for each comb filter is set differently, so that each filter has equivalent half-
energy time.  That is, a comb filter of period T has an exponential curve shaping its impulse
response.  This curve reaches half-energy output at the time t when αT/t = 0.5.  Thus, α is set
separately for each resonator, at α = 0.5 t/T.  A half-energy time of 1500-2000 msec seems to
give results most like human perception.

Figure 4-7 shows the summed comb-filterbank output for a 2 Hz pulse train and for a
polyphonic music example.  The horizontal axis is labeled with “metronome marking” in
beats per minute; this is a direct mapping of the delay of the corresponding comb filter.  That
is, for the 200 Hz power envelope signal, a feedback delay of 100 samples corresponds to a
500 msec resonance period, or a tempo of 120 bpm.

In the pulse train plot in Figure 4-7, a clear, large peak occurs at 120 bpm, and additional
smaller peaks at tempi that bear a simple harmonic relationship (3::2 or 4::5, for example) to
the main peak.  In the music plot, there are two peaks, which correspond to the tempi of the
quarter note and half note in this piece.  If the width of the upper plot were extended, a similar
peak at 60 bpm would be visible.

As can be seen in Figure 4-7, the differences in timing between the various comb filters is
very small.  If there are 150 comb filters spanning the range from 60—180 BPM (that is, 1-3
Hz), then they have an average difference of 13.3 ms.  This is why the envelopes must be
oversampled; if the envelope signals were only conveyed at a low sampling rate, such as 50
Hz, fractional-delay comb filters would have to be used to achieve such tight spacing of
resonant frequencies.  The implementation is simplified by oversampling the envelopes so
that integer-delay filters can be used instead.
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Figure 4-7: Tempo estimates, after tracking 5 sec of a 2 Hz (120 BPM) click track (top) and of a
polyphonic music example (bottom).  These curves are the values computed as the cross-band
energy output of the resonant filterbank; that is, the energy at the “Select Maximum” stage of
Figure 4-6.  The x-axes correspond to the sampling of the time delays of the comb filters—there is
one point on the x-axis for each comb filter in the resonant filterbank. The x-axes are labeled in
beats per minute, that is, 120 BPM = 2 Hz.  The polyphonic music shows more overall energy, but
the tempo is still seen clearly as peaks in the curve.
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4.2.3. Phase determination
It is relatively simple to extract the phase of the signal once its tempo is known, by examining
the output of the resonators directly, or even better, by examining the internal state of the
delays of these filters.  The comb filters in the resonator filterbank are implemented with
lattices of delay-and-hold stages.  The vector w of delays in each filter can be interpreted at a
particular point in time as the “predicted output” of that resonator.  That is, the w vector
contains the next n samples of envelope output that the filter would generate in response to
zero input, where n is the period of the filter.

The sum of the delay vectors over all frequency channels for those resonators corresponding
to the tempo determined in the previous step is examined. The peak of this prediction vector is
taken as the estimate of when the next beat will arrive in the input.  The ratio
ω = 2 π (tn - t) / T, where tn is the time of the next predicted beat, t the current time, and T the
period of the resonator, is the phase ω of the tempo being tracked.  The phase and period may
be used to predict beat times as far into the future as desired.

The present implementation analyzes the phase in this way every 25 ms and integrates
evidence between frames in order to predict beats.  Since re-estimation occurs multiple times
between beats (because 25 ms is much shorter than the beat period), the results from each
phase analysis can be used to confirm the current prediction or adjust it as needed.  Currently,
this prediction/adjustment is done in an ad-hoc manner. If several successive frames make the
same beat prediction within a certain tolerance all of these estimates are averaged to arrive at
the final prediction.  This stage would be the appropriate one for the inclusion of high-level
information, non-deterministic elements, or more sophisticated rhythmic modeling; see
section 4.5.3.

Figure 4-8 shows the phase peaks for a 2 Hz pulse train, and for a polyphonic music example.
In the upper plot, as the tempo is 120 bpm, the x-axis covers the next half-second of time; and
for the lower plot, the estimated tempo is 149 bpm (see Figure 4-7), so one period is
approximately 400 ms.

4.2.4. Comparison with autocorrelation methods
There are analytical similarities between this bank-of-comb-filters approach and previous
autocorrelation methods for modeling the perception of tempo (Vercoe, 1997).  Insofar as
they are both ways of detecting periodic energy modulations in a signal, they are performing
similar calculations.  However, there are several advantages to expressing these operations as
multiple comb filters over expressing them as autocorrelation.

Predominantly, comb filtering implicitly encodes aspects of rhythmic hierarchy, where
autocorrelation does not.  That is, a comb filter tuned to a certain tempo τ has peak response
to stimuli at tempo τ, but also lesser response to stimuli with tempi at multiples (2τ, 3τ),
fractions (τ/2, τ/3), and simple rational relationships (3/2τ, 3/4 τ, etc.).  The autocorrelation
only has this shared response for fractional tempi, not multiples or rationally-related tempi.
An autocorrelation model asserts that a click track at 60 bpm gives no sense of tempo at 120
bpm, which seems intuitively wrong.  The comb filter model asserts instead, that there is such
a sense, but a reduced one when compared to a click track to 120 bpm.

Autocorrelation methods are zero-phase, which means that some other method of determining
signal phase must be used.  Vercoe (1997) claimed the use of a “phase-preserving narrowed
autocorrelation,” but neither he nor the source he cites (Brown and Puckette, 1989) explains
what this means. The comb filtering method shown here is phase-preserving, and so provides
a way of simultaneously extracting tempo and phase, as discussed in the previous section.
The fact that the tempo and phase representations arise together gives us additional
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advantages for constructing further processing algorithms based on the output of the beat-
tracker, as will be presented in Chapter 6.

One advantage of autocorrelation schemes is that they are more efficient in memory usage
than banks of comb filters. The various lags can all access the same delay line—this is why
the autocorrelation is zero-phase—whereas each comb filter must maintain a delay line of its
own.  In return for the extra memory usage, the comb filters provide estimates of output
energy at each phase angle of each lag, where the autocorrelation accumulates it and only
presents the summary.

Ultimately, it is representationally satisfying to have the frequency and phase of the signal
explicitly encoded in the processing units of the algorithm.  In an autocorrelation
methodology, the rhythmic oscillations of the signal are only represented as post-processed
summary results; whereas in the comb filtering method, the filter states themselves explicitly
represent the rhythmic content—that is, there is an element of the processing network that
phase-locks to and oscillates in synchrony with the signal.  This is the key similarity between
the present technique and that of Large and Kolen (1994).
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   Figure 4-8: Phase estimates, after tracking 5 sec of a 2 Hz click track (top) and a polyphonic
music example (bottom). The x-axis in each case covers the next full period of the resonator
tracking the tempo, and the peak of the curve shows where the next beat is predicted to occur:
about 210 msec in the future for the upper case, and 290 msec for the lower.
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4.3. Implementation and Complexity

The algorithms described above have been implemented in C++ code; the resulting program
causally processes audio files captured from compact disks or other audio recordings, or
coming in via a live microphone input.  In this section, the parameters available for
controlling the speed and accuracy of the program are described.

4.3.1. Program parameters
The current implementation of the system has a number of parameters that can be used to
control the accuracy/speed relationship of the algorithms.  The program will run in real-time
on a modern desktop workstation such as a Pentium III, depending on the settings of these
parameters and the sampling rate of the incoming audio stream.  It is also clear from to the
highly parallel structure of Figure 4-3 that the algorithm could efficiently make use of a
multiple-processor architecture.  This has not yet been accomplished, however.

There are four major areas where the performance and accuracy of the system can be tuned,
and control over three of them has been implemented.  The algorithm has been tested for
audio at sampling rates from 8 kHz to 44.1 kHz and gives roughly equivalent qualitative
performance in all of these.

Frequency filterbank
As discussed in section 4.1, there is likely a fair amount of latitude in choosing a frequency
filterbank for decomposing the incoming audio stream without affecting human rhythmic
perception.  The speed of the system will vary a great deal with the complexity of these filters
(since there is a fair CPU load for implementing high-order filters in real-time on high-
bandwidth audio), and their number (since for each of the frequency channels, a full resonator
filterbank structure is implemented).

The performance of the beat-tracking program using filterbanks other than the 6-channel 6th-
order IIR filterbank described above has not been tested.

Envelope sampling rate
The decimation rate of the channel envelopes affects the speed and performance of the
system.  There are two major implications for using a slow envelope sampling rate.  First,
there are many resonator frequencies that cannot be represented accurately with integer delays
in the comb filters.  Second, the phase extraction can only be performed with accuracy equal
to the envelope sampling rate, since the vector of delays has the same sampling rate.

In tradeoff to this, using a fast sampling rate for the envelopes entails a lot of work in the
comb filtering, since the number of multiplies in each comb filter varies proportionately to
this rate.  Empirical testing over a variety of musical examples suggests that the envelopes
should be sampled at least 100 Hz or so for best performance.

Number of resonators per frequency channel
The amount of computation required to track and analyze the comb-filter resonators varies
directly with their number.  If too few resonators are used, however, a problem develops with
sampling the tempo spectrum too sparsely.  That is, since each resonator is attempting to
phase-lock to one particular frequency (not to a range of frequencies), if there is no resonator
tuned close to the tempo of a particular signal, that signal cannot be accurately tracked.

Also affecting this sparsity consideration is the range of resonator frequencies to be tracked.
The wider the range of tempi to track, the sparser a fixed number of resonators will spread
over that range.
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Good results have been generated using a bank of 150 resonators for each channel, covering a
logarithmically-spaced range of frequencies from 60 bpm (1 Hz) to 240 bpm (3 Hz).

Analysis frame rate
In this particular implementation, a higher-level averaging scheme is used to decide where (at
what times) to deduce beats in the input signal.  That is, for each analysis frame, the phases of
the resonators are examined; the evidence here suggests future beat locations.  These
suggestions are combined over multiple analysis frames; when several frames in a row point
to the same future beat location, evidence accumulates for that time, and a beat is actually
assigned there.

Thus, the frequency with which the procedure of examining and summing the outputs and
internal states of the resonators is executed has a strong effect upon the performance and
speed of the program.  Good results can be obtained if the analysis frame rate is at least 15
Hz.

Real-time performance cannot be obtained with the parameter values shown above; on a
330 MHz Pentium II using unoptimized filtering and analysis code, with an envelope rate of
100 Hz, 75 resonators per subband, and frames of beat predictions at analyzed every 15 Hz,
the required performance for real-time operation on 22 kHz input is reached.  This real-time
performance includes reading the sound file from disk and playing it back with short noise
bursts added to highlight the beats.  At this level of accuracy, the algorithm still performs
acceptably well on some, but not all, musical examples.

4.3.2. Behavior tuning

The behavior of the algorithm can be tuned with the α parameters in the comb filters.  These
parameters can be viewed as controlling whether to value old information (the beat signal
extracted so far) or new information (the incoming envelopes) more highly.  Thus, if α is
large (close to unity), the algorithm tends to “lock on” to a beat, and follow that tempo
regardless of the new envelope information.  On the other hand, if α is small, the beat-track
can be easily perturbed by changes in the periodicity of the incoming signal.  Manipulating
these parameters for the comb filter structure is computationally similar to manipulating the
windowing function of a narrowed autocorrelation (Brown and Puckette, 1989).

Higher-level or domain-specific knowledge could be used to set this parameter based on prior
information.  For example, in rock or pop music, the beat is usually quite steady, so a high
value for α would be appropriate; while for classical music, particularly styles including many
tempo changes, a smaller value would be more better.

4.4. Validation

It is difficult to evaluate the performance of an ecological beat-tracking model, for there are
few results in the literature dealing with listeners' tempo responses to actual musical excerpts.
Most psychophysical research has dealt primarily with special cases consisting of simple
tones in unusual temporal relationships, which will typically be more difficult to track than
“real music” for a listener.  In contrast, most computerized beat-tracking systems have been
evaluated informally, by using a small number of test cases (whether acoustic or MIDI-based)
and checking that the algorithm “works right”.

In this section, the performance of the algorithm is evaluated in both qualitative and
quantitative manners.  I provide results to demonstrate the qualitative performance for 60
ecological music excerpts, with sound examples publicly available for listening.  I also
present results from a short validation pilot experiment that was conducted to investigate the
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degree to which the performance of the algorithm is like the performance of human listeners
on a rhythmic-tapping task.

4.4.1. Qualitative performance
Examples of many different types of music have been tested with the implemented algorithm,
using a short application that reads a sound sample off of disk, causally beat-tracks it, and
writes a new sound file with clicks (short noise bursts) added to the signal where beats are
predicted to occur.  I have made these sound files available for listening via the World Wide
Web (“Beat-tracking results” page), and summarized the results below.

The wide set of input data contains 60 examples, each 15 seconds long, of a number of
different musical genres.  Rock, jazz, funk, reggae, classical, “easy-listening,” dance, and
various non-Western musics are represented in the data set and can be tracked properly.
Some of the examples have drums, some do not; some have vocals, some do not.  Five of the
examples would likely be judged by human listeners to have no “beat.”  For these cases, the
algorithm would be performing unlike human listeners if it gave “correct” results.  I recorded
the input data from a radio tuner in the San Francisco area during the summer of 1997; they
are the same examples used to test the speech/music discriminator that I reported previously
(Scheirer and Slaney, 1997).

In Table 4-1, I summarize the results by musical genre; some qualitative descriptions of
typical results are provided below.

I qualitatively classify 41 of 60 samples (68%) as tracked accurately, and another 11 (18%) as
being tracked somewhat accurately.  This accuracy percentage is not directly comparable to
that reported for other systems, because the data set used here is more difficult.  All of the
“easy” cases of rock-and-roll with drums keeping a straightforward beat were tracked
correctly; and 5 of the 8 examples not tracked accurately were those that would probably not
be judged by human listeners to have any beat at all.  It is premature to interpret these results
as indicative of consistent genre-to-genre differences in accuracy; there are too few examples
and the within-genre differences in accuracy too great.

Genre # cases Correct Partial Wrong

Rock 7 3 3 1

Country 3 3 0 0

Urban 9 7 1 1

Latin 5 3 2 0

Classical 9 4 4 1

Jazz 8 3 1 4

Quiet 3 2 0 1

Reggae 2 2 0 0

Non-Western 4 4 0 0

Total 60 41 11 8

Table 4-1:  Performance of the beat-tracking algorithm, summarized by musical genre.  Results
were auditioned and classified into groups by qualitative success level.  “Correct” indicates that the
algorithm found a steady beat in the signal and locked onto it.  For several of the examples, human
listeners do not find such a beat, and so the “Correct” answer does not reflect human behavior.
“Urban” styles include rap, funk, and R & B music; “Quiet” includes muzak and an “easy-
listening” example.  All sounds are available via the WWW for independent evaluation (“Beat-
tracking results” page).
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For the examples that the algorithm tracks consistently, there is a startup period between 2 to
8 seconds long, in which the resonant filters have not yet built up an accurate picture of the
signal.  After this period, for most signals, the algorithm has settled down and begun to track
the signal accurately, placing the clicks in the same locations a human listener would.
Examining some of the other, incorrectly-tracked examples, is instructive and highlights some
of the deficiencies of this method.

Examples #1, #2, and #57 are all up-tempo jazz cases in which human listeners do perceive a
strong beat, but no beat is ever extracted by the system.  In these three cases, the beat is
described by syncopated instrumental lines and complex drum patterns.  That is, there is not
actually very much energy modulating at the frequency that is the perceptual beat tempo for
humans.  Human listeners have a great ability to induce “apparent” frequencies from
complicated modulation sequences.  For these examples, the algorithm is not able to find a
pulse frequency, and so the beat output is more-or-less random.

The same in apparent in example #37, which is a pop tune that has a mixed or clave beat—the
beat is not even, but subdivided into oddly-spaced groups.  Each two measures, containing 16
eighth notes between them, are divided into a 3-3-3-3-2-2 pattern.  A human listener has no
trouble understanding the relationship between this pattern and a more common 4-4-4-4
pattern, but the algorithm assumes that the groups of three are the basic beat, and then gets
confused when the pattern doesn't come out right.

Among the examples judged as partly correct, the most common problem is phase shifting.
For example, in example #16, a jazz piano trio, the algorithm estimates the tempo correctly,
but switches back and forth between assigning beats to the upbeat and the downbeat
Although this behavior is not unlike some human jazz listeners, a human would likely be
more consistent, by deciding where to place the beat and then sticking to it.  This behavior
could probably be corrected by adding a small amount of high-level knowledge to the beat-
tracking system.

Similar to this, in example #7, a rhythm and blues tune, the algorithm is uncertain about
assigning the beat to the quarter-note pulse or to the eighth-note pulse, and so switches back
and forth between them.  A human listener might also suffer from similar confusion, but
would likely make an arbitrary decision and then stay with it unless the music changed
radically.

Other than these two sorts of confusions for certain rhythmically complex musics, the
algorithm seems to perform quite successfully at tracking the musical beats.

Tempo modulation
Todd (1994) observes that to be an accurate model of human rhythm perception (and, of
course, to be maximally useful as a music analysis tool), a beat-tracking system must be
robust under expressive tempo modulation.  The algorithm described here is able to follow
many types of tempo modulations; this is effected in the signal processing network by simply
examining, over time, the resonator producing the most energetic output.  That is, when the
tempo of a signal modulates, the response of the resonator corresponding to the old tempo
will die away, and that of the resonator corresponding to the new tempo will gain.

Figure 4-9 shows “tempo curves” for two expressively modulated performances of a piece of
music (Keith Jarrett and Andras Schiff performance, of the beginning of the G-minor fugue
from book I of Bach's Well-Tempered Clavier [sound example 4-3]).  Each curve shows the
change in the resonant frequency that best matches the input signal over time. The algorithm
is quite sensitive to the variations in tempo over time.  Although the notion of tempo curves as
a model of the perception of tempo has been criticized (Desain and Honing, 1992b), this
example shows that this method for analyzing the tempo of real musical examples at least is
sensitive to changes in tempo over time.
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Of course, whether or not these tempo curves are “right”—that is, whether they match the
perception of time-varying tempo by a particular listener or set of listeners—is a very difficult
question to address.  This is the topic, although considered only for simpler cases, of the next
section.

4.4.2. Validation Experiment
I conducted a short validation experiment to confirm the qualitative results given in the
previous section.   I do not intend this experiment to highlight important psychoacoustic
effects in beat perception, but only as an investigation into whether or not the beat-tracking
algorithm performs generally like a human listener.

Subjects
Five adult listeners, all graduate students and staff members at the MIT Media Laboratory,
participated in the experiment.  All were experienced musicians with normal hearing.

Overview of procedure
Subjects listened to seven musical examples, drawn from different musical genres, through
headphones.  They indicated their understanding of the beat in the music by tapping along
with the music on a computer keyboard.

Materials
Seven musical excerpts from the above set were used.  Each was digitally sampled from an
FM radio tuner to produce a monophonic 22KHz sound file, 15 seconds long.  A computer
interface was created on a DEC Alpha workstation with which the musical excerpts were
presented to subjects at a comfortable listening level over AKG-K240M headphones.

The musical excerpts were as follows: a Latin-pop song at moderately-fast tempo (#10), a jazz
piano trio at fast tempo (#17), a “classic rock” song at moderately-slow tempo (#20), an
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Figure 4-9: “Tempo curve” for two performances of the same piece of music.  Each tempo-track
has a short startup period during which the tempo estimation is unstable; after that there are clear
differences in the two performances.  The time-scales are slightly different to make the
performance scales align (the same musical excerpt is used in both cases).
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excerpt from a Mozart symphony at moderate tempo (#40), an “alternative rock” song at
moderately-slow tempo (#45), and a piano etude with varying tempo (#56).

A click track “step function” was also created for the experiment, in which 10-ms white noise
bursts were presented at a tempo of 120 bpm (interonset time of 500 ms) for 6 sec, then at a
tempo of 144 bpm (interonset time of 417 ms) for 4.6 sec, then again at 120 bpm for 6 more
seconds.  This stimulus is used to evaluate the response of human listeners and the beat-
tracking algorithm to sudden changes in tempo.

I assigned ground-truth beat times to each excerpt by listening repeatedly and placing “click”
sounds in the perceptually appropriate positions13.  This task was different than the tapping
task in which the subjects participated; I listened repeatedly to each stimulus with a waveform
editor, placing beats, listening to results, and adjusting the beat positions as necessary.  This
method of finding the “correct” beat placement must be considered to be more accurate and
robust than the real-time tapping task, although there is little literature on humans providing
either sorts of judgment (see (Snyder and Krumhansl, 1999), (Drake, 1998) and (Parncutt,
1994b) for three other “tapping tasks”).  The ground-truth labeling was conducted separately
from the tapping experiment.  I did not know the results of the experiment or the algorithm
execution while labeling, and the subjects were not presented with the ground-truth data.

Detailed procedure
Subjects were seated in front of the computer terminal and instructed in the task: they were to
listen to short musical examples and tap along with them using the space bar on the keyboard.
They were instructed to tap at whatever tempo felt appropriate to the musical excerpt, and to
attempt to tap in equal intervals (a pilot experiment revealed that some subjects like to “drum
along” in rhythmic or even syncopated patterns with the music if they are not instructed
otherwise).  They listened to a 120 bpm click-track as a training sample to indicate they
understood the procedure, and then proceeded with each of the seven experimental trials.

All seven trials were run in the same sequence for each listener, in a single block.  The
experiment was not randomly ordered, based on the assumption that there is little practice
effect in this task.  After each trial, the subject was instructed by the interface to press a key
different than the space bar to continue to the next trial.  The entire experiment took
approximately 5 minutes per subject.  The computer interface recorded the time of each tap,
accurate to approximately 10 ms, and saved the times to a disk file for analysis.

Finally, the beat-tracking algorithm was executed on each of these seven stimuli to produce
beat times as estimated by the model described in the previous sections.  These beat times
were saved to a disk file and analyzed for comparison with the human beat times.  The
algorithm parameters were adjusted to give optimum performance for this set of trials, but not
changed from trial-to-trial (although see Section 5.5.4).

Dependent measures
The human and algorithmic beat-tracks were analyzed in two ways.  First, the beat placements
were compared to the ideal ground-truth placements; then, the regularity of tapping was
assessed by examining the variance of interonset times.

To compare the beat placements, a matching comparison was conducted.  Each beat placed by
a human subject or by the beat-tracking model was matched with the closest (in time)
comparison beat in the ground-truth beat-track.  Initially, only the beats that I actually placed
in constructing the ground-truth track were used, but since some subjects or the algorithm

                                                          
13 I am grateful to Dan Levitin of McGill University for the suggestion to use an expert
analysis as the basis for quantitative evaluation.
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tapped twice as fast as the ground truth on some examples, beats were also allowed to match
the midpoint between ground-truth beats.  The root-mean-square deviations of the subject’s
tap times from the nearest ground-truth tap times were collected for each subject and trial,
averaging across taps within a trial.

This RMS deviation is a measure of how close the tapper came to the “ideal” beat locations.
If it is very low, all of the tapper's placements were very close to ground-truth judgments; if
high, the tapper's placements were randomly distributed compared to the ground-truth
judgments.

This measure leaves open an important aspect of beat-tracking, which is regularity.  As
described in the qualitative results, the algorithm sometimes demonstrates unusual behavior
by switching from one tempo to another, or from off-the-beat to on-the-beat, in the middle of
a trial.  To evaluate the regularity of tapping, the variance of interonset interval was calculated
for each trial-by-subject, each trial by the model, and each trial in the ground-truth tracks.
Note that, as described above, the human subjects were explicitly encouraged to tap regularly.

Again, the ground-truth behavior is taken as the standard of comparison; if the variance is
larger for some subject than for the ground truth, it indicates that that subject’s tapping was
irregular relative to the ground truth.  If the variance is smaller, it indicates that the tapping
was more regular than the ground-truth.  This does not necessarily mean “better”—in the case
in which tempo is changing, to tap “correctly” subjects need to tap irregularly.  However,
most of the measured irregularity arose in this data from subjects leaving out beats.  Each
time a beat is left out, an inter-onset interval twice as large as the rest is added, increasing the
variance.

Results and discussion
The beat-placement comparison is shown in Figure 4-10.  Results indicate that the
performance of the algorithm in placing beats in logical locations was at least comparable to
the human subjects tested for all the musical cases; in four of the seven cases, the model was
the most or second-most accurate tapper.  This indicates that whenever a beat position was
chosen by the algorithm, the position was very close to an ideal beat position as determined
by the ground-truth judgment.
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Figure 4-10: Scatter-plot of human (subj. number) and model (O) beat position accuracy for each of
the seven experimental trials.  Trial ’0’ corresponds to the click-track step function.  Each point
measures how accurate that subject was, relative to the ground truth (see text), in placing beats in
time.  The ground-truth judgments are at zero variance for each column.  For each trial,  the
algorithm beat position was at least comparable to the performance of the human subjects   Overall,
the algorithm performance showed a highly significant correlation with the mean human
performance (r = .814; p(df=5) < 0.015).
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The regularity comparison is shown in Figure 4-11.  Results here indicate that the algorithm
was as regular as a human listener for five of the seven trials, and less consistent for two of
the trials.  In one case (#56), it and several of the human subjects were more consistent than
the ground-truth indicated was appropriate.   More post-hoc analysis is necessary to
understand why the algorithm performance is irregular in these trials; preliminary results
suggest that these two stimuli have relatively slow onsets carrying the beat (violins in one
case, electronically gated drum sounds in the other).  Note that the human listeners, evaluated
as individuals, also show outlying behavior on certain trials.  View the performance of subject
#1 on musical example #20, or subject #3 on musical example #56.

These two results are consistent with the qualitative results described above.  When the
algorithm chooses to place a beat, it does so with great accuracy and musical relevance;
however, for certain musical excerpts, it is somewhat inconsistent in its tapping regularity.
That is, for these examples, it drops beats or shifts phase more often than a human listener.
This is not a bad result, because it is exactly this inconsistency that could best be addressed by
including high-level information in the model (such as simply including instructions to “try to
tap regularly”).

4.5. Discussion

In previous sections, the construction of a beat-tracking system has been approached from a
largely empirical perspective.  However, it is also valuable to compare the resulting algorithm
to previous work on pulse perception in humans.

4.5.1. Processing level
Perhaps the most obvious difference between the method presented here and much of the
previous work on beat-tracking is that this algorithm knows nothing about musical timbre,
genres, or even notes or onsets.  The beat-track that this model extracts is a continuous
transformation from input to output, in keeping with the understanding-without-separation
approach outlined in Chapter 3, Section 3.4.  This approach to tempo analysis might also be
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Figure 4-11: Scatter-plot of human (subj. number), model (O), and expert (*) IOI variances for each
of the seven experimental trials.  Trial ’0’ corresponds to the click-track step function.  Each point
shows the regularity of tapping of a subject for one trial; large values represent less regular tapping.
For trials #40 and #56, the algorithm was not as consistent in tapping as a human listener.  Overall,
the algorithm performance showed a highly significant positive correlation with the mean human-
subject performance, and both the algorithm and the human subjects showed highly significant
positive correlations with the expert judgment (r = 0.889, r=0.863, r=0.995 respectively; p(df=5) <
0.01 in each case).
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called a “perceptual model” of tempo, to contrast it with cognitive structuralist models.

That is to say, in models such as those developed by Povel and Essens (1985), Desain (1999)
or Goto (1995; 1998), there are two stages of processing represented (the first is implicit in
the Povel/Essen and Desain models).  The first stage processes the acoustic stream,
classifying the various pieces of sound into onsets and time-intervals, separating the streams
of sound, and understanding the accent structure and timbre of various components.  Then, the
second stage places these events in relationship to each other in order to determine the tempo
and beat phase of the signal.

In contrast to this, the model that I have presented agrees with the viewpoint of Todd (1994),
in which tempo and rhythm are low-level “perceptual judgments” about sound, with little
cognition or memory required for processing.  This viewpoint is intuitively appealing for at
least one major reason, which is that the tempo and beat of music can be processed in
unattended auditory streams.  Music listeners, even non-musicians, often have the experience
of conducting a conversation and suddenly realizing that they have been tapping their foot to
the background music.  If the foot-tapping process required cognitive structuring of the input
data, it seems likely that other cognitive hearing tasks such as speech-understanding would
interfere with this ability.

Studies such as that of Povel and Essens (1985) have demonstrated convincingly that beat
perception may be explained with a model in which a perceptual clock is aligned with the
accent structure of the input.  A clock model is fully compatible with the method proposed
here; it seems natural and intuitive to posit such an internal clock.  However, the Povel and
Essens model of clock induction, and similarly the Parncutt model, relies heavily on structural
qualities of the input, such as a sophisticated model of temporal accent, to function.

Todd has argued that such phenomena do not need to be modeled cognitively, but rather can
be explained as natural emergent qualities of known psychoacoustic properties of masking
and temporal integration.  My model agrees here as well, and I have demonstrated empirically
in the previous section that complex ecological musical signals can be accurately beat-tracked
without any such factors explicitly taken into account.  However, a more thorough evaluation
of this model would include testing it on the unusual and difficult sequences tested in the
course of developing accent models, to determine if changes to weighting factors or
integration constants need to be made in order to replicate these psychophysical effects.

Of course it is the case that high-level knowledge, expertise, and musical preference have an
effect on the human perception of beat.  However, the results shown in the previous section
demonstrate that quite a satisfactory level of explanatory performance can be produced with
only a low-level, bottom-up model.  Stated another way, the results here show at least that
high-level, top-down information is not necessary to explain tempo and beat perception as
well as this model does.  The only remaining aspects of tempo perception for which high-
level information or high-level models might be needed are those that cannot be explained
with the present model.

4.5.2. Prediction and Retrospection
Desain's recent work on beat-tracking has included valuable discussion of the role of
prediction and retrospection in rhythmic understanding.  Clearly, prediction is a crucial factor
in an accurate model of human rhythm perception, as simply to synchronize motor activity
(like foot-tapping) with an auditory stream requires prediction.  There is a pleasing symmetry
between Desain's “complex expectancy” curves (Desain, 1995) and the phase-prediction
vectors extracted here from the comb-filter delay lines (as in Figure 4-8).

Desain, citing Jones and Boltz (1989), draws attention to the utility of considering prediction
and retrospection to be similar aspects of a single process.  “Retrospection” refers to the
manner in which new stimulus material affects the memory of previous events.  Although
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there is no retrospection included in the model—remembrance is an inherently cognitive
process—the phase-prediction curves could be used as input for this process as well.

When evaluating any model of musical perception, it is important to keep in mind the
complexity of introspection on musical phenomena.  Although after-the-fact, a listener may
have made a rhythmic model of the very beginning of a musical phrase, it is clear that this
model must have arisen via retrospection, for there is not enough information in the signal
alone to form it progressively.  Simply because a listener feels that he understands the rhythm
of the beginning of a musical segment does not mean that the beginning itself contains
sufficient information to allow rhythmic understanding to occur.   A natural extension to this
model would be the ability to go back and reprocess previous moments in the signal in the
light of later tempo analysis.  Such reprocessing has much in common with the recent
blackboard-systems approach to computational auditory scene analysis presented by Ellis
(1996a) and Klassner (1996) and discussed in Section 3.4.1.

4.5.3. Tempo vs. Rhythm
This model cannot explain perceptual phenomena related to the grouping of periodic stimuli
into a rhythmic hierarchy.  There are many known effects in this area, ranging from the low-
level, such as Povel and Okkerman's (1981) work on perceived accents in sequences of tones
that are not physically accented, to very broad theories of generative rhythmic modeling such
as the influential work of Lerdahl and Jackendoff (1983).

This model is compatible with and complementary to the bulk of this research, since most of
these theories assume that a temporal framework has already been created.  Synthesis of a
model that operates from an acoustic source and one that includes musical assumptions and
explanation should be possible.  Such a joint model could represent a very robust theory of
rhythmic understanding.

However, the model presented here should not be taken as attempting to explain rhythm
perception as well as tempo; my viewpoint is rather that these processes are to some extent
separable and may be addressed and modeled independently.

4.5.4. Comparison to other psychoacoustic models
The resemblance between this model of tempo, as shown in Figure 4-3, and modern models of
pitch hearing, as discussed in Chapter 2, Section 2.1.1 is striking.  Both models start with a
filterbank; in the Meddis-Hewitt pitch model (Meddis and Hewitt, 1991) the filterbank is
perceptually based (ERB gammatone filters), whereas in the vocoder pulse model it is not.
The inner hair cells in the Meddis-Hewitt pitch model perform a similar function to the
sequence of envelope extraction, differentiation, and rectification in the vocoder pulse model.
The banks of comb filters are computationally similar to a narrowed autocorrelation (Brown
and Puckette, 1989) for a infinitely-long exponentially decreasing window, although they
preserve the phase of the input, whereas the autocorrelation is zero-phase.  However, the
energy calculation for the comb filter outputs also does not preserve phase, making the overall
resonator-energy calculation process (considering tempo analysis only, leaving beat phase
aside) nearly equivalent to the autocorrelation in the Meddis-Hewitt model. Finally, the cross-
frequency summation is equivalent in the two models.

The obvious similarities between these two models naturally lead to the question of whether
one model alone is adequate for explaining both processes14.  I will examine this question in a
bit more detail by implementing of a tempo-estimation algorithm as a quick-and-dirty variant
on a pre-existing pitch-estimation procedure.

                                                          
14 I am grateful to Dan Ellis of the University of California at Berkeley for making this
observation.
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Algorithms from Slaney’s Auditory Toolbox (Slaney, 1994) were used to implement the
Meddis-Hewitt model of pitch perception as discussed in Section 2.1.1.  The MakeERBFilter
function was used to create a cochlear filterbank of 40 overlapping gammatone filters.  A
sound is processed with this filterbank and then passed to the MeddisHairCell function for
IHC simulation.  The IHC model output is smoothed and decimated by a factor of 20 to
reduce the data size (see below).   Finally, the CorrelogramFrame procedure is used to
calculate the autocorrelogram of the signal based on this cochlear-model front end, and the
rows of the correlogram summed to arrive at the summary autocorrelation.

Much longer lags must be used to calculate the correlogram for tempo analysis than for pitch
analysis.  The length of the input window for the correlogram must be as long as several
periods of the input signal in order to show a strong peak in the summary autocorrelation.
For pitch detection, periods are on the order of tens of milliseconds, but a pulse period might
be as long as two seconds.

A great deal of memory and computation is therefore required to compute the “tempo
periodogram” for a given signal.  Ellis (1996a) suggested that a more perceptually-relevant
correlogram might be computed with “log-lag” spacing on the lag axis, so that the logarithmic
spacing of frequencies on the basilar membrane is echoed in the spacing of correlogram lag
calculations.  This approach is taken in the next chapter although it has the computational
disadvantage of not being easily calculated using the FFT.

Figure 4-13 and Figure 4-12 show the outputs of various stages in the model.  The input
signal used was a “drum loop” taken from a compact disc used for popular music sampling
and composition; the tempo is known (from the CD information) to be 100 beats per minute.
The first four seconds of the signal, sampled at 11025 Hz, were used for analysis.

In both plots, commonality of pulse regions at lags corresponding to periodicities in the
signal, in all frequency channels, can be clearly seen.  Such similarity across frequency
channels is not unexpected, since most of the energy in the input comes from broad-band
drum sounds.

In the summary autocorrelation (Figure 4-12, bottom panel), we see a clear peak in the tempo
periodogram at a lag of 0.6 seconds, corresponding to a tempo of 100 bpm.  We also see
peaks at fractions of this period, which correspond to the faster rhythmic divisions in the
signal (eighth notes, sixteenth notes), as well as multiples of the fractions.

To examine this model for a case where the rhythm is not so clearly defined in the waveform,
I conducted the same analysis on a five-second sample of a classical music track.  This track
contains strings, woodwinds, and French horns, but no drums, playing a piece of music that is
immediately perceived to “have a beat”.  It is difficult to see this beat in the audio waveform
(Figure 4-16); however, the excerpt was one of the ones tracked accurately in Section 4.4.1
(#40).  I estimated the tempo (using a stopwatch and counting beats) as approximately 140
bpm, which corresponds to a lag of 0.42 seconds.  Figure 4-16 and Figure 4-15 show the same
computations on this signal as Figure 4-13 and Figure 4-12 showed for the drum signal.  In
this case, we see very little tempo evidence in the summary autocorrelation.

However, the correlogram (and thus, correlogram sum) is dominated by the high-energy
frequency bands around channels 25-30 (near the ‘cy’ in ‘Frequency Channel’ on the y-axis
of the plot).  If we normalize the correlogram channels by energy, as shown in Figure 4-14,
then the summary autocorrelation does show the tempo peaks, although still not as clearly as
for the drum signal.

Thus, it seems that the Meddis-Hewitt model with normalized correlogram processing is
adequate to track not only pitch of periodic signals with small period, but tempo in periodic
signals with longer periods.  This holds even for complex polyphonic music signals.
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The connection between pitch processing and one model of tempo processing, when described
in this way, is clear.  Both percepts may be explained with the same signal flow, in which a
periodicity-detection algorithm is applied to the rectified outputs of a subband decomposition.
If the model is run slowly, tuned to detect envelope fluctuations in the range 1-4 Hz, then
tempo is detected.  If the model is run quickly, tuned to detect envelop fluctuations in the
range 50-2000 Hz, then pitch is detected.

These results are somewhat surprising—pitch and pulse seem intuitively like very different
things—but naturally lead to the question of whether the auditory system might, in fact, be
extracting them from a signal using the same methods. This question can not yet be answered,
as there is not enough psychoacoustic and neurophysiological research into pulse perception
to know exactly what the right features of a tempo extractor should be.

Put another way, in the search for computational models of pitch perception, we have been
aided by a large number of pitch phenomena that must be reflected in the models: missing
fundamental, harmonic shift, pitch of filtered noise, pitch of non-harmonic complex tones,
and so forth.  There are few if any analogous phenomena for tempo that are waiting to be
explained, perhaps because tempo does not “feel” like an auditory process introspectively and
has thus received little formal attention from psychoacousticians.
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panel, the summary autocorrelation or “tempo periodogram” is the vertical sum of the energy in
each channel (compare to Figure 2-3, Chapter 2).  There is a clear periodicity peak at lag 0.6 sec,
corresponding to the tempo of 100 beats/minute.
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Figure 4-13: Cochlear model applied to a drum loop with known tempo of 100 beats per minute.
The top panel shows the input signal waveform; it is aligned in time with the bottom panel, which
shows the output of the inner-hair-cell model.  The periodic structure of the input can be clearly
seen in both cases; in addition, the lack of continuous energy in the hair-cell output shows the
impulsive nature of the input.
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Figure 4-14: The normalized correlogram and summary autocorrelation.  Now peaks are visible in
the tempo periodogram.  The hand-estimated tempo (see text) is marked with a line.
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Figure 4-15: The correlogram and summary autocorrelation for the classical music sample.  In this
case, the tempo periodogram does not have clear peaks.
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Figure 4-16: The input waveform and inner-hair-cell-model output for a classical-music track.
Note that it is difficult to see the rhythm in the waveform or model output.



106 Chapter 0: 

The study of envelope fluctuations and periodicity processing in the auditory system is still in
its infancy (an excellent review of the neurophysiological data was provided by Langner
(1992)).  There is little concrete evidence for or against the idea that pitch and tempo
perception are manifestations of a single periodicity-detection mechanism.  But there is
certainly an attractiveness about this possibility.  If nothing else, it hints at an auditory brain
that is unified around a single processing approach—namely, the discovery of coherent
periodic envelope fluctuations in the multiple frequency subbands extracted by cochlear
processing.  As I will show in the next chapter, this principle also makes an excellent starting
point for a theory of auditory-image formation in complex scenes.

4.6. Chapter summary

In this chapter, I have described an algorithm that can successfully beat-track digital audio
representing music of many different types.  The music does not have to contain drums or any
other specific timbres, and it does not have to conform to any pre-determined set of musical
templates.  The beat-tracking procedure can be run in real-time on an advanced desktop
workstation.  This model of beat perception does not require that sound be “parsed” or
otherwise converted into symbolic representations before being used to form a tempo percept;
rather, the beat-track is produced via a continuous transformation from input to output.

I have demonstrated, both through qualitative evaluation on a wide range of ecological test
examples, and via a formal (although small) psychoacoustic experiment, that the model
performance is similar to that of human listeners. Finally, I have discussed the relationship
between perceptual models of pitch and tempo, and shown that existing models of pitch
perception are sufficient, if run very slowly, to explain the perception of tempo as well.

There are still aspects of the algorithm that are inadequately tested and understood.  For
example, would it be equally accurate but more efficient with a different filterbank, or could it
be made more accurate in this way?  What would be the implications of using a different
temporal integration function, with different or more psychoacoustically accurate properties?

Errors made by the algorithm are typically due to the inability to understand beat relationships
at various tempi; that is, a human listener intuitively understands the way eighth-note patterns
group to form quarter-note and half-note patterns, and while some processing of this sort is
done implicitly in the resonators due to phase-locking at harmonic ratios, it would clearly
make the algorithm more robust to have an explicit model of this sort of rhythmic grouping.

Perhaps the way to build a system that can track complicated beat patterns is to construct it in
two layers.  The lower layer would be a simple perceptual beat extraction system as described
here, which finds the level at which the pulse is evenly divided in time.  Then, a higher-level
grouping model selects and processes the beats to form an model of the rhythmic hierarchy
present in the signal, based on pattern-recognition detection of accent structures and
instrumental beat patterns.  Building a system in this manner would allow us to leverage much
of the existing work in cognitive rhythm models to apply to the analysis of digital audio as
well as symbolically represented music.

In Chapter 6, I will revisit this model and present some simple continuous feature detectors
based upon its outputs.  These features will be related to high-level human semantic
judgments about music in Chapter 7.  But before that, I will continue the exploration of
periodicity processing of subband representations, and show how such an approach may be
used to explain the formation of auditory images in complex sound scenes.



CHAPTER 5 MUSICAL SCENE
ANALYSIS

In this chapter, I present a new computational model for the processing of complex sound
scenes by the auditory system.  The model is based on a new principle of sound processing—
dynamic detection of subband modulation within the autocorrelogram representation.  It
draws heavily on subband-periodicity models of auditory processing, and so readers with little
previous exposure to this topic are encouraged to review Chapter 2, Section 2.1.1.

I will begin with an exploration of some under-appreciated aspects of the within-channel
behavior of cochlear and subband-periodicity models.  Then, I will present the new processing
model.  Following this, I will evaluate its performance when applied to several
psychoacoustic test stimuli that are believed to reveal important phenomena of auditory
grouping.  A discussion of representational and processing aspects of the model in
comparison with others in the literature concludes the chapter.  Chapter 6 will discuss the
application of this model, and the one I presented in Chapter 4, to the analysis of complex,
real-world musical scenes.

5.1. The dynamics of subband periodicity

The basic subband-periodicity model was discussed in Chapter 2, Section 2.1.1 and was
illustrated in schematic in Chapter 2, Figure 2-1.  This model, and others like it, has mostly
been applied in the past only to the analysis of static signals such as stimuli for
psychoacoustic pitch tests and double-vowel experiments.  The model has proven to be an
excellent description of human pitch-analysis behavior.  However, there has been little work
on the application of this model to nonstationary stimuli—stimuli that change over time.

When a changing acoustic stimulus is processed by a subband-periodicity model, there are
certain dynamic aspects of the autocorrelogram representation that are not often fully
appreciated.  These will form the basis of the processing model in Section 5.2, and so they are
explained in more depth here. I wish to emphasize that the principles of this model are
applicable to any of the variant models of subband periodicity discussed in Section 2.1.1.   It
operates on the changes in periodicity in the representation, not on the periodicity
representation itself, and so any model that can dynamically represent changing periodicity in
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the subband filter outputs could be used as a front-end instead.  I use the autocorrelogram for
simplicity (it is easier to analyze mathematically), and to build on previous work by Ellis
(1996a) and Martin (1999) at the Media Laboratory (robust, efficient source code was already
available).  Models such as Patterson’s Auditory Image model (1992) or De Cheveigne’s
subtraction model (1993) could equally well be used instead.

As a sound signal changes over time, the response of each channel of the autocorrelogram
modulates in two ways.  First, it undergoes amplitude modulation in response to changing
level in the frequency subband of the signal associated with that channel.  As the level in a
subband increases, the energy output of the corresponding cochlear filter increases.  Second, it
undergoes period modulation in response to changes in the frequency of stimulation
dominating that cochlear channel.  In the rest of this section, I will explain what these terms
mean, and the implications of this behavior for the construction of sound-processing systems.

The bandpass filters that comprise the cochlear filterbank are narrowly tuned.  They can only
produce output that is similar to a modulated sinusoid.  In the output of each subband, the
frequency of the sinusoidal carrier is near the center frequency of the filter and the modulation
function is low-pass relative to the carrier.  In the frequency region where phase-locking to
the waveform occurs (all frequencies below about 2000 Hz), the half-wave rectification and
smoothing processes shown in Figure 2-1 change the shape of the wave function, but not the
underlying periodicity.  Thus, for any input signal, the autocorrelation function in each of the
low-to-mid subbands must be quasi-periodic. The period of the autocorrelation function in
each of these channels must be near the period that corresponds to the center frequency of the
subband.

As a time-varying signal evolves, the particular frequency dominating the filter channel—that
is, acting as the carrier signal—changes.  This change is reflected in a corresponding change
in the periodicity of the autocorrelation function.  The changes in the autocorrelation function
is a type of modulation that I term the period modulation of that channel.  A simple example
is presented in Figure 5-1.

Period modulation of the autocorrelation signal in a subband does not only occur in response
to frequency modulation of the input signal.  It occurs any time that the frequency that is
dominating a subband changes.  This can happen due to amplitude modulation of the spectral
components of the input as well as their frequency modulation.  Amplitude modulation and
period modulation are not independent; as the frequency dominating a channel changes, it
moves closer to and farther from the center frequency of the channel, and thus leads to
changing output response from the filter.  Similarly, in most sound signals, multiple harmonic
components are mixed together.  As the relative levels of mixed components change, the one
that dominates a particular channel may change.  This leads to a period modulation in this
channel as the reflection of the amplitude changes in the mixture.

Frequency modulation, both within the cochleagram and the autocorrelogram, is easiest to
observe as a cross-band behavior.  That is, in a frequency glide (Figure 5-2), the gliding sound
can be observed as a diagonal line in the cochleagram (which naturally makes the observer
think of frequency “components”), and as a horizontal stripe moving upwards and leftwards
in the autocorrelogram when it is visualized as a moving image.  In both of these cases, the
observed elements of the scene move from one cochlear band to another over time. However,
this visual effect does not necessarily have anything to do with the auditory perception of the
sound—which is the goal of auditory modeling.  It is essential that the visual appearance of a
representation not be confused with the properties of the representation that pertain to its
auditory properties.
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The viewpoint that I will present in Sections 5.2 and 5.3 is that, for the purposes of auditory
grouping, the gliding percept is best understood as an example of coherent within-band
behavior.  As shown in Figure 5-3, at the beginning of the glide (Figure 5-3a), a cochlear
channel centered on 220 Hz is responding strongly.  In that channel, there is negative period
modulation and downward amplitude modulation as the glide increases in frequency and
moves away from the channel’s center frequency.  At the same time, the channel centered on
315 Hz is exhibiting upward amplitude modulation as well as negative period modulation.  As
the stimulus evolves, both the pattern of stimulation (the set of filters that are responding
strongly) and the within-band dynamics in each channel change. Near the end of the glide
stimulus (Figure 5-3c), the channels in all three regions negative modulation of both sorts.

I claim that it is the negative period modulation in the three frequency bands that unifies these
bands as part of the same auditory image.  The cross-band properties only affect the
perceived qualities of the resulting image—the spectral center of the modulation shifts as the
region of maximum stimulation moves higher.

The comparison that I am making between cross-channel and within-channel representations
may seem unnecessarily elaborate at this point, but understanding this behavior is essential to
understanding the model of dynamics presented in the next section.  Part of my goal in this
chapter is to demonstrate that a robust theory of auditory grouping can be based solely upon
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Figure 5-1: Autocorrelation of a windowed, modulated sinusoid.  As the frequency of output from a
particular filter channel changes, the period of the autocorrelation function of that output changes.
The change in dominant frequency becomes a period modulation in the autocorrelation. The
arrows indicate the motion of corresponding peaks in the autocorrelation from the first time frame
to the second.
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Figure 5-2: A frequency glide, as seen when it is processed in the cochleagram (left) and
autocorrelogram (right) representations.  The input stimulus is a sinusoid with instantaneous
frequency starting at 220 Hz and moving to 440 Hz in 4 s.  In the cochleagram, the glide appears as
a diagonal line, oriented with positive slope.  In the snapshot of the moving autocorrelogram, the
glide appears as an upward and leftward shift of the periodicity peaks (the arrows indicate the
direction of motion).  Both of these visual motions are distracting and draw attention away from the
within-band dynamics of the signal.
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within-channel dynamics, where no components or other mid-level entities need to be
estimated across channels.

5.2. Processing model

In this section, I will describe a computational model that is capable of allocating channels
from a cochlear model into a partitioned representation suitable for further analysis.  As such,
it is only one constituent of a complete model of the perception of complex auditory scenes.  I
have not developed any innovations in the cochlear model or the periodicity analysis;
therefore, I will only discuss these stages of the approach briefly.  Further, although I believe
incorporation of top-down information is necessary in order to build robust CASA systems, as
discussed in Chapter 3, Section 3.4.1, it is not explicitly treated here.

A remarkable correspondence was reported some time ago (Duda et al., 1990) between the
perception of auditory scene analysis and the appearance of the temporal motion that is
observed when the autocorrelogram is visualized.  However, as yet there has been relatively
little attempt to operationalize this discovery in a computational auditory scene analysis
(CASA) system.  The principle underlying the operation of the system I present is the same
one articulated by Duda et al: parts of the sound scene that belong together (as part of the
same auditory image) can be seen to undergo coherent modulation when the correlogram is
visualized as a moving picture.

Slaney and Lyon (1991) produced an excellent “hearing demo reel” videotape that effectively
illustrates this principle for many sorts of sounds, including multiple talkers, speech-in-noise,
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Figure 5-3: Three snapshots in time of the within-band autocorrelations of the same glide stimulus
as in Figure 5-2, for three different cochlear channels.  In this view, the within-band dynamics of
the stimulus are more apparent; the superimposed arrows indicate the directions of motion over
time.  In (a), at the beginning of the stimulus, the lowest frequency channels are exhibiting negative
amplitude and period modulation—that is, the amplitude is getting bigger and the period smaller, as
shown by the arrows—while the middle frequency band is growing in amplitude.  In (b), in the
middle of the stimulus, the middle frequency band shows the strongest response; the middle band is
shrinking and the high frequencies are growing in amplitude, while all three bands show common
negative period modulation.  By the time of panel (c), only three frequencies have positive
amplitude modulation and continue to show negative period modulation. All channels exhibit
negative period modulation at all times.
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and symphonic music.  Their demonstrations suggest that the scene-partitioning problem
might be solved by estimating modulation in the subbands of the autocorrelogram and using
that information to group the cochlear channels.

The correlogram-comodulation analysis system (Figure 5-4) is divided into five rough stages
that I will describe more fully in the subsequent sections.  They are: (1) frequency analysis,
rectification, and smoothing of sound through models of the cochlea and inner hair cells; (2)
subband periodicity analysis with the autocorrelogram; (3) subband modulation detection; (4)
clustering of the modulation data to discover comodulation patterns and to determine how
many auditory images are present; and (5) assignment of each channel, over time, to the
various auditory images.  The last three steps make up the new approach, therefore my
description is most detailed there.

5.2.1. Frequency analysis and hair-cell modeling
The front-end system that I use is very similar to others reported in the literature.  This
particular implementation was programmed by Martin (1999), following the work of Slaney
(1994) and Ellis (1996a).  The cochlear filterbank is modeled as a set of N=54 eighth-order
gammatone filters; this model of the cochlea was introduced by Patterson et al. (1992).  The
phase-locking behavior of the inner hair cells in the cochlea is modeled with half-wave
rectification and smoothing.  The output of this stage of processing for a simple test sound
was shown in Chapter 2, Figure 2-2.

In signal-processing terms, the input signal x(t) is passed through each cochlear filter Γi(t),
1 ≤ i ≤ N, to produce an array of output signals

yi(t) = x(t) * Γi(t) (5-1)

Martin (1999, pp. 70-75) presented more details about the exact properties of this filterbank.
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Figure 5-4: Overall schematic of the sound-analysis model presented here.  Note the similarity of the
initial stages to Figure 2-1 in Chapter 2.  After filterbank decomposition and subband periodicity
detection, the subband modulation is detected channel-by-channel and the result is passed to a clustering
model, which determines the number of auditory images in the scene and the modulation properties of
each.  The output of the clustering model is an assignment of each channel to an auditory image at each
time; the resulting channel-image assignments provide evidence for the analysis of auditory features of the
images.
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Each yi(t) is rectified and smoothed by convolution with a 0.25 ms raised-cosine window
W(t); this results in a set of cochlear channel signals

zi(t) = ℜ [yi(t)] * W(t) (5-2)

where ℜ [·] is the half-wave rectification operator,
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Periodicity detection is performed using the running log-lag autocorrelogram.  In earlier
implementations of the autocorrelogram (Slaney, 1994), it was calculated on a frame-by-
frame basis, by windowing the half-wave-rectified output signals of the cochlear filterbank
and using the FFT to compute the autocorrelation.  More recently, Ellis (1996a) and Martin
(1999) have suggested using a running autocorrelation rather than a windowing operation.
This eliminates edge effects (the decay shown in Figure 5-1) caused by windowing the signal
before calculation, and it also makes it easier to sample the lag axis in different ways.

Ellis (1996a) observed that as human pitch perception is roughly linear with logarithmic
frequency, when the autocorrelogram is used as a pitch model, it makes more sense to sample
the lag axis with logarithmic spacing.  He termed this the log-lag autocorrelogram.  In
Martin’s implementation of the log-lag autocorrelogram, delay lines are used to calculate the
continuous running autocorrelation without an analysis window (see Figure 23, p. 79, of
Martin, 1999).  The delay line outputs are computed using fractional-delay filters, and after
multiplication with the undelayed signal, each lag signal is smoothed with a lowpass filter.
This model is more computationally intensive than Slaney’s FFT-based model, but has
properties convenient to the detection of modulation, as will become clear in the next section.
Three frames of the autocorrelogram of the synthetic test sound were shown in Chapter 2,
Figure 2-3.  For the analysis presented here, the autocorrelogram is sampled at a frame rate of
100 Hz.

For all time t and lag τ, the smoothed autocorrelation of the i-th cochlear channel is defined as
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which is equivalent to

Ri(t,τ) = [zi(t)zi(t-τ)]* w2(-t) (5-5)

that is, delay, multiplication, and smoothing.

To form the correlogram frame at time t, the autocorrelation is sampled at Sl = 150 lags
logarithmically spaced between 0.5 and 20 ms for each of the cochlear filters.  That is, the
correlogram frame at time t is a matrix Ft, defined as
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5.2.2. Modulation analysis
In this section, I present new techniques for analyzing the modulation behavior of channels of
the autocorrelogram.  The purpose of modulation analysis is to convert the dynamic motion of
the autocorrelogram into static features that are suitable for inclusion in a pattern-analysis
system.

On a linear lag axis, a simple frequency modulation such as vibrato corresponds to a period
modulation that can be described as stretching and squashing.  That is, when there is an
increase in the frequency of the sound component that is stimulating a particular filter
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channel, the output of the filter also increases in frequency.  As a result, the x-axis of the
autocorrelation function is compressed (squashed), with peaks closer together, as in Figure 5-
1.  As the signal frequency decreases, the output of the filter decreases in frequency and the
spacing of the peaks of the autocorrelation function is stretched.

The utility of the log-lag autocorrelogram for detecting period modulation now becomes
evident.  When the lag axis is scaled logarithmically, the stretch-squash effect of period
modulation becomes a simple shift to the right or left, which is easy to analyze. Cross-sections
of the log-lag autocorrelogram for two cochlear channels (one steady, and one undergoing
period modulation) for the synthetic sound used in the examples of the correlogram pitch
model in Chapter 2 are shown in Figure 5-5.  The period modulation is easily visualized in the
cross-section of the modulating sound as parallel curves over time.

When two harmonics, or harmonic energy and noisy energy, collide in a single filterband,
then the dynamics are more complicated.  I have not conducted a full theoretical analysis of
such situations; however, a few comments are pertinent.  First, in many cases the
autocorrelation function behaves as an either/or indicator of in-band signal strength.  That is,
when two harmonics collide, if one is stronger than the other, the period of the stronger
harmonic will tend to dominate the autocorrelation function.  Similarity, at reasonable signal-
to-noise ratios, a tonal component embedded in a noisy background still gives rise to clear
peaks in the autocorrelation.  More importantly, since the basic processing step here is to
detect the dynamics of the in-band behavior, the actual values of the periods and amplitudes in
each band are not directly relevant.  In complex scenes, these values will be sometimes
changing in a smooth way for a particular channel, and sometimes in a discontinuous way.  It
is the pattern-recognition part of the model, presented in the next section, that sorts out the
different ways that filter channels are changing.

In the log-lag domain, cross-correlation can be used to detect period modulation.  At each
time step, the autocorrelation function in each channel is cross-correlated with the
autocorrelation function in the same channel from a previous time step.  If the channel is
undergoing period modulation, the peak of this cross-correlation function is off-center.  I have
found that peak-picking suffices to determine the period modulation, at least for the simple
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Figure 5-5: Two slices through the autocorrelogram of the McAdams oboe sound (which was
introduced in Chapter 2, Section 2.1.1, Figure 2-2 and Figure 2-3).  Each panel shows the
autocorrelation response of a single filter changing over time.  The left panel corresponds to a
cochlear filter with center frequency 198 Hz; thus, this channel is dominated by the steady partial at
220 Hz in the sound.  The right panel shows the response of a cochlear filter with center frequency
446 Hz; thus, this channel is dominated by the partial that frequency-modulates about 440 Hz.
Since the lag axis is logarithmically scaled, the period modulation is reflected as linear shifting
behavior over time, not stretching and squashing—all of the curves in the right panel are parallel.
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examples in this chapter.

The finite length of the autocorrelation vector (that is, as discussed in the previous section,
only the autocorrelation lags from 0.5 ms to 20 ms are used in analysis) provides an implicit
windowing function in the cross-correlation.  The running autocorrelation is only calculated
over a finite set of lags, and so it can be viewed as the application of a rectangular (boxcar)
window function to the true, infinitely-long, autocorrelation function.  Since this windowing
function has a triangular autocorrelation function, it biases the peak estimate in the cross-
correlation towards the center.  In order to provide accurate estimates, the cross-correlation is
unbiased by multiplication with the inverse triangle window before peak-picking.

Given the definition of the Ft matrix as in (5-6), the column vectors
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hold the autocorrelation in each channel i at a particular time t.  Each of these may be
compared to the r vector in the same channel i at the previous time t-∆T to calculate the
period modulation.  Period modulation is computed by finding the maximal point of the cross-
correlation between these two vectors.

The lag axis of the autocorrelogram, and thus each r vector, is sampled discretely at a fairly
coarse resolution.  This introduces no artifacts since, as I discussed above, the output of each
subband filter is narrowband.  However, it is possible to gain more resolution in the peak
estimates if the r vectors are upsampled before cross-correlation.

The cross-correlation of r in channel i at time t is defined as
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where Q=10 is the upsampling factor, and r̂ denotes the r vectors after upsampling by Q.  The
summation is taken with appropriate zero-padding on the ends of the r̂ vectors.  The
maximum of this function after application of the unbiasing window W(λ) is then
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This is the value termed the period modulation of channel i at time t.

The domain of period-modulation values is lag scale per second.  At each time step, the
autocorrelation function in each channel is scaled by some ratio that may be detected by
looking for shifts in the log-lag autocorrelogram as just described.  The primary region of
interest in this domain is –2% to +2% lag scale per 10 ms frame. Very small modulations,
between –0.2% and +0.2% per frame, are difficult to detect due to the lack of high-frequency
information in the autocorrelation function.

I observe that, since the entire row of the autocorrelogram is used to estimate the period
modulation, the resulting estimates are quite robust to noise.  This would not necessarily be
the case if, for example, I tried to determine the highest peak in each row, and then track the
motions of the peaks over time.

The output of the period-modulation detection is shown in Figure 5-6.  This figure, a period
modulogram, shows the two-dimensional function mapping cochlear channel and time into
the period-modulation estimation in that channel at that time.

The amplitude modulation in each channel is also measured.  This is accomplished by
dividing the zero-delay autocorrelation—the power—in each channel by the zero-delay
autocorrelation from a previous frame, half-wave rectifying the result (so that decreases in
amplitude are not salient) and applying a compressive nonlinearity (to boost the effect of
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small amplitude modulations relative to large ones).  The power is just (5-4) evaluated at τ=0,
which reduces to

)(*)()( 22 twtztP ii −= (5-10)

The amplitude modulation of channel i at time t is then defined as
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with ℜ  defined as in (5-3).  The particular compressive nonlinearity used is the square-root
function shown in (5-11).

The amplitude modulation is measured in energy scale per frame; it is greater than 0 dB when
the channel is increasing in power, and less than 0 dB when the channel is decreasing in
power.  The output of the amplitude-modulation detection process—the amplitude
modulogram—is shown in Figure 5-7.  There is no explicit amplitude modulation in this
signal after the onset, so all of the amplitude modulation arises from coupling to frequency
modulation.

In the examples to be evaluated in Section 5.4, the time-delay for modulation analysis has
been set to ∆T=40 ms.  This is a value that I have found to give good empirical results on the
evaluation tests. I believe that more information could be retrieved from the modulation
patterns by using more than one previous frame—for example, by cross-correlating the
autocorrelation function at time t in a channel with that of the same channel at 1 ms, 10 ms,
and 100 ms previous.  With appropriate smoothing, this sort of multiscale processing could
give information on coherent motion at many time resolutions, from glottal jitter to syllabic or
note-to-note transitions.  I will not consider multiscale processing at all in the present model.
It is left as a topic for future work.

Estimating the amplitude and period modulation of cochlear channels with very little sound
energy is difficult since the signal-to-noise ratio may be low.  The values are nonsensical if
there is no energy at all in a particular channel.  In the absence of a more principled approach,
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Figure 5-6: The period modulogram of the McAdams oboe, showing the period modulation of each
channel at each time step.  The period modulation is measured with cross-correlation as described
in the text; the legend at right shows the correspondence between the gray level in the main panel
and the degree of period modulation.  Period modulation is measured in lag scale per time; a value
of 1.5 % means that the lag axis in that channel at that time must be stretched by a factor of 1.5 %
(that is, a multiplicative scaling of 1.015) in order to approximate the lag axis in the same channel
at the next time step.  Similarly, a value of -1.5 % corresponds to a multiplicative squashing factor
of 0.985. Compared to Chapter 2, Figure 2-3, the channels responding to the vibrato are clearly
visible.



116 Chapter 5: Musical Scene Analysis

I have simply discarded channels with power –30dB compared the channel with the most
power; they are not considered in the clustering and grouping stages of this model.  (A more
principled approach would be, at minimum, to consider loudness rather than power, and if
possible to understand better any low-loudness circumstances that affect the segregation of
the scene into auditory images.  Regardless, within my present approach, where the overall
goal is to analyze the features of the sound scene, the low-power channels are not important
since they cannot affect the features very much unless entire auditory images are very quiet.)

5.2.3. Dynamic clustering analysis: goals
The modulation analysis described in the previous section converts the dynamic motion of the
correlogram into static features, and the cross-channel concept of frequency modulation into
the within-channel concept of period modulation.  The next step in the comodulation analysis
is to find groups of channels that are modulating in the same way.  In this section, I will
describe a clustering model that suggests one way to do this.  Naturally, there are many other
techniques that could also be examined. I will first describe the dynamic behavior of typical
modulation patterns, to make clear the various behaviors that must be addressed, and then I
will present one particular clustering model that can account for them.

There is an extensive literature on clustering and grouping feature data through pattern-
recognition methods (Duda and Hart, 1973; Therrien, 1989; Bishop, 1995).  By couching
auditory-scene-analysis problems in a suitable analytic framework, techniques from this
literature may be brought to bear, just as they are for problems in visual scene analysis.

In the present model, the feature space has only two dimensions; each channel at each time is
mapped to an vector xi(t) = [pi(t) ai(t)]

T, where pi(t) and ai(t) are defined as in (5-9) and (5-11)
respectively, as the current period and amplitude modulation.  Within each frame, only those
channels containing significant acoustic power (at least –30 dB compared to the channel with
maximum power, see Chapter 2, Figure 2-3) are considered.  Thus, at each time step there are
at most 54 ordered pairs (one for each cochlear channel) but usually less, since not every
channel has energy at every time.  Figure 5-8 shows a scatterplot of the feature space at four
points in time for a test sound.

The hypothesis on which this auditory grouping model is founded is that the perception of
auditory images is due to coherence of multiple filter channels within this feature space.  That
is, whenever multiple points (meaning the modulation behaviors of filter channels) are nearby

C
en

te
r 

fr
eq

ue
nc

y

Time (s)
5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

100

200

500

1000

2000

4000

8000

A
m

pl
itu

de
 m

od
ul

at
io

n 
(s

ca
le

 p
er

 fr
am

e,
 d

B
)

0

1

2

3

Figure 5-7: The amplitude modulogram, showing the amplitude modulation of each channel at each
time step. Amplitude modulation is described as a scaling factor per frame; if the value is 2 dB,
then the energy in that channel at that time step is 2 dB greater than it was at the previous time step.
When the figure is compared to Figure 5-6, the correlation between period modulation and
amplitude modulation is observed.
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each other in this space for a significant period of time, the channels are perceived as grouped
together into a single auditory image.

This is the same hypothesis as the one suggested visually by Duda et al. (1990); namely, that
the perception of the sound scene being divided into multiple auditory images is due to the
coherent comodulation (in the autocorrelogram domain) of each image, and independent
modulations of the different images.

The pattern-recognition problem that needs to be solved is as follows.  In a certain time frame
t, the 54 cochlear channels are arrayed as a distribution of points in the two-dimensional
modulation feature space, as shown in Figure 5-8.  We wish to find a set of clusters of points
that accurately models (or "explains") this distribution.  In the next time frame t+1, the
distribution of points changes.  We wish to find another set of clusters that models the new
distribution; however, we do not want the cluster model at time t to be independent of that at
time t+1.  Rather, when possible we wish to explain the data as arising from clusters moving
from one location in feature space from another, while keeping the groups of points assigned
to each cluster as consistent as possible.  As I will show, the fact that the frames of data are
not independent and nonstationary leads to interesting analytic constraints on the clustering
behavior.

Figure 5-9 shows a schematic of typical clustering behavior.  It will be used as a reference for
the discussion of the desired properties of the model. In this figure, some of the points have
been labeled with their cochlear-filter-channel number for clarity.  These labels emphasize the
changing modulation of the filter channels over time.

The first panel ("T=1") of Figure 5-9 shows a configuration of points (cochlear channels) that
is relatively simple to analyze.  The data fall readily into two clusters, labeled A and B.
Cluster A consists of several channels, including #1, #4, and #8, that are undergoing a large
amplitude modulation and a slightly negative period modulation.  Cluster B consists of
several channels, including #2, #6, #5, #7, and #3, that are undergoing a small amplitude
modulation and are relatively stable, on average, in period modulation.
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Figure 5-8: Scatterplots of the modulation data for the test sound  at four different time steps.  Each
point corresponds to the behavior of one cochlear channel at one point in time. The period and
amplitude modulation values for this sound were shown independently on separate graphs in Figure
5-6 and Figure 5-7.
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The second panel ("T=2") shows the next frame in time.  Each point has moved to a new
location in the feature space; that is, each filter channel is modulating in a different way
compared to the way it was modulating in the first frame.  As a result, the location and
composition of the clusters changes.  Channel #5 has switched and now belongs to Cluster A;
it is indeterminate to which cluster channel #7 belongs.  Notice that the two clusters have
nearly switched places; this is a better description of the underlying data than an explanation
in which the clusters stay in the same place, but all the channels switch clusters.  In general,
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Figure 5-9: Schematic plot of the cluster analysis process.  Each frame shows the configuration of
cochlear channels in modulation space at a single point in time; each point corresponds to the
instantaneous amplitude and frequency modulation in one cochlear channel.  At T=1, there are
clearly two auditory images (clusters of points) in the scene, as the points fall into two separable
loci in the modulation space.  At T=2, there are still two images hypothesized, but the clusters are
closer to each other and it is ambiguous to which images several channels (for example, channel
#7) should be assigned.  At T=3, the situation is more difficult to resolve.  Five different
possibilities, given the same configuration of points, are shown; there is not sufficient evidence at a
single point in time to choose one as clearly preferable.  However, the data from a future point in
time may help to disambiguate.  For example, two possible configurations of cochlear-channel data
are shown for T=4.  If T=4(a) is the situation that is observed, then T=3(a) is preferable (since it
preserves the maximum stability in each auditory image from one time step to the next).
Alternatively, if T=4(e) is observed, then T=3(e) is preferable.  As described in the text, the EM
algorithm is used to hypothesize cluster arrangements in each time step, and the Viterbi algorithm
is used to evaluate the temporal sequence of cluster arrangements over time and choose the most
likely explanation for the observed data.
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explanations are preferred that keep as many channels in the same cluster as possible from
one time step to the next.

For the third time step, a more ambiguous situation is presented.  The five panels presented
for this time step ("T=3 (a)-(e)") show several clustering explanations for the data at this
moment. All five panels show the same data configuration; only the suggested clusters differ.
Panels (a) and (d) show two different clustering models that each explain the data as arising
from two clusters. In panel (a), Cluster B is large and awkward; while in (d) the clusters have
a more coherent center, but require that channel #6 changes clusters.  Panels (b) and (e)
explain the data as three clusters, thus hypothesizing the emergence of a new auditory image
represented by Cluster C.  These two panels differ in the way they suggest the continuity of
the previously existing images; in (b), channel #8 moves from Cluster A to the new Cluster C,
while in (e), channel #8 switches to Cluster B.  Thus, in (e), Cluster C is a pure subset of the
channels in Cluster B at the previous time step (Cluster B has "split" into two clusters), while
in (b), Cluster C is a combination of channels from the previous time step (Cluster C has
"overtaken" channels from both A and B from the previous time step).  Finally, in panel (c),
the data are explained as arising from only one cluster; that is, the auditory images that were
previously kept separate as A and B have merged together perceptually.

It is to be emphasized that there is no "correct" answer that can be chosen from these
alternatives, at least if we only look at one instant in time.   Even intuitively, the different
cluster models for T=3 in Figure 5-9 all have different advantages and disadvantages.  It may
be the case that future data helps to disambiguate the choice of clustering.  For example, two
different frames for T=4 are shown in Figure 8; each of these represents a possible alternative
for the continuing evolution of the scene.  If the first ("T=4 (a)") is the continuation, then
panel (a) would be preferred for T=3, since those channels that are tentatively grouped
together in 3(a) are more definitely so grouped in 4(a).  If the second—panel (e)—is actually
the continuation at T=4, then panel (e) is preferred for T=3, for similar reasons.

Ultimately, of course, the desired clustering analysis is the one (or one of the ones) that
reflects the human perception of the sound scene presented to the model.  As will be discussed
in Section 5.5.5, it is rather difficult to evaluate directly the moment-to-moment correctness of
a proposed source-grouping theory, because for most complex sound scenes there is no
experimental data available on the way or ways in which humans behave.  However, Section
5.4 will demonstrate the performance of the model proposed here with regard to some well-
known stimuli used for perceptual grouping experiments.

5.2.4. Dynamic clustering analysis: cluster model
In order to satisfy the desiderata outlined in the previous section, I have developed a three-
stage clustering and grouping model.  First, the Expectation-Maximization technique is used
to estimate a Gaussian Mixture Model for the data in each time frame.  Second, a Viterbi
lattice technique is used to estimate the number and labeling of clusters in each frame.
Finally, a second stage of Viterbi processing is used to determine the assignment of each
cochlear channel to a cluster in each frame.

Gaussian Mixture Models (GMMs) are models of probabilistic data in which the probability
of a random data point x̂ occupying a certain location in the feature space is given by a sum-
of-Gaussians function.  That is,
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where ρi are the prior probabilities of each of G clusters (thus Σρi = 1) and N(x; µ, K) is the
normal (Gaussian) distribution of the k-dimensional random vector x with mean µ and
covariance matrix K, that is
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Given a set of observations X = {x1, x2, ... , xn} of the random variable x̂ and a certain number
of target clusters G, we wish to find the most probable µi and Ki given the observations X.
Using the well-known Bayes’ Theorem transformation (1995), we know that
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and so maximizing p(µi, Ki | X) is equivalent to maximizing  p(X | µi, Ki) if the prior
probabilities p(µi, Ki) and prior point distribution p(X) are taken as uniform.  The expression
p(X | µi, Ki) (termed the likelihood function) is easier to maximize since there is a convenient
expression, namely equation (5-12), for it.

Assuming the observations X are independent (not strictly true in this problem space), the
final expression to be maximized is
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There is no general analytic solution for this problem, but the Expectation-Maximum (EM)
algorithm (Dempster et al., 1977) provides an iterative method for finding locally-optimal
parameters.  A complete description of the functioning of the EM algorithm would take us too
far afield from auditory matters; for my purposes, the EM algorithm is treated as a black-box
technique for estimating the µi and Ki given the xj. In this model, the EM algorithm is
initialized with random cluster parameters.  It rapidly converges to a “locally optimal”
solution in the parameter space.

As in many implementations of the EM algorithm, the determinants of the covariance
matrices Ki are constrained by bounding the eigenvalues of each.  If any of the eigenvalues
gets too small during convergence, it is artificially set to be exactly the minimum, denoted λm.
This is necessary because there are often pathological local optima in the parameter space
where the covariance matrices of one or more clusters become singular.

The psychoacoustic problem at hand maps into this framework in the following way: the xj

are the observed two-dimensional feature vectors for each of the cochlear channels.  Since a
54-channel cochlear filterbank is used, there at most 54 such points.  The G clusters of points,
by hypothesis, correspond to the auditory images.  The means µi and covariance matrices Ki

correspond to the location and shape of each of the clusters within the feature space.  The ρi—
the prior probabilities that any channel belongs to image i—are all fixed and equal to 1/G in
the assumption that, a priori, there is no reason to prefer one of the clusters (images) over
another.  k in Eq. (5-13) is always equal to 2 since the feature space is always two-
dimensional.  The minimum length of an eigenvector λm can be interpreted as the perceptual
resolution of modulation; clusters in modulation space cannot be distinguished more finely
than this.

A well-known issue with models of this sort (see, for example, Duda and Hart, 1973, pp. 241-
243) is that there is no principled way to determine how many clusters there should be.  In the
clustering framework that I have set up, the time-series (nonstationary) aspects of the
clustering model provide a way to deal with this problem.  The EM algorithm is executed
numerous times with different settings of G.  Each of these settings, for G = 1, 2, ... Gmax,
results in a different configuration of clusters in feature space—for example, the choices
shown in Figure 5-9 Time 3(a)-(c).  The different configurations will be compared, and one
selected, in the next step of the model, described in the next section.
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The way in which the EM algorithm estimates the parameters of the Gaussian clusters
depends on the distance function used.  That is, given two points in the modulation space, the
distance from one to the other may be measured in a variety of ways.  In principle, it should
be possible to use data from perceptual experiments to determine the human metric for
distance in modulation space.  To achieve the results demonstrated in Section 5.4, a simple
spatial distance metric (the 2-norm || xi – xj ||) was used.

5.2.5. Dynamic clustering analysis: time-series labeling
The first stage of the clustering analysis was described in the previous section.  It gives, for
each time frame, several hypotheses regarding the number and configuration of clusters in
feature space at that time.  The second stage of cluster analysis is to determine the optimal
evolution of the cluster parameters over time.  To illustrate, referring again to the schematic in
Figure 5-9, the EM algorithm might provide the configuration shown for T=2, choices (a), (b),
and (e) for T=3, and either configuration (a) or configuration (e) for T=4.  Based on the
configurations in T=2 and T=4, the second stage must select the optimum choice for T=3.
The selection of the optimized sequence of cluster arrangement is a type of time-series
analysis.

The time-series analysis required in this problem involves two aspects.  First, the EM
algorithm cannot give consistent labels to the clusters from one time step to the next.  That is,
even for an easy case such as T=1 in Figure 5-9, the EM algorithm is equally likely to
produce two solutions.  In the first, which is shown, class A contains channels #1, #4, and #8,
with class B containing channels #2, #3, and #7 (among others).  In the second, class B
contains channels #1, #4, and #8, and class A contains channels #2, #3, and #7.  The two
solutions are identical except for the labeling of the classes, which is reversed.  In general, if
there are more than two classes, the labels are arbitrarily permuted.

In a single time frame, the labels are unimportant since there is no need to have a particular
image bear a particular label.  But in a sequence of time frames, it is important that the labels
from one time step to the next agree with each other—this is known as a correspondence
problem.  One way to solve it might be to use the cluster arrangement at one time step as the a
priori most likely arrangement at the next; this sort of heuristic may be implemented in the
EM framework by using a non-uniform function for p(µi, Ki).  This approach is not taken
here, because a different method allows the labeling of the classes to be corrected in
conjunction with the second aspect of time-series analysis, which is the discovery of the
correct number of auditory images in the scene.

It is important that a processing model that purports to explain the human perception of
auditory scenes be able to dynamically detect the number of auditory images.  In real-world
situations, the human listener does not know the number of auditory images in a scene
beforehand.  In most cases, this number changes over time as new sound sources appear and
old ones depart.  An important feature of the model I have developed is that it is capable of
dynamically determining the time-varying number of images in the auditory scene.

Since the clustering model in the previous section is couched in a Bayesian framework, there
are principled ways to analyze the “fit” of the model to the data in each time frame.  Further,
it is relatively clear how to study the evolution of the model over time.  There are two
principles in conflict with each other:

1.  We wish the fit of the model at each point in time to be as good as possible.

2.  We wish the parameters of the model (particularly the number of clusters) to evolve
slowly over time.

For example, given some data, we might find two different explanations, each corresponding
to a hypothesis about the perception of the auditory scene.   In the first, there are three images
at all times T=1, T=2, T=3,... except at T=12, at which there are only two images.  This



122 Chapter 5: Musical Scene Analysis

hypothesis is equivalent to an auditory scene in which one image briefly disappears, and then
reappears a short time later.  A second explanation would be one in which there are three
images at all times, including T=12, but the model fit at T=12 is not as good as that at other
times15.  This hypothesis is equivalent to an auditory scene in which there are three images at
all times, and one of them is masked or otherwise obscured for one instant.  Evaluation of
these competing hypotheses depends on our knowledge about the world—how likely it is that
there are two or three images, how likely it is that an image disappears and reappears, how
poor the fit of the cluster model must be before it is considered unacceptable.

A Markov-chain model is suitable for addressing this problem.  A schematic is shown in
Figure 5-10.  At each point in time, as described in the previous section, the EM algorithm
generates several clustering hypotheses.  For each of these, there are several possible labeling
orders as described above.  Each clustering-labeling hypothesis at each point in time is
represented by a node on a directed graph.  The progression from one time step to the next is
represented by an arc connecting a node at T=t to a node at T=t+1.  The graph is forward-
fully-connected in the sense that there is an arc connecting each node at time t to each node at
time t+1.

The number of columns in the lattice is equal to the number of time steps to be processed by
the model.  The number of rows, or states, depends on the number of hypotheses that will be
considered at each time.  As discussed above, in each time frame, the EM algorithm proposes
hypotheses for several numbers of clusters: G = 1, 2, ... Gmax.  For a hypothesis with G

                                                          
15 “Model fit” here includes some sort of minimum-description-length criterion—of
course it is the case that three clusters can always give a greater likelihood than two.  But
if the underlying density has two clusters, the three-cluster model is the weaker one.
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Figure 5-10: The Markov lattice used to optimize the number of images and their labels over time.
Each node in the diagram represents a hypothesis about the number of images and the permutation
labels in one time frame.  In this schematic, the number of images is restricted to be either one or
two at every time (in general, the number of images is not so restricted as shown here and so there
are many more states). Each node (or state) is weighted by an error term Eti, describing the
goodness of fit of that clustering hypothesis with respect to the configuration of data at that time.
At all time, Et 2 = Et 3 since these configurations are equivalent except for labeling.  Each arc is
weighted by a transition weight wtij, describing the likelihood of transitioning from state i at time t
to state j at time t+1.  (Not all nodes and arcs are shown with labels here, in order to reduce clutter
in the diagram).  The Viterbi algorithm is used to calculate the most probable sequence of states
(shown with the bold arrows) given these weighting factors.  In this schematic, the optimum
solution is one in which there are two images in time T=1, T=2, and T=3, and one image at time
T=4 and T=5.
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clusters, there are G! possible labeling orders (for G = 3, these are ABC, ACB, BAC, BCA,
CAB, and CBA).  Thus, given a value of Gmax, at each time step there are
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rows to consider, and K2 arcs from one time step to the next.  (These numbers grow very
quickly due to combinatorial explosion.  If Gmax is 5, then K is 153 and so there are nearly
25 000 arcs to consider.  If Gmax is 6, then K is 873 and there are more than 750 000 arcs at
each time step.  Possible improvements to efficiency are discussed in Section 5.5.1).

Each node is weighted by an error function derived from the EM estimate of cluster
likelihood.  In particular, given the clustering hypothesis G;µi; Ki that uses G clusters to
explain a set of points X = {x1, x2, ... , xn}, the error function
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with N(• ) defined as in (5-13), is a simple criterion.  This function is just the joint likelihood
of all the points in X (again, with the assumption of independence) within the given cluster
model, weighted by the number of clusters.  I will use Etk to denote the error function assigned
to the node at time t in clustering hypothesis k, where 1 ≤ t ≤ tf and 1 ≤ k ≤ K.  Each of the Etk

for hypotheses with the same number of clusters are equal, since they are the same except for
renaming.  Thus, in each time step, there are only Gmax unique values for Etk.

P(G) in (5-17) denotes the prior probability that there are G images in the auditory scene.  In
principle, some kind of high-level or contextual knowledge could be used to create this
function.  For the examples computed here, a simple weighting by the number of images is
used, so that
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This is a sort of minimum-description-length criterion.

Each arc is weighted by a transition weight that gives the likelihood of a transition from the
start node of the arc to the end node of the arc.  For example, in Figure 5-10, w1 1 3 is the
likelihood of making a transition from state 1 at time T=1 to state 3 at T = 2.  The weights wtij

are computed as the product of two factors, that is

wtij = qij mtij (5-19)

The qij are time-independent factors that describe the probability of going from a
configuration in which there are G images to one in which there are G’ images.  This implies
that qij = qi’j’  whenever the number of images in state i is equal to that in state i’  and likewise
for j and j’ .  This factor, like P(G), could be set contextually by some sort of top-down
mechanism, but herein values are set through trial-and-error to give good performance on the
examples.

The mtij describe the match between the clustering hypothesis at time t and that at time t+1.
In particular, let c( x̂ ; k, t) be the likelihood of observing a value of random variable x̂ in state
k at time t, that is

),;ˆ(),;ˆ( kkNtkc Kxx = (5-20)

where µk and Kk are the cluster parameters for state k at time t.  Then define



124 Chapter 5: Musical Scene Analysis
















<







+++

>+











+

=+

=

∑∑ ∑

∑∑ ∑

∑∑

= = +=
++

= =
+

+=

= =
+

ji

n

l

G

k

G

Gr
ltlttl

n

l

Gj

k
jlt

G

Gr
tltl

ji

n

l

G

k
lttl

tij

GGtrctkctkc

GGtkctrctkc

GGtkctkc

m

i j

i

i

j

i

    )1,;()1,;(),;(

     )1,;(),;(),;(      

                             )1,;(),;(            

when

when

when

1 1 1
,1,1

1 1
i,1

1

1 1
,1

xxx

xxx

xx

(5-21)

This messy expression can be interpreted as follows.  The first clause, for Gi = Gj, operates
when the number of clusters in state i, Gi, and that in state j, Gj, are equal.  It says that the
likelihood of a transition is given by the assumption that all channels stay in the same cluster
from one time step to the next.  That is, if channel #1 is in cluster A in time t, then it is in
cluster A at time t+1, while if it is in cluster B at time t, then it also is in cluster B at time t+1,
and so forth.  Similarly, if channel #2 is in cluster A in time t, then it is in cluster A at time
t+1, and so forth for all channels.

The second clause, for Gi > Gj, is the death clause, since if Gi > Gj, it means that one or more
images have vanished between time t and time t+1.  It says that the likelihood of a transition
is given by the assumption that all channels stay in the same cluster if the cluster is present in
both time frames.  If the cluster has died, then it doesn’t matter where the channels belonging
to it go in the next time frame

The third clause, for Gi < Gj, is the birth clause, since if Gi < Gj, it means that one or more
images have appeared between time t and time t+1.  It says that the likelihood of a transition
is given by the assumption that all channels stay in the same cluster if the cluster is present in
both time frames, but channels may freely switch from any cluster to one of the newly
appeared clusters.

Through this definition, mtij formalizes the notion that we wish the clusters to be positioned
such that it makes the assignment of channels to images as stable as possible.

Using the Etk and the mtij values, the Markov model for time-series analysis can now be
presented.  We wish to find a sequence of states A = a1, a2, ..., atf through the Markov lattice
(as shown in Figure 5-10) that minimizes the total sequence of errors and transition weights;
that is, that minimizes
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The obvious way to find this minimizing sequence is to evaluate (5-22) for each of the
possible sequences A; unfortunately, there are far too many of them (ft

K in all, with K defined
as in (5-16)).

The Viterbi algorithm (Therrien, 1989, pp. 204-211) is a dynamic-programming technique
that shows how to find the minimizing sequence for (5-22) in time proportional to the size of

the whole lattice, that is K tf, which is quite an improvement on ft
K .  Using the Viterbi

algorithm, the best sequence of states given the weighting terms Etk and mtij  can be
computed—such a sequence might be the one shown with dark lines on Figure 5-10.  This
sequence is a joint estimate of the number of images at each point in time, and the
correspondence of labels from one time frame to the next.

5.2.6. Dynamic cluster analysis: channel-image assignment
The stages of processing described in the previous two sections estimate the number and
positions of images in modulation space at each step in time.  The last stage of processing is
to assign each cochlear channel to a cluster at each time.  It is through this assignment that the
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cochlear channels provide evidence about the features of the various auditory images in the
scene.

For the purposes of simplifying the presentation, I will only consider hard assignment, in
which each channel is assigned to only one image at a time (exclusive allocation in the
terminology of Bregman (1990), also called disjoint assignment by Summerfield et al.
(1990)).  This clustering framework would easily allow soft assignment (for example, to say
that at time T=4, channel #26 is 80% part of image A, and 20% part of image B).  However, it
is not clear that position in the modulation space is the best basis on which to hypothesize
conjoint channel assignment.  It would also make feature extraction (as in Chapter 6) more
complicated.  Nonetheless, the clustering and auditory-image-segregation parts of the model
makes no assumptions about whether or not channels are exclusively assigned to auditory
images.

In order to estimate the assignment of channels to images, the Viterbi algorithm is used again.
In this instance, the transition lattice takes the form of a Hidden Markov Model (HMM)
(Therrien, 1989, pp. 189-194), as shown in Figure 5-11.

At each point in time, a cochlear channel occupies a given point in modulation space; this is
the two-dimensional feature vector x that was calculated in Section 5.2.2.  Each image at each
point in time corresponds to one of the Gaussian clusters that was computed in the previous
stages.

              

Image A

T=2 T=3 T=4 T=5

Image B

Image C

T=1

πs

πx πx

πs

πx

πb

πb

πs

πs

Figure 5-11: The Hidden Markov Model lattice used to assign cochlear channels to images.  Each
node represents the probability density function (PDF) associated with a particular auditory image
at one point in time.  Each arc represents the a priori probability that an channel stays in the same
image, compared to that of moving from one image to another, at a certain time.  The weights πs,
πx, πb, and πd represent the weight assigned to a channel staying in a single image, moving to
another image that was present at the previous time, moving to an image that has just been born,
and moving away from a channel that has died, respectively (the last is not shown in this diagram).
In this example, at T=1 and T=2 there are two images in the scene, and at T=3, T=4, and T=5 there
are three auditory images.  Based on the cluster model developed in the previous sections, each
image is assigned a Gaussian cluster in modulation space at each time (shown as small two-
dimensional plots next to some of the nodes). This PDF determines the probability that a cochlear
channel that is part of that image will be modulating in a certain way.  Based on this lattice, the
Viterbi algorithm is executed 54 times, once for each cochlear channel.  For each channel, the
optimal path through the sequence of clusters is computed.  For example, the path for one channel
is shown in bold; this channel is a member of image A at time T=1 through T=3, and a member of
image C at time T=4 and T=5.
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Thus, the instantaneous probability that a channel is a member of a particular cluster at a
particular time is given by
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where ci indicates membership in image i, x is the feature vector measured from the channel,
ρi is the prior probability of membership in class i (the ρi are taken as uniform herein), N(• ) is
defined as in (5-13) given that µi and Ki are the parameters of the cluster corresponding to
image i, and G is the number of images in the scene at that time.

Since the denominator of (5-23) doesn’t vary with class, and the ρi are taken as uniform, the
error weight for each node of the HMM lattice i relative to cochlear channel #k is given by

Eikt = N(xk; µi Ki) (5-24)

where µi and Ki are given relative to the particular time step.

Weights on the arcs in the lattice are given as free parameters πs, πx, πb, and πd.  These
parameters are the a priori probabilities respectively that: a cochlear channel stays in the same
image from one time frame to the next; a cochlear channel moves from an image in one time
frame to a different image in the next when both images are present in both time steps; a
cochlear channel moves from an image in one time frame to a new image that has just been
born; a channel moves from an image that has just died to another image.  Each weight wij

going from node i at time t to node j at time t+1 is assigned one of these values in the obvious
way.  The arc weights are independent of the cochlear channel and of time, by hypothesis.

In the preceding section, the goal was to derive the sequence of clustering-labeling solutions
that minimized the error function in (5-22).  The goal of this second stage is to derive for each
channel k the sequence of states Bk = bk1, bk2, ... bktf that minimizes the overall channel-image
assignment error; that is, that minimizes
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As with the optimization of (5-22), the minimal such sequence can be computed efficiently
with the Viterbi algorithm.  The resulting sequence Bk is the class membership of each
cochlear channel at each time.  The ensemble of such sequences over all cochlear channels
may be considered a partition of the auditory scene.  The function
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which indicates whether channel k is assigned to a particular auditory image i at time t, is
termed the channel-image assignment function.

Section 5.4 of the present paper considers the degree to which the partition calculated in this
manner can correctly predict the response of human listeners on some psychoacoustic tasks.

5.2.7. Limitations of this clustering model
It is important to recognize the limitations of this approach in estimating the number of
images and their positions in modulation space.  Some of them are:

•  The overall sequence of states given is not globally optimal, for two reasons.  First, the
EM algorithm only gives a locally-optimal solution, not a globally-optimal solution, and
so it might be the case that a different starting condition for EM would give a better fit to
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the data for some number of clusters in some frames.  For example, it is known that using
the ISODATA algorithm (Therrien, 1989) to produce an initial estimate gives good
results.  Second, when using the Viterbi algorithm to determine the optimal time-series of
clusters, there is only one hypothesis considered for each number of clusters G.
Referring to Figure 5-9 at T=3, for G=2, either (a) or (d) will be the hypothesis, but they
are not compared to each other.  (For G=3, (b) and (e) are compared to each other since
they are only different in labeling).  Thus, it might be the case that (a) is the
instantaneously optimal clustering pattern, and is thus selected in the EM step as the
hypothesis for G=2, but that (d) is actually a better fit in the overall time series.

In order to achieve this sort of optimization would require joint processing of the EM
algorithm and the Viterbi algorithm, so that the entire continuum of error functions
possible from various clustering solutions is available to the Viterbi process.  This seems
to be a computationally intractable method, and so the tradeoff presented here optimizes
the instantaneous solution before the time-series solution.  It is unknown how much better
the time-series solution might be if it were jointly optimized with the clustering model.

A possible intermediate improvement would be to generate multiple hypotheses for each
number of clusters G, by using different EM starting states.  Informal investigation of the
solution space indicates that most configurations of data points in modulation space lead
to three or four general classes of EM solutions when the EM algorithm is run multiple
times.  Therefore, at the cost of a perhaps an order of magnitude in execution time, it
would be possible to consider multiple (but still not all) clustering hypotheses for a
particular data-point configuration.

•  Similarly, the constraint that leads to equation (5-21) is only a heuristic.  In time frames
where cochlear channels actually do move from one image to another without a birth or
death occurring, the constraint is violated and it is possible that this constraint gives the
wrong answer.  For example, occasionally the Viterbi model seems to switch the labels of
two images, and the resulting claim made by the model is that all of the channels
belonging to image A now belong to image B and vice versa.

In order to achieve a more optimal solution here would require joint processing of the
time-series cluster analysis and the image-channel assignment.  As with the previous
point, it would be computationally very expensive to do this, and so treating these stages
of the model as separable, while not strictly true, seems to be a good tradeoff between
accuracy and efficiency.

•  There are some prior constraints on cluster behavior that might be desirable but that are
not directly achievable through the Markov model of cluster movement.  For example, it
might be desirable to assert that the birth and death of a single auditory image cannot
occur within 50 ms of each other (that is, that the perceptual duration of an auditory
image can be no less than 50 ms).  This sort of constraint cannot be implemented directly
within a Markov framework (although the results could be “cleaned up” afterward by
additional post-hoc processing).

•  The model of image birth/death is not very sophisticated.  For example, if a new image
arrives in the scene at the same time as a pre-existing one departs, then the number of
clusters will be unchanged.  The present model will interpret this by trying to find an
explanation that provides continuity between the images over time, even though this is
not a veridical interpretation of the data.  Further, when an image birth or death occurs,
there is no part of the present model that can describe clearly what happened—for
example “image A has split into new images A and C.”  An extension to the concept of
cluster labeling, with more-sophisticated continuity metrics, could be used to attack this
problem.



128 Chapter 5: Musical Scene Analysis

•  The entire time-series is processed at once.  This has two disadvantages.  First, it means
that sound events at one time can affect the perception of sound events arbitrarily far
away in time.  Second, it means that the model is not really a process model in which data
are processed in real-time as they come in.  In the present model, all of the perception is
done in retrospect, after all sound has arrived.  Both of these problems would be solved
by making the Viterbi stages only operate on short temporal windows, which could be
interpreted as echoic memory.  So long as the features that are derived from sound events
are still within the extent of the window, they are able to affect and be affected by the
probabilistic reasoning.  As old sound events exit the window, their percepts would
become fixed and unable to change.

5.2.8. Feature analysis
The final step in the model is to use the channel-image assignments calculated from the
clustering stages to determine the perceptual features of the auditory images.  The proper way
to do this is still a topic for future work, although some basic feature-detection experiments
have been performed.  Results from these will be shown in Section 5.4 and Chapter 6.

An important principle is that the channel-image assignments are not themselves the auditory
images.  Rather, the channel-image assignment function determines the channels that provide
evidence that can be used to make judgments by a particular image at a particular time.  To
actually compute the features is a process of integrating evidence when it is available, and
making guesses when it is not.

It is clear from perceptual data, such as that on phonemic restoration (Warren, 1970), that
sophisticated high-level models are used in the human auditory system to help make such
guesses about missing data.  Ellis (1996a) has outlined a computational theory and argued that
it is sufficient for making such judgments, and Martin (1999) has shown how it is possible to
build sophisticated structural sound models from the data available in the autocorrelogram
representation.  There is an extensive niche in the artificial-intelligence literature that
discusses the problem of making inferences from incomplete data.

To follow such a hypothesis, the auditory image in the mind would be a sound model such as
those described by Martin (1999).  Such a model—say, for a perceived violin—has
parameters that maintain the perceived pitch, loudness, playing style, etc. of the perceived
object.  Based on the channel-image assignment, evidence from the acoustic signal is
integrated within the model-formation process to fill in the parameters of the perceptual
model.  The perceptual features are not calculated directly from the acoustic signal, but are
rather induced through the model.  A theory like this one has the advantage that when gaps
arise in the evidence stream due to occlusion of the signal or a shift in attention, it is not the
case that these gaps necessarily become part of the perceived model’s parameter settings.  If
they do not, then the evidentiary gaps do not correspond to perceived gaps, and the features
perceived in the sound are interpolated based on the previous parameters of the model.

Another way to say the same thing is that a gap in evidence is not evidence of a gap.  In a
complex sound scene, the auditory system must be prepared to deal with occlusions and
attentional shifts that cause direct evidence for the features—or even for the existence itself—
of a particular auditory image to be lost momentarily.  This happens more or less continuously
in the real world of hearing.

A simple way to use the channel-image assignments that does not take advantage of such
sophisticated  mechanisms is to treat them as masks for the cochlear filterbank data.  That is,
to hypothesize that an auditory image at some time consists simply of the output of the
cochlear filterbank for the set of channels assigned to the object.  Based on this model of the
auditory image, standard perceptual feature models can be applied directly to it.  For example,
the autocorrelogram model of pitch perception, as discussed in Chapter 2, Section 2.1.1, can
be applied to the outputs of the filter channels that are selected at a given time.  This is the
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model of the features of auditory images suggested by Meddis and Hewitt (1992), although of
course their image-formation model is quite different than the one suggested here.

5.3. Model implementation

In this section, computational implementation issues are briefly described.  Source code for
the various stages of the model is available from me via electronic mail.

5.3.1. Implementation details
The model is implemented in two parts.  The correlogram analysis stage was implemented by
Martin (1999) in C++, and therefore runs relatively quickly, although not in real-time.  The
input to this stage is the sound to be analyzed, stored in an uncompressed audio file format
such as AIFF.  On a desktop PC (450 MHz Pentium-III) it takes approximately two minutes
to compute the autocorrelogram for ten seconds of sound.  The exact computation time
depends on the number of filters used in the gammatone filterbank and the time resolution
used to compute the autocorrelogram.  The output of this stage is an analysis file that contains
the entire autocorrelogram in a binary data representation, represented as a series of frames.
This analysis file is many times larger than the original sound file.

The modulation analysis and grouping stages are implemented in Matlab.  The input to these
stages is the autocorrelogram analysis produced in the previous stage.  For each frame of
autocorrelogram data, the modulation parameters in each channel are computed, and several
clustering hypotheses are generated with the EM algorithm.  After the modulation analysis
and grouping for each frame is complete, the two Viterbi passes through the grouping
hypotheses are used to determine the sequence of images and to assign channels to auditory
images.  This stage runs very slowly due to the Matlab implementation; on a desktop PC it
takes approximately three hours to compute the image grouping for ten seconds of sound,
with Gmax=3.  This  part of the model could be optimized by reimplementing it in C++ with
more attention to the computational complexity of the particular techniques used.  The output
of this stage is the image-channel assignment, which associates the evidence present in each
cochlear channel with a particular auditory image at each point in time.

More radical optimization will be needed if the model is to be practically useful for
investigating more complex scenes.  As the calculations based on Eq. (5-16) show, thousands
or even millions of arcs per time frame would need to be considered if more than four
auditory images were allowed to occur.  This is computationally intractable on any computer
system today using the method described.  The most immediate improvement would be to
find a way to arrive at the labeling order of the cluster hypotheses directly, rather than
including this as part of the Viterbi optimization stage.  The largest combinatorial-explosion
problem comes from having to consider each order of cluster labels as a separate clustering
hypothesis.  On the other hand, it is unknown whether the human listener can actually
perceive more than three or four auditory objects in a scene at once (see Section 5.5.4).

5.3.2. Summary of free parameters
As seen in passing in previous sections, there are a number of free parameters in the model,
the values of which can be used to tune the behavior of the model.  In principle, the model
parameters should be tuned through reference to quantitative psychophysical data (see also
Section 5.5.4).  In the model is successful, once the parameters are tuned with respect to one
experiment in this way, the model should be able to quantitatively predict the results of other
experiments without altering the settings.  However, in the present paper, the evaluation of the
model is not so ambitious—only qualitative matching to experimental results is shown.  On
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the other hand, all of the results shown in Section 5.4 were achieved with a single set of
model parameters.  These are the settings that are shown as “default” settings below.

Free parameters in autocorrelogram analysis

Symbol Meaning Default value

Sa Audio sampling rate 24000 Hz

Sc Autocorrelogram frame rate 100 Hz

kt Time constant of one-pole smoothing
applied to correlator output

25 ms

No Number of octaves covered by cochlear
filterbank

9

Ns Number of filters per octave in cochlear
filterbank

6

lmin – lmax Range of lag axis maintained in one
autocorrelogram frame

0.5 – 20 ms

Sl Sample spacing of lag axis (logarithmically
spaced samples)

150
samples/frame

Free parameters in modulation detection

Symbol Meaning Default value

∆T Spacing between correlogram frames for
modulation analysis

40 ms

Pm Minimum power allowing a cochlear
channel to be included in analysis during
one frame (relative to most powerful
channel in that frame); channels with less
power are discarded for that frame

-25 dB

Q Interpolation factor used for resampling
autocorrelation signal before cross-
correlation.  Controls quantization of cross-
correlation results.

Factor of 10

Dmax Maximum detectable cross-correlation
between autocorrelation signals

40 samples of
resampled lag axis

Free parameters in EM clustering

Symbol Meaning Default value

Gmax Maximum number of clusters 2

iˆ Initial estimates of cluster means Set randomly for
each frame and
clustering
hypothesis within
parameter space
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iK̂ Initial estimates of cluster covariances Fixed at 








2.00

02.0

λm Minimum covariance eigenvalue 0.03

E Convergence threshold (difference in
likelihood from one iteration to the next that
terminates EM iteration)

10-3

Free parameters in transition model

Symbol Meaning Default value

qij Prior likelihood of changing number of
clusters

10-4 if i > j (birth),
1 otherwise

πs Prior likelihood of a channel staying in the
same cluster from one time frame to the
next

1

πx Prior likelihood of a channel switching
clusters

10-18

πb Prior likelihood of a channel joining a just-
born cluster

10-18

πd Prior likelihood of a channel moving from a
dead cluster to different cluster

10-18

5.4.  Psychoacoustic tests

In this section, I will evaluate the behavior of the auditory-segregation model on several
simple psychoacoustic test stimuli.  The goal is only to show qualitative agreement with
human behavior on simple examples; more complex musical sounds will be considered in
Chapter 6.  For each of these sorts of stimuli, a great deal more is known about human
perception that can be treated here; it is surely not possible to treat the entire psychoacoustic
literature on the perception of auditory scenes within a single chapter.  More extensive testing,
and investigation of the use of the model to make quantitative predictions, are discussed in
Section 5.5, but left mainly as a topic for future research.

5.4.1. Grouping by common frequency modulation
The so-called McAdams oboe was first used as an experimental stimulus by McAdams in his
dissertation (McAdams, 1984).  It was created to investigate coherent frequency modulation
as a cue to the formation of auditory images, and may be generated with additive synthesis.
For the stimulus used here (slightly different that the ones that McAdams used), a ten-
harmonic complex tone was synthesized for 10 s.  After the first 2 s, a coherent vibrato
(frequency modulation) at 5 Hz was applied to the even harmonics only.  The modulation
depth was ramped from 0% to 4% (that is, until ∆f / f = 0.04) in 4 s, and then maintained at
4% for the final 4 s.

The percept for most listeners when they hear this sound is that of a single complex tone
splitting into two sounds.  One of the two sounds is clarinet-like (due to the unmodulated odd
harmonics), and one of which is somewhat soprano-like and one octave higher (due to the
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modulated even harmonics).  The stimulus is shown in schematic in Figure 5-12.  I
graphically presented the output of the early stages of processing for a slightly different
version in Chapter 2, Figure 2-2 and Figure 2-3.

A comparison sound, in which the maximum modulation was only 0.4%, was also created.
The two stimuli can be heard as Sound Example 5-1 on my web page.  The sounds were
synthesized at a sampling rate of 24000 Hz with a digital additive synthesis procedure written
in the digital synthesis language SAOL (Scheirer and Vercoe, 1999).  They were written to
computer files, and then processed by the model described in Section 5.2.  The SAOL code
for the synthesis procedure is given in Appendix B.

The auditory channel-image assignment plots for the two stimuli (the standard McAdams
oboe, and the comparison sound) are shown in Figure 5-13.  As can be seen in this figure, at
the outset of the standard stimulus, there is only one auditory image present in the scene.  At
approximately 5.5 s into the sound, the percept splits into two auditory images.  The energy in
the filterbank near the odd harmonics continues as part of the previous image, while the
energy in the filterbank near the even harmonics is grouped as evidence for a second auditory
image.  In the comparison stimulus, all of the channels are grouped into a single image
throughout the stimulus; no perceptual segregation is predicted.

Thus, the model successfully predicts three important aspects of the perception of these
stimuli.  First, it predicts that some threshold of frequency modulation in the harmonics must
be present for perceptual segregation to occur (although no attempt has been made to
quantitatively model the particular threshold).  Second, it predicts that when there is sufficient
frequency modulation, the percept of the signal changes over time, from one image to two
images.  The model uses no prior knowledge of the signal to make this prediction, but
produces it dynamically through signal analysis.  Third, the model predicts that the odd
harmonics and the even harmonics are assigned to different and coherent groups of auditory
images.

Based on the evidence found in these partitioned regions of the time-frequency space, the
features of the resulting images may be analyzed.  For example, Figure 5-14 shows pitch
estimates of the auditory images in the scene.  These are calculated by applying the Meddis-
Hewitt (1991) model to only those channels that have been assigned to each image (this
procedure will be discussed in more detail in Section 6.3.3).  As seen in this figure, there is a
good correspondence between the pitches that can be automatically extracted from the
auditory images and the known human perception for a signal of this sort.

Frequency (Hz)

Time

220

Figure 5-12: A schematic of the McAdams oboe sound.  The stimulus begins with 10 harmonics of
a 220-Hz fundamental, equally weighted in sine phase.  After 2 s, a coherent vibrato at 5 Hz is
applied to the even harmonics only.  The modulation depth of the vibrato is ramped from 0% to 4%
in 4 s, and then maintained at 4% for another 4s.  The percept changes over time; at the beginning,
a single oboe-like tone is heard, but at some point the percept switches to two sounds, a clarinet-
like sound consisting of the unmodulated odd harmonics, and a soprano-like sound with pitch one
octave high consisting of the even harmonics.
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Discussion
McAdams’ work with stimuli of this sort focused on the role of different sorts of vibrato in
promoting the fusion and segmentation of auditory images.  Mellinger’s dissertation (1991)
was the first computational project to demonstrate successful perceptual-based segmentation
of this sort of stimulus.  His system operated by filtering the time-frequency plot with
“modulation kernels”—time-frequency packets that could be used to select common FM
components of the signal.  This approach is somewhat similar to the more general time-
frequency basis decomposition recently proposed by Shamma and colleagues (Wang and
Shamma, 1995; Shamma, 1996; Versnel and Shamma, 1998).  Early CASA models by Ellis
(1994) and Brown and Cooke (1994b) were also targeted toward stimuli that could be easily
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Figure 5-13: Model output for the two McAdams oboe stimuli.  Each plot shows the assignment of
time-frequency energy to the auditory images detected by the model.  The color of each time-
frequency cell indicates the channel-image assignment.  Time-frequency cells that are not colored
are not assigned to any image; these are cells with little sound energy, as described in Section 5.2.2.
In (a), the standard stimulus, in which 4% maximum frequency modulation is applied to the even
harmonics, is shown.  In this stimulus, the model detects two auditory images, one (the gray image)
that is assigned all of the sound at the beginning and the energy corresponding to the odd
harmonics at the end, and one (the black image)  that is assigned the energy corresponding to the
even harmonics beginning approximately 5.5 s into the sound.  In (b), a comparison stimulus, with
0.4% frequency modulation applied to the even harmonics, is shown.  In this stimulus, no image
segregation occurs, and all of the time-frequency energy is assigned to a single image throughout
the sound.
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Figure 5-14: Pitch analysis of the auditory images suggested by the channel allocation shown in
Figure 5-13(a).  At the beginning of the stimulus, there is only one auditory image, with pitch
(shown in gray) flat at 220 Hz.  After the modulation of the even partials begins, the single image
splits into two images, with one pitch remaining at 220 Hz, and the other (shown in black)
modulating about 440 Hz.  This agrees with human perception of this auditory stimulus.
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created through additive synthesis; that is, voiced speech and musical signals composed only
of harmonic sounds.

At one time, there was general agreement that the auditory grouping for these sort of stimuli
was governed by coherent frequency modulation.  This is the explanation promoted by
McAdams in his presentation of experimental results using these stimuli.  However, this
agreement no longer maintains; in particular, Carlyon (1991; 1994) has argued on the basis of
more extensive psychophysical testing that the actual basis of auditory grouping in these
stimuli is the harmonicity of the signal.  That is, as the even harmonics move away from exact
harmonicity with the odd harmonics, a pitch-based grouping mechanism selects them as part
of a different auditory group.

The present model does adhere to the viewpoint that grouping is based on common
modulation in these stimuli.  Future work should examine more closely the stimuli developed
by Carlyon and others to distinguish the harmonicity hypothesis from the common-
modulation hypothesis.  A general discussion of pitch-driven segregation models in
comparison with this model is presented in Section 5.5.2.

5.4.2. The temporal coherence boundary
Van Noorden’s (1977) early work on what are now called auditory streams was among the
first study of this subject.  He developed stimuli composed of a series of repeated tones to
investigate the way in which sequential integration is performed in the auditory system.  His
“galloping” stimuli are shown in schematic in Figure 5-15.

Van Noorden’s stimuli consisted of a series of tone pips, each 40 ms in duration.  Each
stimulus consists of interleaved sequences of fixed-frequency tones (denoted F) and variable-
frequency tones (denoted V). Each F tone is at 1000 Hz; the frequencies of the V tones are
1000-∆f Hz, where ∆f denotes the difference in frequency between the two tone streams.  In
Van Noorden’s own experiments ∆f varied from 2 semitones (109 Hz) to 14 semitones
(555 Hz).  The presentation rate of the tones is denoted by ∆t and is fixed for each trial.  Van
Noorden investigated presentation rates from 60 ms to 150 ms.

Frequency (Hz)

Time

1000 - ∆f

1000

∆t 2∆t

F tones

V tones

Figure 5-15: Stimuli used by Van Noorden (1977) to study temporal coherence in auditory stream
perception.  Each tone pip is 40 ms long; the onsets of tones are separated by ∆t, which differs in
different trials.  The higher tone, called F for fixed frequency, is always at 1000 Hz.  The lower
tone, called V for variable frequency, is at some lower frequency 1000-∆f, which differs in different
trials.  Depending on the relative values of ∆t and ∆f, the percept is one of the following: (A) a
galloping rhythm, with all tones perceptually connected (streamed) together, or (B) two separate
isochronous streams, with the higher stream at 1/3 the rate of the lower, or (C) volitional or
attention-based control of percepts (A) and (B), where the subject can choose or switch between
them at will.
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The subject’s perception of the stimulus varies depending on the values of ∆f and ∆t.  For
sufficiently low values of ∆f and/or large values of ∆t, the subject perceives a single stream
with a galloping rhythm: VFV-VFV-VFV.  For stimuli in which ∆f is relatively large and ∆t
relatively small, the subject perceives two streams, V-V-V-V and F---F---F---.   The lower-
pitched stream is at twice the rate of the higher-pitched one.  For stimuli in-between these
extremes, the subject experiences volitional, attention-based control and is able to switch
between these percepts at will.

The boundary in the ∆f - ∆t plane above which the subject is only able to experience a two-
stream percept is called the temporal coherence boundary.  The boundary below which only a
one-stream percept is possible is the temporal fission boundary.

I synthesized five stimuli at a sampling rate of 24000 Hz using a digital synthesizer written in
SAOL.  For each, the tone pip duration was 40 ms, including 5-ms linear onset and offset
ramps, and the frequency of the F tones was 1000 Hz.  The value of ∆f  and ∆t  for each
stimulus is shown in Table 5-1.  SAOL code that generates the stimuli is shown in Appendix
B.  They may be heard as Sound Example 5-2 on my web page.

The output of the segmentation algorithm for this set of stimuli is shown in Figure 5-16.  As
can be seen there, the model predicts that temporal coherence depends on the time/frequency
spacing of the tone pips.  For stimuli S1 and S3, where the tones are closely spaced in
frequency relative to time, only one auditory stream is perceived by the model.    For stimuli
S2 and S5, where the tones are widely spaced in frequency relative to time, two streams are
perceived by the model.  The percept in stimulus S4 is ambiguous; this may be considered a
situation that lies between the temporal coherence and temporal fission boundaries for this
model.  As with the examples in Section 5.4.1, more work would be needed to arrive at
quantitative, rather than as qualitative, predictions.

A short discussion of the model output for stimulus S5 is illuminative.  From a first inspection
of the model output in Figure 5-16, it may not be clear that stream segregation is actually
occurring for this stimulus.  This illustrates a point made in Section 5.2.8: the channel-image
assignment function is not itself the auditory image, but is rather a way of assigning evidence
from different parts of the sound energy to the auditory images so that feature detection may
proceed.  For example, implementing a simple pitch detector on the output of the model for
stimulus S5 results in the pitch-tracks shown in Figure 5-17.  In these pitch-tracks, it may be
observed that the auditory images estimated from the channel-image assignments seem to
correspond to the human perception.  It is on this basis—the features perceived in the set of
auditory images—that the performance of the algorithm is most readily evaluated (see also
Section 5.5.5).

Stimulus ∆f ∆t

S1 50 Hz 50 ms

S2 500 Hz 50 ms

S3 50 Hz 100 ms

S4 500 Hz 100 ms

S5 800 Hz 100 ms

Table 5-1: Stimulus conditions (for Van Noorden-style streaming stimuli) used to test the model.
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Figure 5-16: Model output for the five temporal coherence stimuli.  Each plot shows the assignment
of time-frequency energy to the auditory images detected by the model.  The color of each point in
time-frequency space indicates the channel-image assignment.  For stimuli S1 and S3, one auditory
image is perceived.  For stimuli S2 and S5, two images are perceived.  For stimulus S4, the output
is ambiguous.  See text and Figure 5-17 for discussion of stimulus S5 result.
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Figure 5-17: Pitch analysis of the auditory images that result from the channel-image assignment
shown in Figure 5-16.  Plot (a) is the pitch of the first image (the one in gray in panel S5 of Figure
5-16) whenever its power is above a threshold; plot (b) is similarly the pitch of the thresholded
second image (the one in black in panel S5 of Figure 5-16).  The pitches are computed for each
image by applying the Meddis and Hewitt (1991) pitch model to the subset of channels assigned to
that image.  From these pitch-tracks, it may be observed that the correct percept is presented by the
model output: one stream at 1000 Hz, and a second stream twice as fast at 200 Hz.
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Discussion
The model predicts the human perceptions on these stimuli because sounds centered at a
particular frequency bleed through to cochlear filters at nearby frequencies.  That is, when a
pure tone with frequency 1000 Hz stimulus the cochlear filterbank, not only the cochlear filter
centered at 1000 Hz, but several nearby filters, will be excited.  Moreover, the output of these
filters is not at their own center frequency, but is an attenuated 1000 Hz tone.  When the next
tone begins at 950 Hz (for stimulus S1), there is a rapid and coherent frequency modulation
among the outputs of this entire group of filters.  The group stops responding at 1000 Hz and
begins instead to respond at 950 Hz.  This frequency modulation is observed as a coherent
period modulation in the autocorrelogram, as discussed in Section 5.1.

For stimuli in which there is more frequency separation between the tones, such as S2, there is
less cross-response between the set of filters that responds to one tone and the set that
responds to the other.  In this case, the amplitude-modulation differences at the tone onsets
dominate—first one group of filters is stimulated, and then the other.  Based on the
alternating, incoherent, amplitude modulation, the sound is partitioned into two streams.

Thus, the model predicts that the temporal coherence boundary is a direct effect of the shape
and time response of the cochlear filters.  If this prediction is correct, changes to the
bandwidth or adaptation properties of the cochlear filterbank, for example, cochlear hearing
loss or large doses of aspirin, should alter the temporal coherence boundary.  The small
amount of experimental evidence, for example by Rose and Moore (1997), on the relationship
between perceptual grouping and hearing loss seems to disconfirm this prediction, however.

Beauvois and Meddis (1996) have reported on the construction of an extensive low-level
model that is also capable of predicting human perceptions on these stimuli, including the
quantitative thresholds.  The model that I have presented is generally compatible with theirs.
Theirs includes more-sophisticated cochlear modeling, while mine uses more sophisticated
feature-detection and pattern classification in the latter stages.  It would likely be possible to
replace wholesale the simple linear cochlea model I have used with theirs.  This might enable
the present model to make quantitative predictions of the Van Noorden results.

Recently, Vliegen and Oxenham (1999) presented experimental results showing that stream
segregation, purportedly of the same sort, can be induced by alternating stimuli that occupy
the same spectral region.  In their stimuli, low-frequency (F0 between 100-200 Hz) complex
tones with alternating F0 were high-pass filtered at 2000 Hz to remove any resolved
harmonics.  Subjects exhibited largely the same behavior on these stimuli as on the Van
Noorden stimuli.  Vliegen and Oxenham argue that the models of Beauvois and Meddis
(1996) and McCabe and Denham (1997) are unable to account for these results.

The present model is also unable to account for these results, as the only sort of auditory
streaming that it predicts is that occurring when the multiple streams occupy different spectral
regions at the same time.  However, the present model is sensitive to the periodicity cues that
must be the basis for the segregation in the Vliegen and Oxenham stimuli..  Further, it extracts
different features from the two sounds.  Because of this, it is possible that a different sort of
stream-formation mechanism, within the same basic framework, would account for their data.
A follow-on study by Vliegen et al. (1999) found that the role of spectral cues outweighed the
role of temporal cues when subjects were asked to integrate stimuli into a single stream rather
than “hear out” one or the other sub-sequences (that is, in an attempt to elicit the fission
boundary rather than the coherence boundary).

5.4.3. Alternating wideband and narrowband noise
Warren developed a stimulus that is now commonly used to illustrate what Bregman (1990)
calls the “old-plus-new” principle in auditory grouping.   It consists of the alternation of a
wideband noise with a narrowband noise, as shown in Figure 5-18.
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This stimulus is perceived to contain two auditory images.  The first is a low-passed noise
corresponding to the low-frequency part of the signal that is always present.  The second is a
periodically-pulsed high-passed noise corresponding to the part of the signal that is only
present during the wideband noise segments.  The perceptual system seems to interpret the
stimulus as consisting of an “old” ongoing, low-passed part to which is periodically added a
“new” high-passed part.

The stimulus was synthesized with a digital synthesis program in SAOL at a sampling rate of
24000 Hz.  Each wideband noise was created as uniform random noise, with sample values in
the interval [-0.5, 0.5], where 1.0 is the maximum 32-bit sample value.  Each low-passed
noise was created by filtering a similar wideband noise with a 5th-order digital elliptic filter.
This filter, designed in Matlab, had a cutoff frequency of 2000 Hz and -40dB of rejection in
the stopband.  The overall stimulus was assembled from alternating 250 ms bursts of the
wideband and low-passed noises, gated using a rectangular window.  It can be heard as Sound
Example 5-3 on my WWW page, and the SAOL code is given in Appendix B.

The channel-image assignment produced by the present model for this stimulus is shown in
Figure 5-19. As can be seen in the figure, the perceived segmentation does not precisely
match the human percept. Although immediately at the onset of the broadband sound, the
high-frequency region is segregated as a separate image, once the amplitude modulation in
this region ends and the ‘steady-state’ portion of the high-frequency range begins, there is no
longer a basis in this theory for maintaining two images (since both images would be
equivalently static).

Discussion
The segmentation difficulty here most likely stems from a mismatch between human time
constancy for segmentation, and the model’s time constancy.  Imagine a stimulus of the same
sort, except that it is much longer in duration.  That is, rather than wideband noise and
narrowband noise alternating every 250 ms, they alternate every 2 sec or 5 sec (Sound
Example 5-4).  In such a case, the human segmentation is much more like the segmentation
shown in Figure 5-19.

Immediately after the wideband noise onset, the human listener hears a second auditory image
in the sound.  But after some small amount of time, since this second image is not doing
anything to maintain its coherence as a separate object, it goes away and is forgotten.  Only
when the alternation is sufficiently quick does the entire segment of “extra” high-frequency
noise become perceived as an image in its own right.  (In fact, from listening to a series of
these stimuli, it is clear that there is a sort of pulsation threshold governing the perceptual
segregation of the high-frequency energy.  I don’t believe this has been formally studied.

Time

Frequency

Figure 5-18: Alternating wideband and low-passed noise, commonly used to illustrate Bregman’s
“old-plus-new” grouping principle.  The percept is of a continuous noise corresponding to the
narrowband parts of the stimulus, with an additional high-frequency bandpass component
periodically pulsing; that is, one continuous sound and one periodic sound.
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Although it cannot be seen from this picture directly, the problem is in the second stage of the
model, not the third stage.  At the second stage, the model decides that only one image is
needed to explain the modulation data at about 400 ms, about 900 ms, and about 1400 ms.
The ease of explaining the modulation data with one image outweighs the cost of changing
the number of images.  Once the second-stage model makes this decision, then the third stage
is trivial since there is only one image to which channels may be assigned.

If this explanation is correct, then the only change that would be needed in the model would
be to reduce the cost of maintaining multiple objects over time even if they are not strictly
needed to explain the modulation data, or to increase the cost of changing the number of
images.  Then the dynamic-programming optimization would be able to segment the sound
properly.

Another simple modification to the model that might enable it to segment this sound in a way
similar to the human listener would be the following.  Presently, in the birth and death clauses
in Eq. (5-21), there is no special consideration of the case in which a cochlear channel
suddenly gains enough power to cross the low-power threshold, or falls below it and is
removed from consideration.  Intuitively, if a new cluster is to be born, it is better if the new
cluster contains many channels that were previously unused—that is, that have just begun to
contain energy.  Similarly, when a old cluster dies, it is better if the channels that were in that
cluster no longer contain any energy at all.

The exploration of such heuristics is left as a topic for future work.

5.4.4. Comodulation release from masking
The spectral-temporal phenomenon known as comodulation release from masking (CMR)
was reviewed in Chapter 2, Section 2.1.3.  I will describe the use of simple CMR stimuli to
evaluate the grouping model.

Tone-in-noise stimuli were generated using the method that Hall et. al. (1984) described for
their Experiment II.  Transposed coherent (TC) noise was created by amplitude-modulating a
six-tone set (1050-, 1150-, 1250-, 1350-, 1450-, and 1550-Hz tones) with a narrowband noise
modulator, 100 Hz wide, centered at 350 Hz.  This results in a signal with coherent 100-Hz-
wide bands of noise centered every 100 Hz from 700 to 2000 Hz; that is, each band of noise
has the same within-band envelope.  Then, sound above 1350 Hz was filtered out to leave
noise bands spanning the region from 650 to 1350 Hz.
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Figure 5-19: Model output for the alternating-noise stimulus.  The ‘on’ and ‘off’ markers show the
veridical onsets and offsets of the broadband noise.  From ‘on’ to ‘off’, the input sound is
broadband, and from ‘off’ to ‘on’ it is lowpass.  However, there is still sound energy on the basilar
membrane in the high-frequency regions during the lowpass intervals due to ringing of the auditory
filters.  The model segmentation is incomplete in this case; the second object (shown in black) lasts
only a short time before vanishing.
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Transposed random (TR) noise was created using the same method, except that independent
noise bands were used as the modulators for each tone.  The only difference between the TC
noise and the TR noise is that the six bands of noise are coherent in TC noise and incoherent
in TR noise; comparisons of individual bands between the two signals are statistically
indistinguishable.  1000 Hz tones were added at a variety of signal levels to noises at a fixed
level.  Hall et al. (1984) found a masking release of approximately 7 dB for the  TC noise as
compared to the TR noise.

All synthesis was performed digitally using a synthesizer written in SAOL.   The filters for
creating the 100-Hz-bandwidth modulators were each digital 6th-order IIR elliptic filters
designed in Matlab, one highpass with 300 Hz cutoff, and one lowpass with 400 Hz cutoff.
These filters fall from the cutoff frequency to –50 dB rejection in approximately 120 Hz and
are thus somewhat broader than the very steep analog filters used by Hall et al. (which had a
transition bandwidth of only 14 Hz).  However, the CMR effect is known to be quite robust to
the effects of particular filtering methods and choices of bands.  The initial synthesis was
performed at a sampling rate of 8000 Hz (there is never spectral energy above 2200 Hz during
the synthesis process, so there is no danger of aliasing), and then the resulting sounds were
resampled to 24000 Hz for analysis.  The SAOL code for the CMR stimuli appears in
Appendix B, and the stimuli themselves can be heard on my WWW page as Sound Example
5-5.

Six stimuli were generated, as shown in Table 5-2.  Each noise stimulus was 2.5 sec long, and
the probe tone began after 1 s and lasted for 300 ms.  Each noise was either TC or TR noise at
a fixed in-band level of -36 dB relative to a full-power digital signal.  The level of the probe
tone was adjusted for the different stimuli, between 16 dB and 27 dB above the level of the
noise.

The CMR stimuli were processed with the grouping model.  The results are shown in Figure
5-20.  As seen there, the model exhibits a CMR phenomenon similar to the human results on
stimuli of this sort, although the overall masking threshold is higher for the model.  In the
model, randomly-modulated noise in the TR condition masks the tone at SNR 22 dB, but
coherently-modulated noise does not.  Both noises mask the tone at SNR 14 dB, and neither
do at SNR 27 dB.  Thus, the model predicts that coherently modulated noise is less able to
mask the probe than is incoherently modulated noise.  This prediction matches the
experimental findings of Hall et. al. (1984) with regard to this simple set of stimuli.  The
model also predicts that there is a different quality to the noise in the TC and TR conditions
(since the noise is grouped all into one image only in the TC condition).  Experimental reports
suggest that subjects anecdotally report such a difference in quality, although to my
knowledge it has never been formally tested.

Stimulus Noise type SNR

S1 TR 16 dB

S2 TC 16 dB

S3 TR 22 dB

S4 TC 22 dB

S5 TR 27 dB

S6 TC 27 dB

Table 5-2: Stimulus conditions (for comodulation-masking-release stimuli) used in testing the
model
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Discussion
We can look in more detail at the behavior of the model as it processes the CMR stimuli.
This allows us to understand how the model exhibits CMR.  The primary difference between
TR and TC stimuli as viewed in the modulation space (as in Figure 5-8) is that the
modulations of the various cochlear channels are coherent in the TC space and incoherent in
the TR case.  Most of the observed modulation is amplitude modulation; there is little period
modulation in these stimuli since the sounds are noisy.  That is, over time, all of the points in
modulation space are moving up and down (along the amplitude modulation axis), together in
the case of the TC noise, and independently in the case of the TR noise.

Time (ms)Time (ms)

400 800 1200 1600 2000400 800 1200 1600 2000

100

200

500

1000

2000

4000

8000

C
en

te
r 

fr
eq

ue
nc

y 
(H

z)
C

en
te

r 
fr

eq
ue

nc
y 

(H
z)

C
en

te
r 

fr
eq

ue
nc

y 
(H

z)

100

200

500

1000

2000

4000

8000

100

200

500

1000

2000

4000

8000

Stimulus S6

Stimulus S4

Stimulus S2Stimulus S1
TR, 16 dB SNR TC, 16 dB SNR

TC, 22 dB SNRTR, 22 dB SNR

TR, 27 dB SNR TC, 27 dB SNR

Stimulus S3

Stimulus S5

ProbeProbe

Probe

Probe

Probe

Probe

Figure 5-20: Model output for the comodulation-masking-release stimuli.  For stimuli S1, S2, S3,
and S5, no consistent second auditory image is formed.  In stimulus S2, all channels are assigned to
a single auditory image, which in stimuli S1, S3, and S5 the channels are randomly partitioned into
two images that change over time.  In stimuli S4, S5, and S6, auditory channels responding to the
probe tone are coherently grouped into a different image than auditory channels that are not.   The
formation of a separate “tone” image occurs in the 22 dB SNR condition for TC noise, but only in
the 27 dB SNR condition for TR noise.  (It is only for the most-perceptible tone, in stimulus S6,
that the duration of the tone is perceived veridically).  The model predicts that coherently
modulated noise is less able to mask the tone than is incoherently modulated noise, a prediction that
matches the experiment findings of Hall et. al. (1984).
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During the duration of the probe, it dominates some cochlear channels from time to time
(depending on the moment-to-moment SNR in the channel).  When this occurs, those
channels exhibit neither period nor amplitude modulation, since in these regions of fixed-tone
dominance the signal is stationary.  In the case of TC noise, the channels that exhibit this lack
of modulation are readily observed against the coherent background of comodulated noise.
The nonmodulating channels are the only ones that are not doing the same thing as the larger
group of background channels.   But in the case of TR noise, it is more difficult to recognize
that there is a group of fixed channels, since the background channels are modulating
independently.  Another way to put this is that the unmodulated tone is a modulation masker
for some of the channels in the noise background, and that the detection of modulation
masking is easier in the TC case than in the TR case.

As the SNR increases, the group of channels that is being dominated by the probe becomes
larger (due to the spread of excitation of the probe) and the regions of dominance are more
frequent.  Thus, it becomes easier to see the static group of channels as a separate image from
the background channels, whether the background channels are modulating coherently (TC
noise) or independently (TR noise).

It is not the case, especially for the TC stimuli near the masking threshold, that the tone
dominates the cochlear channels with CF near its frequency at each instant.  The tone is only
heard through the noise background at times of relatively low instantaneous noise energy
(Buus (1985) called such a hypothesis a “dip-listening” model).  The evidence integration in
the clustering and sequence model allows the multiple glimpses of the tone to be gathered
together as evidence for a single auditory image.

This explanation leads to a hypothesis about CMR; namely, that if the probe sound is
amplitude-modulated in the same way as the masker, it should lead to a reduction in the
masking release.  That is, there should be less main effect of CMR with a modulated probe,
since the modulated probe will not stand out against the background as does a static probe.
There has been little study of CMR in the case of non-stationary probe signals.

It is to be noted that the probe levels used here are somewhat above threshold for a human
listener.  A human listener can easily hear the probe even in the highest SNR condition that I
used.  Hall and Grose (1984) found human thresholds to be approximately 13 dB SNR in the
TC condition and 20 dB SNR in the TR condition.  To better match the quantitative
performance of humans on this task, the model would have to become more sensitive to the
tone in the noise.  This is a topic for future research; one immediate prospect is to increase the
density of the cochlear filterbank, presently 6 per octave, to 12 or even 24 per octave.
Oversampling the spectrum in this way would increase the amount of evidence that could be
used to compare the modulating to non-modulating parts of the spectrum.

5.5. General discussion

By performing simple experiments with psychoacoustic stimuli, I demonstrated in the
previous section that the model qualitatively performs as people do in a variety of tasks.  This
implies that the various perceptions of several different stimuli that are normally explained
with different mechanisms can also be explained with a single modulation-detection
mechanism.  This result is attractive from the point of view of Occam’s razor.  If a single
model can be used to explain multiple percepts, then this is a more parsimonious theory than
one in which each sort of grouping percept requires a separate model.  However, the
predictions made by this model are not yet as accurate as those made by models developed for
specific phenomena (Beauvois and Meddis, 1996, for example, for temporal-coherence
stimuli).  More research is needed to determine whether a model like this one can be used to
produce quantitative predictions of human performance and thresholds in these tasks.
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In this section, I will explore a variety of topics regarding implications of a model such as this
for theoretical psychoacoustics. Particular attention is paid to the representational status of
elements in this and other models in the literature; that is, what entities various models
hypothesize as part of the perceptual representation involved in processing complex auditory
scenes.

5.5.1. Complexity of the model
An immediate criticism that some might direct at the model in Section 5.2 is that it is very
complicated.  When the clustering model in Sections 5.2.4 and 5.2.5 is described
mathematically, it seems extremely abstruse and unwieldy.  This is particularly true in
comparison to the simplicity and elegance of the pitch and loudness models that are available
to present-day psychoacoustics.

There are two responses to this criticism.  First, the complexity of the implementation of a
model, or that of its mathematical description, should not be confused with the complexity of
the conceptual underpinnings.  The conceptual basis of the present model is quite simple.  It is
the same as that articulated by Duda et al. (1990): auditory grouping is determined by
common modulation in the autocorrelogram domain.   The method presented here for actually
determining the common modulation patterns is rather messy, but it is possible that a simpler
one could be found that abides by the same underlying principles.  Even if this is not the case,
there is a valuable distinction between the complexity of a particular theory and the
complexity of a particular implementation of a model based on that theory that must be
preserved (Marr, 1982).

Second, it is an invalid comparison to suggest that a model for auditory grouping and image
formation should be as simple as those for pitch and loudness detection.  From the range of
experimental data on auditory scene analysis, it is clear that the auditory brain implements
complicated processes.  These give rise to a variety of complex behaviors.  It is natural that
complex problems with complex behaviors should require complex models to explain.  The
proper comparison of complexity is not models for other behaviors, or an abstract idea of how
complex a model “should” be, but models that can produce equivalently satisfying results on
the same range of stimuli.  If two models can be shown to perform equivalently well (given
the difficulties in evaluating performance of models of this sort, about which see below), then
it is clear that the one that is simpler must be taken as embodying the better theory.  But if
there is only one model available, then there is no such comparison that can be made.

5.5.2. Comparison to other models
As discussed in Section 3.3.2, a number of previous approaches to the construction of
computational auditory-scene analysis (CASA) systems have depended upon an initial stage
in which the sound scene is analyzed in terms of sinusoidal components.  In contrast, the
present model assumes no components; rather, the basis for grouping is the direct output of
the cochlear filters.  As these outputs change, all of the energy in a filter channel is assigned
first to one of the auditory images, and then to another.  No intermediate representation is
created, and thus, no intermediate representation need be defended.

A second important representational difference between the present model and others in the
literature is that, in this model, pitch and harmonicity are not used as cues to grouping.  In the
component-based CASA systems just discussed, and in periodicity-based approaches to vowel
separation, the harmonic relationships between components or subbands play a role of
fundamental importance.  This cue—called harmonicity—is most often incorporated using a
residual-driven method: the strongest pitch in the stimulus is identified, and those components
or subbands that correspond to it are removed from consideration.  Then, considering only the
residual, the strongest remaining pitch is identified, and so on.



144 Chapter 5: Musical Scene Analysis

Critical consideration of this model reveals several drawbacks.  It is clear that a strict
segregation by pitch does not always occur in listening to real-world signals.  First, in
nonattentive listening, varied groups of sources are fused into a single auditory image.
Imagine an acoustic scene in which a listener sits in a room talking with friends while a radio
(particularly a small one with a tinny and distorted loudspeaker) plays music.  Even though
the music consists of several instruments with multiple pitches, the sound coming from the
radio is perceived only as a single image.  The grouping cues given by the spatial location of
the source and the transfer function of the loudspeaker override the pitch cues (if any).

Even in attentive contexts, such as music listening, there are many circumstances in which
multiple-pitch stimuli are fused together.  Notable here is the practice of homophonic writing
in Western classical music, in which several instruments play sequences of notes with the
same rhythm.  The composer organizes the notes so as to encourage perceptual fusion of the
chords.  There are many sources, both in the music-pedagogy and music-perception (Sandell,
1995) literature that explore the roles of instrument timbre and harmonic relationships on the
perceptual fusion effect.  What is clear is that in many cases, chords are perceived as single
elements rather than as multiple notes (Scheirer, 1996).

Some theorists argue that the percept in which multiple notes fuse into a single auditory image
is itself best understood as a sort of pitch phenomenon.  Terhardt (1982) extended the concept
of “virtual pitch” (his term for the pitch of a complex tone with missing fundamental) to cover
the perceived virtual root of a chord.   Such a model can be used to make simple predictions
about voice-leading and the role of chords within a harmonic context (Parncutt, 1997), but
unfortunately makes other incorrect predictions about listening behavior in response to chords
(Thomson, 1993).  For example, this model predicts that in an operational pitch-matching
task, listeners will match the whole chord to a “virtual subharmonic” that would be the
common fundamental of all the constituent notes; however, experimental results do not bear
this out.

The argument in this section is not intended to imply that pitch-based segregation of sounds
never occurs; rather, the problem with existing models is that they do not include other cues,
and so cannot make predictions about the cases in which other grouping cues are stronger.  It
is crucial that models of perceptual segregation predict human behavior in cases where
segregation does not occur, as well as those in which it does.  For example, a static double-
vowel segregation model like de Cheveigné’s (1998a; 1999)) seems to predict (although as far
as I know this has not been tested) that multiple pitches should always be heard out from
chords.

The strongest push towards residual-driven filterbank-allocation models has come from
research into double-vowel stimuli.  In these experiments, two synthesized vowels are mixed
and a listener is asked to identify each.  Independent variables that have been tested include
differences in F0, spectral shape, loudness, onset asynchrony, and many other features.  It is
clear that listeners have some ability to identify both vowels in such a mixture, but it is less
clear that there are really two perceived constituents.  An alternate hypothesis is that the
vowel identification is actually revealing an ability to learn and report the combined, or fused,
quality of the vowel pair.  Under this hypothesis,  no perceptual segregation actually takes
place.  Anecdotal evidence favors this view; listeners with no experience in double-vowel
tasks generally cannot perform them “correctly.”  Rather, it is only after training, with
feedback, that listeners develop the response characteristics usually reported for this task.

In an experiment that attempted to control for this possibility, Divenyi et al. (1997) found that
dynamic cues (formant glides) increased segregation ability greatly.  In fact, the results of
Divenyi et al. indicated that little perceptual segregation occurred except in the case where
dynamic cues were used.  However, this experiment was only preliminary, and more research
is needed on this topic.
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The period-modulation cue used in the present model is not identical to the common-
frequency-modulation approach to grouping suggested by McAdams (1984).  Notably, period
modulation as defined here is exhibited in signals for which no frequency modulation is
present in the standard usage of that term.  An example of this is the stimuli used to
investigate the temporal coherence threshold (Section 5.4.2).  The onsets in the sound, which
have alternating pitch, give rise to period modulation in the output of the cochlear filters.
This is true even though the sound has no components constructed via frequency modulation.

5.5.3. Comparison to auditory physiology
An important criterion for evaluation of a computational model of hearing is its connection to
auditory physiology.  In particular, it is crucial that models do not postulate computational
elements that are not possible to implement as neural processing in the auditory pathway.
That said, compared to the kinds of auditory processing that the human listener performs to
understand complex auditory scenes, our present-day understanding of the neurological
operation of the hearing system is very rudimentary.  Because of this, there are few
computational elements that can be ruled out as impossible.  Further, as discussed by Marr
(1982), there is much to learn from building computational models without necessarily
drawing immediate connection to the perceptual physiology.

The connection of the first two stages of processing (cochlear filtering and hair-cell modeling)
to the present understanding of the auditory physiology has been treated extensively in
previous sources.  Although the cochlear filterbank in reality has important non-linearities (in
fact, a passive model may ultimately be unable to account for all the behavior of the cochlea),
the results of many psychoacoustic experiments can be explained with a linear filterbank
model such as the gammatone models developed by Patterson and his collaborators (1995).
General references on auditory modeling such as Moore’s book (1997, Ch. 3) explain the
relationship between filterbank models and the present state of knowledge of the behavior of
the cochlea.

A similar relationship holds between models of the inner-hair cells that are comprised only of
a smoothing-and-rectification process (as used in Section 5.2.1), and the state of knowledge of
the neuromechanical transduction process.  Extensive stochastic models of the inner hair cells
that take present understanding of the physical mechanics into better account are available in
the literature.  The relationship between the behavior of these sorts of models and the simple
sort used here is well-understood.

My hypothesis in this dissertation is that important features of the early stages of hearing,
including simultaneous segregation and sequential integration of the auditory scene, may be
explained with simplistic models of the cochlea.  However, this is only a hypothesis, and there
may well be experimental results available in the future that demonstrate the need for models
to include more sophisticated cochlear and hair-cell models.  It is likely that more
sophisticated front-end modeling would be necessary if the model is to make quantitative
predictions of responses to auditory stimuli.

The status of the periodicity-detection step is more complex and problematic.  There is little
direct physiological evidence to support the notion of autocorrelation or other such direct
periodicity-detection as part of the auditory pathway.  Recent research on neural firings by
Cariani (1996) can be taken as indirect evidence for the availability of a form of periodicity
analysis; the statistical distribution of inter-spike-intervals from an ensemble of neural fibers
(in cat) has been shown similar to the autocorrelation function of the rectified signal for many
stimuli.

Other researchers have put forth models of periodicity detection and argued that they are more
physiologically plausible.  Notable among these is the Auditory Image Model (AIM) of
Patterson and his collaborators (1992), which postulates an integrate-and-fire mechanism that
“stabilizes” the auditory signal for periodic stimuli.  Irino and Patterson (1996) have also
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presented experiment data that suggest that certain perceptual behaviors (those having to do
with short-term asymmetry in perception) are more readily explained with such a model than
with autocorrelation.  Slaney (1997) has presented a comparison of the implementation
methods and predictions made by various subband-periodicity models.

With respect to the subsequent stages of the model, which are presented for the first time here,
it is possible to imagine that modulation detection implemented with a set of difference
detectors operating on the output of a band of modulation filters within each cochlear channel.
Langner (1992) and others have provided evidence that suggests an important role in sound
perception for the analysis of envelope modulation; these neural mechanisms might form the
basis for the sort of modulation detection needed for this model.  However, this argument
must be taken as speculative at this time since there is little direct evidence available.  The
final stages of processing—clustering and channel-image assignment—seem like the sorts of
operations that would occur centrally, in the auditory cortex.  Little concrete is known about
the kinds of representations or processing that occur cortically in humans or other animals.

Perhaps the best that can be said is that overall, where the physiology is well-understood, the
model presented here follows general principles of auditory processing as determined from
physiological evidence.  For the parts of the model that purportedly correspond to less-
understood parts of the physiology (which are most of them) at least there is no direct
evidence suggesting that the proposed mechanisms are unlikely.  It is likely to remain thus for
some time.

5.5.4. The role of attention
An important aspect of sound perception that is not taken into account in this model is the role
of the attentional set and goal of the listener.  This is known to have important influences on
even seemingly low-level aspects of hearing such as masking thresholds and the perception of
loudness. It is of fundamental importance in the processing of some auditory-scene-analysis
stimuli such as the van Noorden temporal coherence stimuli.  The percepts of these sounds are
phenomenally different when the listener is trying to integrate the percept than when he is
trying to “hear out” separate parts of the percept.   This difference can be objectively
measured as differences in threshold or other behavioral characteristics.  In the case of more
complex stimuli such as music, listeners report that they are able to focus attention on one part
of the sound (for example, the bass part), and thereby perceive more detail in that part at the
expense of the other parts.  There has been little objective study of this ability—it is unknown
what mechanisms are being used, and whether they involve control over the physical
mechanism of the ear, the way the sound is processed by the perceptual system, or both.

It seems likely that the particular thresholds of performance achieved in detailed
psychophysical tests (such as the CMR experiments discussed in Section 5.4.4) represent the
situation of focused attention, where the subject is committed to detecting the presence or
absence of a particular test sound as accurately as possible.   It is unknown in general whether
these thresholds maintain in ecological listening, where the nature of the possible sounds that
might be heard is not known a priori to the listener (as it is in a psychoacoustic experiment).

It is difficult to include aspects of hearing that are under volitional control in computational
models.  This is due to the difficulty of developing mechanisms to model the volition itself, as
well as whatever effects it has on hearing.  Critics of the traditional approach to the
construction of artificial-intelligence systems use the term AI-complete problem to refer to a
problem that requires a complete artificial intelligence in order to solve.  Aspects of volitional
control of hearing seem to have this nature, insofar as they require incorporating motivations,
goals, and plans in order to model properly.

Until we can begin to develop models of volition and the way it relates to listening, the
experimental paradigms that give different results (even consistently so) depending on the
attentional set of the listener pose a difficult methodological problem for computer-modeling
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research.  Typically, it is considered proper when evaluating computer models not to alter the
settings of the free parameters between experimental trials.  For example, for the stimuli that
have been run through the model in Section 5.4, all of the model parameters have been set as
shown in the tables in Section 5.3.2 and not changed from one stimulus to the next.  This is
important, because otherwise there is a risk of the experimenter contaminating modeling
results by using his own knowledge about the stimuli to improve the performance of the
model.

However, in a circumstance in which certain free parameters of a model can be plausibly
interpreted as related to the role of attention or volition, it seems more appropriate to vary
them in order to evaluate their effect on model performance.  For example, the parameter λm

in the present model, which directly controls the minimum size of the clusters in the EM
estimation procedure, indirectly controls the degree to which two groups of cochlear channels
that are slightly separated in distance in modulation space are heard as separate images.  If λm

is set to a relatively large value, then the groups are likely to be heard as fused together; if λm

is relatively small, then the two groups form separate perceptual images.  This is exactly the
kind of effect that is demanded by the results of van Noorden.

Based on this argument, it seems methodologically acceptable to vary the setting of λm based
on an a priori theory connecting the attentional set to the λm value.  But we are still left with
the question of exactly how to choose the value and how to evaluate the model performance
given a certain setting.  In more rigorous quantitative psychophysical modeling than is
presented here, one approach for setting the values of free parameters is to use the behavior on
one experimental task to set values, and a different experimental task to evaluate the model.
If the optimal settings for the independent task also give good results on the dependent task, it
is likely that some underlying truth is revealed by the model.

This approach requires the multiple independent (and quantifiable) experiments treating
similar independent variables and model parameters.  In the case of less-well-understood
independent variables such as attentional set, such experimental data are not yet available.
Thus it is difficult at the present time to rigorously evaluate the performance of models that
include free parameters corresponding to attention, volition, goal, and the like.  This is an
unfortunate conclusion, as it seems quite likely that the human processing of most complex
sounds depends heavily on the role of attention.  An engaged focus on attentional aspects of
hearing is one of the most pressing experimental problems facing modern psychoacoustics.

5.5.5. Evaluation of performance for complex sound scenes
Trying to scientifically assess the performance of scene-segregation models on complex
sounds is problematic, because it is extremely difficult to collect human experimental data on
these aspects of hearing.  Ellis (1996a), to take one example, performed a scene-analysis
experiment with environmental stimuli in order to evaluate his model.  He used a few, very
complex, sounds, such as a recording of a construction site, and allowed listeners to respond
freely in reporting the images (hammering, yelling, buzz-saws) they heard.  He showed that
his model could extract images that bore general similarity to the constituents reported by
human listeners.

However, the particular model presented by Ellis was complicated and had many stages of
processing.  Only the topmost level (the “final list of images”) could be evaluated in this way.
Scientifically speaking, the material of predominant interest in Ellis’ model lies in his mid-
level representations, and it is exactly this level that is most poorly evaluated by a high-level
listening task.  In models posing attempts to model preconscious aspects of hearing, such as
Ellis’ and the present one, the inductive leap required to evaluate the internal representations
and processing methods based only upon the final result of the model and a high-level
listening experiment is problematic.  For a complex model, a convincing argument must be
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made that simpler models (or at least no obvious simpler model) cannot achieve similar
performance on the task at hand.

Until psychoacoustic methods for studying the formation of auditory images in complex
sound scenes become more mature, there seems to be no way to directly evaluate the
representational claims made by a model such as the present one.   Indirect evaluation seems
to be the only method available.  In Chapters 6 and 7, the results of the present model will be
evaluated by extracting higher-level features that can be used to make semantic judgments
about the musical source.  Again, this is not a rigorous direct evaluation of the
representational and processing claims themselves.  It can only can provide indirect evidence
for or against the model.

This is a disadvantage of the understanding-without-separation approach proposed in Chapter
3, Section 3.4.  In non-perceptual signal-processing models where the goal is sound
separation, there are a variety of engineering techniques for evaluation.  For example, two
known signals may be added together, and the model asked to extract each constituent from
the mixture.  The success of the model is judged by the similarity (using signal-to-noise ratio
or some other criterion) of the extracted sounds to the original source sounds.  This method of
evaluation is inappropriate for perceptual models, because it is not always the case that the
human listener will perceive both sounds in the mixture.  Proper evaluation for perceptual
models must focus on the representation of the scene by the human perceptual system.

5.6. Chapter summary and conclusions

As a review of this chapter, the most difficult and detailed of the dissertation, I present a
summary of the major findings.

(1) A theory of the processing of complex sound scenes by human listeners has been
presented.  According to this theory, the formation of perceptual auditory images is governed
by the discovery of groups of cochlear channels that are exhibiting common modulation
behavior in the autocorrelogram domain.

(2) A computational model based on the processing theory has been implemented.  The model
can be used to examine the predictions the theory makes about the perceived segmentation of
various sound stimuli.

(3) Several well-known auditory grouping and segmentation phenomena can be qualitatively
explained by this theory, as demonstrated by the behavior of the computer model when
applied to the stimuli that give rise to these phenomena in human listeners.  These phenomena
include grouping by common frequency modulation, the temporal coherence boundary of
alternating tone sequences, segmentation of alternating narrowband and wideband noise, and
a simple form of comodulation release from masking.

(4) The fact that a single theory can qualitatively explain these diverse behaviors is indirect
evidence that they are all reflections of a fundamental comodulation-processing mechanism in
the early auditory system.

(5) The present computational model cannot make accurate quantitative predictions of the
performance of human listeners on these tasks, such as the particular thresholds of loudness
and modulation that give rise to perceptual segregation and fusion.  A different model based
on the same theory could conceivably make quantitative predictions of this sort if more
attention was paid to details of implementation in the cochlear filterbank and other
components.  This is a topic for future work.

(6) The theory is different in a number of respects from other models for computational
auditory scene analysis that have been previously presented.  Notably, nearly all of the
perceptual processing occurs within-band, there are no mid-level “components” to maintain
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an intermediate description of the auditory scene, and pitch is not used as a cue to perceptual
grouping.  The success of the model in qualitatively explaining the psychoacoustic effects
shown here is a sufficiency proof that a pitch cue is not necessary to qualitatively explain
these effects.

(7) The evaluation of computational models of the perception of complex sounds is very
difficult.  This is partly due to the complexity of human behaviors (including volitional
aspects of perception) exhibited in response to complex sounds, and partly due to the lack of
psychophysical experimental data on the perception of such sounds.

In the next chapter, I will show how this model can be applied to the analysis of real musical
sounds, not only the sorts of simple psychoacoustic stimuli demonstrated here.





CHAPTER 6 MUSICAL FEATURES

In the previous chapter, I presented a model for the formation of auditory images based on the
new principle of autocorrelogram comodulation.  However, the model was only presented in
the context of psychoacoustic test stimuli and was not evaluated on real musical examples.  In
this chapter, I will resume the discussion of real, ecological, musical sounds.

I will take as a starting point the models for tempo and image-formation presented in Chapters
4 and 5.  First, I will show what happens when these models are applied to real music.  Then I
will discuss the difficulty of directly evaluating the results of doing so, and propose a different
methodology for evaluation.  Finally, I will present several simple features that can be
extracted with a little post-processing on the outputs of the auditory-image model and the
tempo-perception model.  The features will not be used directly in this chapter, but will form
the basis of larger models of music perception in Chapter 7.

6.1. Signal representations of real music

The model of the formation of auditory images was couched in Chapter 5 only in terms of  its
application to auditory test stimuli.  These stimuli are important to discuss in the context of
evaluating the model as a psychoacoustic theory, since most of our experimental data deal
with them.  The results in Chapter 5 are a preliminary indication that the principle of
correlogram comodulation is a useful basis for a theory and model of auditory image
formation.

However, as I discussed in Section 3.1.5, I am primarily interested in examining perceptions
of real music, and in understanding the sensory principles on which these perceptions rest.  It
is essential that I examine the performance of these models on real music as well as on test
signals.

Applying the models of Chapters 4 and 5 to real signals produces rich representations of the
musical information that are difficult to interpret.  Examples are shown in three figures.
Figure 6-1 shows the simulated cochleagram—that is, the rectified outputs of the gammatone
filters that stand in for the cochlear frequency decomposition in the early stages of the
auditory model.  As seen in this figure, real musical signals are noisy and full of complex
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structure.  It is difficult to reconcile the sounds that we hear16 in the music with the visual
information that we see in this representation.

A few things may be noted from observing the cochleagram while listening to this sound.
There are four images that are immediately:  the bass guitar, the snare-drum backbeat, the
vocal “Ahhhh” at about 1.5 sec into the clip, and the harmonica sound that enters at the end.
(Of course, it took me several listenings to arrive at this list, which begs the question of what
my initial perception really was).  Of these, only the bass guitar and the harmonica are clearly
observed in the cochleagram as well-delineated individual entities.

The basis of most previous research on sound processing, and nearly all music-signal-
processing research, has been a representation like this one (notable exceptions are Weintraub
(1985) studying mixtures of speech, Leman (1995) on harmonic analysis, Ellis (1996a) on
acoustic scenes, and Martin (1999) on sound-source identification).  The sound is transformed
into some spectrogram-like representation, and then grouping heuristics are used to extract
regions of the time-frequency plane that belong together.

It has proven very difficult to make this approach work robustly when applied to complex
ecological sounds.   Of the literature I know, only the recent work of Goto (1999) attempts to
apply time-frequency analysis to sounds as complex as this one.  There are, in particular, four
sorts of complexity that make time-frequency analysis of this sort of sound very difficult:

1. Many of the interesting aspects of the sounds are noisy.  For example, the broad
snare sounds and reverberation wash a lot of the image in general noise, and so it is
difficult to recognize the vocalization (which is whispered, but immediately salient
to the listener) as a different sort of noise signal.

2. The attacks of the instruments are not sharp, and therefore not well-localized in time.
If we wish to assign each time-frequency cell to one object, we must make difficult
decisions about when slowly-attacking instruments (like the harmonica) “really”
begin to make sound.

3. Time-frequency uncertainty makes it difficult to choose a window size.  If the goal is
harmonic analysis, the filterbank must be narrowband enough that we can locate
individual harmonics (which is not the case in Figure 6-1).  But using a narrowband
filterbank will exacerbate point (2) by smearing onsets in time.

                                                          
16 This sound example (which is #24-1), and the others used in Chapters 6 and 7, may be
heard on my website at http://sound.media.mit.edu/~eds/thesis/.
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Figure 6-1: Cochleagram of 5 sec of an ecological music example (#24-1).  Gray levels correspond
to the amount of energy output in each filterband over time.  It is difficult to see exactly what parts
of the time-frequency energy correspond to perceived objects in the sound.  Superimposed circles
seem to correspond to at least part of the bass guitar sound (#1) and the harmonica sound (#2).
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4. If the goal is to locate and pitch-track each individual instrument, harmonic
relationships between the instruments make it difficult to decide which overtones
correspond to which voice in the sound.  When two harmonics (originating with the
same or with different instruments) “collide” within a single filterband, the
magnitude-filterbank representation has nonlinearities that are difficult to analyze
(Mani, 1999 presents one attempt to do this).

The new processing models that I presented in Chapters 4 and 5 can also be used to produce
visual representations of music for further analysis.  For example, Figure 6-2 shows what
might be termed a tempo spectrogram of the same piece of music.

The tempo spectrogram shows the amount of tempo energy17 in the musical signal at each
tempo at each time.  Rather than visualizing the exact distribution of time-frequency energy as
we can with the cochleagram (in which we try to see the visual correlates of auditory objects),
the tempo spectrogram allows us to see the buildup of tempo over time in the signal.  The
different tempi might be interrelated to form a sense of rhythm in the signal.  As discussed in
Chapter 4, the phases that are not shown in this figure (which is only a magnitude tempo
spectrogram) can be processed to find the beat in the signal as well as the tempo.

Similarly, Figure 6-3 shows the channel-image assignment produced by applying the Chapter
5 auditory-image-formation model to this sound.  In this figure, each time-frequency cell
receives a color indicating which auditory image it is assigned.  (Although, as discussed in
Section 5.2.8, I do not wish to consider these assignment functions themselves as the auditory
images.  The auditory images are better considered as underlying sound models, with
parameters that are probabilistically updated based on evidence contained in the time-
frequency energy assigned to them).

In this figure, we can observe that several of the local assignments seem to correspond to
auditory images that we can hear in the sound.  For example, the broadband snare drum
sounds, the low-pass bass sounds, and the band-passed harmonica sound at the end all seem to
have visible correlates in the image assignment function.

                                                          
17 Strictly speaking, tempo energy is a misnomer since tempo is a perceptual property
while energy is a physical measurement.  More properly, each cell in this plot shows the
summed cross-band energy among the resonators tuned to a particular frequency at each
time. The same point holds for terming the image as a whole a tempo spectrogram.
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Figure 6-2: Tempo spectrogram of the same piece of music shown in the previous figure.  The
tempo spectrogram is one way of visualizing the output of the tempo model presented in Chapter 4.
It is a sort of time-frequency plot, in which the graylevel at each tempo and time shows the amount
of energy estimated at that tempo at that time.  (The curves shown in Figure 4-7 are the
instantaneous vertical cross-sections through a figure like this).
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We can also observe some of the difficulties of the present form of algorithm in analyzing
complex sounds.  Notably, there are sometimes still correspondence problems—at the
beginning, the “background” auditory image is assigned the light gray time-frequency cells,
but in the second half, there is a foreground-background switch, and now the dark gray time-
frequency cells are assigned to the background.  Just considering the first two low-frequency
events, which likely correspond to bass notes in some way, the first is dark gray, and the
second is black.  Although the model recognizes these events in the sound, it cannot connect
them as arising from the same source.  In its present form, the model has no way of
sequentially grouping objects together other than when this happens naturally from the
dynamics of the cochlear filters, as in Section 5.4.2.

When we return to thinking about the perception of music as outlined in Chapter 3 and look at
the visualizations in Figure 6-2 and Figure 6-3, we are confronted by an immediate question.
Namely, are these plots correct or not?  That is, since we are interested in the perception of
sounds rather than the separation of sounds, is it really the case that a particular listener
allocates the time-frequency cells to auditory images as shown in Figure 6-3?  And is it really
the case that a particular listener perceives different tempi as having different strengths as
shown in Figure 6-2?

The analogous question is not typically raised for spectrogram-like representations as shown
in Figure 6-1.  This is because such a representation is easier to calculate (since it is just the
magnitude output of a filterbank) and has a direct physical interpretation. Because of this,
there is less concern about the nature of the processing algorithm itself.  Further, there is good
anatomical and neurophysiological justification for a filterbank-based representation. This is
certainly not the case for the methods I have presented in Chapters 4 and 5.  For these
methods, it is a research question of some interest whether the representation is being
calculated the right way, and whether they plausibly correspond to anatomical structures in
the auditory system. However, once spectrogram data are allocated into a multiple-object
segmentation as a perceptual model, we should ask these questions regarding the resulting
auditory groups as well.

C
e
n
te
r
fr
e
q
u
e
n
c
y

Time (ms)

100

200

500

1000

2000

4000

8000

0.5 1 1.5 2 2.5 3 3.5 4

Snare drum

Bass

Harmonica

Figure 6-3: Channel-image assignment function produced as the output of the auditory-image-
formation model in Chapter 5 to the same piece of music used in Figures 6-1 and 6-2.  The
graylevel indicates the auditory image that each cochlear channel is assigned to at each time.  The
set of channels sharing a color are grouped together and assigned to the same image.  At the some
times during the excerpt, the model uses three auditory images (colored dark gray, light gray, and
black) to explain the modulation data, while at other times, it uses only two (colored dark gray and
light gray).  Time-frequency cells colored white have little energy relative to the other channels at
that time and so are not assigned to any object. Some of the segmented time-frequency cells can be
associated with sound events that are audible in the music.
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I must emphasize again that it is not the case that I am trying to build systems that can find all
of the instruments in the musical mixture.  It may be the case that a particular listener hears
images corresponding to each of the instruments in the mixture, or it may not be the case.  But
at any rate, it is still an open question how to experimentally determine the actual set of
images that a listener hears in a sound stimulus.  And until we can determine the listener’s
perception of such sounds, we have no basis whatsoever for evaluating potential models of
scene perception directly.

6.2. Feature-based models of musical perceptions

Many readers, at this point, may consider my argument against segmentation-based evaluation
to be a sort of cop-out.  That is, that the real reason I choose not to evaluate segmentation
performance is that I have failed in an attempt to separate sounds.  In this section, I will argue
against this view, and instead present an alternative view of the way to construct and evaluate
music-listening systems that is more in line with the overall approach that I presented in
Chapter 3.

As discussed in Sections 2.5 and 3.4, most previous research, both in musical signal
processing and in music perception, has taken a transcription-driven approach.  That is (the
implicit argument goes), first we must build automatic polyphonic transcription systems and
then we will be able to use the results to solve music-analysis problems of interest.  In the
study of perception, the analogous argument is that first the human listener performs a signal
separation that is something like a polyphonic transcription, and then music understanding
proceeds based upon the structural relationships in the transcribed analysis.

But in neither of these cases is it the scene segmentation itself that is the primary goal of
analysis.  Rather, the segmentation or transcription is a subgoal that forms part of a larger
goal—to analyze the musical scene—or a subtheory that forms part of a larger theory of
music understanding by humans.  The crucial point is this: if useful analyses can be obtained,
or coherent theories of understanding formulated, that do not depend on transcription or
sound separation, then for many purposes there is no need to attempt separation at all.

In fact, this point holds true for nearly all the practical problems that have been considered in
the sound-analysis literate.  The most important and interesting engineering problems, such as
automatic classification and retrieval, performance analysis, human-computer musical
interaction, soundtrack indexing, and intelligent composing assistants, do not require
transcription except insofar as it would be a useful means to an end.  Perhaps the only
problem that depends on transcription in an interesting way is that of forming structural
descriptions of sounds for low-bit-rate encoding (Vercoe et al., 1998). The overwhelming
focus on separation and transcription as an appropriate to solve has been counterproductive
from the point of view of the field at large. It is essential that, instead, we think in an
application-driven or theory-driven manner when determining the utility or success of a
particular system.

From the scientific point of view, there is no particular evidence that a transcription-like
representation is maintained in the auditory brain during musical hearing.  This lack persists
despite the general and largely implicit assumption, as I discussed in detail in Section 3.4, that
the musical score is a appropriate representation for the development of perceptual and
cognitive models.

The remainder of this chapter, and the whole of Chapter 7, will be concerned with explicating
and exploring an alternative model of musical perception—one that follows the
understanding-without-separation approach outlined in Section 3.4.  A schematic of the model
is shown in Figure 6-4.
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In this model, an acoustic signal is processed by the early auditory system as described in
Sections 2.1 and 5.2.  The neural sound representation is the basis of a rhythmic analysis
subsystem (described in Chapter 4) and a subsystem that performs auditory-image formation
and primitive scene segregation (Chapter 5).  (Additional subsystems might perform tonality
analysis (Leman, 1995) and detection of vocals, which are not discussed directly here).  The
outputs of the analysis subsystems are used as the basis of the extraction of musical features,
as described in this chapter.  The set of musical features extracted from the scene comprises
the musical surface and is used by the listener to produce immediate judgments of the music,
as will be discussed in Chapter 7.

This model interrelates all of the new results in the thesis, Chapters 4 through 7, and shows
how to construct a computational model of the perception of music by human listeners that
operates on ecological musical stimuli represented as sound signals.  In this model, no notes
or other reified entities of sound perception are used.  Rather, the perceptions arise from the
continuous transformation of the sound signal into surface features, and the surface features
into judgments.

Evaluating this model allows indirect evaluation of the behavior of the tempo and auditory-
image models.  If the features that can be extracted from these models are sufficient to explain
certain interesting musical judgments, then this model is consistent with the hypothesis that
immediate musical judgments are made using such intermediate stages of processing.  It is not
the case, of course, that this demonstrates that these models are necessary to explain these
judgments.  This is a different question to which I will return in Section 7.2.3.

6.3. Feature extraction

To implement a feature-based model as shown in Figure 6-4, I have developed 16 features
that can be extracted directly from the musical representations presented in Chapters 4 and 5.
In this section, I will describe how each of them is extracted and show simple first-order
statistics about their distribution.  The statistics were collected from a musical test set
containing 150 examples, each 5 sec long (more details on the collection of musical examples
will be presented in Section 7.1.3, and Appendix A contains a complete list).

It is not the case that any of these features are supposed to directly correspond to interesting
semantic judgments about real sounds.  Rather, the features will be used in linear combination
(and potentially, in the future, in nonlinear combination) as the basis for modeling the
semantic judgments that humans can make.  My goal in this section is simply to enumerate

Early auditory
processing

Rhythmic
analysis

Tonality
analysis

Voice
detection

7KH

PXVLFDO

VXUIDFH

Immediate
musical
judgmentsCochlear filterbank

Hair-cell transduction
Subband periodicity analysis

Primitive scene
organization

Acoustic signal

Feature
extraction

Feature
extraction

Feature
extraction

Feature
extraction

Section 2.2
Section 5.2

Chapter 4

Chapter 5

(Leman, 1995)
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Figure 6-4: A model of musical perception built on the principle of understanding without
separation.  See text for details.
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many features that can be extracted with as little additional processing work as possible.  For
each feature, I have a brief story to explain why I think it might be a useful property of sound
to measure, but the only real proof comes when we put these properties into action as part of a
classification or regression model.

Further, it is not important that individual features be robust to noise or competing sounds.
The only way that even very simple feature models, like pitch detectors, can be robust in this
way is if we carefully bound and restrict the kinds of allowable noise and interference.  To try
to do this is pointless when we wish to consider analysis of every possible musical sound.  A
better and  more general hypothesis, although this is only pursued in a simple fashion in
Chapter 7, is that when one feature is unavailable or unreliable, others are used instead.
Martin (1999) presented a more in-depth exploration of this idea and emphasized that
deciding whether a feature is reliable for a particular sound is itself a very difficult problem.

Each feature is conceptually associated with a single point in time, and would vary over time
in extended musical listening.  For the example stimuli that I use here and the perceptual
modeling in Chapter 7, the entire stimulus is taken as the analysis window for simplicity.  To
apply this approach to applications such as the  automatic segmentation of music (see Section
7.7.2), more attention should be paid to windowing issues.

The features I will describe in this section fall into three categories: Features based on the
auditory image configuration, features extracted from the tempo model, and features based on
acoustic processing of individual auditory images.

6.3.1. Features based on auditory image configuration
Four features are extracted from the musical sound scene based on the configuration of the
auditory images within the scene: the mean and variance of the number of auditory images,
the average channel-by-channel modulation, and the spectral coherence of auditory images.

Mean number of auditory images
At each point in time, the auditory-image formation model of Chapter 5 determines how many
auditory images best explain the modulation data at that time (for computational reasons, the
model is presently restricted to using one, two, or three images).  Thus, within any time
window, it is possible to collect statistics on the distribution of the number of images found.

The mean number of auditory images is defined as
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where tmax is the number of time frames analyzed, and Gt is the number of auditory images
(clusters) determined by the image model at time t.

Figure 6-5(a) shows a histogram of this feature over the 150 sound examples in the test-
stimulus database.

Variance of number of auditory images
The previous feature indicates how many images, on average, there are over time in the
auditory scene.  As well as the average, another useful feature is whether there are always the
same number of images, or the number of images changes a lot over time.  Thus, I calculate
the variance of the number of auditory images.  The variance is defined as the mean-square
deviation from the mean of the number of images, calculated over all frames. That is,
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Figure 6-5(b) shows a histogram of the distribution of this feature over the test-stimulus set.
Further, Figure 6-5(c) shows a scatterplot of the mean number of images against the variance
of the number of images for the examples in the test-stimulus set.  As seen from the
scatterplot, the two features are relatively independent of one another.

Mean channel modulation

In Section 5.2.2, modulation features were extracted from the sound stimulus as the initial
stage of analysis.  These features were used as the basis for the clustering model of auditory
images in the sections that followed.  However, the raw modulation features themselves are
also potentially useful in support of semantic judgments.

Recall that for each cochlear channel at each time, the amplitude modulation and period
modulation were extracted by analyzing the autocorrelogram.  I define the mean channel
modulation as
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where N is the number of cochlear channels, tmax is the total size of the stimulus (or the
analysis window if these are not the same), and pi(t) and ai(t) are defined as in Eq. (5-9) and
Eq. (5-11) respectively as the current period and amplitude modulation.

Other methods of extracting a similar feature might use the two modulation features jointly,
for example, by taking the mean of the norms of the feature vectors xi(t) = [pi(t) ai(t)]

T.  I
haven’t yet explored variants on most of the features presented in this chapter.

Figure 6-6(a) shows a histogram of this feature over the test set of stimuli.
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Figure 6-5: (a) Histogram of MEANIM, the mean number of auditory images extracted from a
stimulus, over the test stimulus set.  (b) Histogram of VARIM, the variance of the number of
auditory images in a stimulus over time, for the test stimulus set.  (c) Scatterplot of MEANIM vs.
VARIM for the test stimulus set.  The two features are uncorrelated with each another (r = .074, p
= n.s.), although some nonlinear statistical dependency is evident.
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Channel-allocation coherence
For some kinds of auditory scenes (particularly noisy ones), the auditory-image model of
Chapter 5 partitions the spectrum into large subbands by placing all nearby channels in the
same group.  For other scenes (particularly ones with a simple harmonic structure), there is
more overlap and alternation between channel allocation—that is, channels nearby in
frequency are often assigned to different images.  I call the degree to which nearby channels
are assigned to the same image the coherence of channel allocation.

The channel-allocation coherence at each time t is defined as
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where B is the class-membership as defined in Eq. (5-25).  The overall coherence feature
CHANCOH is calculated as the mean of C(t) over time.

A histogram of this feature is shown in Figure 6-6(b). Figure 6-6(c) shows a scatterplot of this
feature against the previous one, mean channel modulation.  As seen in the figure, the two
features have only a slight correlation.

6.3.2. Tempo and beat features
Seven features are extracted from the tempo model that I presented in Chapter 4.  Each of
them is easy to compute as a single post-processing step on the output or intermediate
processing of the tempo model.  Only the final 2 sec of the signal is used for tempo feature
analysis in each case, because the tempo model has a fairly slow startup time while the
resonators lock into the various periods in the subbands.  If the features were to be extracted
from longer signals, all windows except the first could use the whole length of the signal
within the window.

Best tempo
The best tempo is simply the one that is returned most often by the tempo-processing
algorithm as the tempo of the signal.  At each time frame, the algorithm produces an estimate
of the energy at each tempo, as shown in Figure 4-7.  Call this function Et(τ), where t is the
time frame and τ is taken from the range of tempi analyzed.  At each time t, the instantaneous
best tempo can be defined as
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Figure 6-6: (a) Histogram of MEANMOD, the average modulation in each cochlear channel at each
time, over the set of 150 musical examples. (b)  Histogram of CHANCOH, the average number of
channels assigned to the same auditory image as their lower neighbor.  (c) Scatterplot of
MEANMOD against CHANCOH for the test stimulus set.  The two features are only weakly
correlated (r = .270, p = .001).
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)(supˆ ττ
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Then, over the range of t to be analyzed (the final two seconds of the signal, in this case), we
select the 

tτ̂ that occurs the most often as the best tempo.  If more than one tempo occurs

equally most often, we choose the best tempo as the one of the most-occurring tempi that
occurred the most recently.

Figure 6-7 shows a histogram of the best-tempo values over the 150 test stimuli.

Mean tempo entropy

Within each frame of tempo estimates (as in Figure 4-7), we can consider the various amounts
of energy assigned to each tempo18 as a probability distribution governing the choice of a
particular tempo.  That is, the tempi with high energy are most likely to be chosen, and the
tempi with least energy are least likely to be chosen.  Then the entropy of each of these
distributions tells us how much tempo information is present.  If there are only one or two
strong spikes (as in the top subplot of Figure 4-7), then little information is present and the
tempo percept is very stable.  If there is a broader distribution of tempo energy through the
tempo spectrum, then the tempo percept is relatively unstable since there is a lot of
information in the distribution.

The mean tempo entropy is defined as
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where )(ˆ τtE  is the normalized tempo energy, that is
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Figure 6-8(a) shows a histogram of this feature over the 150 test examples in the stimulus
database.

                                                          
18 See the footnote on page 153.
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Figure 6-7: Histogram of BESTT, the tempo (in beats per minute) selected as best by the tempo-
tracking algorithm in Chapter 4, for each of the stimuli in the test set.
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Tempo stability
For some genres and pieces of music (particularly rock and roll), the tempo changes very little
over time.  For other pieces (for example, rubato performances of Western classical music),
the tempo may change a great deal in a short period of time.  The tempo stability feature tries
to measure the relative stability of the tempo energy over the fairly short duration of each of
the stimuli.  The normalized tempo energy spectrum )(ˆ τtE , defined in (6-7), is averaged

within two time windows, each a half-second long.  The first window begins 2.5 sec into the
signal, and the second begins 4.5 sec into the signal.  The correlation coefficient, a measure of
vector similarity, is calculated between these two averaged normalized spectra.

The tempo stability of a stimulus is defined as
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with t1, t2, t3, t4 defined as given above.

Naturally, there are other methods available for computing various kinds of distances between
the two averaged tempo energy spectra, for example simple Euclidean distance or Kullback-
Leibler divergence (to continue treating the energy vectors as probability distributions).  I
haven’t tested any of these methods yet.

Figure 6-8(b) shows a histogram of this feature over the database of 150 songs, and Figure 6-
8(c) shows a scatterplot of the previous feature, tempo entropy, against this one.  As can be
seen from the scatterplot, there is a strong (although nonlinear) relationship between the two
features.
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Figure 6-8: (a) Histogram of TEMPOENT, the mean entropy of the tempo energy distribution in
each frame.  (b) Histogram of TEMPSTAB, the correlation of tempo energy distribution at two
points in time.  (c) Scatterplot of TEMPOENT against TEMPSTAB for the 150 examples in the
music database.  There is a strong statistical relationship (r = -.527, p < .001) between these two
features, showing that the more stable the estimate of tempo is, the more similar the tempo energy
distributions at two different points in time are.
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Tempo centroid

As well as considering the distribution of energy to various tempi as a probability distribution,
we can also consider it a sort of spectrum or weighting function.  The centroid of this
spectrum gives an estimate of the relative amount of periodic energy at high tempi in the
signal compared to the amount at low tempi.  This might correspond with a sense of
“energeticness” for a musical signal.

The tempo centroid is defined as
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where T(τ) is the tempo that corresponds to each band of the periodicity-detection bank, and
E2(τ) is as given in (6-9).

Figure 6-9(a) shows a histogram of this feature over the test set of 150 musical examples.  As
seen there, even through the best-tempo estimates (Figure 6-7) vary widely, the tempo
centroids are clustered in a narrow region.

Number of beats
As well as producing an estimate of the distribution of tempo energy in the signal, the beat-
perception model in Chapter 4 produces a semi-rhythmic “tapping” output.  These taps can be
measured and transformed into features in their own right.  The simplest of these is simply to
count how many beats are produced by the algorithm.  This is not simply the inverse of the
best tempo, because for musical examples that have uncertain or changing tempo, the beats
may be produced irregularly.  Counting the number of beats also reflects the confidence of the
algorithm in producing beats.

The number of beats for a stimulus is the number of beats generated by the beat-tracking
algorithm after 2 sec of startup time until the end of the stimulus. A histogram of this feature
is shown in Figure 6-9(b).  A scatterplot of the number of beats against the tempo spectrum
centroid can be seen in Figure 6-9(c), and shows that there is no linear correlation between the
two features.

Mean interbeat interval
The features used in Section 4.4 to compare the beat-tracking model performance to the
performance of human listeners can also be used as musical features of the sound.  The first of
these is the mean time between beats produced by the algorithm.  This feature does not
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Figure 6-9: (a) Histogram of TEMPOCNT, the centroid of the tempo spectrum (in beats/minute),
for the sample database of musical examples.  (b) Histogram of NUMB, the number of beats
produced by the beat-tracking algorithm for a 3 sec segment of the stimulus.  (c) Scatterplot of
TEMPOCNT against NUMB.  NUMB is quantized since it can only take on integer values.  There
is no significant correlation between these two features (r = .143, p = n.s.).
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exactly correspond the number of beats because of the possible edge effects of the limited
window length.  That is, suppose that on one stimulus the algorithm produces beats at
t = [3.0, 3.5, 4.0].  There are three beats here with a mean interbeat interval of 0.5 sec.  But if
on another stimulus the algorithm produces beats at t = [2.75, 3.5, 4.25], there are still three
beats, but with a mean interbeat interval of 0.75 sec.

Let βi indicate the time of the i-th beat occurring after 2 sec of the signal.  Then the mean
interbeat interval is defined as
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A histogram of the distribution of values of the mean interbeat interval for the set of 150 test
stimuli is shown in Figure 6-10.

Variance of interbeat interval
The final feature that I extract from the beat-model output is the variance of the time between
beats.  In Section 4.4.2, this feature was used as one of the dependent variables comparing the
performance of the algorithm to human performance in a tapping task.  The interbeat interval
variance is a measure of the regularity of tapping.  If the beats are regularly spaced, the
interbeat interval variance will be small; if they are irregularly spaced, it will be large.  This
feature is defined as
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The logarithmic transformation is used because the values can become very small if there are
many very evenly-spaced beats.  If there are not at least three beats for comparison, VARIBI
is taken as missing data.  A histogram of the distribution of VARIBI over the stimulus set is
shown in Figure 6-10(b), and a scatterplot showing the values of VARIBI against the values
of MEANIBI is in Figure 6-10(c).  As seen in that figure, there is a complex relationship
between these two features: at low values, there is a roughly linear correlation between the
two variables, but at high values, the relationship is less clear.
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Figure 6-10: (a) Histogram of MEANIBI, the mean time (in sec) between beats.  (b) Histogram of
VARIBI, the log variance of the time (in sec) between beats.  Very negative values (to the left)
indicate that the beats were very regular; less negative values (to the right) indicate that the beats
were very irregular. (c) Scatterplot of MEANIBI against VARIBI for the test set.  There is a
complex nonlinear relationship between the two variables, but no correlation (r = .094, p = n.s.).



164 Chapter 6: Musical Features

6.3.3. Psychoacoustic features based on image segmentation
The previous two sections have presented features that can be easily extracted directly from
the output of the image model and tempo model.  In this section, I present five additional
features that require slightly more post-processing.  These features are based on looking at the
features of the auditory images themselves, following the hypothesis that the allocation of
time-frequency energy by the image model corresponds to the listener’s sense (as discussed in
Section 3.1.3) that there are multiple sources, each with its own properties, that can be used to
explain the overall stimulus percept.

In a more sophisticated approach, the time-frequency energy allocated by the image model
would be used as evidence for and against the existence of various sound-source models.
Then, the properties of the source models would determine the perceptual features to be
associated with each auditory image, as discussed in Section 5.2.8.

Here, I am not so sophisticated.  I use two simple feature models to extract the psychoacoustic
features of pitch and loudness from each of the auditory images according to the data
allocated to it by the model in Chapter 5.  Then I process these psychoacoustic features further
to derive stimulus features like the other ones that I have already presented.

Pitch stability
The first stimulus feature extracted from psychoacoustic post-processing is the stability of
pitches over time in each auditory object.  This feature is partly a function of the nature of the
stimulus, and partly a function of how well the auditory-image-segmentation model allocates
data from different sources to different images.

The pitch of each auditory image is calculated according to the method of Meddis and Hewitt
(1991), but at each time, only on those channels allocated to that image.  That is, let B be the
channel-image assignment defined in Eq. (5-25), and let Ft be the autocorrelogram frame at
time t as defined in Eq. (5-6).  Then let Ikt be the set of all cochlear channels at time t assigned
to image k, that is

Ikt = {i, 1≤ i ≤ N | Bit = k}. (6-13)

 The summary autocorrelation of image k at time t is defined at each lag j as
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That is, the sum of the energy at that lag over each of the cochlear channels assigned to image
k.  The pitch is defined as the frequency corresponding to the lag at which the maximum of
the summary autocorrelation is reached.  The best lag is therefore defined as
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and the pitch Pkt is the frequency (in Hz) corresponding to this lag.  No further smoothing or
post-processing is attempted.  (This is the method that was used to estimate the pitch for the
psychoacoustic tests in Chapter 5, Figure 5-14 and Figure 5-17.)

The stability of the pitch estimates over time is a measure of two things.  First, if the sound
stimulus is complex, then the pitch estimates will be messy as the image model allocates
energy first to one source, then to another.  Second, even the sound stimulus is relatively
simple, then the pitch estimates will reflect the changes in pitch in the underlying sound
sources, and will be as stable or instable as these source sounds were.

The stability of pitch estimates is defined simply as the average change in pitch estimate of
each image from one frame to the next, averaged over both time and the number of images:
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(Actually, since the number of images changes from time to time, the inner summation is only
taken for those images that also existed at the previous time step).

A histogram showing the distribution of this feature over the set of 150 musical test stimuli is
shown in Figure 6-11(a).  As seen in this figure, the values are quite large—this likely
indicates that the feature mostly reflects the changes in channel allocation and image selection
from one moment to the next in the output of the image model.

Pitch entropy
Another metric that corresponds to the stability of pitch estimates over time is the entropy of
the estimates.  If all of the pitch estimates are very similar, then there will be low entropy in
the overall estimation distribution.  If they are very different, then the distribution has high
entropy.  In order to calculate this, we must consider the set of pitch estimates as a probability
distribution, namely to compute

∑∑
=

t k
kt

kt
kt P

P
P̂ (6-17)

as the normalized pitch estimate.

The entropy of pitch estimates is defined as

∑∑−=
t k

ktkt PP ˆlogˆPCHENT (6-18)

A histogram of the entropies of pitch estimates for each of the 150 test stimuli is shown in
Figure 6-11(b).  Also, Figure 6-11(c) shows a scatterplot of this feature against the previous
one.  Interestingly, there is no correlation between these two features.

Loudness entropy
As well as estimating the pitch of the various auditory images as a basis for perceptual
features, I estimate the loudness of the images.  This is at once easier and more difficult than
estimating pitch.  It is more difficult because the only models that have been presented for
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Figure 6-11: (a) Histogram of PCHSTAB, the average change (in Hz) in pitch of each auditory
image in the sound scene from one time step to the next. (b) Histogram of PCHENT, the entropy of
the distribution of pitch estimates over time and the various auditory images.  (c) Scatterplot of
PCHSTAB against PCHENT.  There is no linear relationship between these features (r = .007,
p = n.s.).
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loudness analysis of full-bandwidth sounds are very complex, and we know little about how
loudness is integrated across critical bands (Allen, 1999).  As a result, I have used a simpler
model that is really estimating cross-frequency power more than loudness—it doesn’t
incorporate known data on masking, spread of excitation, or temporal effects, for example.
But this model is easy to calculate, and even given its limitations, I think that the features
derived from it are similar to what they would be (in terms of inter- and intra-stimulus
variances) if they were derived from a more accurate psychoacoustic loudness model instead.

Beginning with the same channel-image allocation Ikt as discussed above, I simply compute
the total power in each spectral band assigned to each image.  The total energy in all images is
not simply the total energy in the signal because the auditory filterbank does not have the
property called perfect reconstruction.

Let Qit be the power in channel i at time t, as calculated by the zero-delay autocorrelation
given by Eq. (5-5) where τ = 0.  Then the loudness of each auditory image k is defined as

∑
∈

=
ktIi

itkt Qlog*20LOUD (6-19)

that is, the cross-band sum of the log power in each channel assigned to that image.

Based on the time-varying loudness of each image, we can compute various features of the
stimulus.  For example, as with pitch, I can compute the entropy of the distribution of
loudness values over time.  The entropy of loudness estimates is defined as

∑∑−=
t k

ktkt LL ˆlogˆLOUDENT (6-20)

where 
ktL̂ is the normalized loudness, that is

∑∑
=

t k
kt

kt
ktL

LOUD

LOUDˆ (6-21)

A histogram of this feature for the 150 test stimuli is shown in Figure 6-12(a).

Dynamic range
Another feature that can be extracted from the loudness of the images is the overall dynamic
range of the signal.  This is a measure of whether or not the loudness changes suddenly over
time.  For each time t, the total loudness in all images is calculated:

∑
=

=
tG

k
kttL

1

LOUD (6-22)

Then the dynamic range is defined as the greatest of the local differences in total loudness
within short windows throughout the signal, thus
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(The overall analysis, as discussed in Section 5.2, is performed at 100 frames/sec, so 20
frames corresponds to a 200 msec time window.  I haven’t tested any other frame sizes for
calculating the dynamic range).

A histogram of this feature for the music in the test database is shown in Figure 6-12(b).
Figure 6-12(c) shows a scatterplot of the dynamic range against the loudness entropy.  As
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seen in this figure, there is a strong linear relationship between these two features.  Knowing
the value of one feature explains 30% of the variance of the other, on average.

Loudest frame
The final feature that I extract from the loudness estimate, and in fact from the signal as a
whole, is simply the loudness of the loudest frame in the signal according to the total
loudness.   Note that (as will be discussed in more depth in Section 7.1.3) a simple (although
different) frame-by-frame psychoacoustic model is used to normalize all of the sounds to the
same loudness, so in theory this measure should be the same for all pieces.  The feature might
actually be said to be measuring the differences between the two models of loudness.

The loudest frame is defined as

t
t

LmaxLOUDEST = (6-24)

A histogram of this feature is shown in Figure 6-13
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Figure 6-12: (a) Histogram of LOUDENT, the entropy of the distribution of loudness estimates
over time and the various auditory images. (b) Histogram of DYNRNG, the dynamic range of the
signal within local windows.  (c) Scatterplot of LOUDENT against DYNRNG.  There is a very
strong linear relationship between these two features (r = .578, p < .001), showing that the more
dynamic range a signal has, the more randomly-distributed are the loudness estimates from frame
to frame in that signal.
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Figure 6-13: Histogram of LOUDEST, the individual loudest frame (according to a logarithmic
scale) of each of the 150 test examples.  The maximum possible loudness is 270, that is, 90 dB for
each of three objects in a sound scene.
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6.4. Feature interdependencies

As the various scatterplots of pairs of features have shown, the feature set described here is
not completely orthogonal.  That is, there are relationships, both linear and nonlinear, that
make the various features statistically dependent on one another.  This is both expected and
natural, as there are only so many degrees of freedom in sound signals containing music.

It is possible to quantitatively analyze the feature set to determine the degree and potential
effect of the statistical regularities.  One method is by simple inspection of the interfeature
correlation matrix, as shown in Table 6-1.  As seen in this table, about half of the interfeature
pairwise comparisons are statistically significant.  This indicates that a few simple linear
transforms are not sufficient to characterize the degrees of freedom in the feature space.  Two
of the interfeature pairs show very strong relationships.  More than 95% of the variance of
MEANIM can be explained by LOUDENT (or vice versa), and about 50% of the variance of
TEMPOCNT can be explained by TEMPOENT, indicating that these pairs of features are
essentially measuring the same thing.

Another test of interfeature correlation is to look for “island groups” of correlations, that is,
subsets of features that have the property that each is statistically dependent on the other, and
all are statistically independent from all of the features not in the group.  There are no subsets
of the features (other than the trivial one containing all of them) that have this property.

A more sophisticated way to look for dependencies among the features is to perform a
principal-components analysis (also called a factor analysis) of their correlations.  Doing this
allows us to find a rotation of the feature space that still accounts for most of the variance
among the features.  If a low-dimensional subspace can be found that contains most of the
interfeature variance, this is the same thing as showing that there are fewer degrees of
freedom in the feature space than there are feature.

Figure 6-14 shows the fit obtained by basis rotations with subspaces using the best k
eigenvectors.  As seen in this figure, to explain most of the variance among the features
requires a feature space with almost as many (at least half as many) dimensions as the
original.  This indicates that most features are bringing new information that cannot be
explained as the linear combination of other features.

If the best k of the eigenvectors are chosen and used as a basis rotation for the overall feature
space, the variance in the original features will be explained well for some features, and not as
well for others.  This is an indication of how well each feature is oriented with the principal
eigenvectors (most important factors) in the basis rotation and is shown in Table 6-2.
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Figure 6-14: Amount of variance in the overall feature space explained by a rotated subspace with
various numbers of basis vectors.  If the features were mutually independent, the curve would be a
straight diagonal line; if they were mutually perfectly correlated, it would be flat and horizontal. As
seen in the plot, using only a few basic vectors fails to cover a lot of the variance in the space.
Further, there is no clear knee in the curve that indicates a optimum tradeoff between the number of
eigenvectors and the amount of variance explained.



BESTT DYNRNG LOUDENT LOUDEST MEANIBI MEANIM MEANMOD NUMB PCHENT PCHSTAB CHANCOH TEMPCNT TEMPENT TEMPSTB VARIBI VARIM

BESTT 1.000

DYNRNG .061 1.000

LOUDENT .133 .578 1.000

LOUDEST .013 .440 .648 1.000

MEANIBI -.090 .036 .061 .050 1.000

MEANIM .159 .584 .986 .596 .052 1.000

MEANMOD -.003 .403 .636 .503 .110 .602 1.000

NUMB .237 -.040 -.065 -.131 -.464 -.045 -.141 1.000

PCHENT -.020 .155 .417 .128 .062 .426 .313 -.063 1.000

PCHSTAB -.022 .317 .342 .341 -.025 .336 .415 .105 .007 1.000

CHANCOH -.046 -.185 -.355 -.064 .013 -.413 .270 -.137 -.204 .031 1.000

TEMPCNT .100 -.267 -.380 -.341 -.063 -.414 -.350 .143 .083 -.229 .195 1.000

TEMPENT -.190 -.311 -.485 -.268 .022 -.550 -.267 -.028 -.020 -.217 .316 .760 1.000

TEMPSTB .105 .299 .376 .344 -.014 .394 .294 -.014 .069 .284 -.060 -.474 -.527 1.000

VARIBI -.104 -.278 -.298 -.208 -.097 -.322 -.158 .138 -.087 -.085 .156 .241 .409 -.251 1.000

VARIM -.091 .099 .097 .382 .050 .074 -.116 -.188 -.079 -.129 -.147 -.360 -.249 .116 -.146 1.000

Table 6-1: Matrix of interfeature correlations.  Each cell shows the Pearson’s r correlation coefficient,
calculated over the 150 test stimuli, between the two demarcated features.  Each coefficient that is
significant at p < 0.05 or less is marked in bold.  That is, for the coefficients not marked in bold, there
is a 1-in-20 chance or better that the given coefficient could simply arise through the random
fluctuations of the features throughout their ranges.  For the coefficients marked in bold, such an
occurrence is unlikely, and so there is likely a linear relationship present between the features.  56 out
of 105, or about 54%, of the pairwise interfeature correlations are significant.





6.5. Chapter summary

This chapter has described a feature-extraction philosophy and methods that can be used to
study real, ecological musical signals with models of psychoacoustics.  I have mathematically
derived 16 different features that can be easily extracted from the sound-perception models
presented in previous chapters.  Direct evaluation of sound-perception models is very difficult
for such complex sounds, and so I argue that a better approach is to study them indirectly, by
examining the utility of the features they support for building perceptual models of known
judgments.

The next chapter therefore collects some data on human judgments in a new kind of music-
psychology experiment, and demonstrates how the features presented here can be used to
model the results.

Feature Proportion of variance

MEANIM .931

LOUDENT .919

MEANMOD .817

TEMPENT .817

SPECSTB .768

TEMPCNT .750

NUMB .741

VARIM .698

LOUDEST .655

MEANIBI .642

PCHENT .637

BESTT .575

TEMPSTB .543

PCHSTAB .538

VARIBI .471

DYNRNG .457

Table 6-2: Feature extractions showing commonality between each feature and the 5-vector rotated
basis determined by principle-components analysis (factor analysis) of the 16-dimensional feature
space.  Each row shows the proportion of variance in that feature that is explained by the lesser-
dimensional space.  The features that are best explained are the ones that are most closely aligned
with the principle components extracted from the correlation data.
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CHAPTER 7 MUSICAL PERCEPTIONS

This is the final chapter that presents the results of new research.  In it, I will incorporate
results from the previous three chapters, by using them as the basis of a computational model
of music perception that starts with acoustic signals.  First, though, I will set the stage for the
modeling research by presenting the results from two music-listening experiments with
human subjects.  These experiments treat the kinds of features of the musical surface that
were discussed in Chapter 3, Section 3.219.

The organization of the chapter is as follows.  In the first section, I will describe and present
the results from an experiment that examines the abilities of human listeners to rapidly
associate semantic judgments with short musical stimuli.  I will discuss the results of the
experiment in order to examine my definition of musical surface more critically.  In the
second section, I will show that a signal-processing model based on the three previous
chapters can be used to predict the responses of listeners in this task.

In the third section, I will present the design and results of a second listening experiment; this
experiment examines the perception of musical similarity by human listeners.  The
experiment uses the same stimuli as the one in Section 7.1, and an overlapping pool of
listeners.  I will then show that the results of the first experiment—and therefore also a signal-
processing model based on the principles I have outlined previously—can be used to predict
the results of the second experiment.  That is, that a certain amount of the variance in the
perception of musical similarity can be explained as the comparison of a small number of
high-level semantic feature judgments operating on the musical surface.

Following the two main experiments, I will present the results of a short post-pilot third
experiment investigating a methodological point.  I will conclude the chapter with a
discussion of the use of psychoacoustic and signal-processing models in the construction of
multimedia-indexing systems and other practical applications.

                                                          
19 I am deeply indebted to Richard Watson, my undergraduate assistant, for his help
building the computer interfaces, collecting and segmenting the musical stimuli, and
running the subjects in these experiments.
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7.1. Semantic features of short musical stimuli

This section describes an experiment that examines the ability of human listeners to make
rapid judgments about brief musical stimuli.  By hypothesis, the kinds of judgments that the
listeners made in the experiment are those that they would naturally make in an ecological
listening situation.

7.1.1. Overview of procedure
Thirty musically trained and untrained subjects listened to two five-second excerpts taken
from each of 75 pieces of music.  The subjects used a computer interface to listen to the
stimuli and make judgments about them.  The particular judgments elicited fell into two
categories: primary judgments, which by hypothesis are direct reflections of immediate
perception of the musical surface, and secondary judgments, which by hypothesis can be
explained as stemming from some combination of the primary judgments.  The primary
judgments elicited were the degrees to which the musical stimulus was simple or complex,
loud or soft, fast or slow, and soothing or harsh.  The secondary judgments elicited were the
degrees to which the musical stimulus was boring or interesting, and enjoyable or annoying.

7.1.2. Subjects
The subjects were drawn from the MIT community, recruited with posts on electronic and
physical bulletin boards.  Most (67%) were between 18 and 23 years of age, the rest ranged
from 25 to 72 years.  The median age was 21 years.  Of the 30 subjects, 10 were male and 20
were female, although there were no gender-based differences hypothesized in this
experiment.   All but four subjects reported normal hearing.  22 reported that they were native
speakers of English, and 6 reported that they were not.

9 subjects reported that they had absolute-pitch (AP) ability in response to the question “As
far as you know, do you have perfect pitch?”  No attempt was made to evaluate this ability,
and it is not clear that all respondents understood the question.  However, as reported below,
there were small but significant differences on the experimental tasks between those who
claimed AP and those who did not.  The subjects had no consistent previous experience with
musical or psychoacoustic listening tasks.

After completing the listening task, subjects were given a questionnaire regarding their
musical background. No formal tests of audiology or musical competence were administered.
The questionnaire allows classification of subjects based on their musical experience, as
follows:

� Subjects that reported at least 10 years of private study on a musical instrument, ending
no longer than 3 years ago, and at least two years of ear-training, music theory and/or
composition study were classified as M2 subjects (N = 3).

� Subjects that were not classified as M2 subjects, but that reported at least 5 years of
private study on an instrument, ending no longer than 5 years ago, or at least one year of
ear-training and/or composition study were classified as M1 subjects (N = 15).

� Subjects not classified as either M1 or M2 subjects were classified as M0 subjects
(N = 12).

Breakdowns of musical ability by age and by gender are shown in Table 7-1 and Table 7-2.
Note that the experiment is not counterbalanced properly for the evaluation of consistent
demographic differences.
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7.1.3. Materials
The experimental stimuli were 5-second segments of music.  Two non-overlapping segments
were selected at random (based on their starting positions in time) from each of 75 musical
compositions.  The 75 source compositions were selected by randomly sampling the Internet
music site MP3.com, which hosts a wide variety of musical performances in all musical styles
by amateur and professional musicians.  A complete list is given in Appendix A.

In their original form, some samples were recorded in mono and some in stereo, at a variety of
sampling rates and peak power levels.  To make the stimuli uniform, each was mixed down to
mono by averaging the left and right channels, resampled to 24000 Hz, and amplitude-scaled
such that the most powerful frame in the 5-second segment had power 10 dB below the full-
power digital DC.

It is worthwhile to explore the implications of this method of selecting experimental
materials.  MP3.com is (as of this writing) the largest music web site on the Internet,
containing about 400,000 freely-available songs by 30,000 different performing ensembles.
Using of materials from such a site enables studies to more accurately reflect societal uses of
music (by the segment of the population that listens to music on the Internet) than would
selecting materials from my personal music collection.  The materials are certainly more
weighted toward rock-and-roll and less toward music in the “Western classical” style than is
typical in music-psychology experiments.  However, this weighting is only a reflection of the
fact that the listening population is more interested in rock-and-roll than it is in “Western
classical” music.

A second advantage of selecting music this way is that scientific principles may be used to
choose the particular materials.  In this case, since the set to be studied is a random sample of
all the music on MP3.com, it follows from the sampling principle that the results I will show
below are applicable to all of the music on MP3.com (within the limit of sampling variance,
which is still large for such a small subset).  This would not be the case if I simply selected
pieces from a more limited collection to satisfy my own curiosity (or the demands of music
theorists).

A third advantage is that the materials remain easily accessible to other researchers.
Researchers who wish to replicate or extend my results can simply download the same
compositions from the MP3.com site.  This might not be so easy if I used materials from
major-label records that, at some time in the future, went out of print.  I have saved digital
copies of the downloaded music files to guard against the event that they eventually become

Male Female

M0 1 11

M1 8 7

M2 1 2

Table 7-1: Cross-tabulation of subjects’ musical ability by gender.

18-25 25-30 30-40 40+

M0 9 0 2 1

M1 9 5 0 1

M2 2 0 1 0

Table 7-2: Cross-tabulation of subjects’ musical ability by age.
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unavailable from MP3.com (please contact me via electronic mail to receive digital copies of
the songs excerpts for research purposes).

A fourth and final advantage is the relevance of the results to practical problems on the
Internet.  It is likely that as the research field of which this dissertation is a part begins to
mature, the results will be most enthusiastically consumed by businesses trying to provide
multimedia-indexing services to consumers or other businesses.  Therefore, to use actual
Internet music materials for study shows that that the systems I build are directly applicable to
pressing problems in the real world today and in the future.

It is to be noted that many of the pieces of music selected (through random sampling) as
stimulus materials are not “good.”  That is, in several cases, the performances or compositions
that have been recorded, or the production quality of the recordings, do not meet the standard
of quality that would be demanded by a major-label release.  However, this does not diminish
the quality of the research results I present.  In fact, I believe quite the opposite: if we wish to
build systems that can operate in the real musical world of the Internet (which is simply a
microcosm of the musical world at large), they must be able to deal with “bad music” as well
as “good music.”

Real listeners are confronted with “bad music” (meaning simply music they don’t like) every
day.  The aesthetic reactions thereby evoked are no less valid, or worthy of psychological
study, simply because they are negative ones.  It is a research question of the utmost interest
to understand how it is that individual listeners decide for themselves what music is “good”
and what is “bad,” and what features they use to make this decision when they hear a new
piece of music.  Bad music is part of the world of music just as good music is;  to understand
the complete world of music, music researchers must be willing to move beyond the
“classics” and examine a more complete spectrum of examples.

7.1.4. Detailed procedure
Subjects were seated in front of a computer terminal that presented the listening interface, as
shown in Figure 7-1.  The interface presented six sliders, each eliciting a different semantic
judgment from the listener.  The scales were labeled simple—complex, slow—fast, loud—
soft, interesting—boring, and enjoyable—annoying.  The subject was instructed that his
task was to listen to short musical excerpts and report his judgments about them. It was
emphasized to the subject that there are no correct answers on this task, and that the
experiment was only designed to elicit his opinions.  Three practice trials were used to
familiarize the subject with the experimental procedure and to set the amplification at a
comfortable listening level.  The listening level was allowed to vary between subjects, but
was held fixed for all experimental trials for a single subject.

Each of the 150 stimuli (75 musical excerpts x 2 stimuli/excerpt) were presented in a random
order, different for each subject.  When the subject clicked on the Play button, the current
stimulus was presented.  After the music completed, the subject moved the sliders as he felt
appropriate to rate the qualities of the stimulus.  The subject was allowed to freely replay the
stimulus as many times as desired, and to make ratings in any order after any number of
playings.  When the subject felt that the current settings of the rating sliders reflected his
perceptions accurately, he clicked the Next button to go on to the next trial.  The sliders were
recentered for each trial (Section 7.5 will present a brief experiment studying a possible
artifact due to the slider-based interface).

The subjects were encouraged to proceed at their own pace, taking breaks whenever
necessary.  A typical subject took about 45 minutes to complete the listening task.

The six scales in the interface were positioned in random up-down orientations when the
interface was designed.  This is important because I hypothesized correlations between the
scales—that is, a stimulus perceived to be “fast” seems more likely to be rated as “complex”,
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“loud”, and “interesting” than one rated “slow.”  If “fast”, “complex”, “loud”, and
“interesting” were all at the top of the scales, it might bias subjects’ responses, since to move
all the sliders in the same direction is a simpler response than moving the sliders in different
directions.  This bias would artificially enhance this correlation, with a danger of producing a
false-positive result.  By randomizing the orientation of the sliders, the danger of such a bias
is eliminated.

7.1.5. Dependent measures
For each trial, the final settings of each slider were recorded to a computer file.  The computer
interface produced a value from 0 (the bottom of the slider) to 100 (the top) for each rating on
each trial.  For ease of description, I will refer to the dependent variables by their data-
analysis names: SIMPLE, SLOW, LOUD, SOOTHING, INTEREST, and ENJOY.  For each
of these, a large value indicates that the subject set the slider towards the top of the
corresponding scale, and a small value indicates that she set it towards the bottom.  For
example, a large value for SIMPLE indicates that the subject judged the stimulus to be simple,
and a small value that she judged it to be complex.  Any feature on which the slider was not
moved at all (that is, for which the slider value was 50) was rejected and treated as missing
data for that stimulus.  This is to offset the response bias that originates in the initial setting of
the slider (about which also see Experiment III, Section 7.5).  Approximately 6.1% of the
ratings were rejected on this basis.

As discussed below, each of the response variables were shifted to zero-mean and scaled by a
cube-root function to improve the normality of distribution.  After this transformation, the
responses lie on a continuous scale in the interval [-3.68, +3.68].  Two additional dependent
variables were derived for each response variable.  The “sign” variables (SIMPSIGN,
SLOWSIGN, etc) indicate only whether the responses on the corresponding sliders were
below the center of the scale or above the center of the scale.  The “offset” variables

Figure 7-1: The computer interface for listening experiment I.  Each subject rated each stimulus on
6 semantic scales.
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(SIMPOFF, SLOWOFF, etc) indicate the magnitude of response deviation from the center of
the scale on each trial, without regard to direction.

A note about loudness
One of the scales used in this experiment is labeled soft to loud.  As discussed in Section
3.1.2, this exactly matches the psychophysical definition of loudness—that perceptual
attribute that allows it to be positioned on the continuum from “soft” to “loud.”  Thus, by
definition, this scale asks subjects to report the loudness of the stimuli.20

However, it is clear that loudness in this experiment means something different than loudness
in most other psychophysical experiments.  At the least, there are many more degrees of
freedom in these stimuli than are typically included in psychoacoustic stimuli.  It seems clear
that subjects might use a variety of complex percepts, including the musical structure, genre,
and style of the music, as well as physical stimulus parameters, in rating loudness.  (This is in
line with results presented by Fucci et al. (1993; 1996), who found that, other things equal,
subjects’ musical preferences affected their perception of the loudness of sounds).

There is nothing wrong with this.  It simply highlights the difficulties that begin to confront us
when we move beyond test stimuli to work with the sorts of stimuli that subjects might
encounter in the real world.  To the extent that loudness is a real, relevant property of sounds
that subjects actually make use of in everyday judgments, we should expect that it will be a
messy and noisy one.  The only sorts of stimuli that afford us clean experimental judgments
are those that eliminate the complexity of the real world.

As noted in Section 7.1.3, a simple power-based scaling was applied to normalize the signals
to a roughly equal listening level.  This may be taken as a simple form of loudness
equalization; of course I could also use a more sophisticated model of loudness to do this
scaling.  But again by definition, if I could really normalize all of the stimuli according to
their actual loudness, there would no longer be any sense in including loudness as a dependent
variable since all stimuli would be equal.  The fact that, empirically, they are not equal on this
scale reveals simply that power-based equalization doesn’t really capture all of the degrees of
freedom used in loudness judgments.

If such factors as musical preference, structure, genre, and style really form part of the
perception of loudness, as it seems they must, then to normalize for loudness must mean
normalizing away the musical preference, structure, genre, and style.  This is a very strange
idea indeed!

For present purposes, the subject ratings presented below and the regression model presented
in the next section can be seen as operating over the residual loudness left after an incomplete
normalization.  That is, we assume (by hypothesis) that the overall power level of the signal is
going to be the most important factor in judging loudness, and so we remove this degree of
freedom in order to highlight the other degrees of freedom more clearly.

7.1.6. Results
In this section, I will present the results of this experiment.  Even outside of the overall
context of developing psychoacoustic models, the results are of interest since, as far as I
know, there have no few experiments like this reported in the literature to date.

                                                          
20 I am grateful to Malcolm Slaney for bringing this argument to my attention.
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Response distribution

The distribution of responses in this task for each of the six features has a characteristic shape,
as shown in Figure 7-2. These distributions can be modeled in two ways.  First, as a normal
response curve with a systematic bias away from the center (as suggested on the SIMPLE
histogram).  Second, as a bimodal response with a systematic bias (skew) towards the center
(as suggested on the SLOW histogram).  The second model was adopted for further
investigation of the data.  It is possible that the bimodal response pattern is an artifact of the
experimental interface; this will be explored briefly in Experiment III (Section 7.5).

Since correlational study is an important part of the data-modeling approach I use, it is
essential that second-order statistics be an accurate model of the data.  A transformation was
therefore applied to the raw results in order to remove the center-bias in the bimodal response.
The center point was moved to 0 by subtracting 50 from each response, and then a nonlinear
transformation (the cube-root function) was applied to each response.  This maps the response
scale to the range [-3.68,+3.68].  As seen in Figure 7-3, after such rescaling is applied, the
data are well-modeled by a simple bimodal distribution.

All further results reported are based on the rescaled responses.

Learning and fatigue effects
Correlation (Pearson’s r) tests were run in order to investigate relationships between the trial
number (that is, the position of a particular stimulus in the random sequence of stimuli for a
subject) and each dependent variable.  These tests explore possible learning or fatigue effects.

There were no such effects for the primary judgments; none of the variables SIMPLE, SLOW,
LOUD, or SOOTHING showed significant correlation with the trial number.  On the other
hand, both of the secondary judgments showed small but significant correlations with the trial
number.  For ENJOY, r = -0.039 (p = 0.01), and for INTEREST, r = -0.071 (p < 0.001).
These results indicate that on average, as the experiment went along, stimuli were found to be
less interesting and less enjoyable.  This is clearly a fatigue effect.  Fortunately, both effects
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Figure 7-2: Histograms showing response distribution before rescaling, pooled for all subjects, for
each of the six judgments elicited in Experiment 1.  There is a characteristic shape shared by each
distribution that may reflect response bias in the experimental interface.  Also notice the floor
effects present in ENJOY, INTERST, and SOOTH.
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were very slight (the Pearson r is a sensitive test with so many cases), explaining only 0.2%
and 0.5% of the variance in the dependent variables respectively.

To illustrate this, a scatterplot of INTEREST vs. trial is shown in Figure 7-4.  As can be seen
in the figure, the correlation is very slight.

Intersubject correlations

The pairwise intersubject correlations of responses to each feature judgment were
calculated21.  There are 435 intersubject pairs, so I will only present the results in summary.
They are shown in Table 7-3.  There are strong differences in intersubject correlation from

                                                          
21 This is not strictly proper, as the bimodal response patterns violate the assumption of
normality in the correlation procedure.

SIMPLE

300

200

100

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

0

SLOW

300

200

100

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

0

SOOTH

300

200

100

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

0

LOUD

400

300

200

100

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

0

INTERST

300

200

100

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5
0

ENJOY

300

200

100

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

0

Figure 7-3: Histograms showing response data after centering and rescaling.  These are the data
used for further analysis.  As seen by the imposed normal curves (fitted by eye, not by statistical
analysis of the data), a bimodal distribution is a good model for each of the rescaled histograms.
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Figure 7-4: Scatterplot of trial vs. INTEREST, with imposed regression line.  The correlation of
these variables is significant but very small, as seen by the limited relationship of the data points to
the regression line.
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variable to variable.  For SLOW and SOOTHING, subjects generally agree on these ratings
for the various musical examples.  This is observed in several ways.  First, for these features,
nearly all of the pairs of subjects show significant correlation between their ratings.  Second,
even for those few pairs of subjects for which the intersubject correlation is not significant,
the trend in the data is in the same direction—the r value is positive for all of the 435 pairs of
subjects.  For the best-matched pairs, more than 50% of the variance in one subject’s data can
be explained by the other subject’s responses.  Finally, on average, around 20% of the
variance in one subject’s rating of a piece (on these highly-intercorrelated judgments) can be
explained by another, randomly-selected, subject’s ratings of the same piece.

However, this is not the case for all features.  For others, notably INTEREST, there is often
disagreement among subjects.  In this case, only 12.9% of the pairwise correlations are
significant, the r values are sometimes negative and never get strongly positive, and on
average, only a small proportion of the variance in one subject’s data can be explained by
randomly selecting another subject and examining his responses.  Two extreme cases, one
showing strong agreement and the other showing strong disagreement between subjects, are
shown as scatterplots in Figure 7-5.

It is not possible to determine from these results whether the disagreement among subjects is
due to different interpretations of the meaning of interesting and boring, different

Judgment % correlations p < 0.01 Range of r Mean r2

SIMPLE 24.6 % -0.204 – 0.525 0.035

LOUD 57.2 % -0.203 – 0.761 0.097

SLOW 94.7 % 0.100 – 0.694 0.195

SOOTHING 95.6 % 0.089 – 0.766 0.232

INTEREST 12.9 % -0.341 – 0.436 0.022

ENJOY 34.2 % -0.245 – 0.566 0.049

Table 7-3: Intersubject stimulus-to-stimulus correlations on the bimodal response data.  The second
column shows the proportion of intersubject correlations (relative to the 435 possible pairs of
subjects) that are significant at p < 0.01.  The third column shows, for each judgment, the range of r
(the correlation coefficient) over all pairs of subjects.  The fourth column shows the mean of r2 over
all pairs of subjects, which indicates the average proportion of the variance in one subject’s data
that can be explained by the data of another subject selected at random.
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Figure 7-5: Scatterplots of intersubject correlations, with imposed regression lines, for the two most
extreme cases.  On the left, subjects 5 and 6 show very strong agreement (r = 0.766) on their
judgment of SOOTHING.  On the right, subjects 4 and 6 show significant disagreement (r = -
0.341) on their judgment of INTEREST.   Note the bimodal structure of these judgments, which
has a strong bias on the correlation statistics.



182 Chapter 7: Musical Perceptions

psychoacoustic percepts that correspond to whatever interesting means, different “personal
preferences” that govern what makes music interesting, or some combination of these three
and other additional factors.  However, it is clear that there are different types of responses
among the feature scales used—some (SOOTHING, SLOW, and to some degree, LOUD) on
which subjects generally agree, and some (INTEREST, SIMPLE, and ENJOY) on which they
do not.

Analyses of variance

Analyses of variance were conducted to explore the relationships between the various
independent and demographic variables and the subjects’ responses.  Due to the strongly
bimodal nature of the responses, it violates the assumptions of the analysis of variance (which
depends on second-order statistics only) to use the raw or rescaled responses.  Instead, the two
lobes of the distribution were collapsed by taking the absolute value of the rescaled response
for each feature rating.  I will refer to the new variables generated from this as offset
variables.  They measure the degree to which the subject moved the slider away from the
center, in one direction or the other.  Averaged for a subject, they indicate that subject’s
tendency to use the ends of the scale rather than the middle.

The existence of a significant covariate of an offset variable is a sufficient condition for there
to be significant group-by-group response differences in the underlying bimodal variable.
That is, we cannot improperly reject the null hypothesis of an analysis of variance (that all
groups behave identically, drawn from the same probability distribution) because of this
transformation.  It may be the case that we fail to reject the null hypothesis in some cases in
which it would be appropriate, but we will never reject it inappropriately.

The first set of analyses of variance explores the intersubject and interstimulus variances.  The
results are summarized in Table 7-4.  As expected, there are significant effects in each of
these analyses.  This indicates that there are consistent differences between subjects—some
subjects find all the stimuli to be simpler, and louder, and so forth than others do—and
between stimuli—some stimuli are consistently rated as simpler, and louder, and so forth,
than other stimuli.

The second analysis of variance explores possible dependencies of subject responses on the
demographics of the subjects: musical ability, self-reported absolute pitch, native language
(English or non-English), sex, and age.  Age was segmented into four categories for analysis:
17-21, 22-29, 30-39, and 40+.  The p values for all of these analyses are summarized in Table
7-5.

Dependent variable FSUBJ(29) P(SUBJ) FSTIM(149) P(STIM)

SIMPLE 106.850 0.000 2.081 0.000

SLOW 76.684 0.000 2.671 0.000

LOUD 66.147 0.000 2.840 0.000

SOOTHING 57.125 0.000 5.340 0.000

INTEREST 64.306 0.000 1.525 0.000

ENJOY 51.990 0.000 3.148 0.000

Table 7-4: Summary of analyses of variance examining potential differences in offset response due
to the stimulus and the subject.  As expected, all of these analyses are strongly significant,
indicating that the complexity, loudness, etc. differs from stimulus to stimulus, and that some
subjects find all of the stimuli to be consistently simpler, louder, etc. than do other subjects.
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Again, most of the effects are significant here.  This was unexpected and is somewhat difficult
to interpret.

Figure 7-6 plots the overall mean rating offsets of the six judgments broken out by musical
ability; Figure 7-7 shows them broken out by absolute-pitch group. As seen in the figures, the
differences are consistent but very small.  The differences are more evident in the ratings of
INTEREST and ENJOY.  For these judgments, skilled musicians and  those listeners who
claim to have absolute pitch22 use the ends of the scale more, on average, than do less-skilled
musicians and listeners who don’t claim to have absolute pitch.  The effects on the other
ratings are difficult to summarize succinctly.

Since the absolute magnitude of the differences between the demographic groups was very
small compared to the interstimulus differences, the subjects were pooled for further analysis,
which focuses mainly on analysis of the stimulus-by-stimulus data.

Dependent variable p(MUS) p(AP) P(ENG) P(SEX) p(AGE)

SIMPLE .001 .000 .002 .000 .000

SLOW .001 .000 .000 .000 .000

LOUD .032 .000 .452 .000 .000

SOOTHING .000 .000 .000 .012 .000

INTEREST .000 .000 .022 .000 .000

ENJOY .000 .000 .400 .000 .000

Table 7-5: p values from analyses of variance exploring dependencies of offset in subjective
responses on the demographics of the subjects.  The five demographic variables tested are: musical
ability (MUS), self-reported absolute pitch (AP), native English language speaker (ENG), sex
(SEX), and age, segmented into four categories (AGE).   Only the p values are shown; most effects
are significant (shown in boldface) for most demographic variables and most of the rating scales.
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Figure 7-6: Mean and 95% confidence interval of offset ratings of the six semantic judgments,
averaged across all stimuli.  The y-axis shows the mean offset from the center, not the absolute
mean position, for conformance with the ANOVA in Table 7-5.  Each judgment is broken out by
musical ability.  For each judgment, there is a statistically significant (although obviously quite
small) effect of the musical ability of the listener.  The differences are difficult to interpret; perhaps
the best that can be said is that highly-musically-trained (M2) listeners use the ends of the scale
(that is, they have stronger opinions) more than do less-musically-trained (M0 and M1) listeners.
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Data modeling
As well as examining the relationship between the subject demographics and the observed
responses, it is possible to learn about the perceptual behavior of subjects by examining the
relationships among the different responses.  I will do this in two ways in this section, first by
presenting the intercorrelations among the semantic judgments, and then by performing a
factor analysis of the results.

For these analyses, I will work with the mean rescaled ratings for each stimulus, averaged
across all subjects.  Although the rescaled subject-by-subject ratings are strongly bimodal (as
shown in Figure 7-3), the mean ratings are not, as shown in Figure 7-8 (this is just a particular
instance of the Law of Large Numbers).  Thus, it is possible to use second-order-statistics
techniques such as correlation and regression to analyze the mean ratings even though it is not
proper to do so for the individual subject data.

The variable-to-variable correlations among the mean semantic judgments were analyzed, and
the result is shown in Table 7-6.  All except two of the pairwise correlations were significant,

                                                                                                                                                      
22 These were not the same group; of the absolute-pitch claimers, 4 were in group M0, 3
in group M1, and 2 in group M2.
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Figure 7-7: Mean and 95% confidence interval of offset ratings of the six semantic judgments,
broken out by self-report of absolute-pitch  ability.  For each judgment, there is a statistically
significant effect in whether the listener claims to have absolute pitch or not (claims were not
verified).  On five of the six scales, AP-claimers used the ends of the scale more than did non-AP-
claimers.

SIMPLE SLOW LOUD SOOTHING INTEREST

SLOW .521

LOUD -.479 -.741

SOOTHING .426 .715 -.882

INTEREST -.305 .050 -.168 .326

ENJOY .097 .320 -.506 .701 .750

Table 7-6: Variable-to-variable correlations among the means of the perceptual judgments,
calculated over the 150 musical examples (boldface indicates correlation is significant at p < 0.05).
All but two correlations are strongly significant; variance explained ranges as high as 78%  (LOUD
and SOOTHING, in negative correlation).
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indicating that in almost all cases, the pairs of judgments are not independent.  Some of these
correlations are very strong—the correlation between SOOTHING and LOUD explains nearly
80% of the variance in these judgments.  This indicates that the judgments of whether a piece
of music is soothing or harsh, and whether it is loud or soft, are nearly the same judgement.
The scatterplot of SOOTHING vs. LOUD is shown in Figure 7-9.
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Figure 7-8: Histograms of mean across-subject rescaled ratings on the six semantic judgments for
the 150 musical examples.  As contrasted with the subject-by-subject ratings shown in Figure 7-3,
the mean ratings are more nearly normally distributed.  Imposed normal curves are fitted using the
mean and variance of the data.  Kolmogorov-Smirnov tests of normality reveal the following
significance levels for rejecting the null hypothesis that the distributions are normal: SIMPLE, p =
n.s.; SLOW, p = 0.011; SOOTHING, p = 0.001; LOUD, p = 0.001; INTEREST, p = 0.035;
ENJOY, p = n.s.  Thus, for two of the six judgments, the distribution can be considered normal, and
for two others, the divergence from normality is mild.
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Figure 7-9: Scatterplot showing relationship between judgment of LOUD and SOOTHING.  Each
data point represents the mean rating taken over all subjects for one stimulus.  The correlation
between these two judgments is very strong: knowing the judgment on one scale explains 78% of
the variance in the other.
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On one hand, it is important that not all of the results are strongly intercorrelated—this shows
that there is more than one degree of freedom underlying the perceptual judgments.  Previous
research in the music-education literature (Madsen, 1996) had suggested that perhaps there is
really only one judgment, of the nature “loud-fast-harsh-more,” that underlies any semantic
scale.  But the fact that there are pairs of judgments that are uncorrelated is inconsistent with
this hypothesis.

On the other hand, the fact that most interjudgment correlations are significant is an indication
that subjects are not really expressing six degrees of freedom in their judgments.  Thus, an
interesting question is how many degrees of freedom are really present.  The statistical
technique called factor analysis can address this.  The factor-analysis procedure analyzes the
correlation matrix among the judgments, as shown in Table 7-6, considers it as a
transformation in a high-dimensional space (6-dimensional in this case), and “rotates” the
transformation so that the most important directions of variance are aligned with new basis
axes.23  If the judgments are really expressing only a few degrees of freedom, then only a few
basis axes will suffice for explaining most of the correlation among the judgments.  The
results of a factor analysis of the mean ratings for the 150 musical examples is shown in
Figure 7-10.

In Figure 7-10(a), a Scree plot of the factor analysis is shown.  This plot shows how the
proportion of variance explained increases as the number of eigenvectors (basis axes)
increases.  By definition, this proportion must be 100% when the number of eigenvectors is
equal to the number of ratings.  However, we can also observe that many fewer dimensions
suffices to explain a large proportion of the variance.  A two-dimensional basis space contains
84% of the covariance among the six judgments, and will be used for further analysis.  Each
additional dimension only explains a small amount of the residual variance.

                                                          
23 For readers with a pattern-recognition background, factor analysis is just the term used
by psychologists for principle-components analysis of the correlation matrix via the
Karhunen-Loeve expansion.  The resulting basis axes might be called eigenjudgments for
this set of semantic scales.
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Judgment Corr. I Corr. II Var. exp.

SIMPLE .519 -.670 71.8%

SLOW .803 -.341 76.2%

LOUD -.907 .172 85.3%

SOOTHING .956 .002 91.4%

INTEREST .384 .870 90.3%
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Figure 7-10: Factor analysis of the six perceptual judgments.  (a) Scree plot, showing the
proportion of covariance explained as a function of the number of eigenvectors used.  Based on
these data, a two-dimensional feature space that explains 84% of the overall variance is used for
further analysis.  (b) Table showing the partial correlation of each judgment to each of the two
factors (I and II), and the proportion of variance in this feature explained by the two-dimensional
reduced space.  72% of the variance in SIMPLE, 76% of the variance in SLOW, and so on, lies in
the rotated two-dimensional plane spanned by the two extracted factors.
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In Figure 7-10(b), the correlation between each feature and the two basis axes is shown.  This
lets us determine whether the new axes are similar to any of the judgments that were the basis
of the factor analysis, and how well the new feature space does at containing the variance of
each of the perceptual judgments.  We see that the first eigenvector is closely aligned with the
judgments LOUD and SOOTHING, and that the second eigenvector is closely aligned to
INTEREST, orthogonal to SOOTHING.  The new feature space explains at least 70%, and in
some cases more than 90%, of the variance in the original judgments.

This result indicates that, in fact, the six semantic judgments that I elicited on this task
actually reflect only two underlying perceptual dimensions.  The question of the physical
features to which the judgments (and the underlying dimensions) correspond is the topic of
the next section.

7.2. Modeling semantic features

The experimental data I presented in the previous section are useful in two ways.  First, the
data may be used to examine the nature of immediate judgments about music.  This was the
main approach pursued in Section 7.1.6.  Second—more importantly from the perspective of
this dissertation as a whole—we make examine the ability of psychoacoustic models to
predict the data.  This is the focus of the present section.

I will address three modeling questions.   First, how well can the features extracted from
musical signals in Chapter 6 predict the mean results of the experiment in the previous
section?  Second, what can be said about individual differences in model fit?  And third, how
do the predictions made by this feature model compare to the predictions made by other
feature models?

The modeling technique that I use here is multiple linear regression, in which a set of linear
equations on the predictors (feature variables) is fit to the outcomes (human judgments) in the
way that minimizes mean-squared error.  Naturally, there are a variety of other techniques that
could be used that would enable modeling of consistent nonlinearity in the data, such as
neural networks.  In the future, such approaches should be considered and evaluated.
However, the amount of data collected in Experiment I is probably not adequate to fit the
more numerous degrees of freedom presented by these techniques.

7.2.1. Modeling mean responses
Consider the psychoacoustic features extracted in Chapter 6 as a vector for each piece of
music.  That is, for musical stimulus i, the vector xi = [MEANIM i VARIM i MEANMODi …
LOUDESTi]

T contains the values of the  k  features for this stimulus.  Then, for each
perceptual feature described in the previous section, we wish to compute a coefficient vector
β = [β1 β2 … βk]

T such that, if yi is the mean human response to stimulus i on one rating scale,

( )
N

y

E i
ii∑ −

=

2Tx
(7-1)

is minimized, where N=150 is the total number of stimuli.  The β in this equation give the
relative weights and directions of contributions of each of the xi to the overall prediction

ˆ T
iiy x= (7-2)

The β are the same for each musical stimulus (thus, the matrix solution is underdetermined
and only a least-error solution can be found) and differ for each perceptual feature.  Post-hoc
analysis of the β can be used to determine which of the predictors are making a statistically-
significant contribution to the model.  An additional statistic, termed R2, can be derived from
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the model.  R2 describes the proportion of variance in the independent variables that is
explained (modeled) by the predictors through the regression equation (it is the square of the
correlation coefficient between the predictions and the observed data).  See a standard
reference  (for example, Amick and Walberg, 1975) for a more in-depth statistical
presentation on the multiple regression procedure.

Table 7-7 shows the fit of a simple linear-regression model to each of the mean judgments.
The same judgments that showed strong intersubject correlation in the previous section
(SLOW, LOUD, SOOTHING) are relatively easy to predict using linear regression and the
features measured in Chapter 6.  The judgments with less intersubject correlation in the
previous section (SIMPLE, ENJOY, INTEREST) are more difficult to predict this way.  This
result is consistent with the hypothesis discussed in the previous section: that SLOW, LOUD,
and SOOTHING are “surface features” of music that are based on the sorts of properties
extracted in Chapter 6, while SIMPLE, ENJOY, and INTEREST are based on other features,
which are perhaps more variable between subjects.

For the three variables that can be modeled well this way, the model fits are quite good.
Figure 7-11 shows scatterplots of predicted vs. observed data for each of the six features.  The
predictions of SLOW and LOUD in particular match very well with the observed data.  That
is, even given the likelihood that there are individual differences that have not yet been
considered, and the certainty that some cognitive processing is involved in making these
judgments, the surface psychoacoustic features extracted through direct signal processing
predict half of the variance in the data.

To examine the role of the various predictors in the model, a slightly different regression
model is useful.  The stepwise regression procedure is a variant on the overall linear
regression method that more robustly considers intercorrelation among the predictors.  In this
variant, the features are added one at a time.  That is, first, the single feature that is best
correlated with the observed data is added to the model.  Based on this feature, the regression
coefficient is calculated, the model predictions obtained, and the residuals (the differences
between the model prediction and observed data) calculated.  In each subsequent step, the
single feature that best explains the residuals from the previous step is added to the model.
The coefficients are recalculated and used to produce new residuals.  The process ends when
no individual feature is significantly correlated at p < 0.05 with the residuals.  In this method,
a minimal list of features that explains the data well (although perhaps not quite as well as the
full regression matrix) is obtained.  The results of the stepwise regression are shown in Table
7-8.

Judgment R2 Best predictor

SLOW .531 -BESTT

LOUD .516 -VARIM

SOOTHING .495 MEANMOD

ENJOY .378 MEANMOD

SIMPLE .294 MEANIM

INTEREST .236 PCHENT

Table 7-7: Fit of linear regression model, using the 16 psychoacoustic features presented in Chapter
6, to the mean intersubject ratings for each stimulus elicited in Experiment I.  The R2 column shows
the proportion of variance in the observed data that is explained with the linear model.  For the
most-easily-predicted judgments, about 50% of the variance can be explained with these simple
features in linear combination.  The Best Predictor column shows the feature that is more
significantly correlated with the observed data; a minus sign indicates a strong negative correlation.
All regressions are significant at p < 0.001.
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As seen in the table, in all cases more than half of the variance explicable with the full model
can be explained with a much shorter list of features, and in one case (LOUD) the relative
proportion of variance is greater than 90%.  These smaller models are better models, both in
the sense of being more statistically significant, and in the minimum-description-length sense
of the average amount of variance explained per feature.

By examining the features entered, we can learn something about the degree to which each of
them is useful.  Clearly the most important feature is MEANMOD which is entered as the first
predictor for four of the six regressions.  For LOUD, SLOW, and SOOTHING, MEANMOD
alone explains about 25% of the variance in the judgments.  This is a strong indication of the
importance of modulation detection (Langner, 1992) in real music, not just test signals.  Most
of the other psychoacoustic features are used by one model or another; at least one tempo
feature is entered in each model.

Notably absent are any pitch-based features.  This absence is compatible with two hypotheses.
First, that pitch and pitch manipulations are not perceptually-salient aspects of the sorts of
judgments elicited in this experiment.  (It seems certain that pitch is an essential feature of
other aspects of music perception such as melody recognition, however).  Second, that the
particular pitch features extracted in Chapter 6 are not robust enough, or in some other way
not meaningful enough, to enable good predictions.  The present data cannot distinguish these
hypotheses.

As well as attempting to explain each of the individual judgments, we can continue to
investigate the hypothesis, raised in Section 7.1.6, that there are only a few underlying
perceptual dimensions that as serve a basis for all six of the semantic judgments.  In Figure 7-
10 the correlation of each of the judgments with the two-factor principle-component (factor
analysis) solution was shown.  We can also model these two factors directly, using linear
regression on the psychoacoustic features.  The result is shown in Table 7-9.

As seen in this table, it is much easier to model the first basis vector than the second.  More of
the variance in the first basis vector is explained using psychoacoustic features of the sounds
than for any of the individual judgments.  Yet the second basis vector is more difficult to
explain than any of the perceptual judgments are.

It is frankly difficult, even for a human listener, to understand the projections of the musical
examples onto the second basis vector.  When the musical examples are sorted in order of
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Figure 7-11: Scatterplot of predicted vs. observed values for the 150 musical trials, for each of the
six feature judgments.  The observed values are the mean responses of the 30 subjects to each
stimulus, as described in Section 7.1.  The predicted values are computed by the best regression fit
from the 16 physical features described in Chapter 6 to the observed values.  Notice that, for the
features that are difficult to model (ENJOY, SIMPLE, and INTEREST), there is strong regression
to the mean in the predictions, and to a lesser extent, in the observed data.
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their values along this vector, I cannot qualitatively tell the examples that wind up at one end
from the examples that wind up at the other or to characterize their order in any useful way.
Thus, the perceptual reality of an underlying dimension that corresponds to this eigenvector
must be considered with some skepticism.

Judgment Full R2 Features Stepwise R2 Next feature p(next)

SLOW 0.531 -MEANMOD
-TEMPCNT
-BESTT

0.229
0.353
0.420

-PCHSTB 0.063

LOUD 0.516 MEANMOD
TEMPCNT
SPECSTB
LOUDEST
-VARIM

0.261
0.362
0.395
0.427
0.470

BESTT 0.071

SOOTHING 0.495 -MEANMOD
-TEMPCNT
VARIM
-SPECSTB
-BESTT

0.238
0.395
0.428
0.445
0.461

-LOUDEST 0.157

ENJOY 0.378 -MEANMOD
-TEMPCNT
LOUDEST
-TEMPSTB
PCHENT

0.122
0.202
0.253
0.292
0.316

BESTT 0.050

SIMPLE 0.294 -SPECSTB
VARIM
-LOUDEST
-VARIBI
-BESTT

0.064
0.102
0.138
0.163
0.186

TEMPSTB 0.072

INTEREST 0.236 -SPECSTB
VARIBI
LOUDEST

0.072
0.106
0.131

TEMPSTB 0.052

Table 7-8: Results of stepwise regressions for each of the six perceptual judgments, using the
physical features of chapter 6.  Each regression is significant at p < 0.001 or better.  The “full R2”
column shows (for comparison) the proportion of variance that can be explained by entering all 16
features into the regression at once.  These values are the same as in Table 7-7.  The “Features”
column and “Stepwise R2” column show the order in which features are entered in a stepwise
regression, and the proportion of variance explained at each step.  For example, for judgment
SLOW, the first feature entered is MEANMOD, which is negatively correlated with the judgment
and explains 22.9% of the variance.  The second feature entered is TEMPCNT, which is negatively
correlated with the residual after MEANMOD’s effects are considered.  MEANMOD and
TEMPCNT together explain 35.3% of the variance in SLOW.  The “Next feature” and “p(next)”
columns show the feature that has the most significant correlation with the residual, after all
features at the p < 0.05 level or better have been entered.  In most cases, the p level of the next
feature is very close to significance, indicating that there is no hard boundary between the features
that are useful for explaining the perceptual data and those that are not.
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7.2.2. Intersubject differences in model prediction
A natural hypothesis stemming from the results in the preceding section is that for some
judgments (LOUD, SOOTHING), subjects generally agree on the meaning and
psychoacoustic correlates of the semantic scale, while for other judgments, the subjects

understand the scale differently from one another.  The previous results are consistent with
this hypothesis, because drawing the subjects from a homogenous group (as is the case for
LOUD and SOOTHING) fits the assumptions of the regression model better than drawing the
subjects from several different groups does.

Another way to observe this is simply to inspect the intersubject variances in semantic rating
for each stimulus and each rating scale.  These are shown in Table 7-10.  As seen there, the
easily-modeled ratings have much less intersubject variance than do the ratings that were
more difficult to model.  This is consistent with the same hypothesis: that it is individual
differences make it difficult to model the overall results for some ratings.

In this section I will explore the possibility of modeling each subject’s individual responses
with multiple-regression models.  This allows us to distinguish between two different forms
of the individual-differences hypothesis.  First, that the intersubject variance stems from
different subjects weighting the various psychoacoustic factors differently in their judgments
of what makes a stimulus complex or interesting.  If this is the case, then we should be able to
predict the ratings on the “difficult” scales as well subject-by-subject as for the “easy” scales.
Second, that the intersubject variance stems from different methods of combining the factors,
or different factors entirely (such as cognitive factors).  If this is the case, then that ratings like
SOOTHING and SLOW should continue to be easier to predict than SIMPLE and
INTEREST, even for individual subjects.

In the previous section, I used multiple linear regression to model the mean ratings across
subjects.  This was an admissible procedure because (as shown in Figure 7-8) the intersubject
mean ratings are roughly normally distributed.  However, this is not the case for the individual

Eigenvector Full R2 Features Stepwise R2 Next feature p(next)

First 0.587 -MEANMOD
–TEMPCNT
–BESTT
–SPECSTB
VARIM
–LOUDEST

0.277
0.442
0.482
0.517
0.541
0.555

-TEMPSTB 0.242

Second 0.227 LOUDEST
VARIBI

0.056
0.101

-TEMPSTB 0.055

Table 7-9: Results of stepwise regressions, using the psychoacoustic features to model the two
basis vectors determined through principle components analysis (factor analysis) in Section 7.1.6.
Specifically, for each piece of music, the six-dimensional perceptual vector is projected into the
rotated two-dimensional basis space.  The projected distance along each basis vector for each piece
of music is used as the dependent variable in the multiple-regression analysis.  All R2 values are
significant at or beyond p < 0.01. The first eigenvector is easier to model with psychoacoustic
features than is the second eigenvector.

Rating SOOTHING SLOW LOUD SIMPLE ENJOY INTEREST

Mean of variance 1.898051 2.010852 2.031866 2.404179 2.488282 2.645411

Table 7-10: Means across stimulus of intersubject variances in response for each of the semantic
ratings.  These are calculated by computing the intersubject variance for each rating for each of the
150 stimuli, and then taking the means of the variances across stimuli.  The ratings that were
difficult to model in the preceding section have 20-40% more variance than the ratings that were
easy to model.  This indicates that subjects agree less about the meaning and psychoacoustic
correlates of the difficult semantic features.
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subject-by-subject data, and so multiple linear regression cannot be used.  Instead, I will use a
variant statistical procedure called logistic regression, which allows the distribution of binary
variables to be modeled by continuous predictors.  Since the distribution of responses
collected in Experiment I was strongly bimodal, there is a natural binary variable to derive
from each of the response scales.  Namely, whether the response is above or below the center
point.  Such a model follows the hypothesis that the basic judgment made in each case is
bivalent—loud vs. soft, fast vs. slow, interesting vs. boring—and that the actual magnitude
offsets are less important.

The logistic regression procedure attempts to estimate the probability of response (that is, the
probability of a “high” rating) as a linear regression, using an equation of the form
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where πk is the probability of response observed in trial k, the xki are the observed independent
variables (the psychoacoustic features), and the α and β values are the regression weights.
Significance can be tested by comparing the estimated probability to the observed probability
in light of the number of predictors.

Results from logistic regressions for each of the six semantic ratings are summarized in Table
7-11.  These values were calculated by performing a full logistic regression for each rating for
each subject and summarizing the results.  The logistic regressions were computed using a
“full-entry” method in which all 16 psychoacoustic features are entered at the same step.
Stepwise regressions could also be computed, but this produces a great deal of data that is
difficult to summarize and interpret, and so is left as a topic for future work.  It is possible that
more subjects might be predictable to a statistically significant degree in the stepwise
regression models, due to the fewer degrees of freedom in the initial stages of the stepwise
models.

Judgment Correct: Range Correct: Mean % significant

SOOTHING 69.8%—95.4% 77.4% 97.7%

SLOW 70.6%—96.6% 78.3% 93.3%

LOUD 65.5%—96.6% 82.0% 76.7%

ENJOY 64.4%—84.4% 73.5% 70.0%

INTEREST 61.9%—90.4% 71.4% 60.0%

SIMPLE 60.8%—93.1% 73.6% 46.7%

Table 7-11: Results from subject-by-subject logistic regressions, using the psychoacoustic features
to predict a bivalent form of each of the response scales (that is, whether the rating for each
stimulus is “high” or “low”, without regard to the magnitude of the offset).  The two results that are
returned for each subject are the proportion of stimuli that are predicted correctly by the logistic
model, and whether or not this level of prediction is statistically significant.  The second column
shows the range of proportion correct across subjects for each feature.  That is, for SOOTHING, as
few as 69.8% (for one subject) or as many as 95.4% (for another subject) of the bivalent ratings
were correctly predicted by the model (random guessing would give 50% for each subject here).
The third column shows the mean of proportion correct across subjects.  That is, for SLOW, on
average 78.3% of the stimuli were predicted correctly.  The fourth column shows the proportion of
subjects for whom the model was significant24.  That is, for LOUD, 76.7% (23 out of 30) of the
subjects could be individually modeled to a statistically significant (p < 0.05) extent (random
guessing would give the α level, or 5%, here).
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Looking at the results shown in Table 7-11, the overall performance is quite good.  Depending
on the semantic judgment, anywhere from nearly half to nearly all of the subjects’ ratings can
be significantly predicted by the logistic model.  This is despite the fact that since there is
only one rating for each stimulus from each subject, it is likely that there is a fair amount of
experimental error in the ratings themselves.

The results seem to be inconsistent with the first hypothesis, and consistent with the second
hypothesis, regarding intersubject variance.  That is, there remain differences in the quality of
modeling between the “easy” scales like SOOTHING and the “difficult” scales like SIMPLE.
If intersubject variability for the difficult ratings were only a matter of combining the same
psychoacoustic features in different ways, then this would not be the case.  From this, we can
tentatively draw the conclusion that the individual differences on these scales arise from
features not tested here (such as cognitive factors) or different methods of combining features,
or both.

I also performed analyses of variance to explore the relationship between the subject
demographics and the predictability of each scale for each subject.  The null hypothesis in this
case is that whether the subject is a musician or not, is male or female, is young or old, has no
effect on the ability of the logistic regression model to predict his/her ratings.  None of the
ANOVAs were significant and so this null hypothesis cannot be rejected.

7.2.3. Comparison to other feature models
Over the long run of the experimental-modeling research program laid out here, there are a
number of methods that should be used to evaluate models.  One is to try to use a single
model to explain different things.  This is one way to think of the connections between the
low-level results in Chapters 4 and 5, the feature extraction in Chapter 6, and the modeling
results presented in this chapter.  The psychoacoustic models of tempo and auditory-image
formation are shown to be useful for explaining low-level percepts in the earlier chapters, and
for higher-level percepts in this chapter.

Another important evaluation, though, is to look at the performance of models in comparison
to other models that do the same thing.  Considered only in its abilities to explain musical
perceptions, the linear-regression model presented in Section 7.2.1 is very complex indeed.  In
order to extract the features needed for this model, there is a great deal of sophisticated
preprocessing.  The good modeling performance achieved shows only that this sort of
complex model is sufficient to explain musical perceptions, not that it is necessary.  It might
be the case that a simpler model could do equally well.  If so, Occam’s razor would force a re-
evaluation of the use of the complex model as the best explanation for these perceptual data.

To fully address this question is a long-term prospect, because the complex model really
needs to be compared to all simpler models.  There have been few models proposed that target
similar questions, so it is difficult to draw from the research literature to find candidates.
However, one such is found in my previous research on speech/music discrimination
(Scheirer and Slaney, 1997).  In that research, we found that a 13-dimensional feature space,
using simple spectral-based features, was sufficient to provide approximately 4% error rate in
categorizing complex ecological signals (sampled directly from a radio) as “speech” or
“music.”

We tested several trained classification frameworks in order to examine speech/music
discrimination performance. T here were few significant differences between the frameworks
in discrimination error.  Here, I will apply the 13-dimensional feature space to the same
linear-regression approach to modeling the perceptual data. See the original report (Scheirer
and Slaney, 1997) for more extensive details on this feature set and the way we evaluated its
performance on the speech/music task.
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This is an unfair comparison, because of course the speech/music features were not intended
to be used in this way, and there is little reason that they should work particularly well.  There
was no perceptual motivation in constructing the feature set for that classifier.  However, at a
high level of abstraction, it could be argued that the features from the speech/music
discriminator capture some of the surface information in music.  Thus, they serve as a point of
evaluation for the more complex, perceptually-motivated, features developed in Chapter 6.

The speech/music features are calculated through continuous signal-processing of the musical
signal.  Each is updated 50 times per second.  To calculate single values for each of the 150
test stimuli, I took the mean of each feature value over the last second of the signal.  This is
not necessarily the same as processing only the last second of the signal, since some of the
features maintain a temporal history and thereby reflect the early part of the signal in part as
well.

As well as the speech/music features, I used the perceptual data itself in two other ways to
model the perceptual judgments.  First, since there were two segments selected from each
musical selection (75 x 2 = 150 stimuli in the whole dataset), for each stimulus, the
counterpart stimulus can be used as a reference.  That is, given the perceptual ratings of
selection #1, excerpt A, how well can these be used to model the perceptual ratings on
selection #1, excerpt B?

Second, since there is a significant amount of intercorrelation among the judgments, for each
judgment, the other judgments can be used as a reference.  That is, given the perceptual
ratings of LOUD, SLOW, SOOTHING, INTEREST, and ENJOY on a particular stimulus,
how well can they be used to model the rating of SIMPLE on that stimulus?  (Given the
strength of the first few eigenvectors in the factor analysis in Section 7.1.6, it is to be expected
that the modeling results will be very good in this method).

A comparison of model predictions using the 16 physical features from Chapter 6, the 13
speech/music features, the counterpart ratings, and the other judgments on the same stimulus,
for each of the six perceptual judgments, is in Table 7-12.

The psychoacoustic features clearly fall between the speech/music features and the
counterpart features in their ability to model the human perceptual judgments.  They are
between 14% and 41% better (mean = 26.2%) than the speech/music features, and from 1%
better to 56% worse (mean = 30.5%) than the counterpart features.  The other judgments on
each stimulus are the best basis for modeling each perceptual judgment—this is unsurprising,

Judgment R2

(Psycho-
acoustic)

R2

(Speech/
music)

R2

(Counterpart)
R2

(Other
judgments)

SLOW .531 .414 .692 .629

LOUD .516 .421 .578 .816

SOOTHING .495 .408 .681 .885

ENJOY .378 .291 .588 .824

SIMPLE .294 .208 .291 .473

INTEREST .236 .207 .351 .723

Table 7-12: Multiple-regression results comparing four different feature sets as predictors for the
mean perceptual judgments averaged across subjects.  All R2 values are significant at p < 0.001.
From left to right, the columns show the results of different predictor sets, to wit: (1) the 16
psychoacoustic features from Chapter 6; (2) the 13 physical features previously used to build a
speech/music discriminator (Scheirer and Slaney, 1997); (3) the 6 counterpart features, that is, the
mean perceptual judgments on the other excerpt from the same piece of music; and (4) the 5 other
mean perceptual judgments on the stimulus.
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because it is likely that the different perceptual judgments elicited are actually reflecting only
a few underlying percepts.  The speech/music features show the poorest performance, again
unsurprising, for the reasons discussed above.

7.3. Experiment II: Perceived similarity of short musical stimuli

Experiment I demonstrated that subjects can make immediate, reasonably consistent
judgments about short musical stimuli in full ecological complexity.  The modeling results in
Section 7.2 demonstrated that, for some of these judgments, fully half the variance in the
observed data can be explained through a simple linear-regression model using features
extracted by a psychoacoustic model.

In this section, I will present the results from a second experiment along the same lines.  The
question posed in Experiment II is to what degree subjects can consistently judge the
similarity of two pieces of music from short examples.  From an applications viewpoint, the
judgment of similarity holds a position of prime importance.  This is because if we wish to
build software agents that can search the Internet (or other musical databases) for music that is
similar to music that we like, we must first understand the nature of musical similarity.  This
includes such crucial questions as whether there is some common judgment of similarity
shared by listeners acculturated in the same musical environment, or whether the judgment of
similarity differs from person to person in important ways.

To my knowledge, there has been no formal experimental study of musical similarity based
on these questions.  However, there is a significant and rigorous body of previous work
related to this in the area of melodic similarity (Hewlett, 1998).  Such studies have been
narrower than my interest here in several important ways.  First, this area focuses on melody
as an aspect of music that is independent of timbre and orchestration.  This may or may not
prove to be empirically the case, but it seems to me a rather strange thing to assume.  There
are deep questions that immediately arise, for example, when we ask whether the Rolling
Stones’ version of “Satisfaction” is more similar to the Montovani Strings’ easy-listening
version of “Satisfaction,” or to the Rolling Stones’ song “Sympathy for the Devil.”  A narrow
viewpoint of melodic similarity holds that the two versions of the same song must be very
similar in important ways, since they have the same melody.   Yet it is clear that they are also
different in important ways.  To understand which ways in which they are similar and
different—for example, in terms of the behaviors that are differentially afforded by the three
performances—should be a topic of more study.  Similarity depends on context: it makes no
sense to ask whether two pieces of music are similar without asking what they are similar for
The experiment that I present in this section suffers from the problem of reduced context as
well.

Second, all of the research on melodic similarity has taken a structuralist viewpoint, trying to
explain how melodies are similar to, or different from, one another through representations of
melodies as hierarchically-structured lists of notes.  Again, this representation may or may not
prove to be an empirically useful one, but it still begs important questions about the
relationship with the hearing process and the signal processing in the auditory system.
Finally, most research on melodic similarity has focused on relatively long-term structural
phenomena, in which melodies go on for 10-15 seconds or more.  In contrast, I am
particularly interested in the judgment of immediate similarity—how a listener might decide
within only a second or two of listening how a newly heard piece of music is similar or
dissimilar to other music with which she is familiar.
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7.3.1. Overview of procedure
Thirty-three musically trained and untrained subjects listened to 190 pairs of five-second
musical excerpts.  The pairs of stimuli represented each of the pairwise combinations of a
subset of twenty stimuli drawn from the larger stimulus set used in Experiment I. The subjects
used a computer interface to listen to the stimuli and judge whether the two pieces in each
trial were similar or different.

7.3.2. Subjects
The subjects, 33 in all, were drawn from the MIT community, recruited with posts on
electronic and physical bulletin boards.  21 of the subjects (“repeat subjects”) had previously
participated in Experiment I, the other 12 had not (“new subjects”).  There was an interval of
approximately one month between the repeat subjects’ participation in Experiment I and their
participation in this experiment.  Most subjects (66%) were between 18 and 23 years of age,
the rest ranged from 25 to 72 years.  The median age was 22 years.

Of the 33 subjects, 16 were male, 16 female, and one subject declined to answer the
demographic questionnaire.  All but four subjects reported normal hearing.  23 reported that
they were native speakers of English, and 7 reported that they were not.  Seven subjects
reported that they had absolute-pitch ability in response to the question “As far as you know,
do you have perfect pitch?”  Other than the repeat subjects’ participation in Experiment I, the
subjects had no consistent previous experience with musical or psychoacoustic listening tasks.

The same questionnaire regarding musical ability used in Experiment I was administered to
the subjects after they completed the experiment.  The subjects were categorized as M0
(N = 12), M1 (N = 16), or M2 (N = 4) subjects as described in Section 7.1.2.

Cross-tabulations of musical ability by gender and by age are shown in Table 7-13 and Table
7-14, respectively.

7.3.3. Materials
Experimental stimuli were paired 5-second segments of music.  There were 190 stimuli in all,
formed by taking all pairwise combinations of a 20-segment subset of the database used in
Experiment I.  The 20 selections used were the first excerpt from each of the songs numbered
1…20 in the original database as shown in Appendix A (after normalization as reported in

Female Male

M0 9 3

M1 6 10

M2 1 3

Table 7-13: Cross-tabulation of subjects’ musical ability by gender for Experiment II.

18-25 25-30 31-40 40+

M0 8 1 2 1

M1 11 4  0 1

M2 2 0 2 0

Table 7-14: Cross-tabulation of subjects’ musical ability by age for Experiment II.
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Section 7.1.3).  There were no pairs of stimuli drawn from the same composition.  Since the
Experiment I stimulus database was ordered randomly (based on the sampling procedure used
to obtain examples from MP3.com), this method of drawing samples from it presents no
particular bias and may also be taken as a random sample of the full MP3.com database.

7.3.4. Detailed procedure
Subjects were seated in front of a computer terminal that presented the listening interface, as
shown in Figure 7-12.  The interface presented a slider labeled very similar on one extreme
and very different on the other. The subject was instructed that his task was to listen to pairs
of short musical excerpts and report his judgments about the similarity of each pair. It was
emphasized to the subject that there are no correct answers on this task, and that the
experiment was only designed to elicit his opinions.  Three practice trials were used to
familiarize the subject with the experimental procedure and to set the amplification at a
comfortable listening level.  The listening level was allowed to vary between subjects, but
was held fixed for all experimental trials for a single subject.

The 190 trials were presented in a random order, different for each subject.  Within each trial,
the order of the two examples (which one was marked “A”, and which one “B”) was also
randomized.  When the subject clicked on the Play A or Play B buttons, one of the examples
was presented.  After the music completed, the subject moved the slider as he felt appropriate
to rate the similarity of the stimulus pair.  The subject was allowed to freely replay the two
examples as many times as desired, and to make ratings after any number of playings.  When

Figure 7-12: The computer interface for listening experiment II.  Each subject rated each paired
stimulus (marked “Play A” and “Play B” on the interface) to indicate whether he found them to be
similar or different.



198 Chapter 7: Musical Perceptions

the subject felt that the setting of the rating slider reflected his perception of similarity, he
clicked the Next button to go on to the next trial.  The slider was recentered for each trial.

The subjects were encouraged to proceed at whatever pace was comfortable, taking breaks
whenever necessary.  A typical subject took about 60 minutes to complete the listening task.

7.3.5. Dependent measures
For each trial, the final setting of the slider was recorded to a computer file.  The computer
interface produced a value from 0 (the bottom of the slider) to 100 (the top) for each rating on
each trial. A value of 0 indicates that the subject found that pair of examples to be very
different, while a value near 100 indicates that the subject judged that pair to be very similar.
Trials on which the subject did not move the slider (value of 50) were rejected and treated as
missing data.

7.3.6. Results
This section reports the results on the similarity-matching experiment.

Response distribution
As in Experiment I, the responses in Experiment II are not distributed on a normal curve
(Figure 7-13).  Either of the explanations suggested for the earlier experiment would seem to
apply here as well.  Therefore, the same scaling function (recentering the scale to zero and
applying a cube-root nonlinearity) was used for further analysis and modeling study.  For
these data as well, the scaling function makes the response pattern nearly a perfect bimodal
distribution.

Learning and fatigue effects
As with Experiment I, the relationship between the trial number of each pair (the ordinal
number of the place in the sequence of pairs to a subject that that trial occupied) and the
judged similarity was investigated.  Unlike in Experiment I, there was no significant
correlation between trial number and similarity.  An ANOVA comparing the means on each
trial instance was also not significant.  Both results are consistent with the null hypothesis that
there is no learning or fatigue effect in this experiment.
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Figure 7-13: Distribution of responses in similarity-judgment task, before rescaling (a) and after
rescaling (b).  The same pattern of responses is seen in the unscaled data as in the responses to
Experiment I, so the same rescaling function (with the cube-root nonlinearity)  is used.
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Effects of participation in Experiment I
Since some of the subjects had participated previously in Experiment I, and some had not, it is
important to know whether the earlier participation had any consistent effect on responses.  A
t-test comparing the mean offset of the judgment of similarity (that is, the rescaled similarity,
collapsed around the midpoint) across all stimulus pairs between repeat subjects and new
subjects was significant (t(6106)=8.503, p < 0.001).  As shown in Figure 7-14, repeat
subjects’ responses were, on average, slightly closer to the center of the slider than were new
subjects’ responses.  The effect is similar in absolute magnitude to the other demographic
differences between subjects.

Repeat subjects were not a random sample of the Experiment I subject pool.  They
participated in Experiment II according to their time schedule and personal interest.  Thus,
there may be a consistent selection bias in the group of subjects that repeated that would
explain this effect.  From the available data, this hypothesis cannot be distinguished from one
in which the participation in Experiment I itself had an effect.

Intersubject correlations
As with the semantic-judgment data, the intersubject correlations regarding the judgment of
similarity can be analyzed.  The results are in Table 7-15.

The intersubject correlations on the similarity judgments resemble the results for the “easy”
semantic judgments (LOUD, SOOTHING) more than they do the “difficult” ones
(INTEREST, ENJOY).  There is a high degree of correspondence between subjects, only a
few of the intersubject pairs are negatively correlated (and none significantly), and one
subject’s data explains a good proportion (16%) of the variance in another randomly-selected
subject’s data.  This makes it seem likely that there is general agreement among subjects
regarding the meaning of similarity and the features of sounds that correlate with it.

Analyses of variance
I conducted analyses of variance to explore the relationship between the demographics of the
subjects and their judgments of similarity.  As with the analyses of variance for the semantic-
feature judgments, I collapsed the similarity ratings across the center of the scale, to create a
normally-distributed variable indicating the offset from the center.

Table 7-16 shows the results of analyses of variance examining the relationship between the
stimulus pair, the subject, and the similarity rating.  As seen there, there are strongly
significant effects of both stimulus pair (indicating that some pairs are consistently judged to
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Figure 7-14: Effect of participation in experiment I on mean offset of similarity.  Subjects that
participated in experiment I had slightly (but significantly) less extreme opinions about the
similarity of stimuli that subjects that did not.

Judgment % correlations p < 0.01 Range of r Mean r2

Similarity 86.9 % -0.037 – 0.655 0.163

Table 7-15: Intersubject pair-to-pair correlations on judgment of similarity (compare to Table 7-3).
The second column shows the proportion of intersubject correlations (relative to the 496 possible
pairs of subjects) that are significant at p < 0.01.  The third column shows the range of r over all
pairs of subjects.  The fourth column shows the mean of r2 over all pairs of subjects.
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be more similar that others) and subject (indicating that some subjects consistently find all of
the pairs to be more similar than other subjects do).

The second analysis of variance explores dependencies of adjudged similarity on the
demographics of the subjects: musical ability, self-reported absolute pitch, native language
(English or non-English), sex, and age.  Age was segmented into four categories for analysis:
17-21, 22-29, 30-39, and 40+.  These analyses are summarized in Table 7-17.

As with the Experiment I demographics, it is difficult to give a coherent interpretation of
these effects.  From their strengths, and their consistent appearance in two different
experiments, it seems likely that they are real, but more research is needed to explain their
origins.  Figure 7-15 shows the differences in similarity offset ratings as they covary with
musical ability, absolute-pitch ability, and sex.  Different than Experiment I (see Figure 7-6),
in Experiment II it was the non-musicians that used the ends of the scale more.

Dependent variable FSUBJ(32) p FSTIM(189) p

Similarity 20.453 0.000 13.975 0.000

Table 7-16: Summary of analyses of variance examining potential response differences based on
the stimulus and the subject.  As expected, both of these analyses are strongly significant,
indicating that the similarity differs from one stimulus pair to another, and that some subjects find
all of the stimulus pairs to be consistently more similar than do other subjects.

Independent variable df F p

MUS 2 104.536 0.000

AP 1 71.631 0.000

ENG 1 3.730 0.053

SEX 1 5.579 0.018

AGE 3 1.562 0.197

Table 7-17: Summaries of analyses of variance exploring dependencies of similarity response on
the demographics of the subjects. The five demographic variables tested are: musical ability
(MUS), self-reported absolute pitch (AP), native English language speaker (ENG), sex (SEX), and
age, segmented into four categories (AGE).  Effects are strongly significant for MUS and AP,
mildly significant for SEX, trending towards significant for ENG, and not significant for AGE.
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Figure 7-15: Mean and 95% confidence interval of similarity offset, averaged over all stimulus
pairs, broken down three ways.  (Left) Similarity offset broken down by musical ability.  Non-
musicians use the ends of the scale more than do musicians.  (Center) Similarity offset broken
down by self-reported absolute-pitch (AP) ability.  Subjects who claim AP use the ends of the scale
more than subjects who do not.   (Right) Similarity offset broken down by sex.  Female subjects use
the ends of the scale slightly more than male subjects do.
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7.4. Modeling perceived similarity

In this section, I will develop models of the data collected in Experiment II; that is, models
that predict the perceived similarity of short musical experiments.  First, I will use the
psychoacoustic features of Chapter 6 to develop a multiple-regression model, as I did above
for the Experiment I data.  Then, I will use the Experiment I results to model the Experiment
II results, and discuss the implications of such a model.  Finally, I will explore the structure of
the similarity responses through multidimensional-scaling analysis.

7.4.1. Predicting similarity from psychoacoustic features
To continue the approach presented in Section 7.2, I will attempt to model the results of the
similarity-judgment experiment with the psychoacoustic features developed in Chapter 6.
The hypothesis embodied in this model is that the perceived similarity of a pair of musical
examples is determined by comparing the psychoacoustic properties of the two excerpts.

I used the psychoacoustic features from the two examples in each pair to derive difference
features, which are simply the absolute difference between the values of the features for the
two excerpts.  That is,

21
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where the index indicates the two members of each stimulus pair.

As with the derivations of the psychoacoustic features themselves (Chapter 6), it is possible to
devise other methods of computing distance features.  For example, the squared differences
could be used, or the features grouped into subspaces and various norms computed within
those subspaces.  I intend no claim that the method presented here is the best.

The difference features can now be used as predictors in a linear multiple-regression model of
the similarity judgments.  The multiple-regression procedure determines a linear equation in
the difference features that predicts the similarity judgment for each stimulus pair with
minimal mean-squared error.  The results of the full multiple-regression and the stepwise
regression are shown in Table 7-18.

As seen in this table, the physical features can be used to predict the judgment of similarity,
about as well as for the most difficult (INTEREST—see Table 7-7) of the semantic
judgments.  Thus, the hypothesis that perceived similarity between short musical excerpts can

Judgment Full R2 Features Stepwise R2 Next feature p(next)

Similarity .246 -∆MEANMOD
∆LOUDENT
-∆MEANIBI
∆VARIBI
∆NUMB

.104

.138

.169

.186

.204

-∆TEMPSTB 0.099

Table 7-18: Multiple-regression results predicting mean similarity from the difference features
(compare Table 7-8).  All R2 values are significant at the p = 0.001 level or better.  Two of the
factors entered in the stepwise regression have negative β values; this is the logical direction, since
the greater the difference of features, the less similar the stimuli should be.  The three features
entered in a positive direction must have a complicated partial-correlation relationship with the
residual.
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be explained on the basis of the similarity between their surface features is confirmed.  A
scatterplot of the predicted vs. observed similarity judgments for the 190 paired stimuli is
shown in Figure 7-16.

As with the models of the musical judgments, MEANMOD is the most important predictor of
predicting perceived similarity.  That is, it is more likely for a pair of stimuli whose
MEANMOD values are close to be judged similar, than for any other predictor.  The other
features entered are mostly tempo features.  Once again, no pitch features were used.

Note also that three of the five entered features have positive β values.  This means that the
more dissimilar the stimuli are according to these features (because the difference feature is
large), the more similar the stimuli are (because the similarity rating is also large).  This
outcome is not as unlikely as it seems, because in stepwise regression, the predictors after the
first are not actually predicting the main effect directly.  Rather, they are predicting whatever
residual remains at that step.  So, for example, the positive β value on LOUDENT means that
once the effects of MEANMOD are accounted for, then stimuli that appear different on
LOUDENT are actually quite similar.

7.4.2. Predicting similarity from semantic judgments
A second method of modeling the similarity ratings is to use the semantic feature judgments
from Experiment I as predictors.  In contrast to the one-stage model suggested in the previous
section (the psychoacoustic features are compared to derive similarity), this model is a two-
stage model.  In the first stage, the psychoacoustic features are perceptually analyzed and
combined to arrive at the semantic features studied in Experiment I.  In the second stage, the
semantic features of the two musical examples are compared to derive the similarity of the
pair.  The data here are not rich enough to allow me to evaluate these hypotheses against each
other, but I will explore the two-stage model to make it concrete.

Table 7-19 shows two different analysis using the perceptual ratings.  First, on the left, the
results of using the semantic features elicited from subjects in Experiment I are shown.  In this
analysis, I computed the differences between the mean semantic ratings on each stimulus in a
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Figure 7-16: Predicted vs. observed similarity for the mean judgments in Experiment II.  Each data
point here corresponds to one pair of stimulus examples.  The x-axis gives the similarity predicted
for that pair via linear multiple regression on the differences between the signal processing features
for the two excerpts in the pair.  The y-axis is the mean rating of similarity across listeners.  Note
the strong regression to the mean—the regression model never predicts that stimuli will be very
similar or very different.  This happens because the regression model is unable to make consistently
correct predictions for extreme cases, and so the safest thing for it to do (to minimize mean-squared
error) is simply to use values near the mean as the predictions.
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pair, and entered them as predictors of the mean similarity.  This works quite well; nearly half
the variance in the similarity ratings can be predicted using the differences between the
semantic features.

Thus, if we were able to perfectly predict the semantic feature judgments, we could use these
predicted judgments to do better than we presently can by directly modeling the perception of
similarity directly from the psychoacoustic data.  However, of course the present feature set
cannot perfectly predict the semantic judgments (as summarized in Table 7-7), so it is
interesting to explore how well we can do this two-step process.

The result is shown in Table 7-19(right).  In this model, the differences between the predicted
results obtained for the semantic features through multiple regression are themselves used as
predictors for the similarity judgments.  As seen in the table, while the results are not nearly
as good as the direct psychoacoustic model, they are still significant.  Notably, only one
predictor is entered in the stepwise regression.

A similar analysis as shown on the left of Table 7-19 can be conducted subject-by-subject for
those subjects that participated in both experiments.  That is, we can use the individual
subject’s responses on Experiment I (rather than the means) to try to predict his own
responses on Experiment II (rather than the means).  This works (R2 is statistically significant)
for 18 of the 23 repeat subjects, but again not as well as using the means to predict the means.
The R2 values in this case range over the interval [0.042,0.310] with a mean of 0.122.

7.4.3. Individual differences
Again following the modeling paradigm used for the semantic judgments, I will explore the
use of multiple logistic regression to model individual subjects’ ratings of similarity.  In this
case, we use the difference features to construct a model that predicts whether a subject will
judge the similarity for each pair to be higher than average, or lower than average.

Two sets of difference features were used: the set of 16 psychoacoustic features, and the set of
6 semantic judgments, for those subjects that participated in both Experiment I and
Experiment II.  In the latter case, we are attempting to use the subjects’ own semantic
judgments to model their perception of similarity.  The results are summarized in Table 7-20.

Even though there are only 40% as many degrees of freedom in the feature space created by
the perceptual ratings, they produce nearly as many correct answers as do the psychoacoustic
features.  It seems easier (in terms of the number of subjects that can be successfully
predicted) to model the individual ratings of similarity than the individual ratings of the
difficult semantic judgments ENJOY and INTEREST.

7.4.4. Multidimensional scaling
A natural way to explore the results from a similarity-rating experiment is the statistical
procedure known as multidimensional scaling (MDS).  MDS assumes that judgments of

Semantic judgments Modeled judgments

Full R2 Features Stepwise R2 Full R2 Features Stepwise R2

Similarity .467 -∆SOOTH
-∆LOUD
-∆INTEREST

.393

.444

.456

.091 -∆LOUD .072

Table 7-19: Multiple-regression results predicting mean similarity from the semantic features of
Experiment I (left) and from the psychoacoustic-model-based predictions of the semantic features
derived in Section 7.2.1 (right).  All R2 values are significant at p = 0.002 or better.  Both models
are able to predict the similarity judgments; the semantic features are much better predictors.
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similarity reflect the perceptual distance between the stimuli.  Based on these distances, the
stimuli can be placed in a multidimensional space such that the interstimulus distances
approximate the similarity judgments as nearly as possible.  If it is really the case that the
stimuli perceptually occupy a low-dimensional Euclidean space, then the locations derived
through MDS will accurately characterize the similarity judgments.  In this case, the stress of
the MDS solution will be low.  (Stress is a sort of goodness-of-fit measure).  Naturally, the
stress of a solution is guaranteed to decrease with increasing dimensionality—that is, the more
dimensions are used for analysis, the better the fit will be.

It can be very difficult to interpret the solution returned by the MDS procedure for a given set
of similarity judgments.  The MDS procedure can be applied to any set of data and is
guaranteed to return a result, but of course there is no particular reason that the result must be
meaningful in any way.  Typically, when MDS is used in the context of analyzing
psychological data, we are not interested in the location of the stimuli in the new space as
much as we are the nature and scaling of the axes themselves.  What we hope is that these
axes can be interpreted in terms of the results of independent experiments and that the results
scale to include new stimuli that were not included in the original experiment, to predict the
similarity of other stimuli.25

The mean data collected in the similarity experiment were converted to dissimilarity
(distance) judgments by subtracting the scaled values from 3.685 (the scaled endpoint).  For
example, a raw similarity judgment of 75 is scaled to 2.92 as described in Section 7.1.5, and
then converted to a distance of 0.76.  On the other side of the scale, a raw similarity judgment
of 20 is converted to a distance of 6.79. Naturally, there are many other possible ways to
convert the similarity judgments to distances.  For this analysis, the data were pooled and the
means across subjects analyzed.

Figure 7-17 shows the proportion of the overall variance in the dissimilarity matrix that can be
explained with an MDS solution with various numbers of dimensions.  As seen in this figure,
there is no clear knee in the curve that indicates an optimal number of dimensions to use,
trading off the generality of description against the complexity.  Rather, each added
dimension explains a small proportion (about half) of the remaining variance in the data.  This
is one indication that the similarity data are not modeled well using the multidimensional-
scaling approach.  For the analyses presented below, the two-dimensional MDS solution is
used as a starting point for modeling.

Predictors df N Correct: Range Correct: Mean % significant

Psychoacoustic
features

16 33 60.1%—93.9% 72.5% 63.6%

Semantic
judgments

6 21 59.3%—87.8% 70.58% 77.8%

Table 7-20: Results from subject-by-subject logistic regressions using the psychoacoustic features
and semantic judgments (compare to Table 7-11).  The first row shows regression results where the
predictors are the 16 psychoacoustic features.  The second row shows regression results where the
predictors are the 6 observed semantic judgments from Experiment I.  Only the 21 repeat subjects
could be used for the second regression.
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The two-dimensional MDS solution is shown in Figure 7-18.  In this figure, the points
(corresponding to the 20 musical stimuli used in the experiment) have been placed in the two-
dimensional configuration that minimizes the average error in pairwise distances.  The axes
are in arbitrary units that could be rescaled to recover the approximate pairwise similarity
ratings.

It is possible to interpret this solution by eye and ear to a certain degree.  Most notably, the
clusters that can be seen in the solution space seem to correspond either to musical genres, or
to the instruments present in the samples (or both, as these two descriptors are certainly
conflated).  There is a group containing stimuli #2, #18, and #9, which are the three hard-core
rock-and-roll examples, with noisy distorted guitars and screaming vocals (#9 to a lesser
degree than #2 or #18).  There is a second group containing #1, #4, and #11, which are the
three “classical” sounding stimuli, with long harmonic notes and violins.  The group at the
bottom containing #17, #19, #16 and branching out into #15, #5, #10, and #6 all contain
acoustic guitar prominently.
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Figure 7-17: Scree plot showing the proportion of the overall variance in the dissimilarity matrix
that can be explained with an MDS solution with various numbers of dimensions.  There is no
obviously-best fit to these dissimilarity; after the first dimension, each additional dimension
explains about half of the remaining variance.  The two-dimensional solution is selected for further
analysis, based mostly on convenience.
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Figure 7-18: 2-dimensional MDS solution for the dissimilarity ratings computed from the human
similarity judgments of the 20 similarity-test stimuli.  The dimensions are in arbitrary units that
could be scaled to recover the dissimilarity ratings in the original data.   This solution explains
80.05% of the variance in the full 20x20 similarity matrix.
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These sorts of groupings seem to correspond to something that other writers (Hajda et al.,
1997) have argued about MDS solutions for timbre-dissimilarity data.  Namely, that the
dissimilarity judgments really reflect source-model-based factors at least as much as acoustic
factors.  Perhaps the hypothesis reflected in my approach (that “surface features” of the music
are the primary contributor to the immediate perception of short musical stimuli) is
completely wrong, and instead listeners are really evaluating similarity based upon their
perceptions of the instruments being used in the music.  This will have to remain a possibility
for future work.

Another fruitful approach is to try to model the dimensions returned by the MDS procedure.
If successful, this result indicates a possible basis for the judgment of similarity in music.  The
models of each dimension can serve as hypotheses for future experiments.  In the approach I
have presented here, there are two possible bases for explanation.  The first is the set of
semantic judgment ratings obtained in Experiment I.  The second is the set of psychoacoustic
features that have already been used to model the semantic-judgment and similarity ratings.

Table 7-21 shows the results of using linear multiple regression to model the axes derived in
the two-dimensional MDS solution.  That is, I take the horizontal position in the MDS
solution space of each the 20 stimuli placed in the space as a new feature of each stimulus,
and similarly for the vertical position.  I then attempt to model these features through linear
regression on the semantic judgments, and on the psychoacoustic features.

As seen in this table, the first dimension corresponds very well to the semantic feature LOUD,
and therefore also to the signal-processing feature MEANMOD, which was (in Table 7-7) the
best predictor of LOUD among the signal-processing features.  It is likely that if there were
more musical stimuli in Experiment II (and thus more statistical power), the other signal-
processing features that predict LOUD and SOOTHING well would become significant
predictors of Dimension I.  In fact, SPECSTB and BESTT, both of which were predictors of
LOUD and SOOTHING in Table 7-8, are the next two predictors approaching the
significance level required for entry in this model as well (p = .084 and p = .149 as the second
factor for potential entry, respectively).

Neither the semantic-judgment model nor the signal-processing model is able to predict the
second axis in the two-dimensional MDS solution.  Thus, the existence of a two-dimensional
space underlying the judgment of musical similarity must be considered questionable until
more data are collected or more features examined.

Semantic judgments Signal-processing features

Full R2 Features Stepwise R2 Full R2 Features Stepwise R2

Dimension I .875 -LOUD .804 .860 -MEANMOD .422

Dimension II .495 (none) N/A .889 (none) N/A

Table 7-21: Feature models for each of the axes in the two-dimensional MDS solution.
Statistically-significant R2 values are in bold.  The “Full R2” column shows the proportion of
variance along each axis that can be explained with the full models.  The “Features” and “Stepwise
R2” columns show the order of entry of features entered in a stepwise regression and the proportion
of variance explained by each subset of features.  Left, model based on the 6 semantic judgments.
The first dimension anticorrelates strongly with LOUD, which alone explains 80% of the variance
along the first axis.  The second dimension cannot be explained with the semantic-judgment
ratings.  Right, model based on the 16 signal-processing features.  Note that the full model does not
reach statistical significance in this case (p = 0.479)—this is because explaining 20 data points with
16 features is a very easy task.  The first dimension anticorrelates significantly with MEANMOD,
which is the only feature entered.  The second dimension cannot be explained with the signal-
processing features.
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Convergence between MDS and semantic-judgment factor analysis
Notably, there is a very significant correspondence (r = .885, p < .001) between the first
eigenvector determined by factor analysis of the semantic judgments in Section 7.1.6, and the
first axis of the two-dimensional MDS solution.  This is a strong result, because it represents a
convergence in which two different experimental paradigms give the same answer.  A
scatterplot of the relationship between these two models is shown in Figure 7-19.

The primary axis (shown as the x-axis in Figure 7-19) is readily interpreted as the “quiet-
soothing vs. loud-harsh” axis, with all of the noisy and disturbing examples to the left and the
soothing and quiet examples to the right.  This can be seen in the weights of the factor
analysis in Figure 7-10.

There is no such relationship between the second eigenvector and the second MDS axis
(r(19) = -.128, p = n.s.).  This continues the trend that the second axis cannot be not well-
connected to the actual behaviors of subjects observed in this experiment, and is consistent
with two competing hypotheses.   First, that similarity cannot really be approximated by
distance in a two-dimensional feature space.  Or second, that the psychoacoustic and semantic
features spaces used here are not rich enough to model similarity.  (The second hypothesis is
not inconsistent with the modeling results using the semantic judgments, reported in Table 7-
18.  The amount of variance explained there is not more than the amount of variance
explained by a one-dimensional MDS model, as shown in Figure 7-17).

7.5. Experiment III: Effect of interface

In both Experiment I and Experiment II, there was a consistent bimodal response pattern.  I
conducted a short post-pilot to investigate whether this response pattern was an artifact of the
experimental method, or whether it was actually part of the human perception.  In particular,
since each experimental trial in Experiments I and II began with the response sliders reset to
the center (see Figure 7-1), it is possible that the use of sliders biased the results around the
center of the scale.

Semantic judgments eigenvalue I
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Figure 7-19: Scatterplot of the relationship between the principal eigenvector, determined by factor
analysis, of the six-dimensional semantic judgment (Experiment I) and the first axis in the two-
dimensional MDS solution for the dissimilarity ratings derived from similarity judgments
(Experiment II).   There is a very strong (r(19) = .885, p < 0.001) relationship between these two
models of the data, indicating that these data are likely reflecting something about the underlying
musical percept.



208 Chapter 7: Musical Perceptions

This experiment tests the hypothesis that the response pattern will be the same even if there
are no sliders used.  If this hypothesis cannot be rejected, then we would conclude that there
was no slider-based bias around the middle of the scale.

Overview of procedure
Five subjects listened to the same 150 musical excerpts used in Experiment I.  Experimental
procedure was identical to Experiment I, except that the response interface did not include
visible sliders on the rating scales.

Subjects
The five subjects were drawn from the MIT community.  None had participated in
Experiment I or Experiment II.  Three were male and two female; two were M0, two M1, and
one M2.

Materials
The same experimental stimuli from Experiment I were used.

Detailed procedure
Experimental procedure was the same in all regards as Experiment I, except that the listening
interface was as shown in Figure 7-20.

Dependent measures
For each trial, the final ratings on each scale were recorded to a computer file.  The computer
interface produced a value from 0 (the bottom of the scale) to 100 (the top)  for each scale on
each trial.

Figure 7-20: The experimental interface for Experiment III (compare Figure 7-1).  The response
scales did not use sliders; rather, the subject was free to click anywhere within the scale.  Upon
doing so, an indicator bar (as shown for the slow-fast scale) appeared as visual feedback.  The
subject could click again in a different place to change his/her judgment; final ratings were
recorded when the subject clicked Next.  Clicking Next was prohibited until the subject made
ratings on all six scales.
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Results
Results are shown in Figure 7-21.  As seen there, the hypothesis governing this experiment
may be rejected immediately—the response patterns are quite different for Experiment I and
Experiment III.  For each scale, there is a clear bias away from the center of the scale in
Experiment I that is not present in Experiment III.  This difference must be due to the
different response methods used.  Other than the anti-center bias, the shapes of the response
distributions are very similar.

A more pressing question regards the means of the rescaled distributions, since most of the
important results in Section 7.2 (and in Section 7.4) were obtained with these.  If the means
were significantly different, then this would call the results in these sections into question.  To
test this, I performed independent-sample t-tests comparing the means by subject for each
stimulus on Experiment I to the means on Experiment III (note that the number of subjects
differs in the two conditions). The results are summarized in Table 7-22 and show that only
the proportion of tests expected due to chance variation reach significance.  Thus, a weaker
version of the Experiment III hypothesis cannot be rejected—namely, that the different forms
of rating interface have no effect on the mean responses.

This result still leaves open the possibility that regression modeling of subject-by-subject
ratings (which, as discussed in Section 7.2.2, couldn’t be conducted on the unscaled data)
could be better modeled if data were obtained with the revised experimental interface.  Future
research examining such questions should not use a slider-based interface.

Rating SIMPLE SLOW LOUD SOOTHING INTEREST ENJOY

Exp I

Exp III

Figure 7-21: Comparison of response distributions between Experiment I and Experiment III.   Each panel is a
histogram of the unscaled responses pooled across all subjects and stimuli on each of the six rating scales.
Responses are taken for 31 subjects in Experiment I, and 5 subjects in Experiment III.  At top, in Experiment I,
there is a clear response bias against the center of the scale.  At bottom, in Experiment III, there is no such bias.
(Experiment I results are slightly different than shown in Figure 7-2 because centered responses are not removed
here.)

SIMPLE SLOW LOUD SOOTHING INTEREST ENJOY

Unscaled 6.67% 4% 4.67% 4% 6.67% 1.3%

Scaled 3.33% 2% 1.33% 4% 3.33% 2%

Table 7-22: Proportion of significant differences between response means for Experiment I and
Experiment III.  Each cell shows the proportion of t-tests (out of 150 tests, one for each stimulus)
reaching significance at p  <  0.05 for the given rating scale and dependent variable.  “Unscaled”
data are the values recorded directly by the subjects, as shown in Figure 7-21.  “Scaled” data are the
transformed values by removing centered responses, recentering the scale, and scaling by the cube
root, as described in Section 7.3.6.  Note that with α = 0.05, by chance 5% of the t-tests will reach
significance.
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7.6. General discussion

The experiments and models reported in this section allow us to develop a clearer picture of
the early sensory stages of music-listening.  The most fundamental result is that
computational models of psychoacoustics can be used to predict the behavior of listeners
engaged with real musical sounds.  It is crucial to understand that I do not claim that no
higher-level processing or cognitive structure is involved in music-listening.   To do so would
be absurd.  But the statistical results shown here demonstrate that significant proportions—in
the strongest cases, about half—of the variance in human judgments can be explained without
recourse to cognitive models.

In other words, I have demonstrated that the models presented here suffice to explain
significant proportions of the variance in these judgments.   The only explanatory space left to
cognitive models remains in the residual.  Thus, if we accept the traditional precept in
comparative psychology holding that all things equal, a sensory explanation is a simpler one
than a cognitive explanation, the models I have presented must be considered very attractive.

The modeling and interpretation of the semantic-judgment data is more convincing than for
the similarity-matching data.  For example, it is notable that while the similarity ratings are as
consistent (subject-to-subject) as the “easy” semantic ratings (compare Table 7-3 and Table 7-
15), they are as difficult to model as the “difficult” semantic ratings.  This is a strong
indication that it is not because of intersubject variability that the similarity judgments, at
least, are difficult to model.  Rather, it seems likely that there are consistent but unmodeled
factors as work, such as cognitive structures or instrument identities.

Part of the difficulty is clearly the relatively small number of sounds used in Experiment II.
As seen in Figure 7-16, there are very few pairs of sounds that are judged to be very far on the
“similar” end of the scale.  A comparison with timbre-similarity experiments—for example,
(Grey, 1977)—is illustrative here.  When studying the similarity of the sounds of musical
instruments, we can afford to use perhaps 30 sounds as a test set, since each is very short.
This gives 435 pairwise combinations; if each takes 5 sec to rate, then the whole experiment
takes about an hour.  Further, it is a reasonable working hypothesis that 30 sounds can cover
most of the space of pitched orchestral musical instruments, which are the class of sounds that
have been studied most in similarity experiments.

However, this is not the case for comparison of full musical excerpts.  In retrospect, it is
entirely unsurprising that the average similarity is low.  I have collected 20 pieces out of the
space of all music, and asked whether any two of them are similar.  The space of music is far
too broad to be effectively sampled in 20 points, and this is naturally reflected in the
subjective data.  But it seems unlikely that doing the experiment again with 30 samples, or
even with the full set of 75 from Experiment I, would provide very much better coverage.

Trying to use more than a hundred samples in a full-pairwise-combination paradigm would be
completely impractical.  A hundred excerpts yield 4950 pairs, each taking about 20 sec to
rate, or more than 20 hours per subject.  The amount of time required increases as the square
of the size of the sample set.  Thus, it seems that this laboratory methodology is unlikely to
give very good results in the future.  On the other hand, many people listen to at least this
much music for recreation in a week—they just don’t provide experimental feedback.  If it
were possible to develop experimental measures that somehow leveraged off of natural
listening behavior (which also connects back to the idea of emphasizing ecologically
significant behaviors and judgments), then subjects could provide experimental data in their
day-to-day listening activities, even outside the laboratory.  Perhaps this idea could be made
fruitful in collaboration with a corporate partner that wanted to develop musically intelligent
agents for practical search-and-retrieval applications.
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7.7. Applications

In this section, I will briefly discuss the connections between the modeling results that I have
reported in this chapter and three interesting applications for music-listening systems.  For the
first, I have implemented a simple system as a demonstration and evaluation; for the second
and third, I only sketch how such applications could be built.

7.7.1. Music retrieval by example
I will consider a different approach to the problem of similarity-matching one stimulus to
another.  Rather than using the human-perception data as ground truth, we can make use of
the paired excerpts from the stimulus database collected for Experiment I.  That is, we can
assume a ground-truth in which the two excerpts from the first musical selection belong
together, the two from the second belong together, and so forth.  Various methods of
calculating the distance between two excerpts can be tested to see how often they find that
these pairs are close together.

The simplest thing to do is simply to treat feature vectors as points in N-dimensional pattern
space, and to see how well various distance metrics work according to this non-perceptual
evaluation metric.  This is a non-perceptually-based approach because it is not necessarily the
case that two segments from the same piece of music will actually sound similar, or have
anything in particular to do with each other.  However, this is a readily-quantifiable task that
may correspond to the way music-listening systems will be deployed in applications in the
future.

I used four feature spaces:

(1) a 6-dimensional space using the semantic judgments elicited in Experiment I

(2) a 16-dimensional space using the psychoacoustic features from Chapter 6

(3) a 6-dimensional space using the linear-regression predictions of the semantic
judgments.  These are the predictions evaluated in Table 7-7.

(4) a 13-dimensional space, for comparison, based on the speech vs. music features
reported in (Scheirer and Slaney, 1997).

For each, I tested three distance metrics: Euclidean distance (2-norm), vector correlation, and
Mahalanobis distance.  For the vector correlation, each component (feature) was normalized
by the mean and variance of that component, estimated over the 150 test stimuli.  For the
Mahalanobis distance, the covariance matrix was estimated as the covariance of the 150 data
points in the test set.
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I evaluated these twelve metrics in the following way.  For each of the 150 musical stimuli, I
calculated the distance from that stimulus (the “target”) to each of the other stimuli.  Then I
ranked the other stimuli in increasing order of distance.  I counted a hit for each time that the
other excerpt from the same selection (the “counterpart”) was one of the five-closest stimuli
to the target.  I also computed the average rank in the distance table for the counterpart across
all 150 examples.

The results are summarized in Table 7-23.  Note that random guessing would give 3.3% hits
with average rank of 75.

Another way evaluate at performance on this task is to examine the growth in the hit rate as a
function of the “hit window” length.  That is, if we require that the counterpart be returned in
the first 2, or first 20, closest stimuli to the target, how does the result compare?  This is
plotted for four of the feature space/distance metric combinations, plus the baseline from
random guessing, in Figure 7-22.

Not surprisingly, the perceptual judgments from Experiment I are best able to perform this
simple task, as shown in Table 7-23 and Figure 7-22.  I hypothesize that if Experiment II were
conducted on the entire set of 150 stimuli (at great experimental cost), the direct similarity
results would give nearly perfect performance on this task.  This because listeners would
readily identify the paired segments from the same song and give them very high similarity
ratings.  However, given this hypothesis, it is striking that the perceptual judgments do not
perform better than they do.  Apparently, either the set of judgments elicited in Experiment I
is not rich enough to cover those perceptual features of music that are used to judge similarity,
or the two excerpts from each piece of music are not all that similar, on average.  (The results
shown in Table 7-12 for the “counterpart” features are compatible with the latter hypothesis,
as they show that the perceptual features on one excerpt are significantly, but not completely,
the same as those on the counterpart.)

The psychoacoustic features perform very well at this task, giving the same hit rate on the
normalized metrics as the perceptual judgments do.  (Their performance with a simple
Euclidean distance is artificially depressed because the features have widely different
scaling.)  It is not presently known what sort of performance on a task like this would be
required to give satisfying interaction with a musical search engine or other application.  The
predicted judgments perform about half as well as the observed judgments, which makes
sense since that the model predicts about half of the variance in these judgments.

The speech/music features also perform well at this task, particularly when vector correlation
is used as the distance metric.  Likely, this is because these non-perceptual features can pick
up information in the musical examples that have to do with the signals themselves.  This
information is missed by more perceptual approaches.  To take one example, some of the

Euclidean distance Vector correlation Mahalanobis distance

% hits Avg. rank % hits Avg. rank % hits Avg. rank

Perceptual judgments 31.3% 20.4 23.3% 26.9 22.0% 28.6

Psychoacoustic features 16.0% 51.7 24.0% 33.5 22.7% 38.2

Predicted judgments 16.0% 40.3 12.7% 44.4 17.3% 40.2

Speech/music features 13.3% 52.4 27.3% 26.5 22.7% 23.6

Table 7-23: Evaluation of non-perceptual music-matching task.  Four feature spaces are compared
for each of three distance metrics.  The “% hits” column indicates the proportion of the time that
the counterpart to the target stimulus is one of the five closest stimuli according to the given metric.
The “Avg. rank” column indicates the mean position of the counterpart in the rank-ordering of all
stimuli to the target, across the 150 test stimuli.
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stimuli were digitized (in the source recordings) at a lower sampling rate that the others.  The
perceptual features (and, presumably, the human listeners, since results were not noticeably
different for these stimuli on average) do not pay attention to this.  But a simple measure of
signal bandwidth then has an advantage in trying to match up the “two halves” of a single
musical example, since both excerpts will have this signal modification.

These results highlight the difference between evaluating performance on perceptually-
motivated and non-perceptually tasks.  In non-perceptually-motivated tasks, such as this one,
there may be simple tricks that give good results due to artifacts in the stimuli.  And if the
applications we want to build suggest that non-perceptually-motivated evaluation is
appropriate, then we should make use of these tricks whenever we can.  But when we evaluate
a perceptually-motivated task such as modeling human judgments, there are fewer such tricks
to use.  Thus, in such a case, perceptually-motivated features perform better.

7.7.2. Parsing music into sections
Various music-psychology studies (Clarke and Krumhansl, 1990b; Deliège et al., 1996) have
examined the ability of listeners to divide music into sections.  This is a different problem
than the one that I have been considering, but stands as the most robust study of ecological
listening behavior presently in the literature.  It seems likely that when music-listeners hear a
long piece of music, they do not perceive the music as a single, undifferentiated stream.
Rather, they perceive that it is divided into segments of various lengths, with short segments
subsumed into longer ones.

Most of these studies have tested hypotheses regarding the use of musical structure to create
perceived segmentation.  For example, Clarke and Krumhansl used their results to evaluate
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Figure 7-22: Growth in counterpart retrieval rate as a function of N, the length of the hit window,
averaged over the 150 musical examples.  The y-axis shows the proportion of the time that the
counterpart was returned as one of the first N closest matches.  The five curves are, from top to
bottom: (1) perceptual judgments with Euclidean distance metric; (2) speech/music features with
correlation distance metric; (3) psychoacoustic features with Mahalanobis distance metric; (4)
predicted perceptual judgments with correlation distance metric; (5) random guessing.   Note that
other distance metrics for each feature set give different results (as shown in Table 7-23), and so
this figure should not be taken as showing the best possible performance for each feature set.
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the structural model put forward by Lerdahl and Jackendoff (1983).  A competing hypothesis,
though, is that it is not musical structure at all, but rather changes in the musical surface, such
as tempo, orchestration, dynamic, activity, and so forth, that are the primary basis for the
perception of musical segmentation.  (Naturally, there is a wide middle ground between these
endpoints, in which surface perception and structural cognition play shared roles, differing by
listener and circumstance, in determining segmentation).

It would be straightforward to apply the psychoacoustic features, which I claim are part of the
music surface, to music segmentation.  The most straightforward way to do this would be the
following two-step process.   First, modify the feature extraction algorithms in Chapter 6 so
that rather than producing a single result for each feature for a whole piece of  music, they
produce a time-series of changing feature estimates.  This is done simply by calculating the
feature values within a short time window.  The result is a sequence of feature vectors.
Second, use dynamic programming to divide the sequence of vectors into homogenous
groups.  There are several ways to accomplish this; the basic idea is to find the optimal
segment boundaries such that the set of vectors within each segment is as homogenous (in
terms of spread, or covariance) as possible.

Once a piece of music is automatically segmented in this way, the result may be compared to
human results on the same task, and to the segmentations produced by other automatic
methods.

7.7.3. Classifying music by genre
A final application of interest is one in which music is automatically categorized by the
musical “genre.”  The remarkable ability of humans on this task has recently been formally
investigated.(Perrott and Gjerdigen, 1999).  The division of music into genre categories can
be somewhat arbitrary.  For example, in the list of musical stimuli in Appendix A, we see that
MP3.com includes as part of their ontology the categories “Heavy Metal,” “Power Metal,”
and “Metalcore.”  It is likely that such fine distinctions are lost except to all but the most
discriminating aficionado.

Regardless, the prevalence of  the music-genre-categorization in music stores, radio stations,
and now on the Internet is reasonably good evidence that categories of musical style are a
perceptually useful starting point.  The great literature on classification and categorization
systems (Therrien, 1989) could be readily applied with the psychoacoustic features in order to
develop automated systems.  They would have application in music-database systems, and in
systems to automatically create playlists for radio or other listening environments.

The approach I used for speech/music discrimination (Scheirer and Slaney, 1997) would be
the right starting point.  A large database of music with known genre labels collected and used
to partition the psychoacoustic-feature space into regions associated with each genre.  There
are a variety of ways to do this.  Then, based on their locations in the feature space according
to sound analysis, new songs can be classified according to the similarity to the original
prototypes.  Such a system could be evaluated according to perceptual criteria (for example,
by similarity to the results obtained by Perrott and Gjerdigen) or engineering ones (for
example, ability to match ground-truth labels given by the owner of the music in the database.

7.8. Chapter summary

In this chapter, I have presented the results from two pilot experiments studying the human
perception of complex musical stimuli.  In the first, listeners rated each of 150 short (5-sec)
stimuli on 6 semantic scales.  In the second, listeners judged the similarity of each of 190
pairs of musical examples.  The data collected in these experiments are the first available
from a study that compares such a wide range of musical styles directly.  Further, the
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modeling results presented here are the first time that interesting musical percepts have been
connected to psychoacoustic models for real musical stimuli in their full ecological
complexity.

I will briefly summarize the major results from this chapter.

(1) Human listeners were able to make consistent judgments regarding the loudness, speed,
complexity, soothingness, interestingness, and enjoyability of short musical examples
selected at random from a large Internet database.  The judgments were consistent across
listeners and across multiple excerpts from the same piece of music.

(2) The six semantic judgments elicited were not independent from one another.  A two-
dimensional basis space derived by factor analysis explains 84% of the covariance among
them.

(3) The intersubject means of the semantic judgments can be predicted by a signal-
processing-based psychoacoustic model that processes the sound signal and produces 16
features.  In linear multiple-regression, such a model explains from 24% to 53% of the
variance in the data, depending on the particular feature.  This set of perceptually-
motivated features explains more (15-40% more) variance than does a simpler set of
features whose construction was not perceptually motivated.

(4) The six semantic judgments fall into two categories: those that are easy to model and
extremely consistent across subjects—loudness, soothingness, and speed—and those that
are difficult to model and only somewhat consistent across subjects—complexity,
interestingness, and enjoyability.  A natural hypothesis stemming from this is that the
first sort of judgment is close to the musical surface, while the second sort involves more
cognitive processing.

(5) The directions (up or down) of many of the individual subjects’ responses on the
semantic scales can be predicted with a logistic-regression model based on the 16
psychoacoustic features.  Such a model predicts from 61% to 97% of the bivalent
responses correctly, depending on the subject and semantic scale, and can predict the
responses of 47% to 98% of the subjects statistically significantly well, depending on the
semantic scale.  The fact the same ratings are as difficult to predict subject-by-subject as
for the pooled means is not consistent with the hypothesis that intersubject differences on
such ratings take the form of different weights applied to a single set of features.

(6) Human listeners were able to consistently judge the similarity of pairs of short musical
examples.  The judgments were consistent across listeners.

(7) The perceptual similarity of pairs of musical examples can be predicted by the
differences between the psychoacoustic features of the two examples, and by the
differences between the semantic judgments reported for those examples.  In linear
multiple-regression, such models explain about 25% of the variance, and about 50% of
the variance respectively.

(8) The primary axis produced in a two-dimensional multidimensional-scaling (MDS)
analysis of the similarity data corresponds closely to the differences in ratings on
perceived loudness and soothingness.  Positions of stimuli along this axis can be
predicted well by linear regression from the perceptual judgments (88% variance
explained) or from one of the psychoacoustic features (44% variance explained).  Further,
the primary MDS axis corresponds strongly (r = 0.895) to the principal eigenvalue
derived from factor analysis of the semantic judgments.  This is strong converging
evidence that a surface feature that is something like soothingness plays an important role
in the immediate perception of music.

However, beyond the direct results, the methodological implications are important as well.
These experiments, preliminary in nature as they are, tend to bring about more questions than
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answers.  Certainly, I have shown that such an experimental paradigm works to give data that
are useful for further analysis.  We are sorely in need of more data to which music signal-
processing and pattern-recognition systems can be compared.  It is essential that more
experiments of this sort be run, more rigorously and wider in scope where possible.

The most obvious methodological lack here is a sophisticated treatment of individual
differences.  Where possible (in Sections 7.2.2 and 7.4.4 in particular), I have tried to do
simple statistical analysis to discover trends in individual data, but sorely missing are any
good independent variables that might relate to individual differences.  Particularly when
thinking from an applications standpoint (the notion of “musically intelligent agents”), it is
essential that our systems be able to induce and make use of the vast differences between
listeners.

The prospect of dividing all listeners into three musical “classes” (my M0, M1, M2 groups)
and thereby learning something about their preferences is absurdly limiting; however, I note
that this is one more class than most other studies have considered when they consider
individual differences at all.  A truly ecological psychology of music-listening would have to
be able to account for the evolving musical preferences and behaviors of a given human over
time.  We are still quite some distance from such a goal!
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My dissertation has presented a variety of signal-processing techniques, methodological
stances, and psychoacoustic and music-perception theories that I loosely connect together
under the single term music-listening systems.  In this chapter, I will summarize the material,
first as a high-level story that shows where all the pieces fit, and then in a more detailed
itemization of the specific contributions I believe that I have made.  In many ways, I view the
questions that I am asking and other theoretical contributions to be more important than the
practical results themselves. A lengthy discussion of future directions that warrant more study
therefore concludes the chapter and the dissertation.

8.1. Summary of results

As outlined back in Chapter 1, this is a dissertation that rests on three main disclipinary
pillars: the studies of music psychology, psychoacoustics, and music signal processing.  The
fundamental result that I have presented is a demonstration that it is possible to connect these
approaches to the study of sound.  I have constructed signal-processing algorithms that
analyze complex musical sounds, and argued that these algorithms are reasonably taken as
models of the psychoacoustic behaviors they target.  Further, I have demonstrated through
human listening experiments that interesting high-level musical behaviors can be partly
explained with computer programs based on these algorithms.

I believe that this is the first research to show how a theory of music perception can be
grounded in a rigorous way on a compatible theory of psychoacoustics.  It is also the first
research to show computer modeling of such interesting human musical percepts directly
from audio signals.  Finally, it is the first research that explores psychoacoustic modeling of
such complex sound signals.  Thus, the connections between these fields have been advanced,
in some cases a small amount and in some cases a larger amount, by my research.

The reason that I have successfully made these connections is in large part due to the novel
methodological approaches I have presented. By considering a broad range of musical stimuli
and a broad subject population, I believe that my work has broader relevance to real human
music-listening behavior than do many other theories of music perception.  Also, the approach
that I call understanding without separation is an important viewpoint, both for theories of
psychoacoustics and auditory scene analysis, and for the practical construction of computer
systems for working with musical sounds.
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These ideas are naturally connected: it is only with the separationless approach that it is
possible to consider analysis of such a broad range of ecological stimuli as I do here.  There
are few, if any, other results reported that attempt to admit the whole of music for
computational or psychological study, and this is because previous approaches have depended
too much on assumptions that do not scale well.

8.2. Contributions

In this section, I briefly summarize the contributions to the research literature that I have
made in my dissertation.

Music signal-processing and pattern recognition
I have developed two new signal-processing approaches to the computational analysis of
complex musical signals.  The first, reported in Chapter 4, extracts the tempo and beat of
musical signals.  I have demonstrated that the results of this extraction are similar to the
perceptions of human listeners on a variety of ecological sounds.  This model performs more
robustly on a wider variety of signals than other systems reported in the literature. The
second, reported in Chapter 5, uses the principle of dynamic detection of comodulation among
subbands in the autocorrelogram domain to allocate energy from auditory scenes to auditory
images for analysis.    I have demonstrated that this model can be used to explain the percepts
of a number of important psychoacoustic stimuli.

As well as the processing principle in the auditory-image-formation model, I have developed
a new pattern-recognition framework.  This framework performs unsupervised clustering of
nonstationary data given certain constraints that apply from one point in time to the next.  It
accepts as input an unstructured sequence of input data in feature space and time, which
corresponds to modulation features extracted from each cochlear channel.  From this, it
dynamically estimates the number of clusters, their positions in feature space, and the
assignment of cochlear channels to images over time.  Although the development of this
method must be considered preliminary (I have not done any principled testing of this
framework in its own right outside of its application to the particular musical systems
considered here), there are relatively few approaches to such non-stationary data in the
pattern-recognition literature.

I have also developed simple feature extractors, described in Chapter 6, that apply to the
output of the tempo and image-formation models.  I have shown in Chapter 7 that these
features can be used to explain the immediate perception of musical sounds.  They can be
used as the basis for modeling high-level semantic judgments on several perceptual scales,
and for modeling (less well) the perception of musical similarity among short stimuli.

Psychoacoustics
The models reported in Chapters 4 and 5 can be taken not only as pure signal-processing
approaches to the study of sound, but as psychoacoustic theories of sound perception.  In both
cases, I have related the construction of these models to the existing scientific discourse on
the perception of complex sounds.  In particular, I have shown that the model I described for
tempo and beat analysis of acoustic signals bears much similarity to existing subband-
periodicity models of pitch perception.

This observation brings about the question of whether pitch and tempo could be related
perceptual phenomena, which in turn relates to the general discourse on the perception of
modulation in the auditory system.  I believe that it is likely that both pitch and tempo
perception will be understood in the future as simply two particular special cases of a general
modulation-detection ability.  However, this is pure speculation at the present time, and while
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the results in Chapters 4 and 5 are consistent with this hypothesis, taken alone they are rather
weak evidence.

The auditory-image-formation model presented in Chapter 5 is also based on the subband-
periodicity model of pitch.  It can be seen as a bridge between, on one hand, static models of
the pitch-perception process, and on the other, dynamic models suitable for explaining
auditory scene analysis.  It is the first model capable of explaining, based on acoustic input,
the wide range of psychoacoustic and auditory-scene-analysis phenomena that it does.  To be
sure, there is a great deal more work required to evaluate and study the theoretical
implications of this model.  However, at the least it shows potential to become part of a theory
of the perception of complex sound scenes.  It is one step (how large a step remains to be
seen) along the difficult path of developing a complete psychoacoustics of real-world
ecological sounds.

Finally, through the modeling results reported in Chapter 7, I have made connections between
the physical, acoustic nature of musical sounds, and the high-level percepts that they elicit.
This can be seen as the study of the physical correlates of new kinds of sensory phenomena
(such as musical similarity and semantic feature judgment) that have not been previously
studied.

For the time being, the sorts of features extracted in Chapter 6 are too far removed from
theories of hearing to be considered as contributions to psychoacoustics per se.

Music psychology
In chapter 7, I have reported experimental results for two new music-listening experiments.
The results are consistent with two new hypotheses about music perception.  First, that human
listeners are able to make rapid, immediate judgments about musical sounds from relatively
short stimuli.  Such judgments include both what I term semantic features of music and also
the perception of the similarity of musical segments, and can be consistently modeled across
listeners and across stimuli.   Second, that there are important aspects of music-listening that
are sensory in nature.  That is, a large proportion of the variance in the results elicited in these
experiments can be explained from a model based only upon sensory features, that does not
include any modeling of musical structure.

The perceptual models that I have developed bear a closer connection to the musical signal
that most other models of music perception that have been previously reported.  I regard the
development of connections between the psychophysics of sound perception and the
formation of immediate musical judgments as the strongest theoretical contribution of this
dissertation.

Philosophically, I have contrasted two sorts of models of the music-listening process.  The
first, most common in the literature, is the structuralist approach to music perception, in which
perceptual judgments about music are explained as stemming from the structural relationships
among mental representations of musical entities.  The second, developed for the first time
here, is the sensory approach to music perception, in which perceptual judgments about music
are explained as the direct and immediate results of low-level processing in the auditory
system.

Of course it may be the case that human listeners use both sorts of models to some degree.
However, I claim that the second model is now the one that has been more robustly connected
to the hearing process and the acoustic signal.  At least for the time being, as there are no
structuralist models of the formation of perceptual judgments about music from the acoustic
signal, and as the acoustic signal cannot be ignored in a rigorous theory of music perception, I
submit that the burden of proof must now shift to those who claim that the basis of music
perception is fundamentally based upon mental structures built out of symbolic elements.
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Music-listening systems
The modeling and perceptual results that I have reported and discussed can be used as the
basis for constructing machine models of the perception of music.  As I outlined briefly at the
end of Chapter 7, it would be quite straightforward to use these sorts of perceptual models to
build computer systems that can perform useful musical tasks such as enabling content-based
retrieval of music on the Internet, and the segmentation of music into sections.  These are the
first music-listening systems in the literature that can perform these tasks across such a broad
range of musical signals, and with such demonstrated connection to human listeners on these
tasks.

Methodological issues
Particularly in Chapter 3, I articulated several ideas about approaching the study of music that
are relatively new.  Theories and methodologies can never be completely novel in the way
that working computer programs can be novel, but I have tried to argue more explicitly on
behalf of three approaches than have previous researchers.

I use the phrase understanding without separation to refer to the idea that it is possible (and
usually desirable) to construct theories and computer models that analyze sounds holistically
and directly, without first separating them into notes, voices, tracks, or other entities.  This is
scientifically appropriate, because the human listener does not separate the sound in this
sense.  It is also practically useful, because the effort required to build sound-separation
systems sits as an unnecessary barrier to the construction of practical tools that might
otherwise be straightforward to build.  This approach stands in contrast to the majority of
music-perception theories that assume that music is first parsed into elements by some
unspecific auditory agency, and only later perceived.

I have also argued for a broader and more generally inclusive approach in the music sciences.
This goes both for the construction of musical-signal-processing algorithms and for the
development of theories of music perception.  The former typically suffer from either or both
of two problems.  First, they are only constructed in reference to restricted classes of signals
(based on timbre, degree of polyphony, and so on) and their scalability to other sorts of
signals is limited.  Second, as the algorithms are built, they are highly tuned to a few select
“test” signals and poorly evaluated for a broader range of cases, even within the restricted
classes that they target.

To be sure, there is value in working very hard to see just how much information can be
extracted, or how sophisticated a system build, in restricted cases.  But this should not be the
main thrust of the field, only one approach to be contrasted with a more inclusive approach to
the world of audio signals and musical styles.  For the models that I have built, particularly in
Chapters 4, 6, and 7, the domain of music signals that is supposed to be admitted is, simply,
all of them.  In the formal model evaluations in Chapters 4 and 7, I have created databases
that I claim are truly representative of the musical world and used them for evaluation.

The lack of attention to music other than “the classics” in the formal study of music
psychology is a more serious problem.  It is indefensible that almost no research has focused
on the actual listening behaviors of actual music listeners, using the kinds of musical materials
that are most relevant to them as individuals.  Music psychology, as a scientific inquiry, has
spent far too long as a sort of offshoot of aesthetic approaches to music, with its primary goal
the justification of one interpretative stance or another.

The argument that is most easily brought against this viewpoint is that the scant time and
energy of researchers should not be wasted on the study of inferior music, because music can
be such a rich and subtle window on the highest human emotions.  While the latter point is
beyond question, the fact is that music is also a rich and subtle window into the quotidian
emotions.  If we wish to include musical study as part of a serious science of human behavior,
we should begin with the sorts of musical behaviors that occur most often and in the greatest
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number of people and proceed from there.  To do otherwise is to inappropriately privilege the
judgments and emotions of a specially-selected non-representative group that comprises a
vanishingly small proportion of the human population.

8.3. Future work

It goes without saying that this dissertation presents only a very preliminary step towards the
development of the kinds of systems and theories it treats. All of the results must be evaluated
much more extensively, applied to build systems that could be tested with real users, and
especially, used to form hypotheses that can be scientifically tested.  Each of Chapters 4-7
probably could serve in its own right as a the basis for a dissertation-length investigation of
music perception and music signal-processing.

This section explores several of the directions that I think present interesting opportunities for
future research.  I will proceed generally in order from the most specific and direct to the most
large-scale and abstract.

8.3.1. Applications of tempo-tracking
Many of the individual signal-processing tools that I have developed could be incorporated
into interesting musical applications in their own right, independent of their utility in the
overall context of music-listening systems.  For example, it would be possible to use the
tempo-tracker presented in Chapter 4 as the basis for a number of interesting multimedia
systems.  Since the model works predictively in real-time, it would be an appropriate basis for
scheduling dynamic computer-graphics displays to be synchronized with unknown music (as
Goto (1999) reports for his beat-tracking work).

Also, any method of finding structure in musical signals can then be used to allow musicians
to manipulate structure in a composition tool.  For example, the automatically-determined
beat locations can be used for automatic synchronization and mixing of two separate musical
tracks, or for otherwise manipulating the rhythmic properties of existing musical signals.
Unpublished tempo-tracking work by Jean Laroche (personal communication) has been used
in this manner in a commercially-available digital sampling tool.

Finally, the tempo itself is a useful piece of musical metadata.  Many researchers feel that
there will be a growing importance on the extraction, representation, and application of
metadata for all kinds of audiovisual data in coming years.  As standards efforts such as
MPEG-7 (Pereira and Koenen, 2000) evolve, it is natural to imagine including the isolated
feature extractors developed here into an automated tool for multimedia annotation in one or
more standardized formats.

8.3.2. Applications of music-listening systems
Section 7.7 briefly presented the simplest form of three applications for music-listening
systems: music retrieval, music segmentation, and music classification.  Naturally, there are
many possible ways to extend these systems and develop others.  The prospect of creating
musically intelligent agents that can search through databases of music on the Internet or in a
music library, by listening to the sound and making human-like decisions under the guidance
of a human supervisor, is an exciting one both for researchers and for the development of
practical applications.

To move in this direction will require both continuing study of human music perceptions and
how they are applied in music-search tasks, and also a more sophisticated focus on issues of
usability, customizability, user preference, and so forth.  To take one simple example, it seems
unlikely that a single similarity/dissimilarity metric will suffice for all users.  Different music-
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listeners use different criteria to decide what makes two pieces of music similar or not.  (The
results from Experiment II, Section 7.3, are compatible with this hypothesis, but of course do
not prove it in any rigorous sense).  Thus, to build systems that are useful in practice will
require the creation of user models that guide the different sorts of similarity measurements
that will be needed.

This point suggests that a useful direction of progress would be to try to merge the concept of
collaborative filtering (Maes et al., 1997), which has been previously used for music
recommendation, with music-listening systems of the sort I have demonstrated.  The
collaborative-filtering component would learn about user preferences and figure out how to
best adapt the similarity model to a particular user’s needs, and then the music-listening
component would implement that similarity model in relationship to a large database of
music.

8.3.3. Continued evaluation of image-formation model
The model that I presented in Chapter 5 is appealing because of its apparent ability to connect
several different psychoacoustic results.  However, it needs a great deal more evaluation in
order to stand as a robust contribution.  The set of stimuli that I have presented here was,
naturally, chosen because the results are positive.  For a more thorough evaluation, more types
of stimuli, and more stimuli of each type, should be tested.  Many of the psychoacoustic
effects described in Chapter 5 are known to be robust within a large set of slightly-different
stimuli; it is crucial to test whether the model is as well.

In the long run, it is important to evaluate the model competitively against other models that
attempt to cover a similar area.  This is a difficult process, simple for the practical reason that
as models become large it is difficult to make them work well.  It is enough of a challenge to
get one model working properly, let along to try to test several models on the same set of
stimuli.

The fundamental scientific purpose of model is to make us think of new hypotheses to test
with experiments.  As the image-segmentation model I have presented matures, and our
experimental techniques for dealing with complex stimuli do likewise, it seems likely that
numerous experiments could be devised to test various new predictions that the model can
make.  In particular, I have worked from a number of unexamined assumptions regarding
modulation processing that could probably be evaluated experimentally immediately.

From an engineering point of view, the model contains several subparts.   The two main ones
are the periodicity analysis technique and the dynamic-programming technique for estimating
the number of images in the scene.  It would certainly be possible to remove these pieces from
the large model and use them, together or separately, in other psychoacoustic and pattern-
recognition systems.

8.3.4. Experimental methodology
The experimental results presented in Chapter 7 are only preliminary.  It is unfortunately the
case that the methodological approach that I have taken here is somewhat naïve and probably
needs to be reconsidered entirely.  I can only plead that this is the first time the particular
questions addressed here have been considered experimentally, and so a study that is
somewhat exploratory is warranted, even if it is not completely desirable.  Future research by
more skilled experimentalists will help to refine the simple understanding of the sorts of
percepts I have considered.

It is impossible to determine from only the results in Sections 7.1.6 and 7.3.6 what aspects of
the subjects’ ratings are actually response biases stemming from the experimental interface
used.  For example, the bimodal response pattern consistently observed seen raises the
question whether the underlying percepts are actually bimodal (or even categorical) in nature,
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or whether the slider-rating method lends a bias in this direction.  Similarly, it is also possible
that the judgment-to-judgment correlations in the data are artifacts stemming from the
multiple-slider interface.  Perhaps if subjects made each judgment separately, the correlations
would vanish or be reduced.

The consistent response variances due to demographic variables (age, sex, musical ability,
native language, self-reported absolute pitch) reported in Section 7.1.6 are difficult to interpret
and a bit disturbing.  Personally, I don’t believe that these are real effects of demographics,
but are actually reflecting some unaddressed covariate of individual differences (about which
see below)—perhaps musical subculture or daily listening behavior.  Nonetheless, the present
data do have strongly significant variances of this sort, and so it would be interesting to see if
a more well-principled experimental study could replicate them with a larger and more
diverse subject population and, ideally, interpret them in terms of music-listening behavior.

8.3.5. Data modeling and individual differences
A second advantage of using larger sample sizes, both in terms of the number of subjects and
the number of test stimuli, would be the possibility of exploring more-sophisticated data-
modeling techniques.  The multiple-regression framework that I have used here has the
positive attribute of being relatively simple to implement and evaluate, but of course can only
explain linear relationships among the data.  A trained neural-network classifier or other non-
parametric scaling technique could be used to search for more complex relationships among
hypothesized sensory features and perceptual judgments.

But to do this, more training data are required.  There is not enough information in the present
data set to fully fill out all of the degrees of freedom in a neural network with hidden layers.
Collection of human-response data for training and modeling was the most time-consuming
part of the modeling research reported here.  One possibility for collecting training data would
be to include the collection of responses in a deployed music-retrieval system on the Internet.
That is, as well as providing content-based music indexing services to users, the system would
collect some judgments from the listeners in order to build a database of training data and user
information.

It is likely that in this scenario, listeners would not be willing to sit for an hour or two hours
apiece (as did the subjects in this research), so a more complex model to induce underlying
perceptions from limited data would be required.

8.3.6. Integrating sensory and symbolic models
The long-term goal of which this dissertation forms a part is to try to understand what aspects
of music perception can be best understood through sensory processing, and what aspects can
be best understood through symbolic processing.  To the extent that the research I have
presented can be viewed as grounding the sensory study of real music in a coherent starting
point, it is now possible to imagine trying to interrelate these topics.  Although it is only
possible to speculate on the form of such theories and models, I believe that this is the correct
direction for contemporary research on music perception—to focus on both the signal-based
sensory aspects and high-level cognitive aspects, while constantly maintaining connections
between them.





APPENDIX A: MUSICAL STIMULI

The table contained in this Appendix shows the set of 75 musical examples from which the
150 stimuli were drawn.  Two segments, each 5 sec long, were selected from each example:
the first starting at 60 sec into the song, and the second starting at 120 sec into the example.
All of the stimuli can be heard in MP3 and WAV format from my website at
KWWS���VRXQG�PHGLD�PLW�HGX�aHGV�WKHVLV���

For each example, the title, performing artist or group, and genre is listed, as well as the URL
at which the entire performance can be downloaded from MP3.com, and whether the excerpt
has vocals or not.  The musical genres are those under which the songs are listed on
MP3.com—they were originally provided by the artists and so may or may not correspond
precisely to the genres that listeners would associate with the songs.  I provide them so that
readers may observe the diversity of genres represented.

Song Title Artist URL Genre Vocals?

1 Lascia ch’io Pianga Luv Connection KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

P[U%4'$%*�YFP�&%*9�G+-'�Y\82&T]O�HL�UGI]B,0

7<�S4KF��ODVFLDBFKLRBSLDQJD�PS�

Europop Yes

2 Competition Orange aka Pawn KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

R[3%$'$%*�YFP�&%*9�G+-'XZD221-6+��B=HS*-

2�:Y�93/U���FRPSHWLWLRQBRUDQJH�PS�

Metalcore Yes

3 Love that you need Phantoms in Orbit KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

XV:%$'$%*�YFP�&%*9�G+-'HXL12(S7,-O9%�PX-*

-W+B,�B�F��ORYHBWKDWB\RXBQHHG�PS�

Alternative Yes

4 A secred faoth in d
Mol

Slow Motion KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4
K=�%4'$%*�YFP�&%*9�G+-'7J\22$0��$KH+\09

�O2=L1]O8����DBVHFUHGBIDRWKBLQBGBPRO�PS�

Goth No

5 Slip and Slide Hurler KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4W

*�%4'$%*�YFP�&%*9�G+-'\:.22$TBKE7B�8(I5

J&0'����1,��VOLSBDQGBVOLGH�PS�

Acoustic rock Yes

6 "Brothers, Blood,
and Bone"

Dan Treanor KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

P�G$4'$%*�YFP�&%*9�G+-'���122'$U\PP*N��[

9U]&*(�LK,��EURWKHUVBEORRGBDQGBERQH�PS�

Electric blues Yes

7 I worship the
ground that you

Lee Harris KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

Y;8$$'$%*�YFP�&%*9�G+-'IYL72+55G�7EBT:WI�U

H��33*VJ��LBZRUVKLSBWKHBJURXQGBWKDWB�PS�

Power pop No

8 Thanks Danel KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4L
YO%4'$%*�YFP�&%*9�G+-'MFH322�BSTM�4Z��$OM�

Spiritual pop Yes
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1�\=&6Z��WKDQNV�PS�

9 Hot Tommy Super Love
Master Force

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

K/W$4'$%*�YFP�&%*9�G+-'RB.12.'T-�MYF;�'ZD

D%N<)Q.�4��KRWBWRPP\�PS�

Power metal Yes

10 The Bear The Swinging
Hemphills

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4M

�.$J'$%*�YFP�&%*9�G+-'7BX12$QP:/YU)Y$F64

H*$H79(3J��WKHBEHDU�PS�

Political humor Yes

11 Rossini Intro/Theme Cantus KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

K�+%$'$%*�YFP�&%*9�G+-'Y4222(2�PXO��UD�G

E[5���;�7<��URVVLQLVBLQWURGXFWLRQBW�PS�

Classical No

12 Marvin John Martinez KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4U

1�$$'$%*�YFP�&%*9�G+-'W�*12$9�H*�WIEILU[=�R

G+-X10��PDUYLQ��PS�

Smooth jazz No

13 Inside your Heart Hypnofunk KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

K9�$Z'$%*�YFP�&%*9�G+-'\HP12'�K�38]-%�D%

6VE.X1.<0J��LQVLGHB\RXUBKHDUW��PS�

Jazz Yes

14 Robot Love The Fuzzy
Bunnies

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

K/[$Z'$%*�YFP�&%*9�G+-'/9�<2+LW++E;NB4\:

GE�G�,2�HV��URERWBORYH�PS�

Alternative Yes

15 Better off Dead The Snapdragons KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

N$U$Z'$%*�YFP�&%*9�G+-'�RH42,�TY$*%3L�*Z6

:�5'�Z/]F��EHWWHUBRIIBGHDG�PS�

Rock No

16 Still there’s
something

Kerry Lee KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

S3%$$'$%*�YFP�&%*9�G+-'��:12+2&%��8\J9*

$�-M-Q0%1����VWLOOBWKHUHVBVRPHWKLQJ��PS�

Folk Rock Yes

17 Imaginary
Conversations

Lou Hevly KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4W
67$Z'$%*�YFP�&%*9�G+-'NB�12/S2;O-24N.*S�I

]PN7-(\���LPDJLQDU\BFRQYHUVDWLRQV�PS�

Americana Yes

18 All About Nothing Satyriasis KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4V

4�%J'$%*�YFP�&%*9�G+-'U��823.%�7�F*XTZ�5

06QQZE�-<��DOOBDERXWBQRWKLQJ�PS�

Psychedelic
Rock

Yes

19 Silver Wings M-word KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4
ND/%J'$%*�YFP�&%*9�G+-'0'*52,W��I1�G�E*GR

F-8&=V,T���VLOYHUBZLQJV�PS�

Electric Blues No

20 The Devil is Sitting
in my Fav

Nick Becker KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

S8]$J'$%*�YFP�&%*9�G+-',I:12,N+R=H;&TR�*I

&GL<RGZ]8��WKHBGHYLOBLVBVLWWLQJBLQBP��PS�

Indie No

21 Tuanis Letho KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4
YFV$Z'$%*�YFP�&%*9�G+-'/3.12(+I,]*-3S8UELIM

4B'W�MN��WXDQLV�PS�

Reggae Yes

22 Mean Mean Woman Harpin Tracy
Herron

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

S�]%$'$%*�YFP�&%*9�G+-'OJ:22/(1B0,E04�]O

�Q]9J.]:�Z��PHDQBZRPDQ�PS�

Blues Yes

23 I Need Love DFC (Da Funky
Clowns)

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4W

=�$Z'$%*�YFP�&%*9�G+-'�J&220=$7G/T��,;]9

�\D'GR&6Z��LBQHHGBORYH�PS�

R & B Yes

24 I Won’t Tell You Swine Cadillac KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

K'/%4'$%*�YFP�&%*9�G+-'K4�22&NX]'8�8*�+

YVQPG:�IO�,��LBZRQWBWHOOB\RX�PS�

Electric Blues No

25 Baby Be Mine
Forever

Gene Dawson KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4L

DT$Z'$%*�YFP�&%*9�G+-'I'�5205H.HHR�VJ;--7

=1%&X-:���EDE\BEHBPLQHBIRUHYHU��PS�

Blues No

26 I’ve Changed Energy KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4O
<<%J'$%*�YFP�&%*9�G+-'EZ.22*F�RDR0NT-U6V

��;U+��&$��LYHBFKDQJHG�PS�

R & B Yes

27 Pasaje de Ida Havana Clowns KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4U

5�%J'$%*�YFP�&%*9�G+-'NI612$6�D/+�77,FF��-

��LS=ZZ��SDVDMHBGHBLGD�PS�

Cuban Yes

28 Leary Born Naked KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4M

PF$$'$%*�YFP�&%*9�G+-'\�2121�G944)1�Z4
:,�O/XKQYDZ��/HDU\�PS�

Heavy Metal Yes

29 For you Peter Seltzer KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4M

%�%J'$%*�YFP�&%*9�G+-'%K*22%=D5$+8O2ZDK

$�&3�)RJ+V��IRUB\RX�PS�

Mood Music Yes

30 Where do the
Cowboys Ride

Max’s Supper KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4M

(S%$'$%*�YFP�&%*9�G+-'8IH123W.$�Z/(LUTM+�J

6/=FH]<��ZKHUHBGRBWKHBFRZER\VBULGH�PS�

Rock Yes
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31 Miss match Kirawarebito KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4L

+1$4'$%*�YFP�&%*9�G+-'-Y*12&L�-'%=+;[Y&T
�6�.SEO5J��NLUDZDUHELWR�PS�

Symphonic Yes

32 Lost at Sea RusTnale KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

N<Q%4'$%*�YFP�&%*9�G+-'&PX<2(/':DFF1=$=

Q�83.GDKI\$��ORVWBDWBVHD�PS�

Rock No

33 I am a DJ (You are
here to please me)

Vampirus
Sceleratum

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4L
H�%$'$%*�YFP�&%*9�G+-'TZL222D;X�/59I�JOZ�

;VMPXOV,��LBDPBDBGMB\RXBDUHBKHUHBWRB�PS�

Electronica No

34 Mission to Earth Futurtek industrie KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

R%�$J'$%*�YFP�&%*9�G+-'%BL12)4M$RX,5]�O&:

'9H1�3H9���PLVVLRQBWRBHDUWK�PS�

Electronica No

35 Payday Bernie Stocks KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4
R��$$'$%*�YFP�&%*9�G+-'2�.12&�:0H=<8]:5

BZ3O�:3G�Y,��SD\GD\�PS�

Folk No

36 Wallace Lake Freakishly Big KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

K+U$J'$%*�YFP�&%*9�G+-',YX12*)EN4BKXS7]J\

'R:5WND-Z��ZDOODFHBODNH�PS�

Mood Music No

37 In Orbit electronatomic KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

T+K%4'$%*�YFP�&%*9�G+-'QJ�22')R;0D��8�0

[]O]++B�5����LQBRUELW�PS�

Industrial
Electronic

No

38 No. Five Spiral Motion KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

NH<$Z'$%*�YFP�&%*9�G+-';J*22/(8ZT%L�D+2

�H&Y�%8�1[V��QRBILYH�PS�

Pop Yes

39 Dinero Bomba de Tiempo KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

T[:$$'$%*�YFP�&%*9�G+-'51�12-%PTS7�%V8H
�7�5U�GQPQ8��GLQHUR�PS�

Rock en
Español

Yes

40 Corruptor Mainstay KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4L

YE%$'$%*�YFP�&%*9�G+-'0$T22$%M;X9T3N':)-

+�ER$,8�,��FRUUXSWRU�PS�

Rapcore Yes

41 Chicken Coop W.A.V.E.
Compilation

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4U

MN%4'$%*�YFP�&%*9�G+-'OZ�22(�KVFMYWJ�ZF�9=
�Y�9K:V��FKLFNHQBFRRSBE\BELII\BSHUG�PS�

Folk Punk Yes

42 I Love You
Googleplex

Googol Press KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4U

=1$4'$%*�YFP�&%*9�G+-'�2\12/RQ[<�&FJ(YP/

�V�L.I:DN��LBORYHB\RXBJRRJROSOH[�PS�

Pop Vocal Yes

43 South Presa Man Los #3 Dinners KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

XHV%4'$%*�YFP�&%*9�G+-'OY6123=H�7<-D�W455
�.�QPI4=���VRXWKBSUHVVDBPDQ�PS�

Reggae Yes

44 Stereo Crush The Bogs KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4O

9�$4'$%*�YFP�&%*9�G+-'IH�12,<]KGH$SN���T

:L5�4G)XV��WKHBERJV�PS�

Alternative Yes

45 Winters Morning Worlds Apart KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4M
��$J'$%*�YFP�&%*9�G+-'BT:62%�77]Z&�1E�6*

B9O4D42D$��ZLQWHUVBPRUQLQJ�PS�

Progressive
Rock

Yes

46 Sunday Morning imagineering KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4V

4P%4'$%*�YFP�&%*9�G+-'J$D22(H/Q(�'1V[LG/

\0$GHI6�,��VXQGD\BPRUQLQJ�PS�

Classical Guitar No

47 Golden Bird Dreamweaver KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4M

[8%4'$%*�YFP�&%*9�G+-'&<H32/J.Z�O�I�'11$

5��<94&;F��JROGHQBELUG�PS�

New age No

48 I'll be there Simply Blue KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4U

%D$J'$%*�YFP�&%*9�G+-'I3:12)];(FO�)K/U;H)<
1�,(\T<��LOOBEHBWKHUH�PS�

Gospel Yes

49 Sospeso Mauvaise KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

XG�%4'$%*�YFP�&%*9�G+-'*Z�22(55.V11E�8�

P1K$)3ZF%N���VRVSHVR��PS�

Grunge Yes

50 I Can't Take it
Anymore

Nitrous KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4
Y��$J'$%*�YFP�&%*9�G+-'UIT12$G�8T�J:XNS��

�=E*V��GR��LBFDQWBWDNHBLWBDQ\PRUH�PS�

Folk Punk Yes

51 The Minimalist
Experimentalist

Forsaken
Lemonade

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

ROU$4'$%*�YFP�&%*9�G+-'&2T12%�<��[UJK:D*

T5:S�I=[3R��WKHBPLQLPDOLVWBH[SHULPHQWD�PS�

Noise No

52 Why Dahminionz KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4W

W.$J'$%*�YFP�&%*9�G+-':Y&12.V2,Z3�+U5-8]

[PO��KJ*J��ZK\�PS�

Hip-hop Yes

53 Illegal Milkshake Liquid Evergreen KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

YGF$Z'$%*�YFP�&%*9�G+-''��923�.)�P4JQB,WQ
Tropical No
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Q]EKGT*,8��LOOHJDOBPLONVKDNHBOLYH�PS�

54 Save Jonnie Axtell KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

X5�%4'$%*�YFP�4%$$$$)/:3J$$84,$$$%'Y[32

2&3M:PZ:TU:;�8[/M5KX+IJ��VDYH�PS�

Rock No

55 Bug Ashtray Babyhead KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

XX(%J'$%*�YFP�&%*9�G+-'/K*22,X+=�LNDPR4(E

(�P�$YKPR��EXJ�PS�

Power Pop Yes

56 Diva Miles Blacklove KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

N4�$4'$%*�YFP�&%*9�G+-'V�X12%HB[;&PSU\H�M

8QZB$][*N��GLYD��PS�

West Coast
Hip-hop

No

57 FunkRide Foul Playaz KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

SW\%$'$%*�YFP�&%*9�G+-'V$H221*T\,::$+-[6

B*PY8T6&�F��IXQNULGH�PS�

R & B Yes

58 Don’t Know Why Uncle Salty’s
Cabin

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

POD$$'$%*�YFP�&%*9�G+-'*X&12)'\*�9��:$IF

D��6U(TD.F��GRQWBNQRZBZK\�PS�

Blues Rock Yes

59 Acid Blue Random Axe of
Noise

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

K2)$J'$%*�YFP�&%*9�G+-'MIL12'8�]:�)S[-S0N

]<�3\)D�(��DFLGBEOXH�PS�

Indie No

60 I Smoke Dope Antilife KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

N:9%4'$%*�YFP�&%*9�G+-'Q��42-06;D3/<MGU(

=QVE'�K1�0��LBVPRNHBGRSH�PS�

Rock No

61 Laten Peter Karlsson KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4
JI�$Z'$%*�YFP�&%*9�G+-'%X�:21/ZOL�[\F�O<2

'IJ<8PK8R��OWHQ�PS�

Smooth Jazz No

62 Theif John Riley KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

P*1$4'$%*�YFP�&%*9�G+-':T�;22(RZZJYH[VQ

P9*Z�S�W194��WKHLI�PS�

Spiritual Rock Yes

63 Beating Byt KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4
Y�V$$'$%*�YFP�&%*9�G+-'I�292*�RB�F\6IM�P��

(-7U�,:4��EHDWLQJ�PS�

Soft rock No

64 My Girlfriend Died 4GND KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

YBU$Z'$%*�YFP�&%*9�G+-'I4.22$5LP�22,-YN<0

.%K2;9&NJ��P\BJLUOIULHQGBGLHG�PS�

Hip-hop Yes

65 Jamm Akapella KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4O
�4$J'$%*�YFP�&%*9�G+-';BD12'���Y+��=(6%�

R�2(�HK%(��MDPP�PS�

East Coast Hip-
hop

Yes

66 Asi Estas Tu Los Pecadores KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

Y-E%$'$%*�YFP�&%*9�G+-'%$D22-]+GU�EGH:XK

2�71����OZ��DVLBHVWDVBWX��PS�

Rock en
Español

Yes

67 Blues Town Carlos T. KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4U
;K$$'$%*�YFP�&%*9�G+-'U�H12&�02��3LF�:��N

0,Z1)]%���EOXHVBWRZQ�PS�

Blues Yes

68 Gangsta Travesty KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

K'4%$'$%*�YFP�&%*9�G+-'.I�121M2.X*BRZV4

�$J6,$PUXN4��JDQJVWD�PS�

Hardcore Rap Yes

69 Quit Stressin' Oramismo KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4V

;X%$'$%*�YFP�&%*9�G+-'UJT22$�RZKU=)X<EQY[

].E68�;���TXLWBVWUHVVLQBURFNBVWHHORB�PS�

R & B Yes

70 Bush Pianino Smile Street
Noboru

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

Y%/$J'$%*�YFP�&%*9�G+-'FY:12(YTWF=J.(44/

=6)�=R7:�0��EXVKBSLDQLQR�PS�

Trip-hop No

71 No Depression in
Heaven

Limestone
Cowboy

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4
XJV%4'$%*�YFP�&%*9�G+-'�4X22)�DTK)�GO/4HD

<R0:'R)�4��QRBGHSUHVVLRQBLQBKHDYHQ�PS�

Bluegrass Yes

72 All through loving
you

Guy Schwartz &
New Jack Hi

KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4U

�N%J'$%*�YFP�&%*9�G+-'$K&22-TLQR�TRB�L+S%

X/,HK/3R��DOOBWKURXJKBORYLQJB\RX�PS�

Jazz Fusion No

73 Can't get enough of
your love

De'Lane KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

P�V$Z'$%*�YFP�&%*9�G+-'4X�121WYQ5�SK5:8
5$)V��;MY�<��FDQWBJHWBHQRXJKBRIB\RXUB�PS�

R & B Yes

74 Another Lost Cause Detour KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4V

N8$J'$%*�YFP�&%*9�G+-'�I.122X�Y+2N�,4�*�

BI.K4\V3$��DQRWKHUBORVWBFDXVH��PS�

Country Yes

75 Endlessly Macca Cartny KWWS���FKRRVHU�PS��FRP�FJL�ELQ�SOD\�SOD\�FJL�$$,$4

N:\%$'$%*�YFP�&%*9�G+-'2ZP22,\;+�K;8*%

�48<U96<$�DZ��HQGOHVVO\�PS�

Soft rock Yes



APPENDIX B: SYNTHESIS CODE

This Appendix contains the SAOL code that was used to synthesize the test sounds in Chapter
5.  Using this code, the exact sounds can be easily re-created and modified by other
researchers.  SAOL is the MPEG-4 Structured Audio Orchestra Language (Scheirer and
Vercoe, 1999); several software tools are available for creating sound from SAOL
descriptions.  See the MPEG-4 Structured Audio homepage at
KWWS���VRXQG�PHGLD�PLW�HGX�PSHJ��for more information.

For each example, an orchestra and one or more scores is shown.  The orchestra describes the
particular synthesis techniques that are used to create the sound.  The score describes the way
in which those synthesis techniques are used to generate a particular sound.

B.1. McAdams oboe

The “McAdams oboe” sound is used in Section 2.1.1 as a test sound to illustrate the
description of the subband-periodicity model of pitch, and then again in Section 5.4.1 for
testing the auditory-image model in Chapter 5.  In the latter case, two variants are used, one
with wide vibrato and one with narrow vibrato.

Orchestra code
JOREDO�^
��VUDWH�������
��NUDWH������
`

LQVWU�RERH�I��W��WG�W��PRG�PRGI��^
�����SOD\����KDUPRQLFV��
�����SOD\�WKHP�IODW�IRU�W��VHF
�����WKHQ�JOLGH�D�PRGXODWRU�IURP���WR�PRG�LQ�WG�VHF
�����DQG�DSSO\�LW�WR�WKH�HYHQ�KDUPRQLFV
�����KROG�WKH�PD[LPXP�PRGXODWLRQ�IRU�WG�VHF

��WDEOH�PRGVLQH�KDUP��������
��WDEOH�RGGKDUP�KDUP�����������������������������������
��WDEOH�HYHQKDUP�KDUP�����������������������������������
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��NVLJ�P�
��DVLJ�RGG�HYHQ�

��P� �NRVFLO�PRGVLQH�PRGI���NOLQH���W����WG�PRG�W��PRG��

��RGG� �RVFLO�RGGKDUP�I��������
��HYHQ� �RVFLO�HYHQKDUP�I��������P��������

��RXWSXW�RGG�HYHQ��
`

Score code (normal)
��RERH��������������������

Score code (narrow vibrato)
��RERH���������������������

B.2. Temporal coherence threshold

Several alternating-tone-sequence stimuli were used in Section 5.4.2 to examine the auditory-
image model’s threshold of temporal coherence.  These stimuli are similar to those used by
Van Noorden (1977) and others in experimental work on this topic.  To generate the five
stimuli, the same orchestra is used with five different scores.

Orchestra code
JOREDO�^
��VUDWH�������
��NUDWH�����

��WDEOH�VLQW�KDUP���������
`

LQVWU�WRQH�I��DPS��^
��DVLJ�D�HQY�
��LPSRUWV�WDEOH�VLQW�

��HQY� �HQGBHQY��������
��D� �RVFLO�VLQW�I����DPS��HQY�
��RXWSXW�D��
`

DRSFRGH�HQGBHQY�LYDU�HQG��^
��DVLJ�OWLPH�
��DVLJ�HQY�

��HQY� �DOLQH���HQG���GXU�HQG����HQG����

��UHWXUQ�HQY��
`

Score code
Note that the scores for stimuli S1 and S2 seem longer because the tempo is twice as fast.
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Stimulus S1 Stimulus S2 Stimulus S3 Stimulus S4 Stimulus S5

����WHPSR����
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������

����WHPSR����
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������

����WHPSR���
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������

����WHPSR���
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������

����WHPSR���
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������
����WRQH�������������
����WRQH��������������
����WRQH�������������

B.3. Alternating wideband and narrowband noise

This sound was used in Section 5.4.3 as a test case for the auditory-image-formation model.

Orchestra code
JOREDO�^
��VUDWH�������
��NUDWH�����
`

LQVWU�QRLVH�DPS��^
��RXWSXW�DUDQG�����DPS��
��`

LQVWU�FXWQRLVH�DPS��^
�����FXW�DW������+]����ILOWHU�VDPSOHG�DW�������+]
��WDEOH�FXWE�GDWD����������������������������������������������������������������
�������������������������������������������������������������
��WDEOH�FXWD�GDWD������������������������������������������������������������������
�������������������������������������������������������������

��DVLJ�D�
��D� �DUDQG�����DPS�
��RXWSXW�LLUW�D�FXWD�FXWE���
`
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Score code
����WHPSR���
����FXWQRLVH�������������
����QRLVH��������
����FXWQRLVH�������������
����QRLVH��������
����FXWQRLVH�������������
����QRLVH��������
����FXWQRLVH�������������
����QRLVH��������
����FXWQRLVH�������������
����QRLVH��������
����FXWQRLVH�������������
����QRLVH��������
����FXWQRLVH�������������
����QRLVH��������
����FXWQRLVH�������������
����QRLVH��������
����FXWQRLVH�������������
����QRLVH��������
����FXWQRLVH�������������
����QRLVH��������

B.4. Comodulation release from masking

Comodulation release from masking (CMR) is an important phenomenon that is believed to
relate to more general mechanisms for auditory processing of spectrotemporally complex
signals.  The phenomenon was discussed in general in Section 2.1.3, and one particular form
was used for evaluating the auditory-image model in Section 5.4.4.  There are many other
sounds known to evoke similar behavior, but I only use one here for simplicity.

Orchestra code
There are two main instruments in the orchestra: WUDQVBFRKBQRLVH��, which generates
transposed coherent (TC) noise, and WUDQVBUDQGBQRLVH��, which generates transposed random
(TR) noise.

JOREDO�^
��VUDWH������
��NUDWH�����

��WDEOH�VLQW�KDUP���������

���ILOWHUV�DUH�VDPSOHG�DW���N+]

���
ORZ
�LV�D�����+]�ORSDVV�ILOWHU
��WDEOH�ORZD�GDWD���������������������������������������������������������������������
���������������������������������������������������������������������
������������������������
��WDEOH�ORZE�GDWD��������������������������������������������������������������������
�����������������������������������������������������������������������������������������

���
KLJK
�LV�D�����+]�KLSDVV�ILOWHU
��WDEOH�KLJKD�GDWD�����������������������������������������������������������������������
�����������������������������������������������������������������������������������������
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��WDEOH�KLJKE�GDWD����������������������������������������������������������������������
��������������������������������������������������������������������
�������������������������

�����
FXW
�LV�D������+]�ORZSDVV�ILOWHU�HOOLS������������������
�����
FXW�
�LV�D�����+]�KLSDVV�ILOWHU�HOOLS�����������������
KLJK
�
WDEOH�FXWD�GDWD����������������������������������������������������������������������
����������������������������������������������������������������������
��������������������������
WDEOH�FXWE�GDWD���������������������������������������������������������������������
��������������������������������������������������������������������
��������������������������
WDEOH�FXW�D�GDWD����������������������������������������������������������������������
����������������������������������������������������������������������
��������������������������
WDEOH�FXW�E�GDWD����������������������������������������������������������������������
����������������������������������������������������������������������
��������������������������

`

LQVWU�WUDQVBFRKBQRLVH�ILUVW�VWHS�Q�DPS��^
��DVLJ�RXW��OQ��L��VXP��T�
��RSDUUD\�RVFLOBUDQGSK>��@�
��LPSRUWV�WDEOH�VLQW��ORZD��ORZE��FXWD��FXWE��FXW�D��FXW�E�

��OQ� �LLUW�LLUW�DUDQG���DPS�KLJKD�KLJKE����ORZD�ORZE����

��VXP� ����L� ����ZKLOH��L���Q��^
����VXP� �VXP���RVFLOBUDQGSK>L@�VLQW�ILUVW�VWHSL��
����L� �L�����
��`

��RXW� �LLUW�LLUW�VXP��OQ�FXWD�FXWE��FXW�D�FXW�E��
��RXWSXW�RXW��
`

LQVWU�WUDQVBUDQGBQRLVH�ILUVW�VWHS�Q�DPS��^
��DVLJ�RXW��OQ��L��VXP��T�
��RSDUUD\�RVFLOBUDQGSK>��@�LLUW>��@�
��LPSRUWV�WDEOH�VLQW��ORZD��ORZE��FXWD��FXWE��FXW�D��FXW�E�

��VXP� ����L� ����ZKLOH��L���Q��^
����OQ� �LLUW>L@�LLUW>Q�L@�DUDQG���DPS�KLJKD�KLJKE����ORZD�ORZE����
����VXP� �VXP���OQ��RVFLOBUDQGSK>L@�VLQW�ILUVW�VWHSL��
����L� �L�����
��`

��RXW� �LLUW�VXP�FXWD�FXWE��
��RXWSXW�RXW��
`

DRSFRGH�RVFLOBUDQGSK�WDEOH�W��DVLJ�U��^
��DVLJ�LQLW��SK��RXW�

��LI���LQLW��^
����LQLW� ���
����SK� �DUDQG����������
��`

��RXW� �WDEOHUHDG�W�SKIWOHQ�W���
��SK� �SK���U���VBUDWH�
��LI��SK�!����^
����SK� �SK�����
��`
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��UHWXUQ�RXW��
`

Score code (Stimulus S1)
As with the alternating-tone-sequence examples above, the same orchestra is used with six
different scores to produce the six stimuli.  The only difference between the scores here is the
amplitude of the tone (the third parameter to WRQH��� and the type of noise used.

����WUDQVBUDQGBQRLVH�������������������
����WRQH�������������

Score code (Stimulus S2)
����WUDQVBFRKBQRLVH�������������������
����WRQH�������������

Score code (Stimulus S3)
����WUDQVBUDQGBQRLVH�������������������
����WRQH�������������

Score code (Stimulus S4)
����WUDQVBFRKBQRLVH�������������������
����WRQH�������������

Score code (Stimulus S5)
����WUDQVBUDQGBQRLVH�������������������
����WRQH��������������

Score code (Stimulus S6)
����WUDQVBFRKBQRLVH�������������������
����WRQH��������������
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