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    Chapter 1   

 Recent Progress in Engineering Human-Associated 
Microbiomes 

           Stephanie     J.     Yaung    ,     George     M.     Church    , and     Harris     H.     Wang    

    Abstract 

   Recent progress in molecular biology and genetics opens up the possibility of engineering a variety of 
biological systems, from single-cellular to multicellular organisms. The consortia of microbes that reside 
on the human body, the human-associated microbiota, are particularly interesting as targets for forward 
engineering and manipulation due to their relevance in health and disease. New technologies in analysis 
and perturbation of the human microbiota will lead to better diagnostic and therapeutic strategies against 
diseases of microbial origin or pathogenesis. Here, we discuss recent advances that are bringing us closer 
to realizing the true potential of an engineered human-associated microbial community.  
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1       Introduction 

 Of the 100 trillion cells in the human body, 90 % are microbes that 
naturally inhabit various body sites, including the gastrointestinal 
tract, nasal and oral cavities, urogenital area, and skin [ 1 ]. An indi-
vidual’s colon is home to 10 11 –10 12  microbial cells/mL, the greatest 
density compared to any other microbial habitat characterized to 
date [ 2 ]. Many studies, such as the Human Microbiome Project 
and MetaHIT, have probed the vast effects of microbiota on 
human health and disease [ 1 ,  3 – 5 ]. In addition to metagenomic 
sequencing [ 6 ], traditional methods of studying cells in isolation 
are important for elucidating molecular bases of microbial activity. 
However, cells do not exist in single-species cultures in nature. In 
fact, some species are only culturable in the presence of other 
microorganisms [ 7 ]. This interdependence for survival amongst 
microbial species in a community attests to the importance of 
intercellular interactions, both microbe–microbe and host–
microbe. Despite the fact that the human microbiota is composed 
of many individual microbes, these individuals work in concert to 
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perform tasks that rival in complexity to those of more sophisticated 
multicellular systems. Thus, the human-associated microbiome 
presents a ripe opportunity for forward engineering to potentially 
improve human health (Fig.  1 ). Here, we review recent advances in 
this area and outline potential avenues for future endeavors.

2        Microbiota, Host, and Disease 

 Contrary to traditional views, microbes are social organisms that 
engage with the environment and other organisms in specifi c ways. 
Microbes participate in intercellular communication through 
contact- dependent signaling [ 8 ], quorum sensing [ 9 ], metabolic 
cooperation or competition [ 5 ], spatiotemporal organization [ 10 ], 
and horizontal gene transfer (HGT) [ 11 ]. Human-associated 
microbes produce by-products that serve as substrates utilized by 
other resident bacteria [ 12 – 14 ]. For instance, accumulated hydro-
gen gas from bacterial sugar fermentation is removed by acetogenic, 
methanogenic, and sulfate-reducing gut bacteria [ 15 ]. In contrast to 
cross-feeding relationships, microbes under stress can release bacte-
riocins to suppress the growth of competitors [ 16 – 18 ]. If microbes 
are members of a biofi lm community, they benefi t from physical 
protection from the environment, access to nutrients trapped and 
distributed through channels in the biofi lm, development of syn-
trophic relationships with other members, and the ability to share 
and acquire genetic traits [ 19 ,  20 ]. Microbial populations also 

  Fig. 1    Engineering human-associated microbiota requires detailed understanding 
of processes that govern the natural propagation and retention of microbes in the 
host as well as environmental and adaptive pressures that drive the evolution of 
cells and communities       

 

Stephanie J. Yaung et al.



5

genetically diversify to insure against possible unstable environmen-
tal conditions [ 21 ,  22 ]. Moreover, multispecies communities harbor 
a dynamic gene pool consisting of mobile genetic elements, such as 
transposons, plasmids, and bacteriophages, which serve as a source 
of HGT to share benefi cial functions with neighbors to preserve 
community stability [ 23 – 26 ]. Densely populated communities such 
as the human gut are active sites for gene transfer and reservoirs for 
antibiotic resistance genes [ 11 ,  27 – 29 ]. 

 Beyond microbe–microbe interactions, the microbiota 
coevolves with the host as it develops, driving microbial adaptation 
[ 30 – 33 ]. Core functions of microbiota benefi t the host, such as 
extraction of otherwise inaccessible nutrients, immune system devel-
opment, and protection against pathogen colonization [ 2 ,  34 – 37 ]. 
Gut microbes are critical in intestinal angiogenesis, epithelial cell 
maturation, and immunological homeostasis [ 37 – 40 ]. For exam-
ple, the commensal  Bacteroides fragilis  produces polysaccharide A, 
which converts host CD4 +  T cells into Foxp3 +  T reg  cells, producing 
interleukin-10 (IL-10) and inducing mucosal tolerance [ 41 ]. Host 
diet, infl ammatory responses, and aging also affect microbial com-
munity composition and function [ 42 – 45 ] (Fig.  2 ). Indeed, aber-
rations in host genetics, immunology, and diet can lead to 

  Fig. 2    Composition of the human gut microbiome during development with 
respect to microbial diversity and population stability. Data compiled from recent 
studies from the literature: ( a ) Hong 2010 [ 169 ]; ( b ) Saulnier 2011 [ 170 ]; ( c ) 
Claesson 2011 [ 171 ]; ( d ) Yatsunenko 2012 [ 172 ]; ( e ) Spor 2011 [ 173 ]       
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microbiota-associated human diseases. Diet-induced obesity in mice 
from a high-fat diet is characterized by enhanced energy harvest and 
an increased  Firmicutes -to- Bacteroidetes  ratio [ 46 ,  47 ]. Furthermore, 
disruptions in the homeostasis between gut microbial antigens and 
host immunity can invoke allergy and autoimmunity, as in type 1 
diabetes and multiple sclerosis [ 48 – 50 ]. It is thought that infl amma-
tory bowel disease (IBD) results from inappropriate immune 
responses to intestinal bacteria; genes identifi ed in genome-wide 
association studies highlight the role of a host imbalance between 
pro-infl ammatory and regulatory states [ 48 ,  51 ].

   While the host selects for microbial communities that harvest 
nutrients and prime the immune system, irregular microbiota 
composition may cause disease (Fig.  3 ), including IBD [ 52 – 54 ], 
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  Fig. 3    Changes in the composition of human microbiota during disease states 
compared to healthy states. Data compiled from recent studies from the literature: 
( a ) De Filippo 2010 [ 174 ]; ( b ) Peterson 2008 [ 175 ]; ( c ) Larsen 2010 [ 176 ]; ( d  ) Kong 
2012 [ 177 ]; ( e ) Gao 2012 [ 178 ]; ( f   ) Keijser 2008 [ 179 ]; ( g ) Yang 2012 [ 180 ]       
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lactose intolerance [ 55 ,  56 ], obesity [ 57 ,  58 ], type I diabetes 
[ 59 ], arthritis [ 60 ], myocardial infarction severity [ 61 ], and 
opportunistic infections by pathogens such as  Clostridium diffi cile  
and HIV [ 62 – 65 ]. Microbial gut metabolism links host diet not 
only to body composition and obesity [ 66 ] but also to chronic 
infl ammatory states, such as IBD, type 2 diabetes, and cardiovas-
cular disease [ 67 – 69 ]. Intestinal microbes are also important in 
off-target drug metabolism, rendering digoxin, acetaminophen, 
and irinotecan less effective or even toxic [ 70 – 72 ]. In the case of 
irinotecan, a chemotherapeutic used mainly for colon cancer, the 
drug is metabolized by β-glucuronidases of commensal gut bacte-
ria into a toxic form that damages the intestinal lining and causes 
severe diarrhea. In the oral cavity, ecological shifts in dental plaque 
microbiota lead to caries (cavities), gingivitis, and periodontitis 
[ 73 ]. Dental caries arise from acidic environments generated by 
acidogenic (acid- forming) and aciduric (acid-tolerant) bacteria, 
which metabolize sugar from the host diet. Translocation of oral 
bacteria into other tissues results in infections, and cytokines from 
infl amed gums released into the bloodstream stimulate systemic 
infl ammation. Oral bacteria have been implicated in respiratory 
[ 74 ,  75 ] and cardiovascular diseases [ 76 – 78 ], though mechanisms 
remain unclear.

3        Enabling Tools for Engineering the Microbiota 

 The human-associated microbial community presents a vast reservoir 
of nonmammalian genetic information that encodes for a variety of 
functions essential to the mammalian host [ 79 ]. Next-generation 
sequencing technologies have enabled us for the fi rst time to sys-
tematically probe the genetic composition of these trillions of 
microbes that reside on the human body [ 1 ]. The ongoing effort 
by the Human Microbiome Project and MetaHIT to catalog dom-
inant microbial strains from different body sites has generated useful 
reference genomes for many of the representative species [ 80 ]. 
Metagenomic shot-gun sequencing approaches of whole microbial 
communities, such as those found in the gut, have yielded near-
complete gene catalogs that describe abundance and diversity of 
genes that contribute to maintenance and metabolism of the 
microbiota [ 6 ]. 

 In order to determine functional relationships between 
 human- associated microbes and their concerted effect in the mam-
malian host, we rely on functional perturbation of the microbial 
community. These investigative avenues include genome-scale per-
turbation assays, specifi ed community reconstitutions, and directed 
engineering through synthetic biology (Fig.  4 ). Each approach 
provides us with a unique angle to attack an otherwise daunting 
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challenge of de-convolving a highly intertwined set of microbial 
interactions in a very heterogeneous environment and a diffi cult-
to- manipulate human host. Advances in both in vitro and in vivo 
host models have thus also facilitated research endeavors in this 
area, which we discuss in the following sections.

  Fig. 4    General approaches to engineer the human microbiome through design, quantitative modeling, genome-
scale perturbation, and analysis in in vitro and in vivo models, with the ultimate goal of producing demand-
meeting applications to improve sensing, prevention, and treatment of diseases       
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    Approaches to study the function of human-associated microbes 
by genetic manipulation rely on several fundamental capabilities, 
which are often the largest practical barriers to manipulate microbes 
genetically. First, individual microbes need to be isolated and cul-
tured in the laboratory. Because microbes have a myriad of physi-
ologies and require different nutritional supplement for growth, 
different media compositions and growth conditions need to be 
laboriously tested by trial and error to isolate and culture each 
microbe. These microbial culturing techniques date back to the 
times of Louis Pasteur and are still the dominant approach today. 
More recent microbial cultivation techniques use microfl uidics and 
droplet technologies to enable the discovery of synergistic interac-
tions between natural microbes that allow otherwise “unculturable” 
organisms to be grown in laboratory conditions [ 7 ,  81 ,  82 ]. 

 Upon successful microbial cultivation, the next limiting step of 
microbial genetic manipulation is the transformation of foreign DNA 
into cells. The passage of foreign DNA (e.g., plasmids, recombinant 
fragments) into the cell requires overcoming the physical barriers 
presented by the cell wall or membrane. This task is accomplished in 
nature through processes such as transduction by phage, conjugation 
and mating, or natural competency and DNA uptake [ 83 ,  84 ]. 
Numerous laboratory techniques have been developed for microbial 
transformation including electroporation [ 85 ], biolistics [ 86 ], soni-
cation [ 87 ], and chemical or heat disruption [ 88 ]. Electroporation, 
the most common of the laboratory transformation techniques, 
relies on high-voltage electrocution of the bacterial sample that is 
thought to transiently induce pores on the cell membrane (hence 
“electroporation”) that then enable extracellular DNA to diffuse 
into the cell. Various protocols for electroporation of human-associ-
ated microbes have been described and are good starting points for 
developing genetic systems in these microbes [ 89 ,  90 ]. 

 Upon transformation of DNA into the cell, the DNA needs to 
either stably propagate intracellularly or integrate into the micro-
bial host genome through recombination or other integration 
strategies. Inside the cell, stable propagation of episomal DNA 
such as plasmids requires DNA replication machinery that is com-
patible with the foreign DNA [ 83 ]. Additionally, cells often use 
methylation and DNA modifi cation and restriction systems to dis-
cern foreign versus host DNA through a primitive defensive mech-
anism that fi ghts against viruses or other invading genetic elements. 
Nonetheless, these promiscuous genetic elements can often be 
used as a way to integrate foreign DNA into the chromosome and 
are often used for large-scale functional genomics [ 91 ]. 

 Taking all these parameters into consideration, we have 
summarized (Fig.  5 ) the current genetic tractability of human- 
associated microbes with respect to culturability, availability of full 
genome sequences, transfection methods, and expression and 
manipulation systems. Expansion of these basic genetic tools is 
crucial for future functional studies of human microbiota.

3.1  Challenges 
of Building New 
Genetic System
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  Fig. 5    Genetic tractability of abundant or relevant human-associated microbial genera, evaluated by the 
availability of means to introduce genetic material (e.g., transformation, conjugation, or transduction), vectors, 
expression systems, completed genomic sequences, and culturing methods.  Circles  of increasing sizes 
indicate greater genetic tractability. Protocols and demonstrated methods for genetic manipulation 
are listed as follows: ( a ) Clostridium: Phillips-Jones 1995, Jennert 2000, Young 1999, Bouillaut 2011 
[ 181 – 184 ]; ( b ) Ruminococcus: Cocconcelli 1992 [ 185 ]; ( c ) Lactobacillus: van Pijkeren 2012, Ljungh 2009, 
Damelin 2010, Sorvig 2005, Thompson 1996, Lizier 2010[ 107 ,  186 – 190 ]; ( d ) Enterococcus: Shepard 1995 
[ 191 ]; ( e ) Lactococcus: Holo 1995, van Pijkeren 2012 [ 107 ,  192 ]; ( f ) Streptococcus: McLaughlin 1995, Biswas 
2008 [ 193 ,  194 ]; ( g ) Staphlyococcus: Lee 1995 [ 195 ]; ( h ) Listeria: Alexander 1990 [ 196 ]; ( i ) Treponema: 
Kuramitsu 2005 [ 197 ]; ( j ) Borrelia: Hyde 2011, Rosa 1999 [ 198 ,  199 ]; ( k ) Bifi dobacterium: Mayo 2010 [ 200 ]; 
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     Genome-scale perturbations are a class of genetic approaches that 
disrupt or perturb the expression of functional genes that contribute 
to relevant phenotypes by individual microbes. To dissect the func-
tion of different genes in the cell, we have relied heavily on the use 
of transposons, which are selfi sh genetic elements that can splice 
into and out of different locations of chromosomal DNA, thereby 
disrupting the coding sequence [ 92 ]. This classical approach, 
known as transposon mutagenesis, has allowed us to isolate many 
genetic mutants whose disrupted genes give rise to interesting 
phenotypes that refl ect the importance of those genes to its physiol-
ogy. Next-generation DNA sequencing has now enabled multi-
plexed genotyping of pools of transposon mutants by using 
molecular barcodes that then can be applied to measure the effect 
of genome-scale perturbations in different environmental condi-
tions. For example, techniques such as insertion sequencing (INSeq) 
[ 93 ] utilize the inverted repeat recognition of the Himar trans-
posase, which is one nucleotide change away from the restriction 
site for type II restriction enzyme MmeI, to generate paired 
16–17 bp fl anking genomic sequences around the transposon that 
can be sequenced in pools. Thus, the defi ned insertion location of 
every transposon in the library can be determined. By sequencing 
this pooled mutant library pre- and posttreatment with any number 
of environmental perturbations, one can probe the effects of differ-
ent gene disruptions on the physiology of the cell in a multiplexed 
fashion. Similar techniques using other transposon systems such as 
transposon sequencing (Tn-seq) [ 94 ], high-throughput insertion 
tracking by deep sequencing (HITS) [ 95 ], and transposon-directed 
insertion-site sequencing (TraDIS) [ 96 ] have also been developed. 

 In addition to transposon-based systems, shotgun expression 
libraries have been useful in discovering functional DNA elements 
in genomic or metagenomic DNA. Shotgun expression libraries 
rely on physical shearing or restriction digestion of a donor DNA 
source into smaller DNA fragments that are then cloned into a gene 
expression vector and transformed into a host strain for functional 
analysis. A library of metagenomic DNA samples can for example be 
extracted from an environment and cloned into plasmids that are 
then expressed in  E. coli . Selection and sequencing of the  E. coli  
population for heterologous DNA that enable new function lead 
to discovery of novel gene elements that perform a  particular 

3.2  Genome-Scale 
Perturbations

Fig. 5 (continued) ( l ) Actinomyces: Yeung 1994 [ 201 ]; ( m ) Mycobacterium: Parish 2009, Sassetti 2001 [ 202 , 
 203 ]; ( n ) Proprionibacterium: Luijk 2002 [ 204 ]; ( o ) Chlamydia: Binet 2009 [ 205 ]; ( p ) Porphyromonas: Belanger 
2007 [ 206 ]; ( q ) Prevotella: Flint 2000, Salyers 1992 [ 207 ,  208 ]; ( r ) Bacteroides: Salyers 1999, Smith 1995, 
Bacic 2008 [ 209 – 211 ]; ( s ) Fusobacterium: Haake 2006 [ 212 ]; ( t ) Helicobacter: Taylor 1992, Segal 1995 [ 213 , 
 214 ]; ( u ) Camplyobacter: Taylor 1992 [ 214 ]; ( v ) Rickettsia: Rachek 2000 [ 215 ]; ( w ) Brucella: McQuiston 1995 
[ 216 ]; ( x ) Bordetella: Scarlato 1996 [ 217 ]; ( y ) Neisseria: O’Dwyer 2005, Bogdon 2002, Genco 1984 [ 218 – 220 ]; 
( z ) Pseudomonas: Dennis 1995 [ 221 ]       
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activity. This approach can easily identify activities such as antibiotic 
resistance [ 97 ] but have yielded less success with other functions. 

 Towards forward engineering of human-associated microbes, 
new genome engineering tools such as trackable multiplex recom-
bineering (TRMR) [ 98 ,  99 ] and multiplex automated genome 
engineering (MAGE) enable effi cient, site-specifi c modifi cation of 
the genome [ 100 – 103 ]. TRMR combines double-stranded 
homologous recombination [ 104 ] and molecular barcodes synthe-
sized from DNA microarrays to generate populations of mutants 
that are trackable by microarray or sequencing. MAGE relies on 
introduction of pools of single-stranded oligonucleotides that tar-
get defi ned locations of the genome to introduce regulatory muta-
tions [ 102 ] or coding modifi cations [ 105 ]. These and other 
recombineering technologies are now being developed for a variety 
of other organisms including gram-negative bacteria [ 106 ], lactic 
acid bacteria [ 107 ],  Pseudomonas syringae  [ 108 ], and  Mycobacterium 
tuberculosis  [ 109 ], and are likely to be very useful for engineering 
human-associated microbes.  

  The community of microbes that make up the human microbiome 
can be considered a “pseudo-organ” of its own. These microbes 
interact with one another and the mammalian host in potentially 
highly complex ways that may be diffi cult to decipher even with 
tractable genetic systems [ 110 ]. A direct approach to study these 
interactions is to build reconstituted communities of microbes 
derived from monoculture isolates in defi ned combinations. This 
de novo reconstitution approach to build synthetic communities 
has signifi cant advantages over attempts to deconvolute natural 
communities. Reconstituted synthetic consortium presents a trac-
table level of complexity in terms of number of interacting micro-
bial species that can be tracked by sequencing and predicted with 
quantitative models. In one such study, researchers inoculated 
germ-free mice with ten representative strains of the human micro-
biota [ 111 ]. The mice were then fed with defi ned diets of macro-
nutrients consisting of proteins, fats, polysaccharides, and sugars. 
By tracking the abundance of the ten-member microbial consor-
tium using high-throughput sequencing, the researchers could 
predict over 60 % of the variation in species abundance as a result 
of diet perturbations. This avenue of investigation presents a viable 
approach to study the human microbiome and ways to analyze 
synthetically engineered microbiota. 

 Engineered microbes have been utilized to reconstitute syn-
thetic communities to investigate the role of metabolic exchange. 
One such important metabolic exchange is that of amino acids, as 
they are the essential constituents of proteins. Various syntrophic 
cross-feeding communities have been described using auxotrophic 
 E. coli  and yeast strains that require different amino acid 
 supplementation for growth [ 112 – 114 ]. In these syntrophic 

3.3  Reconstituted 
Communities
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systems, metabolites that are exchanged across different biosynthetic 
pathways promote more syntrophic growth than those that are 
exchanged along the same pathway, which also relates to the cost 
of biosynthesis of the amino acid metabolites. Amino acid 
exchange is likely a large player in driving metabolism of microbial 
communities as a substantial fraction of all microbes are missing 
biosynthesis of various metabolites and thus require growth on 
more rich and complex substrates that are found in the gut [ 115 ].  

  New approaches are now utilizing synthetic biology to engineer 
human-associated microbiota to improve health and metabolism as 
well as to monitor and fi ght diseases. These efforts focus on devel-
oping genetic circuits that actuate in an engineered host cell such 
as  E. coli  that can sense and respond to changes to its environment 
and in the presence of particular pathogens. For example, to detect 
the human opportunistic pathogen  Pseudomonas aeruginosa , which 
often causes chronic cystic fi brosis infections and colonizes the gas-
trointestinal tract,  E. coli  was engineered to detect the small diffus-
ible molecule that is excreted by  P. aeruginosa  through the quorum 
sensing pathway [ 116 ]. An engineered synthetic circuit was placed 
in nonpathogenic  E. coli , which when placed in the presence of 
high-density  P. aeruginosa  triggered a self-lysis program that 
released a narrow-spectrum bacteriocin that specifi cally killed the 
 P. aeruginosa  strain. Similar strategies have also been demonstrated 
to detect and respond to  Vibrio cholera  infection using engineered 
 E. coli  that sense autoinducer-1 (AI1) molecules from  V. cholera  
quorum sensing pathway [ 117 ]. These strategies appear to yield 
improved survival rates against microbial pathogenesis in murine 
models [ 117 ]. Quorum sensing systems, which normally help 
microbes detect local cell density, have been further enhanced to 
improve robustness and performance to enable coupled short- range 
and long-range feedback circuits that enable microbial communica-
tion across large distances in an engineered community. 

 Other microbes have been successfully engineered to perform 
specifi c functions on human-associated surfaces such as the muco-
sal layer of the gut epithelium. Numerous diseases that occur along 
the intestinal tract are targets of such engineered approaches. For 
example, the probiotic strain  Lactococcus lactis  has been engineered 
to secrete recombinant human IL-10 in the gastrointestinal tract 
to reduce colitis [ 118 ,  119 ]. Other future applications of engi-
neered probiotics include enhancing catabolism of nutrients (e.g., 
lactose and gluten), modulation of the immune system, and 
removal of pathogens by selective toxin release [ 116 ].  

  To probe and engineer the human-associated microbial commu-
nity, various in vitro models have been developed, ranging from 
traditional batch culturing in chemostats to microfl uidic systems 
that incorporate host cells. Single-vessel chemostats inoculated 

3.4  Microbial 
Engineering Through 
Synthetic Biology

3.5  In Vitro 
Host Models
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with fecal samples from healthy individuals have helped identify 
HGT [ 120 ] and selective bacterial colonization on different carbo-
hydrate substrates [ 121 ,  122 ]. A multichamber continuous culture 
system mimicking spatial, nutritional, and pH properties of differ-
ent GI tract regions can be used to investigate stabilization dynam-
ics [ 123 – 125 ]. Similarly, the constant-depth fi lm fermenter 
resembles oral biofi lm [ 126 ] and has enabled studies on biofi lm for-
mation, antibiotic resistance [ 126 ], and HGT in a multispecies oral 
community [ 127 ,  128 ]. To incorporate mammalian cells in study-
ing host–microbial interactions, organ-on-a- chip microfl uidic 
devices have been recently used. In one version of such a system, a 
gut-on-a-chip device, the microfl uidic channel is coated with extra-
cellular matrix and lined by human intestinal epithelial (Caco-2) 
cells. This system mimics intestinal fl ow and peristaltic motion, 
recapitulates columnar epithelium polarization and intestinal villi 
formation, and supports the growth of commensal  Lactobacillus 
rhamnosus GG  [ 129 ]. These microdevices offer an opportunity to 
investigate host–microbiota interactions in a well- controlled man-
ner and in physiologically relevant conditions. 

 Inoculating with native microbiota samples provides a method 
to overcome the un-cultivability of many microbes as well as to 
study collective activity and discover novel functions without a 
priori knowledge of community composition. However, starting 
with a predefi ned microbial community allows a controlled setting 
better suited for testing engineered systems. In one study analyz-
ing the dynamics of a community representing the four main gut 
phyla in a chemostat, the authors propose that intrinsic microbial 
interactions, rather than host selective pressure, play a role in the 
observed colonization pattern, which was similar to what has been 
documented in the human gut [ 130 ]. Similar models have been 
developed for oral microbiota studies. The use of predefi ned oral 
microbial inocula has helped elucidate metabolic cooperation in 
batch culture [ 12 ] and community development in saliva- conditioned 
fl ow cells [ 131 ].  

  In order to move into in vivo animal models that more closely 
represent the physiology of the human host environment, researchers 
have extensively utilized murine models including germ-free, gno-
tobiotic, and conventionally raised mice. Gnotobiotic animals are 
born in aseptic conditions and reared in a sterile environment 
where they are exposed only to known microbial species; techni-
cally, germ-free mice are a type of gnotobiotic mice that have not 
been exposed to any microbes. Similar to in vitro systems, mice can 
be inoculated with either a natural microbiota sample or a pre-
defi ned microbial community. Fecal samples, as well as oral swab 
and saliva samples, can then be collected from gnotobiotic mice for 
biochemical analysis and species quantifi cation of gut and oral 
 cavity microbiota. In vivo models have been used to study the 

3.6  In Vivo 
Host Models
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transmission of antibiotic resistance in the mouse gut [ 132 ,  133 ] 
and colonization resistance in the oral cavity [ 134 ]. Furthermore, 
the choice of the inoculum donor offers opportunities to compare 
different host selection pressures and microbial community 
responses. Microbiota can be transplanted from conventionally 
raised to germ-free animals of not only the same species but also 
interspecies, as in human microbiota into mouse, called humanized 
gnotobiotic mice [ 134 ]. In one study, transplants from zebrafi sh 
gut microbiota into germ-free mice and mouse gut microbiota 
into germ-free zebrafi sh revealed that the resulting community 
conformed to the native host composition, demonstrating host 
selection [ 135 ]. 

 Altering host diet, environment, or genetic background can 
also enable studies in host–microbiota interactions. One method 
to gain insight into the role of microbial communities in disease is 
to utilize mice with recapitulated pathologies. For example, 
IL-10 −/− , ob −/− , apoE −/− , and TLR2 −/−  or TLR5 −/−  mice are models 
for colitis, obesity, hypercholesterolemia, and metabolic syndrome, 
respectively [ 46 ,  136 – 139 ]. To generate antigen- or pathogen- 
specifi c phenotypes, mice can be infected with  Salmonella 
typhimurium  to study colitis [ 140 ] or  Citrobacter rodentium  as a 
model for attaching and effacing pathogens, such as enterohemor-
rhagic  E. coli  [ 141 ,  142 ]. Furthermore, murine models with chem-
ically induced infl ammation can be tools to study chronic mucosal 
infl ammation; dextran sodium sulfate (DSS) can induce ulcerative 
colitis, and trinitrobenzene sulfonic acid (TNBS) can stimulate 
Crohn’s disease [ 143 ]. To investigate oral microbiota, there are 
periodontal disease [ 144 ] and oral infection models [ 145 ,  146 ]; 
gnotobiotic rodents can also be fed a high-sucrose cariogenic diet 
to promote plaque formation. 

 Germ-free mice inoculated with defi ned microbes are informa-
tive models for analyzing microbial colonization and metabolic 
adaptation [ 147 ]. For example, resident bacteria and probiotic 
strains adapt their substrate utilization: in the presence of 
 Bifi dobacterium longum ,  Bifi dobacterium animalis , or  Lactobacillus 
casei ,  Bacteroides thetaiotaomicron  diversifi ed its carbohydrate uti-
lization by shifting metabolism from mucosal glycans to dietary 
plant polysaccharides [ 148 ]. Furthermore, the effect of different 
diets on microbial community composition can be studied, as in 
gnotobiotic mice inoculated with ten sequenced gut bacterial 
species and fed with various levels of casein, cornstarch, sucrose, 
and corn oil to represent protein, polysaccharide, sugar, and fat 
content in the diet, respectively [ 111 ].  

  Over the past several decades, a large number of theoretical and 
quantitative models have been developed to describe the cell and 
its behavior. Constrain-based models are used to describe 
 metabolism of individual cells using stoichiometric representation 

3.7  Computational 
Frameworks for 
Human Microbiomics
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of metabolic reactions and optimization constraints [ 149 ]. 
Approaches such as fl ux balance analysis (FBA) enable the analysis 
of metabolism under steady-state assumptions by linear optimiza-
tion solution methods. These methods are now being scaled to 
ecosystems of cells. Recent developments using multi-level objec-
tive optimization [ 150 ] and dynamic systems [ 151 ] enable the 
modeling of synthetic ecosystems of three or more members. 
Using metagenomic data of the gut microbiome, Greenblum 
et al. generated a community- level metabolic reconstruction net-
work of the microbiota and discovered topological variations that 
are associated with obesity and IBD, giving rise to low diversity 
and differences in community composition [ 152 ]. For models 
that account for systems dynamics, population abundance and 
metabolite concentrations can be solved independently through 
different FBA models that are iterated at each time step. This 
approach called dynamic multi-species metabolic modeling 
(DMMM) can capture scenarios of resource competition, leading 
to the identifi cation of limiting metabolites [ 153 ]. Other comple-
mentary models include elementary mode analysis (EMA) [ 154 ] 
that enables quantitative analysis of microbial ecosystems in a mul-
ticellular fashion.   

4     Perspectives 

 Reframing the microbiota community as a core set of genes, not a 
core set of species, opens a new front to the microbiome engineering 
design space. In a metagenomic study of 154 individuals, no single-
gut bacterial phylotype was detected at an abundant frequency 
amongst all the samples, a fi nding that is consistent with the idea that 
the core human gut microbiome may not be best defi ned by promi-
nent species but by abundantly shared genes and functions [ 155 ]. We 
propose that manipulation at the gene, genome, and ultimately 
metagenome level offers the ability for precise multicellular engineer-
ing of desirable traits in human- associated microbiota. Besides con-
trolled perturbations of the microbiome to advance our understanding 
of host–microbiota interactions, metagenome-scale tools enable 
novel developments in diagnostics and therapeutics. 

 From biosensors on the skin to reporters in the gut, there are 
several opportunities in monitoring the health and disease status of 
the human host, such as sensing nutritional defi ciencies, immune 
imbalances, environmental toxins, or invading pathogens. Prophylactic 
and therapeutic avenues for human microbiome engineering include 
modifying community composition, tuning metabolic activity, 
mediating microbe–microbe relationships, and modulating host–
microbe interactions. Two current microbiota- associated treatments 
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have shown clinical effi cacy: (1) fecal  transplants for recurrent 
 Clostridium diffi cile  infection [ 156 ] and (2) probiotics for pouchitis, 
which is infl ammation of the ileal pouch that is created after surgical 
removal of the colon in ulcerative colitis patients [ 157 – 159 ]. The 
main challenge is transmission of undesirable agents from donor feces 
to the recipient gut in fecal transplants and native colonization resis-
tance that would impair infi ltration and growth of new species in pro-
biotics [ 160 ,  161 ]. Nevertheless, these successful approaches 
demonstrate the potential benefi ts of leveraging natural microorgan-
isms and entire microbial communities. 

 In fact, coupling organismal and functional gene-level 
approaches would be a powerful way to engineer the native micro-
biota. Microbiome engineering enables multiscale system design 
for the synthesis of nutrients and vitamins, enhanced digestion of 
gluten and lactose, decreased acidity of the oral cavity, targeted 
elimination of multidrug-resistant pathogens, and microbial mod-
ulation of the host immune system. As vehicles for drug delivery, 
commensal bacteria designed to secrete heterologous genes have 
been explored for treating cancer [ 162 – 164 ], diabetes [ 165 ], 
HIV [ 166 ], and IBD [ 118 ]. For example, IL-10 has immuno-
modulatory effects in IBD but requires localized delivery at the 
intestinal lining to avoid the toxic side effects and low effi cacy of 
systemic IL-10 injection. Ingestion of modifi ed  Lactococcus lactis  
that secrete recombinant IL-10 is safe and effective in animal 
models and has been promising in human clinical trials for IBD 
[ 119 ,  167 ]. 

 Finally, besides addressing clinical safety and effi cacy criteria 
for FDA regulatory approval [ 168 ], overall safety precautions 
are critical considerations to minimize unintentional risks in 
releasing genetically modifi ed material into the natural environ-
ment. Rational design, such as creating auxotrophic microbes 
[ 119 ], for robust stability, non-pathogenicity, and containment 
of recombinant genetic systems will be essential in microbiome 
engineering.     
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