
Ghost Fingers: A Hybrid Approach to 
the Interaction with Remote Displays

 
 

Abstract 
In this paper, we describe a novel interaction method 
called Ghost Fingers, which enables efficient and 
intuitive switching between keyboard and multi-touch 
input on systems where the display is out of arm’s 
reach. In addition, Ghost Fingers provides a translucent 
real-time visualization of the fingers and hands on the 
remote display, creating a closed interaction loop that 
enables direct manipulation even on remote displays. 
Our solution includes a wireless keyboard with attached 
imaging sensor that is used to both determine the 
position of the user’s hand and fingers, and to provide 
a real-time translucent overlay of hand and fingers over 
the remote UI. 

Author Keywords 
Multi-touch interaction; remote finger and hand 
visualization; remote multi-touch; Ghost Fingers 

ACM Classification Keywords 
H.5.2 [Information Interfaces and Presentation (e.g., 
HCI)]: User Interfaces - Graphical User Interfaces 
(GUI); 
 
General Terms 
Design, Human Factors Copyright is held by the author/owner(s). 

CHI’12, May 5–10, 2012, Austin, Texas, USA. 

ACM 978-1-4503-1016-1/12/05. 

Seung Wook Kim 
Hewlett-Packard 
950 West Maude Ave. 
Sunnyvale, CA 94085 USA 
seungwook.k@gmail.com 
 
Stefan Marti 
Hewlett-Packard 
950 West Maude Ave. 
Sunnyvale, CA 94085 USA 
stefan.marti@hp.com 
 
 
 

 
 
 

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

1877



Introduction 
More and more digital content is being consumed at 
home with devices that traditionally had not been 
considered computers. Integrated with digital network 
technologies, televisions are particularly attractive to 
users who intend to search the Internet and download 
media for instant watching on increasingly large 
screens, while still sitting on their couches in the most 
comfortable posture possible. However, such a “lean-
back” mode of interaction naturally places the display 
at a distance from its user, where multi-touch 
interaction methods—such as pinch to zoom and two-
finger rotate to rotate objects—cannot be used. Existing 
solutions to this problem utilize alternative natural 
input methods such as gestures or voice, but they do 
not support direct manipulation of display content.  

This paper describes a novel interaction method that 
combines two distinct input modalities: text input 
(using a common physical keyboard that allows touch 
typing) and remote multi-touch input, with minimal 
effort for switching between the two. In addition, our 
system enables a convenient lean-back solution by 
visually providing users with the location of their fingers 
with regards to the UI on the display. This method 
delivers convenient multi-touch input for systems with 
a physical keyboard where the display is out of arm’s 
reach, such as smart TVs. It is also useful for a multi-
touch computing device with a keyboard physically 
separated from the touch display, such as advanced 
desktops, laptops, and netbooks, as well as tablets with 
slider keyboards. Conventional personal computers that 
do not support multi-touch input can also benefit from 
this method. Ultimately, our work offers a method that 
enables “virtual” multi-touch input without requiring the 
user to touch the display surface directly.  

Related Work 
Although touch-screen-like interactions with a TV 
remote control like device have been studied (e.g., 
[1]), our focus is specifically to enable multi-touch 
interaction on displays out of arm’s reach. Several 
commercial solutions for this problem are available, 
among them: wireless keyboards with dedicated touch 
pad areas (many manufacturers); dedicated handheld 
touch pads (e.g., ZRRO TeleTouch devices [8]); remote 
gesture interfaces (e.g., Microsoft Kinect [2]).  

Our system improves on existing solutions such as 
wireless keyboards with built-in touch pads in two 
ways: first, these solutions keep keyboard and touch 
area separate, which requires the user to shift hand 
position when switching between text input and touch 
input mode. With our system, the user does not have 
to move her hands at all when switching between text 
input mode and multi-touch mode, meaning that zero 
hand travel time required. Second, these systems 
generally visualize the position of only one finger on the 
touch pad, most often in the shape of a mouse pointer. 
With our system, instead, the user has a clear 
indication of where all the fingers are with regards to 
the remote multi-touch display due to the Ghost Finger 
visualization. This visualization creates a closed–loop 
interaction system for multi-touch which enables the 
advantages of multi-touch interfaces on displays out of 
arm’s reach. 

Compared to dedicated handheld touchpads (e.g., 
ZRRO TeleTouch devices [8]), our system gives a full 
preview (outline) of hand and fingers, not just the 
hover and touch points. In addition, our system 
integrates multi-touch interaction directly on a physical 
keyboard, allowing the user to switch easily between 

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

1878



touch typing on the keyboard and multi-touch input on 
the remote display. 

Other previously suggested solutions include remote 
gesture systems that detect hands and other body 
parts remotely (e.g., Kinect based systems [2]). These 
systems, however, are potentially tiring during 
extended periods of use since they require holding 
hands or arms in the air for the interaction. With our 
system, instead, the user’s fingers can be kept in a 
resting position on the keyboard at all times. Also, such 
systems suffer from parallax issues, because the user’s 
fingers/hands are at a distance from the display. In our 
system, the outline of the user’s fingers is on the same 
optical plane as the UI content, which enables precise 
multi-touch manipulation on remote displays. 

As for visualizing the user’s hand and fingers directly on 
a UI, work by Patrick Baudisch et al. on behind-device 
interaction (e.g., LucidTouch [7]) uses visualizations of 
the hands and fingers, but is neither combining a 
physical keyboard with it, nor using it for remote 
display interaction. TactaPad [4] also presents a filtered 
video image of the user’s hands on the interaction area. 
Unlike our system, however, the TactaPad is not a 
direct-touch device, and does not combine the 
interaction with a physical keyboard. In general, 
visualizing a user’s hands (and arms and more) on the 
UI with real-time video is a known theme in CSCW 
(e.g., VideoDraw [6] and VideoArms [5] use video 
representations of users’ hands), although intended to 
represent a remote user, not the user’s own hands. 

  
(a) Text input mode (writing email) 

  

 (b) Multi-touch input mode (manipulating card GUI elements) 

Figure 1: The illustration (b) shows that the user can track her 
own hand and fingers (right) with high fidelity on the GUI 
(left), and therefore easily perform very specific multi-touch 
actions such as selecting a middle card from a stack. The user 
sees her hands/fingers continuously, even without (and before) 
manipulating actual UI content (e.g., pressing a button). 

 
System Overview 
Our prototype system works as follows: A standard 
QWERTY physical keyboard is equipped with an image 
sensor (e.g., webcam), which is able to detect the 
position of one or two hands over the keys. In text-
input mode (Figure 1a), the keyboard works like a 
normal keyboard. However, when the user presses a 
designated key (e.g., CTRL key), the system switches 

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

1879



to “multi-touch mode” (Figure 1b), which allows 
gestures such as pinch to zoom and two-finger rotation. 
In this mode, the sensor detects the user’s fingers on 
the keyboard. At the same time (in real time), a highly 
transparent image of the user’s hands (including 
fingers) is displayed on the remote display (e.g., 
overlaid over the UI), resulting in “ghost fingers” or 
hand outlines. These ghost fingers or hand outlines 
allow the user to easily manipulate the UI on the 
display, e.g., pressing an icon on the screen. The 
physical keyboard becomes the proxy input surface for 
the multi-touch display, and the physical keys on the 
keyboard are used to detect touch events. Swiping 
gestures can also be detected (e.g., flicking UI 
content), by the user gliding over keys, slightly 
depressing them. 

  
Figure 2. System overview (left) and image sensor (right) 

 
Implementation 
As shown in Figure 2, we built a low-profile overhead 
image sensor by modifying a typical webcam and 
attaching it on a Bluetooth keyboard. We added a fish-
eye lens to the sensor in order to achieve a wide field 
of view that can cover the entire layout of keyboard. As 
a tradeoff, the sensor’s output image data suffered 
from radial distortion in addition to perspective 

distortion. Therefore, we first calibrated the raw image 
data with homography and undistortion matrices using 
OpenCV library [2]. Figure 3 depicts both row image 
with significant distortion and the processed image 
after calibration.       

 
Figure 3: Raw image data from the sensor showing significant 
distortion (left); undistorted and rectified hand image after 
calibration process 

 
The calibrated image data is subject to additional vision 
processing, as it still includes unnecessary image 
elements in the background. In order to simplify this 
process, the system stores the original keyboard image 
(calibrated, without the user’s hand) when it is initiated, 
and subtracts it from each calibrated image frame to 
achieve a clear image of hand outline. The system 
superimposes this final output image on the graphical 
user interfaces and their content. We implemented this 
rendering process with OpenGL in order to acquire a 
translucent effect on the hand image (ghost fingers). 
Figure 4 illustrates the process and the final output. 

 

 

 

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

1880



 
- 

 

+ 
 

 =
 

 
Figure 4. [Top] Input sources = (calibrated hand image – 
calibrated background image) * transparency + GUI content; 
[Bottom] Final output image (Ghost Fingers) rendered by the 
prototype system; note that the “bleeding” of the keyboard 
through the fingers is an artifact of the initial prototype, and 
will be eliminated in later iterations  

The rendered hand image on the screen provides the 
user with direct and immediate reference of the actual 
hand position relative to the screen. We expect the 
user to perceive Ghost Fingers as being stretched from 
his/her body for manipulating content on the screen. In 
order to complete this interaction loop, our system 
maps the layout of keys of the physical keyboard onto 
the screen coordinates (without actually rendering a 
real of virtual keyboard). When the user presses one of 

the keys, the system takes a subset of pixels (in the 
hand image) overlapping with the screen sector 
mapped from the pressed key (Figure 5). Then the 
system runs a set of image processes to a) detect the 
blob and b) determine the position of the fingertip, all 
within the taken subset of pixels (Figure 6). With this 
method, the system can detect finger presses with 
higher resolution than just key sizes, and is also able to 
detect touch targets in between keys. Together with 
the key press events, the detected fingertip coordinates 
create a single or multi-touch event.  

Our system works best with common touch UIs, similar 
to phone and tablet UIs, where touch targets are larger 
than on systems based on mouse cursor interaction, so 
the thickness of the fingers is not an issue.  

Since the surface area of the keyboard may not be 
equivalent to the size and shape of the display, the 
keyboard area is stretched to the display area. 

 
Figure 5. Mapping keyboard layout into screen coordinates (in 
this image, the keyboard is visible to illustrate the process; it 
is not visible to the user normally) 

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

1881



 
Figure 6. Blob detection and fingertip determination from the 
hand image within the pressed key region 

 
Future Work 
In addition to the detection of touch events like 
described above, a swipe gesture over a physical 
keyboard can be identified in several ways. The 
simplest method is to detect multiple key presses that 
are both spatially and temporally consecutive. This 
approach may benefit from the hardware design of the 
keyboard that would allow a key press only with a 
subtle amount of force from the user’s finger(s), such 
as “chiclet” type keyboards with rounded keys, low-

profile, and low-travel. An informal evaluation shows 
that these types of keyboards indeed allow for a natural 
and convenient finger swiping experience. A more 
hardware intensive solution is to integrate a capacitive 
sensor with the actual keyboard. Another method would 
be to measure the optical field flow within and around 
the pressed key in the finger tip image. 

Although a physical keyboard is still considered the 
most reliable and efficient method of text input, it is 
possible to replace it with other types of sensors to 
improve the multi-touch modality of the Ghost Fingers 
interaction method. This may include capacitive, 
electronic-field, ultrasound, or IR-based sensors, which 
may be capable of generating a hand and finger image 
(e.g., a “heat map”) from the raw data. Additional 
image processing steps (e.g., noise filtering, edge 
detection) would be needed to generate a clean 
visualization of the hand. 

Variations in the graphical visualization of Ghost 
Fingers will enable novel interaction scenarios. For 
example, by replacing the typical pointing cursor with 
actual finger tips, our solution would enable a highly 
intuitive interaction with GUI elements even on 
conventional window-based platforms.

References 
[1] Choi, S., Han, J., Lee, G., Lee, N., Lee, W. (2011). 
RemoteTouch: Touch-Screen-like interaction in the TV 
viewing environment. CHI 2011, pp. 393–401. 
[2] Kinect, http://www.xbox.com/en-US/kinect 
[3] OpenCV, http://opencv.willowgarage.com/ 
[4] TactaPad http://www.tactiva.com/tactapad.html  

[5] Tang, A., Neustaedter, C., Greenberg, S. (2004). 
VideoArms: Supporting Remote Embodiment in 
Groupware. Video Proceedings of CSCW ‘04. 
[6] Tang, J. C. and Minneman, S. L. (1990). 
VideoDraw: a video interface for collaborative drawing. 
CHI '90, pp. 313-320. 
[7] Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., 
Shen, C. (2007). LucidTouch: A See-Through Mobile 
Device.  UIST 2007, pp. 269–278. 
[8] ZRRO, http://www.zrro.com/ 

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

1882

http://www.xbox.com/en-US/kinect�
http://opencv.willowgarage.com/�
http://www.tactiva.com/tactapad.html�
http://www.acm.org/uist/uist2007/�
http://www.zrro.com/�

	Copyright is held by the author/owner(s).
	CHI’12, May 5–10, 2012, Austin, Texas, USA.
	Abstract
	Author Keywords
	ACM Classification Keywords
	H.5.2 [Information Interfaces and Presentation (e.g., HCI)]: User Interfaces - Graphical User Interfaces (GUI);
	General Terms
	Seung Wook Kim
	Stefan Marti
	Introduction
	Related Work
	System Overview
	Implementation
	Future Work
	References



