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ABSTRACT OF THE DISSERTATION

Personalized Situation Recognition

By

Vivek Kumar Singh

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2012

Professor Ramesh Jain, Chair

With the growth in internet-of-things, social media, mobile devices, and planetary-

scale sensing, there is an unprecedented opportunity to assimilate spatio-temporally

distributed streams into actionable situations. Detecting situations in realtime can

be used to benefit human lives and resources in multiple applications. However, the

progress in the field of situation recognition, is still sluggish because: (a) the notion

of situations is still vague and ill-defined, (b) there is a lack of abstractions and

techniques to help users model their situations of interest, and (c) there is a lack

of computational tools to rapidly implement, refine, and personalize these situation

models to build various situation-based applications.

This dissertation computationally defines situations and presents a framework for

personalized situation recognition by providing support for conceptual situation mod-

eling, data unification, real-time situation recognition, personalization, and action-

taking.

The proposed framework defines a situation as “An actionable abstraction of observed

spatio-temporal descriptors”, and identifies a data representation, a set of analysis

operations, and lays out a workflow for modeling different situations of interest. Con-

sidering Space and Time as the unifying axes, it represents data in a grid-based E-

xv



mage data structure. It defines an algebra of operations (viz. Selection, Aggregation,

Classification, Spatio-temporal Characterization, and Spatio-temporal Pattern Match-

ing) for situation recognition; and defines a step-by-step guide to help domain experts

model their situations based on the data, the operations, and the transformations.

The framework is operationalized via EventShop - a web based system which lets

users graphically select, import, combine, and operate, on real-time data streams to

recognize situations for generating appropriate information and actions. EventShop

allows different designers to quickly configure their situation models, evaluate the

results, and refine the models until a satisfactory level of performance for supporting

various applications is achieved. The detected situations can also be personalized and

used for undertaking control actions via Situation-Action rule templates.

The framework has been used to build multiple applications including flu monitoring

and alerting, wildfire recognition, business decision making, flood alerts, asthma rec-

ommendation system, seasonal characteristics analysis, and hurricane monitoring.

Thesis statement:

We computationally define the notion of situations and present a framework for per-

sonalized situation recognition by providing support for conceptual situation mod-

eling, data unification, real-time situation evaluation, personalization, and action-

taking.
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Chapter 1

Introduction

We are living in an ‘age of abundance’ [30]. Humanity is more connected than ever

before, and there is an unparalled availability of data and computing resources. With

the growth trends in social media, multimodal mobile sensing, and location driven

sensing, increasingly larger parts of human life are getting digitized and becoming

available for sense making. Real world phenomena are now being observed by multi-

ple media streams, each complementing the other in terms of data characteristics, ob-

served features, perspectives, and vantage points. Many of these multimedia streams

are now available in real-time and increasingly larger portion of these come inscribed

with space and time semantics. The number of such media elements available (e.g.

Tweets, Flickr posts, sensor updates) is already in the order of trillions [89], and

computing resources required for analyzing them are becoming increasingly available.

We expect this trend to continue, and even get accelerated with the growing adoption

of mobile devices.

These data now provide an opportunity for their aggregation and composition to rec-

ognize the evolving situations in all parts of the world. The situational information
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derived can be used to provide information, answer queries, and also take control

actions. Providing tools to make this process easy and accessible to the masses will

impact multiple human activities including traffic, health, business analysis, political

campaign management, cyber security monitoring, disaster response, crisis mitiga-

tion, and homeland security.

However, the progress in generating actionable insights from diverse data streams is

still slow and the field of situation-based-computing in its infancy. This dissertation

identifies and tackles some of the important challenges in the field of situation recog-

nition. Specifically, it computationally defines the notion of situations and presents a

framework for personalized situation recognition that provides support for conceptual

situation modeling, data unification, real-time situation evaluation, personalization,

and action-taking.

We motivate the work based on the emerging eco-system, and the type of problems

that is becoming increasingly relevant.

1.1 The emerging eco-system and a motivating ap-

plication

As shown in Figure 1.1, the Cloud today connects and contains a variety of data

streams related to multiple human functions like traffic, weather, and health. These

data are in archived databases as well as real-time streams reporting attributes from

different parts of the world. The real-time streams originate either from the tra-

ditional sensor/device based sources (e.g. PlanetarySkin, Satellite imagery), or the

increasingly common human reporting mechanisms (e.g. Twitter and Facebook sta-

tus updates). All these data can be aggregated in the Cloud and used for situation
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Figure 1.1: The emerging eco-system

recognition and action taking.

Humans play multiple roles in this eco-system. human sensors can describe dif-

ferent aspects of a situation, many of which are not yet measurable by any hardware

sensors. Millions of users are already acting as human actuators which are getting

daily alerts, advices, and recommendations for undertaking different actions. This

trend will only increase [89, 30]. As envisioned in the ‘wisdom of the crowds’ [60]

concept - or Wikipedia as a system - different users can act as wisdom sources and

work towards completing different tasks including the configuration of applications for

different situations [97]. Lastly, the centralized Analysts can visualize, and analyze

different situations to undertake important macro-decisions affecting their country,

state, county, or corporation.

Together this eco-system allows for the creation of unprecedented data as well as

collective intelligence for supporting multiple applications. Let us consider one rep-

resentative application in this eco-system.
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1.1.1 Motivating application: Flu risk based recommenda-

tions

Alice, a part-time Ushahidi.com volunteer and full time mother is worried about the

evolving Flu Epidemic situation. She wants to create an evolving map of Flu Epidemic

risk for people across the United States. Not knowing how to define Epidemic risk, she

approaches her friend Bob, who is an expert on communicable diseases. He explains

that Flu Epidemic risk depends on multiple factors both personal and environmental.

As a first step he advises her to focus on three environmental factors viz. temperature,

nearby polluting factories, and the number of active flu cases reported. He advises

her that the weather data can be obtained from a US Geological Services website, the

number of active cases can be obtained from Twitter, and nearby factory data from

www.epa.gov. He helps her create a conceptual blueprint of how these data values

can be combined to classify the US into zones of low, mid, and high epidemic risk.

Alice uses the blueprint ‘situation model’ as a guide, and configures a mashup appli-

cation which combines the different data streams and creates a heat-map representing

flu epidemic risk in different parts of the US. Continuously being updated with real-

time data, the visualization gives an intuitive snapshot of the flu situation evolving

across US.

Charlie sees this map on Ushahidi.com, and decides to take this one step further

by personalizing the situation recognition. He defines individual’s personal risk level

based on rules which combine the individual parameters (e.g. exertion level, sneez-

ing frequency, temperature) for any person with the corresponding risk level in her

surroundings. He defines action rules which urge the most vulnerable people to visit

doctors; advise potentially vulnerable people to avoid exertion, and prompt users in

healthy environments to enjoy the outdoors (e.g. “go jogging at the nearest park”).
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Thousands of users get this information, and based on verifying the data behind the

suggestion, many decide to dust off their track pants and go for a run.

1.2 Difficulties in handling situations

Despite multiple recent efforts to understand and use situations, building an applica-

tion like the one described here is still a hard and lengthy process (if not completely

infeasible). This is due to multiple reasons, including the lack of understanding

and operationalization of the concept of situations, heterogeneity of the data in-

volved, real-time processing requirements, lack of geo-spatial data and abstractions,

and dearth of computational infrastructure support. Let us consider some of these

problems here:

Concept of situation is ill defined

Everybody understands and interprets situations in their own way (see Chapter 2 for

a detailed discussion), and typically does so with a perspective of solving one problem

– the one being encountered by the designers at that time. Lack of agreement on the

semantics of situations as a concept is a fundamental problem that affects progress

in each of the related areas. The absence of a standardized understanding results in

fragmented efforts, which are not reusable, lack clear planning, and often fall short in

terms of design maturity [27]. Application developers choose whichever technique is

easiest to implement, at the expense of generality and reuse. This approach entails a

number of risks. First, an availability-driven approach constrains the possibilities for

designers by limiting the kind of applications they are able to design and the usages

they can propose. Second, the details and shortcomings of the model may be carried
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up to the application level and affect its usefulness and ability to continuously evolve.

Conceptual situation modeling: abstractions required

Currently, there are no tools to explicitly describe what the designer means by a

particular situation e.g. “Allergy Outbreak”. To recognize a concept one must 1)

have an internal model of what it means, and 2) be able to externalize it using some

constructs. Lack of such tools often implies that the situation models and data used

in applications are driven by the acquisition mechanisms available.

Data representation, unification, and processing

Practical problems (like the one discussed) require a combination of information from

different sources. This requires heterogeneous data to be converted into a common

representation that is generic and does not need be redefined for every new data

source selected. Furthermore the representation needs to capture enough semantic

and computational detail so that it can support a variety of situation recognition

tasks. For example, the discussed flu risk application needs a method to combine

the data coming from Twitter stream, satellite, and pollution neighborhood. The

data representation needs to capture the spatial semantics like neighborhood (e.g. to

define the pollution effect of factories) and geography-driven-joins (e.g. for overlaying

of data grids).

Situation evaluation at scale

Detecting situations involving data coming from all parts of the world requires scalable

systems which can seamlessly handle huge volumes of data. Further, doing this
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analysis in real-time to support situation based actions is hard problem. Currently

there are no systems which can seamlessly handle data integration, indexing, and

analysis for web-scale spatio-temporal data.

From situations to personalized alerts

As we saw in the example, situations need to be recognized both at the personal

level and the macro level. Traditional situation recognition has focused on single

large scale (e.g. over city, state, country) insights. The decisions once made were

broadcasted. This was true from health warnings, to weather alerts, to advertisements.

Today, we need tools to individually access each user’s inputs and combine them with

the surrounding situation recognized around her. Thus allowing each user to get

a personalized (unicast) alert based on specific situation recognized for her. Tools

which seamlessly support transition across these two very different levels (macro and

personal) are not yet available.

Rapid implementation, validation, refinement, and deployment

As with any new problem, and more crucially so when trying to reach out to appli-

cation designers with web-scale variations in the level of design experience, iterative

development is key to creating usable situation-aware applications. Thus, applications

need to be implemented in a way that makes it easy to modify different components.

There are currently few guidelines, models, or engines that support this requirement.
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1.3 Contributions

This dissertation contributes towards the problem of situation recognition. The main

contributions are:

1. To computationally define the notion of ‘situations’.

2. To describe a generic process to select, import, combine, and operate on real-

time data streams to recognize personalized situations for generating appropri-

ate information and actions.

3. To provide a Situation modeling kit which helps the application designers trans-

late their mental models of situations into explicit, actionable, and computable

modules.

4. To define a unified representation (E-mage) and situation recognition algebra

for diverse Spatio-temporal data.

5. To provide a web based system (EventShop) that allows rapid validation and

refinement of situation models to create multiple situation-aware applications.

6. To provide tools for personalization of situations to support action-taking.

We define a situation as: “An actionable abstraction of observed spatio-temporal de-

scriptors”. This definition emphasizes the characterization of situations based on

measurable spatio-temporal descriptors. Focus on spatio-temporal data (which is the

most common connotation associated with situations), scoping of problem only to

observable data, and an emphasis on actionable abstractions (as defined explicitly by

human domain experts) allows development of a computational framework to define

diverse situations and take appropriate actions.
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The framework focuses on the identifying abstractions required for modeling and rec-

ognizing situations. These abstractions are identified based on a survey of situation-

based applications, their requirements, and a specific focus on spatiotemporal data.

The focus on spatio-temporal draws upon the basic nature of the physical world,

i.e. space and time are the independent axes which unify all physical phenomena.

To remain computationally grounded, this framework assumes that combining and

evaluating a large number of data streams measured across space and time can be

used to determine situations. This means that an engine that is programmed using

operators to detect features over vast number of data streams can be used to define

and recognize1 any arbitrarily complex situation.

The framework is instantiated via EventShop, a web based system that supports

rapid validation and refinement of the generated models. It allows different users to

quickly implement their situation models, evaluate the results, and refine the models

until a satisfactory level of application performance is achieved.

The personalization of these situations is undertaken by defining the personal param-

eters required to make the situations relevant to any given user. The action-taking

aspect is handled via Situation-Action rules, which allow combination of personal pa-

rameters and macro-situations to undertake different actions (e.g. sending out tweets

to users in risky situations).

Identifying the requirements to support the building and evolution of situation-aware

applications, results in a conceptual framework that both ‘lowers the floor’ [75] (i.e.

makes it easier for designers to recognize situations) and ‘raises the ceiling’ (i.e. in-

creases the ability of designers to build more sophisticated detectors).

1In this work we do not differentiate between recognition and detection
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We demonstrate the usefulness of the approach via multiple applications including flu

monitoring and alerting, business decision making, flood alerts, asthma recommen-

dation system, seasonal characteristics analysis, and hurricane monitoring.

To the best of our knowledge, this work is the first systematic attempt toward rec-

ognizing situations in the context of large scale spatio-temporal multimedia streams.

Tackling the related challenges implied a need for a collaborative effort coming from

data stream processing and media analysis perspectives. Hence parts of this work

were undertaken in collaboration with [40]. The principal areas of collaboration were

defining the situation recognition algebra, and implementation of the EventShop sys-

tem. The emphasis of this dissertation is on computationally defining situations and

presenting a method for conceptual modeling of situations, data unification, real-

time situation recognition, personalization, and action-taking. This also implies that

issues like infra-structure support for handling web-scale data, and user experience

design are beyond the scope of this dissertation. Lastly, the implemented toolkit

(EventShop) is intended to be an evolving, extensible, open-source project. Specific

features and options available are extensible, and will continue to evolve.

1.4 Outline of the thesis

Chapter 2 discusses the notion of ‘situations’ as broadly understood across different

research fields and provides an operational definition for it. It also surveys a breadth

of situation aware applications and identifies the functional requirements for a frame-

work supporting them. Chapter 3 discusses the related work and scopes the focus

of this dissertation. Chapter 4 describes a generic framework to recognize situations

from heterogeneous streams. Chapter 5 describes a generic approach for situation

modeling. Chapter 6 describes the data representation (E-mage Streams), and op-
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erators defined to evaluate situations. Chapter 7 discusses how a graphically config-

urable tool (EventShop) can be used to easily prototype situation models. Chapter

8 discusses how situations can be personalized and used to send out alerts to large

number of users. Chapter 9 discusses multiple applications which were created using

the described framework and their comparison to ground truth where applicable. It

rounds off with a discussion of the proposed framework at meeting the design goals

identified in Chapter 2. Chapter 10 discusses the future challenges and concludes this

dissertation.
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Chapter 2

Understanding and using

Situations

2.1 Defining situations

2.1.1 Previous definitions

Situations have been studied across multiple research areas like ubiquitous/pervasive

computing [114, 104], building automation [29], mobile application software [108],

aviation/air traffic control [37, 2], robotics [84, 64], industrial control [80], military

command and control [103], surveillance [17], linguistics [13], stock market databases

[51, 3], and multimodal presentation [76], under the garbs of situation modeling,

situation awareness, situation calculus, situation control, and situation semantics.

The interpretation of situation however is different across different areas and even

across different works within the same area. Here we sample some of the situation

definitions employed:
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• Endsley, 1988: “the perception of elements in the environment within a volume of time

and space, the comprehension of their meaning, and the projection of their status in

the near future”[37]

• Mooray, 2005: “is a shorthand description for keeping track of what is going on

around you in a complex, dynamic environment”[73]

• Adam, 1993: “knowing what is going on so you can figure out what to do”[2]

• Jeannot, Kelly, & Thompson, 2003: “what you need to know not to be surprised”[57]

• McCarthy, 1968: “A situation is a finite sequence of actions.”[70]

• Yau, 2006: “A situation is a set of contexts in the application over a period of time

that affects future system behavior”[114]

• Barwise and Perry, 1980: “The world consists not just of objects, or of objects, prop-

erties and relations, but of objects having properties and standing in relations to one

another. And there are parts of the world, clearly recognized (although not precisely in-

dividuated) in common sense and human language. These parts of the world are called

situations. Events and episodes are situations in time, scenes are visually perceived

situations, changes are sequences of situations, and facts are situations enriched (or

polluted) by language.”[12]

• Dietrich, 2004: “...extensive information about the environment to be collected from

all sensors independent of their interface technology. Data is transformed into abstract

symbols. A combination of symbols leads to representation of current situations ...

which can be detected”[29]

• Sarter & Woods, 1991: “accessibility of a comprehensive and coherent situation rep-

resentation which is continuously being updated in accordance with the results of re-

current situation assessments”[88]

• Dominguez, Vidulich, Vogel, & McMillan, 1994: “the continuous extraction of envi-

ronmental information along with integration of this information with previous knowl-
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edge to form a coherent mental picture, and the end use of that mental picture in

directing further perception and anticipating future need”[31]

• Smith & Hancock, 1995: “adaptive, externally-directed consciousness that has as its

products knowledge about a dynamic task environment and directed action within that

environment”[100]

• Dostal, 2007: “the ability to maintain a constant, clear mental picture of relevant

information and the tactical situation including friendly and threat situations as well

as terrain”[32]

• Merriam-Webster dictionary: “relative position or combination of circumstances at

a certain moment”[71]

• Singh & Jain 2009: “the set of necessary and sufficient world descriptors to decide

the control output”[95]

• Steinberg, 1999: Situation Assessment is “the estimation and prediction of relations

among entities, to include force structure and cross force relations, communications

and perceptual influences, physical context, etc”[103]

• Dousson, 1993: “set of event patterns and a set of constraints”[33]

We clearly see some common traits as well as the dissimilarities amongst different

definitions. Most telling perhaps is the observation by Jakobson et al that “ . . .

being a relatively new field, there is a clear lack of theoretic well-grounded common

definitions, which may be useful across different domains.” [56].

We decided here to focus on the commonalities across definitions, and identified the

following notions to reverberate across definitions:

1. Goal based (GB): Situations need to be defined for an application or a pur-

pose.
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2. Space and time (ST): capture and represent a volume of space and/or time.

3. Future actions (FA): support future prediction and/or action taking

4. Abstraction (AB): some form of perception, or symbolic representation for

higher cognitive understanding.

Further while some definitions were computationally grounded (CG) in data

(e.g. Endsley, Dietirch), others were abstract (e.g. Barwise, Merriam-Webster). We

summarize the definitions based on these axes in the Table 2.1 .
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Work Goal Based Space Time Future Actions Abstraction Computationally Grounded
Endsley, 1988 [37]: X X X X
Mooray, 2005 [73]: o X
Adam, 1993 [2]: X X
Jeannot, 2003 [57]: X
McCarthy, 1969 [70]: X
Yau, 2006 [114]: X X X
Barwise, 1971 [12]: X X
Dietrich, 2003 [29]: X X
Sarter, 1991 [88]: o X
Dominguez,1994 [31]: X X X X
Smith, 1995 [100]: X o X X
Dostal, 2007 [32]: o X
Merriam-Webster [71]: o
Singh, 2009 [95]: X X X
Steinberg, 1999 [103]: X X X o
Dousson, 1993 [33]: o X o X

Table 2.1: Survey of Situation definitions. Note: ‘◦’ indicates partial support.
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2.1.2 Proposed definition

Based on observing the common traits as well as a focus on staying computationally

grounded, we define a situation as:

“An actionable abstraction of observed spatio-temporal descriptors.”

Going right to left, let us consider each of the terms used in this definition:

• descriptors: This follows the approach of quantifying an abstract /inexact

notion based on sampling its characteristics [34, 77].

• spatio-temporal: The most common connotation associated with ‘situations’

(as well as this work’s focus), is on spatio-temporal data.

• observed: As a computational concept the focus is only on the ‘observable’

part of the world. Meta-physical as well as physical aspects which cannot be

measured by sensors are simply beyond its scope.

• abstraction: This signifies the need to represent information at a much higher

level than sensor measurements or even their lower level derivations. Decision

makers typically focus on higher (knowledge) level abstractions while ignoring

the lower level details.

• actionable: The top level descriptors and abstractions need to be chosen based

on the application domain, and the associated output state-space. Hence our

focus is on creating a representation (e.g. classification) which maps the lower

level details into one concrete output decision descriptor. Hence, we are not

interested in any higher level abstraction, but rather the specific one which

supports decision making in the application considered.

As can be noticed, this definition operationalizes the reverberating threads found
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across different definitions in literature, and computationally grounds them.

2.2 Problem of situation recognition

As highlighted by the definition, the essential problem of situation recognition is that

of obtaining actionable insights from observed spatio-temporal data. Just like any

effort at concept recognition, this problem can be split into three phases viz. observing

data, extracting features, and detecting concepts from the observed features. The

unique nature of situation recognition problem is reflected in the spatio-temporal

grounding of all data as well as features defined.

Data

Let us represent the data observed at spatio-temporal coordinate st about any par-

ticular theme θ as follows:

Dstθ = λ(θ, st) (2.1)

where:

s represents the spatial coordinate of the observation, i.e. s ∈ <3

t represents the temporal coordinate of the observation,

θ represents the application/sensor specific properties which are observed at the

spatio-temporal coordinate, and

λ is the mapping function from the real world characteristics to the observation space.

Aggregating over space and time, the data about any particular theme can be referred

to as DSTθ, and combining over all observed themes, the data DST can be represented
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as:

DST = {DSTθ1 , DSTθ2 , ..., DSTθk} (2.2)

Features

A spatio-temporal feature fST can be obtained via a function Ω applied on the ob-

served data.

fST = Ω(DST ) (2.3)

These features (e.g. growth-rates, geographical epicenters, raw values) capture differ-

ent properties of the observed phenomena and are selected based on their ability to

discriminate between the classes of interest.

The combination of features yields a feature-set FST represented as:

FST = {fST1, fST2, , fSTN} (2.4)

Situations

Consequently, Situations can be derived via a function Ψ applied on the feature-set.

cST = Ψ(FST ) (2.5)

and cST ∈ C, where C is the situation universal set. It could be discrete classifications

(focus of this work) or values in a certain range. Here:

C = {c1, c2, ..., cm} (2.6)
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where c1 through cm are the admissible classes of situation.

To summarize, cST is the final spatio-temporal situation selected from the range of

situations possible, obtained via function Ψ applied on the observed features, which

in turn are obtained by applying a function Ω on the observed spatio-temporal data.

Thus the problem of situation recognition is to identify the right situation classifica-

tion for a given set of observations i.e.

Ψ ◦ Ω : DST → C (2.7)

or alternatively:

c = Ψ(Ω(DST )) (2.8)

This work aims to define a framework to tackle the situation recognition problem i.e.

extract spatio-temporal features from the observed data, and use them for situation

classification.

Note that in this work we will focus on 2 dimensions (latitudes and longitudes) for

spatial coordinates i.e. s ∈ <2, and consider the observed values be real numbers i.e.

Dstθ ∈ <.

2.3 Situation aware applications

To define a generic framework for building situation-aware applications, we first sur-

vey a variety of situation-aware applications – and identify their commonalities and

differences.
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Here we discuss 18 of the applications surveyed. These applications correspond to 6

each from three categories. First six are applications developed in-house by our team

when we started exploring the notion of situation-awareness. Next 6 correspond to

academic initiatives to solve situation related problems. Where needed, we focused on

one specific application from large scale projects. The last 6 correspond to industrial

or governmental efforts at building situation aware applications.

1) Flu monitoring and response: To monitor number of flu cases, and direct at-risk

users to vaccination sites [92].

2) Political event analytics: To monitor changes in interest in different political figures,

parties, and topics.

3) Business decision making: To identify the most suitable location for a new business

store.

4) Allergy/Asthma recommendation: To monitor Allergy risk, and direct at-risk users

to safe locations.

5) Seasonal pattern analysis: To monitor when the change in Fall colors occurs in New

England.

6) Thailand flood response: To direct people stuck in unsafe areas to the nearest shel-

ters.

7) City of Ontario disaster mitigation (RESCUE @ UCI): To provide information

about open shelters, Spills, fire, earthquakes, and road-closure [9].

8) Raining cabs (Senseable Cities Lab @ MIT): Visualize the impact of Rain on cab

wait times in Singapore [61].

9) Mapping ideas (Geography Deptt @ SDSU): To analyze traces of different ideas

from cyberspace to the physical geography [102].

10) Earthquake detection using Twitter (@ Univ. of Tokyo): Using twitter feeds

to detect Earthquakes and send out alerts [87].

11) Smart classrooms (@ASU): Student mobile devices react to the situation in the

classroom to initiate connections and collaborations [113].
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12) Military situation awareness (@ Univ. Bundeswehr - Munich): Assessment

of risk at different locations on the battleground [66].

13) Plant hardiness zone map (@ US Deptt. Of Agriculture): To help gardeners

and farmers identify where and when plants grow best by breaking up geographical areas

into zones.

14) Nokia ‘Situations’: To change the settings (e.g. sounds, alerts) on a mobile phone

based on the contextual parameters (e.g. time, location).

15) Breast cancer application (@VSolveIt): To identify disease hot-spots, and suggest

clinical trial zones for breast cancer.

16) US drought impact reporter (@National Drought Mitigation Center): To

provide daily drought risk assessments across United States.

17) Situation based industrial control (@Siemens): To monitor the state of different

processes in an industrial application, and take actions based on the situations recognized.

18) Traffic condition reports (@Google): To classify freeways traffic conditions based

on the speed and the volume.

All the applications follow a general pattern where they import one or more sets of

data, do some value addition, and provide the output in different formats. We noticed

the following general themes in each of the aspects:

1. Input Data: Variety of data being used.

• Source: Sensor based or human report driven (S, H)

The data used can be either sensor driven, human reports driven. We con-

sider collected data (e.g. Census) to be human reports for this discussion.

• Timespan: Real-time or Archived (R, A)

The applications either continually evolved with new incoming data or

used a snapshot of archived data. Very few works used both, but it was
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seen.

• Diversity: Homogeneous data or heterogeneous data (H,T)

The data could be homogeneous, or very disparate.

2. Value addition: Processing of data streams

• Integration: Shallow or Deep (S or D)

Many applications focused on visually placing different data types on a

common format (typically map). These can be considered shallow mashups.

While useful for information consumption, they do not integrate different

sources to derive newer information [22]. Deep mashups on the other hand

allow inter operation between different data types for defining newer vari-

ables which affect the situation.

• Operations used: Arithmetic Logic, Value Projection, Nearest neigh-

bors, Spatio-temporal properties (AL, VP, NN, P)

We noticed 4 broad categories of operations. Those for doing arithmetic,

or logical combination, Projection of values based on user location, identi-

fication of nearest neighbors, and spatio-temporal property extraction (e.g.

peak, growth rate, volume).

3. Output: provided to the end users or analysts.

• Visualization: Maps, Charts, Timelines, or Text (M, C, T, TX)

The data could be presented in multiple formats. Maps were by far the

most common visualization tool.

• Actions/ Alerts (AC, AL)

Potentially such systems could take actions on their owns, but we saw most

large scale systems involving humans focus on alerts to them.
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• Querying (Q)

Many applications allowed users to query the system to identify values

(typically for a particular location).

We summarize these observations in the Table 2.2.
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Applications Inputs Value addition Output
Source Timespan Diversity Integration Operations Viz Actions Querying

1) Flu H R H D AL, VP, NN, P M, T AL
2) Political H R H D AL, P M, T Q
3) Business H A H D AL, VP, P M Q
4) Allergy S , H R T D AL, VP, NN, P M, T, TX AL
5) Seasonal H A H D AL , P M Q
6) Flood S , H R T D AL, VP, NN, P M, T, TX AL
7) Disaster mitigation S , H R T S AL, NN, P M Q
8) Cabs S, H A T S M
9) Mapping Ideas H A H D AL M , T
10) Earthquake H R H D AL, VP, NN, P M, T AL
11) Smart Classrooms S R T S AL, NN, P AC
12) Military Sit. Awareness S, H R T S AL, P M, T Q
13) Plant hardiness S R T D AL,P M Q
14) Nokia ‘Situations’ S R T D AL, P AC
15) Breast Cancer H A T D AL, VP, P M Q
16) Drought Impact S R T D AL, P M Q
17) Industrial control S R T D AL, P M AC
18) Traffic condition S R T D AL, P M Q

Table 2.2: Survey of situation aware applications and their characteristics.

LEGEND:

Source: Sensor based or human report driven (S,H), Timespan: Real-time or Archived (R, A), Diversity: Homogeneous data or heterogeneous data (H,T), Integration: Shallow or Deep (S or D),

Operations: Arithmetic Logic, Value Projection, Nearest neighbors, Spatio-temporal properties (AL,VP,NN,P), Visualization: Maps, Charts, Timelines, or Text (M, C, T, TX), Actions/ Alerts:

Action-taking, alerts (AC, AL), Querying: (Q)

25



A first glance at the table demonstrates the sheer diversity and applicability of

situation-aware applications on multiple aspects of human lives. We also notice that

while they are disparate, there exist certain commonalities across applications. We

revisit the diversity, and the commonalities identified (in particular those in data

operations) when selecting the generic abstractions for building situation based ap-

plications.

2.4 Design goals for framework to build situation-

aware applications

After considering the nature of different situation-aware applications, we proceed to

identify the requirements of an effective framework for supporting such applications.

We identify 3 design goals:

1) Expressive power

2) Lower the floor

a. Reduced time to build

b. Lower CS expertise required

3) Raise the ceiling

a. Better designed situation detectors.

b. Provide personalization options

The concepts ‘Lower the floor’ and ‘raise the ceiling’ are inspired by [75]. Let us

discuss what we mean by each of them.
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2.4.1 Expressive power

Given the diversity of applications observed in different applications, a framework

designed to recognize situations across them needs to be versatile. This implies that

the framework needs to focus on the commonalities, and also start with aspects

which are common across applications. The last mile specific issues can be left to the

individual application designers where required.

2.4.2 Lower the floor

The framework should resonate with the ideals of [19] in that, “ ... new breed of

applications, often developed by nonprofessional programmers in an iterative and

collaborative way, shortens the traditional development process of edit, compile, test,

and run. Situational applications are seldom developed from scratch; rather, they are

assembled from existing building blocks”.

To truly allow web scale innovation, and cater to the “Long tail of (situation) applica-

tions” [106], we need to make sure that the situation detectors are easy to build and

do not presume CS expertise. The user input needs to be a declarative specification

of what. The procedural details of how need to be abstracted away wherever possible.

2.4.3 Raise the ceiling

The framework should not only support situation recognition but also raise the quality

of the detectors defined. We consider two different aspects of this raising of the

ceiling. First is the design process of the applications. The framework should include

design guidelines and wizards to ensure that the designers do not fall into common
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early mistakes. For example, the designers should not start this process bottom-up

i.e. focus on the data sources available, and think what they can recognize with

it; but rather go top-down i.e. start with the goal and identify the data sources

required. Similarly, we want to make addition of different data streams, operators, and

features to involve minimal cost. Hence the complexities of operator implementation

or writing data wrappers should no longer be a factor in influencing which affordances

are provided by an app. Once the design process selects certain modules they should

be available at minimal cost.

Second is the ability to support personalization. Traditional situation recognition

and decision making has focused on single large scale (e.g. over city, state, country)

decision-making. Today, we need tools to individually access each user’s inputs and

combine this with the surrounding situation for personalized decision making.

2.5 Components required for the framework

In order to support the design goals discussed, we have identified the three important

components required for such a framework.

2.5.1 The building blocks

To increase the expressive power and to ‘lower the floor’, we need to identify common

building blocks which can be used to build a wide variety of applications. The building

blocks need to be built upon abstractions which are commonly understood by all

application developers, and are applicable across different applications (e.g. Space

and Time).
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2.5.2 Modeling approach

To ‘lower the floor’ we need to provide a set of guidelines so that a new application

designer is not overwhelmed by the task at hand. Building a system to handle the

‘Flu epidemic in USA’ might appear to be too vague and daunting for a new user. But

with some guidance through the design process, the users can break their problem

into modular, explicit, and computable chunks. Equally importantly, the resulting

guidelines can help ‘raise the ceiling’.

2.5.3 Rapid prototyping toolkit

The end goal of the framework is to build working applications for personal and

societal good. Hence providing a toolkit (graphical or API based), which allows the

users to quickly translate the models into working applications will tremendously

‘lower the floor’. On the other hand, an ability to rapidly reiterate and redefine

the applications will help ‘raise the ceiling’. Further, an ability to personalize the

recognized situations and configuring action alerts will help raise the ceiling.
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Chapter 3

Related Work

The proposed work lies at the intersection of multiple active research areas. Here

we discuss the related work in context of the problems studied. We first survey the

related areas which tackle situation related problems. Next, we paint a timeline of

how the focus on recognizing different concepts (e.g. objects, events, situations) from

multimodal data has varied over time. Lastly, we discuss other attempts at building

end-to-end toolkits to support multiple (situation-aware) applications. As already

discussed the notion of situation is interpreted very differently across different areas,

and here we try to be as inclusive as possible.

3.1 Situation awareness across research areas

Multiple application and research areas tackle situation related problems. Certain

areas are more active than others, and here we simply consider some representative

efforts in each area to draw out the holistic landscape.
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GIS (Geographical Information Systems)

Geographical Information Systems research focuses on developing tools for under-

standing and assimilating geography driven information. Applications studied in-

clude business intelligence, climate modeling, disaster relief, and city planning. Over

the years, this area has led to progress in better understanding of satellite data,

data modeling, geographical analysis operators, and analysis tools (e.g. ArcGIS) [58].

The focus of this research area has been on creating sophisticated spatial analysis

tools. For example [7] describes a collection of spatial analysis operators suitable for

supporting different GIS applications. However, the field has historically focused on

disk-based archived datasets, and aspect of time and real-time data are only beginning

to make inroads into research [91].

Active Databases and Stream processing

Interest in understanding events in data streams started in database community in

the form of stream databases or continuous queries. With the increasing number

of applications in need of real-time data stream processing to allow timely response

to complex situations, different information stream processing frameworks have been

proposed. Such tools have been applied to multiple applications including wireless

sensor networks [68], financial ticker analysis [51], RFID reading stream investigation

[10], traffic data management [8] and click stream inspection [47]. Similarly, research

on Active database systems has resulted in systems which can recognize, evaluate and

react to database situations [20, 21, 42, 86].

Event-Condition-Action (ECA) rules have been proposed as the general problem for-

mulation in active database systems. Primitive events and simple temporal operators

are designed to describe events or event sequences in database systems. To deal
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with the applications where diverse data sources, high data rate and large number of

queries are possible, data stream management systems (DSMS) have been developed

[1].

Complex Event Processing (CEP) systems [24, 107, 111, 67] push forward the conven-

tional pub/sub works by providing users with logical and temporal operators for de-

scribing composite events. Commercial vendors, such as IBM, Oracle, Tibco, Coral8,

and StreamBase, have built event processing systems, which integrate functionalities

of both DSMS and CEP systems. A comprehensive survey on data stream processing

can be found at [43].

Although there have been multiple efforts at data stream processing, some important

aspects of data streams have not received enough attention.

1) Data Type: As mentioned, DSMS are designed to handle streams of generic

data type. However, these systems have been focusing only on structured or semi-

structured text data. No existing framework has attempted the integration of data

streams in textual, visual, audio and other multimedia formats. With the develop-

ment of mobile devices, sensor networks and social networks, the majority of all data

in the world is in rich media (e.g. audio-video, images) formats.

2) Spatial Data: Although CEP systems explicitly process event streams, spatial

attributes of events have been purely regarded and analyzed as symbolic data instead

of geographical data. This simplified data model may not be appropriate for analyz-

ing complex spatio-temporal patterns.

3) Scalability: Limited by the data type and modeling approach, the data volumes

that could be managed by existing systems is significantly restricted. With the advent

of big data, data stream processing systems which are able to handle heterogeneous

data streams at scale will need to be redesigned.

This dissertation focuses on issues 1) and 2). A related effort [40] addresses some of
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the challenges in scalability.

Aviation and Military applications

Pioneering works by Endsley et al [38] have focused on creating better situational

awareness for fighter pilots, and air traffic controllers. Other works focus on an

action driven approach and support creating actionable inference (e.g. [2]) . (Refer

to Chapter 2 for a detailed discussion on interpretations of ‘situations’.)

Military applications often use the JDL (Joint Directors of Laboratories) Model for

information fusion [103]. Situations are considered a Level 2 abstraction in this model.

In this model, situations capture a higher level of abstraction than sensor fusion, but

lower than ‘impact assessment’ and ‘resource management’. Jakobson et al [56] have

broadly studied the problem of ‘situation management’. They consider the situation

model as a knowledge level view created using a domain based ontology. Such a

situation model requires both human and signal level intelligence. Such a situational

model can work in an ‘investigative’, ‘control’ or ‘predictive’ phase depending on the

application’s focus on past, current or future actions. Greenhill et al. have developed

SDL (Situation Description Language) [45], which is a full language implementation

undertaken to help submarines develop a tactical understanding of the situation at

hand.

Robotics and AI

John McCarthy discussed situation recognition as one of the most fundamental prob-

lems in AI in 1968 [70]. He defined the field of situation calculus. A major wave of

enhancements, implementation and formalization was done by the cognitive robotics

group at Univ. of Toronto led by Reiter [63]. Situational calculus has a major issue
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known as the frame problem i.e. it cannot be used to derive the non-effects of actions

[83]. There is also a closely related set of works on event calculus [62], which describes

how events and their effects can be represented using a logical language. The specific

constructs used by them (and situation calculus) are Actions, Fluents and Situations.

While actions are used in their normal sense and situations have been discussed above,

Fluents are statements whose truth values may change over time. Reiter’s group has

applied Situation Calculus to a number of applications, most notably those dealing

with robotics, and planning in controlled environments [26].

Linguistics

In linguistics, situation semantics is used to refer to a mathematically based theory

of natural language semantics introduced by the mathematician Jon Barwise in 1980

[13]. Barwise and Perry began with the assumption that humans use language in

limited parts of the world to talk about (i.e., exchange information about) other

limited parts of the world. He called those limited parts of the world, ‘situations’. A

potentially interesting line of work on Semiotics and “Situation based control” was

done by Pospelov in Russia. Semiotics as a science of signs explores the syntactic,

semantic and pragmatic aspects of signs. The main text however was published

in Russian and the details remain inaccessible. Based on citation in [56], situational

control theory [79] was based on semiotic models of the domain developed in linguistics

and language psychology. Pospelov considered situations as states of the relations

between objects referred to at some point in time. Pospelov’s situation formalism was

based initially on graph theory and finite state machines, and later formal relational

expressions close to FOL (First Order Logic).
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Context-based systems

Yau and Liu [114] proposed the use of situation modeling to allow environments to

adapt their behavior based on them. They make use of an OWL ontology to describe

situations. Specific application based situation ontologies have also been discussed for

disaster control in [99] and surveillance [74]. Wang et al. [109] have used situations

to automatically configuring mobile phones’ sound/vibration settings.

Computational Social Science

Multiple efforts under the names of web mining, social network analysis, reality mining

have studied similar problems. While they may not explicitly use the term ‘situation’,

they do focus on the same problem – that of understanding aspects of human life and

the world by observing the data footprint being created. Blogscope [11] was an

influential effort at mining blog content to understand emerging topics and events of

interest. Pentland and colleagues have been leading an effort at understanding human

dynamics via analysis of phone-logs and social-sensors [4, 35]. Mining phone usage

patterns to understand social behavior has also been explored in [44] and has been

shown to be a proxy for city scale sensing in [82]. Recently, Twitter has been used

for analyzing presidential debates [28], detecting earthquakes [87], and predicting the

stock market [14]. There have also been efforts at providing toolkits like Twitris [53],

TwitInfo [69], and Truthy [81] for Twitter data visualization and analysis.

Media processing and applications

Multiple media (image, audio, video, sensor) processing efforts have tried to focus on

the problem of sense-making. The research on different aspects of media processing
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has led to a rich collection of tools and techniques relevant for in-silo media process-

ing. Research at combining different modalities has focused on information fusion

aspect, and only slowly started to reason and think in the real-world, rather than the

media silos.(See Section 3.2 for more detailed discussion.) Multiple ‘situation-aware’

applications have been discussed in the media processing literature.

For example, Brdiczka et al. [17] have described the use of situation models to aid

video surveillance. They characterize environments based on events and entities (per-

son, place and objects). The considered ‘situations’ were walking, browsing, fighting,

waiting, and object left. Crowley [23] has described the use of situation models for

observing human activities. According to this work, human activities follow loosely

defined scripts, and it aims to provide “a conceptual framework in which scripts for

human activity are described as scenarios composed of actors and objects within a

network of situations”. Shirehjini [76] has described a situation modeling example

in the multimedia presentation domain, but focused specifically on the ‘situations’ of

“Setup, Welcome, Presentation, Explanation, Question-Answer, Discussion, and Con-

clusion”. The parameters identified for capturing the situation were “Activity, Lo-

cation, Interaction, Media, Device, Environment and Audience states (e.g., light and

noise setting, user movement, number of person, level of attention, interruptions)”.

These parameters served as distinguishing characteristics for mentioned situations at

a high-level and did not depend on a specific sensor type or situation recognition tech-

nologies. Dietrich et al. [29], look at situation modeling from a building automation

perspective.
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3.2 Progress in the field of ‘concept recognition’

from multimedia data

Media (image/ audio/ video) processing research has made major progress on the

tasks of object recognition, scene recognition, event recognition, and trajectory recog-

nition. Each of these concept recognition problems focuses on analyzing observable

media to recognize an application-centric concept (e.g. ‘chair’, ‘office’, ‘intrusion’).

Dealing with the specifics of the media required sophisticated techniques for pixel

analysis, noise reduction, signal processing, time-frequency transformations, and ma-

chine learning techniques. The complexities of dealing with each of these areas led to

multiple research papers focusing just on analysis of a particular media e.g. images.

Similarly thousands of research papers have been written on each of the problems of

object, scene, event, and activity recognition.

The first well known approach at visual recognition was by Roberts and colleagues in

1960s [36], and the first effort on Event recognition was made by Jain and colleagues

in 1980s [50]. In this work we channel the lessons learnt from recognizing intra-media

concepts (i.e. those which manifest themselves, and can be recognized within a single

media object e.g. a tree, or a chair in an image), to define and recognize evolving

concepts (i.e. those which occur in real world, are constantly evolving, and inherently

manifest themselves over heterogeneous multimedia streams from numerous sources).

As shown in Figure 3.1, Situation recognition builds on and extends object recogni-

tion, scene recognition, activity and event recognition, and complex event processing.

The challenges in Situation recognition are very different from those in object or event

recognition. For example, we can no longer just accept heterogeneity, or allow multi-

ple data streams; we need to expect them and capitalize on them. We need to focus

on recognition of real world phenomena based on their footprints across multiple het-

37



Figure 3.1: Different Types of Concepts can be recognized in different data availability
settings. Single media, such as images, results in concepts more in images than in the
real world, but using different media it is possible to recognize concepts in the real
world

Approach Type of features used Flexibility at run-time
Computer Vision Rigorous Low
Databases Basic High
This work (design goal) Rigorous High

Table 3.1: Design goal of the proposed work

erogeneous media. This allows for solving practical human problems by correlating

data ranging from social media, to sensor networks, and satellite data.

For doing this we build upon techniques rigorously developed by computer vision

and multimedia researchers which aggregated pixel values for identifying low to mid-

level features (moments, color, shape, texture, area, edges) to recognize higher level

concepts (boy, face, rose) in applications. However, the computer vision research

field has mostly focused on rigorous feature extraction for the classification problems;

its recognition models (e.g. ‘chair’ detector) tend to be opaque and un-editable at

run time. The database field, on the other hand, has focused on transparency of

information; information about any entity or concept can be obtained flexibly at

run-time by declaratively defining a ‘model’ based on attributes of the data.

In this work we exploit the positives of both the sides, and create models for situations

which use rigorous features, but yet are re-configurable at run time. Situation models
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are created by domain experts using a set of declarative operators. Under the hood,

the system automatically implements these spatio-temporal operators by leveraging

relevant computer vision operators, and it presents the evaluation results in real-time

to the user. Thus the system supports sophisticated situation recognition, but is

reconfigurable on-the-fly to support multiple queries and applications.

3.3 Toolkit support for situations, context, and

data analytic applications

One of the design choices made early in this work was that of its focus. Efforts

could be directed towards automating the process of situation recognition-much in

line with the dominant trend in Computer Vision Research on concept recognition.

Alternatively the work could focus on building a human-in-the-loop framework which

can at run time be flexibly be configured to match and recognize different situations.

We did not want the system to make a ‘cold start’ and re-learn the classification model

each time new concept needs to be recognized, and hence we decided to provide a

toolkit which allows different users to create different situation aware applications

using the framework.

Toolkits supporting several applications need to integrate heterogeneous data types

and support multiple operations for their integration. The field of web Mashups is

driven by very similar motivations. Mashups try to bridge the disconnect between

the domain experts and the computing experts. By allowing very easy integration

of different web data sources and operations as widgets they want to allow creation

of sophisticated web applications. Based on a White paper by IBM [19] now “ ...

businesses can remix information from inside and outside the enterprise to solve sit-
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uational problems quickly. Individual users can create these situational applications

themselves, by ‘mashing’ together multiple information sources into a lightweight Web

application that is ‘good enough’ to solve a situational problem that pops up”.

Visual mashup languages like Yahoo Pipes [39], and MashArt [25] have tried to make

it easier for non-Information System experts to combine different web streams. They,

however, still stop at basic operators (no spatio-temporal analytics), and even those

are often considered difficult for real domain experts to be effectively used [22]. Other

attempts like Popfly [46], DataMasher1 (Winner of OpenData competition), ‘Mobile

Web Mashups’ [106], and IFTTT 2 also attempt to support web mashup environments

for application creations. However, as seen in Chapter 2, their support still tends to

be limited in terms of the heterogeneity of data supported or the kind of operations

possible.

In this work we focus on declaratively providing sophisticated spatio-temporal analysis

operators on data coming in from a wide variety of structured and unstructured

multimodal data streams. In order to do so we draw upon and extend concepts from

multiple research areas. As summarized in Table 3.2, multiple areas have looked at

different aspects related to this framework. To the best of our knowledge, this work

is the first end-to-end effort which combines heterogeneous data streams, explicitly

considers human sensors, performs data-analytics, studies situations, considers spatial

semantics, handles real-time streams, supports personalized control, and provides a

generic toolkit to build multiple applications.

1http : //www.datamasher.org/
2http : //www.ifttt.com/
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Area Combine Human Data Define Location Real-time Person- Control Actions Toolkits
hetero data sensors analytics situations aware streams alization / Alerts

Situation
X X o o o X X

Awareness
Situation

X
Calculus
Web data

o X X o X X
mining
Social media

o X X o o X
mining
Multimedia Event

X o o o
recognition
Context-based

X X X o o X o X
computing
Complex Event

X X o X X
processing/Active DB
Geographical

X o X X o
Info. Systems
Mashup toolkits

X X o X X X
e.g. Y! pipes, ifttt
This work X X X X X X X X X

Table 3.2: Survey of various related research areas and their characteristics. Legend: X = Well supported, ‘o’ = Partial support.
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Chapter 4

Overall Framework

This chapter sketches the workflow for modeling and building situation aware appli-

cations using the framework. It discusses the design features of the framework and

gives an overview of each component rather than zooming into the details (which are

presented in the following chapters).

As shown in Figure 4.1, the overall process can be split into 3 stages. ‘Situation

Modeling’ is the process of conceptually describing situations of interest using generic

building blocks. They yield explicit, computable blue-prints of data sources, opera-

tors, and the logic required to recognize any situation. The ‘Situation Recognition’

stage physically implements these models by applying different operations on the data

to derive situational information. In the third stage, this information can be used for

drawing insights or be personalized to generate alerts.
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Figure 4.1: Different phases in the framework: Situation modeling, recognition, and
alerts

4.1 Design features of the framework

Based on the discussion in Chapter 2, we have identified some design features essential

to the framework for supporting situation-based applications.

Using humans as sensors

The framework explicitly considers humans as sensors. Humans can describe as-

pects of a situation which are not yet measurable by any hardware sensors. Humans

can describe perceptions, emotions, impressions (e.g. for business products), counter

state censors (as seen in Iran elections), be first respondents (e.g. Hudson river

landing), emergency reporters (e.g. Haiti earthquake rescues), and even pass uncon-

firmed/unofficial information reports (rumors, merger-info, scandals). The growing

importance of multimodal user contributions (e.g. Twitpic, Twaudio, Flickr), and lo-

cation based services (e.g. Foursquare, Gowalla, Yelp) clearly highlights this. Social

media networks arguably thus represent a large self-organizing sensor network, more
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sophisticated than any other sensor network currently deployed.

Consider space and Time as fundamental axes

In designing different aspects of the framework (data representation, operators, build-

ing blocks) we consider space and time to be the fundamental axes. This draws upon

the basic nature of the physical world i.e. space and time are the independent axes

which unify all physical phenomena. This also builds on and extends the concepts

from the fields of GIS, cartography, satellite sensing, and location-based computing.

Support real-time situation evaluation

Today most business data is stored for later analysis, but the value of the data

decreases over time; data has a half-life1. The more often we collect data and the

more local the data is, the shorter is its period of relevance. The prominence of real

time data in Twitter, Facebook, Satellite, and Stock-market streams also highlights

this. Hence, in this work we explicitly consider data-streams (and not static or on-disk

data) to be our primary data model. All the operators and representations discussed

work on streams and a standing query notation.

This underscores the fact that practical situations need to be recognized in real time

to save lives and resources.

1http : //www.numenta.com/grok info.html,
http : //slashdot.org/topic/bi/business−data−has−a−half− life−of−usefulness−nucleus−
research/
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Generate personalized actionable situations

Everybody’s personal situation is different. Hence the framework needs the capability

to generate personalized situations and corresponding alerts to be really useful to a

variety of users.

4.2 Situation Modeling

The first step in developing situation aware applications is that of conceptually model-

ing the situation of interest. In this phase, the application designers (domain experts)

can systematically externalize their internal models of the situations of interest [94].

Conceptual modeling allows for better designed, modular, and flexible systems which

are more likely to match the application requirements [27]. The conceptual models

also allow for the identification of the data sources and the operators required. A

generic toolkit to guide this process consists of the following components:

1. The ‘building blocks’

• Operators

• Operands

2. A prescriptive approach for modeling situations using the operators and operands.

The operands in the framework are data and knowledge level constructs onto which

different operators are applied. The operators are a set of declarative algebra of

operations which capture a wide variety of functionality required for spatio-temporal

analysis. The set of operators defined in this work are Filter, Grouping, Aggregation,

45



Spatio-temporal Characterization, Spatiotemporal Pattern matching, Transform, and

Learning.

The approach for creating situation models involves the application designers taking

a higher-level, (possibly vague) situation characterization and splitting it into a set

of more concrete features. Such a process is repeated recursively until each of the

descriptors is defined only in terms of the actual data sources and operators available.

Once completed, the process yields blue-print plans to combine different data streams

into situations.

4.3 Situation Recognition

In this stage the conceptual models are operationalized to generate output from the

incoming data. The overview of the process of moving from heterogeneous streams

to situations is shown in Figure 4.1 (phase 2). This process involves 5 steps:

1) Stream selection

2) Data ingestion

3) Data unification

4) Aggregation

5) Situation evaluation

Relevant data streams are identified by the domain experts, based on which the rel-

evant wrappers ingest the data. A unified spatio-temporal format records the data

originating from any spatio-temporal coordinate using its numeric value. Aggregat-

ing such data results in two dimensional data grids (called E-mages) which can be

extended over time into E-mage Streams. The situational descriptor is defined as a
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function of different spatio-temporal features derived using operations applied on the

E-mage Streams.

This process follows from the discussion in Section 2.2, which explained how situation

recognition can be split into the problems of obtaining features from diverse spatio-

temporal data, and using the features to evaluate situations.

4.3.1 Data stream selection

The situation models act as blue prints which identify the data streams and operators

required to recognize a situation. The data streams can originate from a person’s

mobile device, social network updates, stand-alone sensors, satellites, websites or

archived web data sources. The framework supports as many different types of raw

data as may be relevant.

4.3.2 Data ingestion

The ingestion of data from different sources is based on wrappers which bring the

external data into the system. For computational purposes all data streams are

normalized to numeric streams, but the underlying ‘raw’ data is also maintained while

required by the application. Each data stream has a set of associated spatio-temporal

parameters which need to be configured.

4.3.3 Data unification

The heterogeneous data streams are unified based on focusing on the commonalities

across them. Each data stream is considered to be reporting certain thematic ob-
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Figure 4.2: An E-mage showing user interest across mainland US in terms of number
of tweets containing the term iphone on 11th Jun 2009

servations from different spatio-temporal coordinates. Hence a STT or Space, time,

theme (i.e. where-when-what) tuple is used to organize all types of data [93].

A STTPoint is represented as:

STTPoint =< latitude, longitude, timeStamp, theme, value > (4.1)

By extension, a flow of STTPoints becomes a STT Stream.

4.3.4 Spatiotemporal Aggregation

Spatial data can be naturally represented in the form of spatial grids with thematic

attributes. Values in STTPoints that are collected in a time window over STT stream

can be combined and aggregated to form a two-dimensional data grid. The data grid

together with related STT information is called an E-mage. E-mages capture the

semantics and notion of spatial neighborhood very elegantly, and geographical-joins

[52] between data streams reduce to simple overlaying of grids. An example of an

E-mage is shown in Figure 4.2.

A flow of E-mages forms an E-mage Stream, which serves as a first-class citizen i.e.
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fundamental data-structure in the framework.

These gridded representations spatio-temporal data are very analogous to images,

pixels, and videos which have been studied by media processing researchers for a long

time. We exploit these analogies from multiple perspectives.

1. Visualization: The grid-like representation allows for intuitive visualization and

aids situation awareness for a human user. Humans are quite used to seeing satellite

image and GIS data on similar interfaces.

2. Intuitive Query and mental model: The correspondence of the human mental

model of spatio-temporal data with the query processing model, makes it easier for

humans to pose queries, and understand the results.

3. Data Analysis: Such a representation allows for exploitation of a rich reposi-

tory of media processing algorithms which can be used to obtain relevant situational

information from this data. For example, well developed processing techniques (e.g.

filtering, convolution, background subtraction) exist for for obtaining relevant data

characteristics in real time.

4. Efficiency: The pixel/image based representation reduces the run-time process-

ing requirements from potentially millions of XML data feeds to a rectangular grid

representation of known size. This allows the run time query process to work on just

the e-mages (which can be directly stored in the main memory due to much smaller

size), rather than the entire raw data corpus. The process of creating e-mages out of

the raw data can be undertaken separately without affecting run-time performance.

5. Privacy preservation: Such an aggregation approach aids applications that need

to maintain individual user privacy. Spatio-temporal ‘binning’ allows the higher level

algorithms to work on the aggregate representations, without focusing on individuals.
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4.3.5 Situation evaluation

The situation at any location is characterized based on spatio-temporal descriptors

determined by applying appropriate operators on E-mage Streams. The supported

operators are Filter, Grouping, Aggregation, Spatio-temporal Characterization, and

Spatiotemporal Pattern matching [41].

These operators are designed to be declarative to allow end users to describe their data

needs rather than procedurally handling the details of manipulating the data. The

aim of designing this algebra is to retrieve relevant spatio-temporal-thematical data

(E-mages, E-mage Streams, or their attributes) by describing their characteristics

[105].

An overview of the operators is shown in Figure 4.3.

4.4 Situation visualization, personalization, and alerts

The evaluated situation information can be used for visualization, analysis, and con-

trol actions.

4.4.1 Situation visualization

Spatio-temporally aligned situation data can be visualized on maps, timelines, and

reported as text. The outputs of different queries are either a temporal stream of

E-mages (which can be overlaid on maps), or STTPoints (which can be shown on a

map and a timeline).
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Figure 4.3: Different operators for situation recognition
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4.4.2 Personalization and Alerts

The recognized situation can be personalized to each user by projecting out the sit-

uation classification value for user’s location and combining it with personal param-

eters. The individual parameters can be personal data streams (e.g. activity level)

and action recommendations can be undertaken using approaches similar to E-C-A

(Event-Condition-Action) [72]. The spatio-temporal coordinates associated with each

data stream are used to direct users to nearest location satisfying certain conditions.

A combination of macro-situations and personal parameters can be used to configure

different Situation-Action templates. Multiple such templates can be registered to

provide customized alerts to all recipients.
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Chapter 5

Situation Modeling

Situation modeling is the process of conceptually defining what constitutes an ac-

tionable situation in the application designer’s domain1. It allows the designer to

externalize what she means by a specific situation of interest (e.g. an ‘Epidemic’).

Building this model in terms of conceptual building blocks rather than directly im-

plementing them in code has multiple advantages. First, the application designers

get to focus on the ‘Big-Picture’ rather than getting bogged down by the implemen-

tation details. Next, such a process encourages a goal-driven thinking rather than

an availability driven thinking [27]. Lastly, the modeling in terms of generic blocks

allows for easy reuse of components across applications.

The output of such a process are S2S (Situation-to-Sources) diagrams which act

as blue prints for the situation detectors and succinctly identify the different data

sources and operators required to implement the detectors in various situation-based

applications.

The generated models can also be used as knowledge representation tools [101]. They

1Hence, here the intended ‘user’ is a domain expert/ application designer.
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capture and retrieve an otherwise intangible asset - an expert’s knowledge which can

then be shared across organizations or even the whole Web. Such tools also allow the

redirection of human focus to where it needs to be - defining the application logic;

rather than the procedural details, and automatable tasks.

To aid the creation of different situation models and their implementation, the frame-

work provides:

1. The ‘building blocks’

• Operators

• Operands

2. A prescriptive approach for modeling situations using the operators and operands.

3. Steps and guidelines for refining the models so that they are well-defined, ex-

plicit, and ready for translation into code.

5.1 Operators and Operands

The constructs employed need to be well defined and quantifiable. They also need to

be generic enough to capture the common requirements across multiple applications.

Lastly, specialized building blocks catering to specific applications should be avoided,

as too many blocks lead to higher cognitive load and may confuse the application

designers using them.

Considering these (often competing) considerations, the framework defines the fol-

lowing set of operands and operators.

54



Figure 5.1: Operands for Situation Modeling

5.1.1 Operands

The operands in the framework are data and knowledge level constructs onto which

different operators are applied.

The operands defined (also see Figure 5.1) are:

1. Feature: Any spatio-temporal descriptor that contributes towards defining the

overall situation. (e.g. growth rate of Flu reports)

2. Representation level: The level at which data needs to be analyzed viz.

individual data nugget(STTPoint), spatial aggregation (E-mage), or spatio-

temporal aggregation (E-mage stream)

3. Data source: The resource (e.g. URL) for obtaining the data.

4. Meta-data: Any additional details (e.g. spatio-temporal bounds, operator

types, normalization bounds, output variables, thresholds) required for complete

specification of the features or operators.
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Figure 5.2: Operators for Situation Modeling

5.1.2 Operators

The operators are applied to the operands to bring data to the right representation,

analyze data to derive appropriate features, and to use features to evaluate situations.

The operators defined (refer to Figure 5.2) are:

1. Transform (∆): This allows the data at any layer to be transformed into the

next (higher) layer. It can be for:

• Data source to STT (Level 0 to Level 1): The wrappers to translate het-

erogeneous data into STT data nuggets.

• STT to E-mages (Level 1 to Level 2): Combining STT nuggets into an

aggregated E-mage representation
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2. Filter (Π): This allows for selection of data based on space, time, theme, or

value parameters.

3. Aggregate (⊕): This allows for data to be combined based on mathematical

operators.

4. Classification ( γ ): This operator segments the values into different cate-

gories.

5. Characterization [spatio-temporal] (@ ): This operator handles derivation

of relevant spatio-temporal attributes (e.g. epicenter, density, shape) from any

data stream.

6. Pattern Matching [spatio-temporal] (Ψ ): This operator allows users to

study how closely the captured phenomena match known patterns or related

historical data.

7. Learn (Φ): This operator automatically identifies the function to combine

different features into the appropriate situation classification. The function can

be identified using computational techniques (e.g. Machine Learning [6]) once

the expert identifies a ‘learning’ data source which contains samples of different

feature values and the expected classification result. This operator is useful in

cases where the relative weight of the features on the situational classification

is not known to the expert.

The first 5 operators are are chosen based on the survey of commonly operations in

situation-based-applications presented in Chapter 2, as well as a survey of commonly

applied operators on other grid like data structures (i.e. images). Together they

provide the affordances to combine, analyze, and classify different data streams. The
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‘transform’ operator corresponds to the data unification, and aggregation steps (refer

to Section 4.3) required to bring data into the unified E-mage Stream format, and the

‘learning’ operator supports scenarios where the experts themselves are not aware of

the right parameters for combining different data-sources.

5.2 The Wizard for modeling situations

A designer can follow these steps to model situations (refer to Figure 5.3).

First, she needs to identify the output state space (i.e. range for the output descrip-

tor). Next she needs to identify the spatio-temporal bounds being considered. The

next step is identifying the relevant features useful in defining the situation output.

If it is an imprecise classification type of problem, then the designer is required to

identify the data source for ‘learning’ how the different features identified affect the

situation classification.

For each of the features identified above, she needs to identify the data sources,

representation levels required and the variables/themes needed for the transformation

across levels. If the feature considered is atomic (i.e. detectable using well defined

operations on a data stream) it is added to the model. In case the feature is not

well defined yet, a recursive call is invoked onto the same algorithm to identify the

relevant components and details for the one-lower level feature.

As shown in Figure 5.4, such a process repeats itself in a recursive manner (akin to

depth first search) until the high level situation description has been partitioned into

explicitly observable or computable components.
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Figure 5.3: Steps in Situation Modeling

Figure 5.4: Recursive approach for defining situation variables
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5.3 Enhancing and Instantiating the model

5.3.1 Refining the model

A model created by the process above captures a baseline representation of an ap-

plication designer’s model of a situation of interest. Just like E/R modeling [24] this

process may require multiple iterations before the experts agree on a ’good’ model.

Suggested criteria to accept a ‘good’ model are:

1. Do Features identified provide enough discriminative power to the model?

2. Does the data stream chosen capture the semantics of the feature selected?

3. Are there any cyclic reasoning or cyclic dependencies in the features selected?

5.3.2 Instantiating the model

This phase acts as a middle ground between the conceptual models and the physical

implementation. Hence it should be undertaken only after the model ‘conceptually’

satisfies all the design requirements. This phase involves adding the relevant details

to make the operators computably explicit i.e. contain enough detail to be translated

into code if required. This requires the following steps:

1. Provide necessary parameters for operators (e.g. Operator types, normalization

bounds, thresholds) in the model.

2. Refine, if necessary.

The details of parameters required to qualify each operator depend also on the imple-

mentation tool employed. (The complete list of parameters required for implementa-

tion using EventShop is discussed in Chapter 7). This again undescrores the role of

this stage as an intermediary between conceptual models and actual implementation.
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Note though that even while configuring these parameters, platform specific details

(e.g. implementation language, language related issues, data types, memory man-

agement) are not part of this model. Those decisions fall under the purview of the

developers of the implementation tool, e.g. EventShop, rather than the domain ex-

perts who build models and use EventShop to test them. Some experts may also

choose to stop after designing the conceptual models and pass them onto IT support

personnel to do the translation into actual applications.

5.4 Example: Modeling Epidemic Outbreaks

Let us illustrate the process of situation modeling by considering ‘epidemic outbreaks’.

Given as-is, ‘epidemic outbreak’ is a vague undefined notion. In fact not even all

experts agree on what constitutes an Epidemic. Here we discuss the workflow for one

possible modeling of epidemics. Following Section 5.2, we first identify the output

state space (i.e. required classification into low, mid, and high risk of outbreak). Next,

(see Figure 5.5) we identify the spatio-temporal bounds being considered: USA, with

a spatial resolution of 0.1 latitude X 0.1 longitude, and re-evaluation to be made

every 5 minutes. The next step is identifying the relevant features which define

the situation output. Lets define ‘epidemic outbreaks’ as a classification on ‘growing

unusual activity’. While this is a single feature, it is not atomic (i.e. cannot be derived

directly using one data source). Hence we follow the process recursively, and try to

model ‘growing unusual activity’. This feature is defined based on two component

features: ‘Unusual activity’ and ‘Growth Rate’. It turns out that ‘Unusual activity’

is also not atomic, and needs to be split into the features of ‘historical activity level’

and ‘growth rate’. Let’s assume that the historical activity level is available from a

curated database and current activity level can be measured based on the frequency of
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Figure 5.5: Base model created for epidemic outbreaks

terms indicating ILI (Influenza-Like-Illness) on Twitter stream. Similarly, the growth

rate can be measured from the Twitter stream.

Hence, now we have three (‘leaf node’) features which can each be defined using a

single data source and hence the modeling is complete. In effect we have split a vague

concept (epidemic) into features such that each of them can be derived from a known

data source.

In practice, application designers may not be satisfied with the first created model.

For example, let’s consider ‘current activity level’ which has been defined based on

the number of Influenza-Like-Illness (ILI) reports observed from each location. It
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Figure 5.6: Situation model: Changes made in refinement phase

may be better to regularize this value based on the population at each location. This

leads to changes in part of the model shown in Figure 5.6.

The last phase in model creation is that of ‘instantiating’ it. This step involves adding

the relevant details about the exact operation to be performed and the associated

parameters. Further, certain parameters/ data sources may need to be refined. Here

we scale the population data onto the range [0,100] to be comparable to the incidents

reported. Figure 5.7 shows the model with the relevant details added (e.g. 30, 70 as

the thresholds for classification). Once this step is complete, the created model can

be evaluated using EventShop (refer to Chapter 7) or a similar situation evaluation

toolkit.
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Figure 5.7: Situation model after the instantiation phase (details added in Red)
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Chapter 6

Data Representation and Situation

Recognition Algebra

The translation of the conceptual models onto applications requires computational

support. As discussed in Chapter 1, this requires development of newer tools and

techniques which can unify data, maintain spatial semantics, and support realtime

analysis. Here we discuss the data representation proposed to combine different data

streams and operators designed to support analysis of these streams into situation

descriptors.

The overview of the process of moving from heterogeneous streams to situations is

shown in Figure 6.1. The unified STT format employed (level 1) records the data

originating from any spatio-temporal coordinate using its value. Aggregating such

data results in two dimensional data grids (level 2). At each level the data can also

be characterized for analytics. The situational descriptor (level 3) is defined by the

user (application expert) as a function of different spatio-temporal characteristics.
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Figure 6.1: The workflow of data from raw streams to situation descriptors

6.1 Data representation

6.1.1 Data unification

Heterogeneous streams can be unified by focusing on the commonalities across them.

We use Space, time, and theme (STT) as the fundamental axes to organize different

types of data. All incoming data points are converted to, and represented as STT-

Points. Each STTPoint has its coordinates in space and time, a theme, a value, and

a pointer to raw data from which the value is derived.

STTPoint =< stcoord, θ, value, pointer > (6.1)

where:

stcoord =< lat, lon, alt, t > (6.2)
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wherein:

lat, lon, alt, represent the geographical latitude, longitude, and altitude (respec-

tively) of the location corresponding to the data.

lat ∈ [−90, 90], lon ∈ [−180, 180], alt ∈ [0,∞]

t represents the timestamp corresponding to the data.

timestamp ∈ [0,∞]

θ represents the ‘theme’ e.g. ‘Swine Flu’, ‘iPhone’, ‘Obama’, to which the data

corresponds. This theme is assigned by the application designer.

value belongs to a value set V which belongs to N i.e. natural numbers.

pointer is a link to the actual data (e.g. raw tweets from which interest level is

derived). Certain application designers may want to keep a pointer to the actual

data to support detailed analysis when required. This obviously has a trade-off with

the privacy of an individual user, and may not be supported in all applications.

For the rest of our discussion here, we will focus on 2-D (latitude and longitude)

spatial information, theme, and numerical values for each STTPoint and ignore the

altitude component, as well as the data pointer. Also, it is often desirable to consider

only the spatial dimension of a STTPoint. We define a pixel as:

pixel =< θ, x1, x2, value > (6.3)

where x1, and x2 are the two dimensional spatial coordinates.
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6.1.2 Spatiotemporal aggregation

STTPoints can be aggregated across space and time to yield different data structures.

E-mage

For each theme θ, let V be a value set and X a two dimensional point set. An V -

valued e-mage on X is any element of V X , which is a map from X to V . Given an

V -valued e-mage g ∈ V X , V is called the range of g and X the spatial domain of g.

Here we use grid as the data structure representation of the e-mage. So

g = {(θ,x, v(x))|x ∈ X = N2, and v(x) ∈ V = N} (6.4)

where:

x is the 2 dimensional spatial coordinate i.e. x = [x1 x2], and

v(x) is the value at coordinate x.

We use |g| to indicate the size of an e-mage, which is (width, length).

Temporal E-mage Stream

Taken over time, a stream of E-mages can be defined as:

TES = ((t0, g0), ..., (ti, gi), ...) (6.5)

where ti is the timestamp of e-mage gi.
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Temporal Pixel Stream

Similarly a flow of pixels over time can be defined as a temporal pixel stream:

TPS = ((t0, p0), ..., (ti, pi), ...) (6.6)

where pi is a pixel.

6.2 Analysis operators (Situation recognition al-

gebra)

As shown in Figure 6.1, the situation at any location is characterized based on spatio-

temporal descriptors determined by using appropriate operators at level 2. The frame-

work defines a set of generic operators to support this analysis. The operators work on

the data representations described in the previous section. Temporal E-mage Streams

(TES) act as first class citizens, and operators are applied in a standing-query for-

mat (i.e. they are continuously re-applied on each newly generated E-mage in any

TES). The defined algebra builds upon and extends efforts in image operation algebra

[49, 85].

We summarize the data representation terminology in Table 6.1 for easy reference

while discussing the operators.

6.2.1 Filter (Π)

This operator acts as a filter to choose only the subset of data which is relevant to

the user application. The user can define a predicate P which is applied every time
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Term Description Representation
TES Temporal E-mage Stream TES = ((t0, g0), ..., (ti, gi), ...)

t timestamp
g e-mage g = {(θ,x, v(x))|x ∈ X = N2, and v(x) ∈ V = N}

θ theme of g
X Spatial domain of g
V Value range of g
p pixel in the e-mage pixel =< θ, x1, x2, value >

x spatial coordinate of p x = [x1 x2]
v(x) the value at coordinate x

Table 6.1: Terminology used for data representation and operators

a new E-mage is generated in the TES. Predicate on e-mage g is a function on pixels

P (p)|p ∈ g.

ΠP (TES) = ((t0,ΠP (g0)), ..., (ti,ΠP (gi))) (6.7)

The predicate can define spatial coordinates or values. This operation also allows for

normalization i.e. scaling the values to lie within a specified range.

Predicate on Space

A spatial predicate PR works on each e-mage and uses a point lattice corresponding

to region R ⊆ X. If the spatial coordinate of the pixel p is in R, then the value is

copied over, else it is set to zero. The formal definition is

ΠPR(gi) = {(θ′,x, y)| y = v(x) if x ∈ PR; else y = 0} (6.8)

where θ′ is the theme assigned to the new e-mage. It can be provided explicitly by the

application designer or be generated automatically e.g. copied from incoming data

stream, or be a hyphenation between the incoming theme and the operator. For the
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remaining discussion in this chapter, we focus on the derivation of other components

of g, and simply assume that the theme is copied over from the incoming data stream.

Predicate on Values

A value predicate Pv is a value comparison on pixel value v(x). If the value satisfies

the comparison, P (v(x)) is true; otherwise, false.

ΠPv(gi) = {(θ,x, y)|x ∈ X, and y = v(x) if P (v(x)) is true; else y = 0} (6.9)

Value normalization

A predicate can also be applied to scale the values in the e-mage to lie within a new

range r = {rmin, rmax}.

ΠPr(gi) = {(θ,x, y)|x ∈ X, and y = f(r, v(x))} (6.10)

where:

f is the function used to scale the values into the value range r.

Example:

1) Filter Temporal E-mage Stream TES based on a spatial predicate PR

ΠPR(region=M)(TES)

The format for the operators assignment is shown in Figure 6.2. The ‘Operator cat-
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Figure 6.2: Operator syntax format

egory’ identifies the main class of operation (i.e. Filter, Aggregation, Classification,

Characterization, or Pattern Matching). ‘Specific method’ identifies the options used

within the category (e.g. Predicate on Space, Predicate on Values, for Filter opera-

tion; max, min, average for Aggregation operation). Each such method also has an

optional set of parameters (e.g. a region mask for Spatial Predicate) which the user

must provide for describe the details of the operator. Here we assume that the system

implementing the operators will be able to interpret any of the optional parameters

discussed. The ‘operand’ identifies the data structure onto which the operator is ap-

plied. Note that sometimes we may add a theme to the representation (e.g. TES) as

a short hand notation identify the data.

To illustrate the effect of this query we show how it would affect an active e-mage

gi of the TES. As can be seen in Figure 6.3, only the pixel values corresponding to

lower half (based on the mask M) are maintained, and the rest are set to zero.

The empty cells in the Figure correspond to zero values at those pixels.

2) Filter Temporal E-mage Stream TES to maintain only values which are greater

than 4.

ΠPv(value>4)(TES)
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Figure 6.3: Example: Filtering operation based on spatial predicate

Figure 6.4: Example: Filtering operation based on value predicate

The effect of the operation is shown on a sample E-mage gi in Figure 6.4. Notice that

only the pixel values matching the criteria (value > 4) are maintained, and the rest

are set to zero.

3) Filter Temporal E-mage Stream TES to scale the values into the range r = {0, 60}.

ΠPr(range=[0,60])(TES)

The effect of the operation is shown in Figure 6.5. Notice that the pixel values get
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Figure 6.5: Example: Filtering operation to normalize values to a range

mapped from an initial range of 0 to 6, to the new range of 0 to 60.

6.2.2 Aggregation (⊕)

Aggregation operations work on combining two (or more) E-mage streams.

Let us first consider the aggregation across two E-mages. The aggregation function

takes two e-mages g1 and g2 as input, and generates a new e-mage g3 as output. We

assume that sizes of the e-mages are the same, i.e. |g1|= |g2|= |g3|.

⊕f (g1, g2) = g3 = {(θ,x, y)|x ∈ X, and y = f(v1(x), v2(x))} (6.11)

where:

v1 and v2 are the values at the same coordinate x in e-mages g1 and g2, and

f ∈ {add, subtract,multiply, divide,max,min, average, sum, convolution, and, or}.

Now, the definition can be extended to handle multiple TES, where e-mages at the
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Figure 6.6: Example: Aggregate operation on two streams using add function

corresponding timestamps in different TES are processed as follows.

⊕f (TES1, ..., TESn) = (t0,⊕f (g10, ..., gn1)), ..., (tm,⊕f (g1m, ..., gnm)) (6.12)

where gij is the E-mage at timestamp j in TESi. While most of the operations

{+, ∗,max,min} can handle multiple inputs, some (−, convolution) can handle only

two inputs at a time.

Example:

1) Aggregate Temporal E-mage Streams TES1 and TES2, using addition.

⊕add(TES1, TES2)

The effect of the operation on sample e-mages is shown in Figure 6.6. Notice that

the value at each pixel in the output e-mage is an arithmetic addition of the values

at the corresponding pixels in the two input e-mages.
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6.2.3 Classification (γ)

This operation segments pixels of a given e-mage g in TES into k different classes

based on function f .

γf (gi) = {(θ,x, y)|x ∈ X, y = f(x, v(x), gi) and y ∈ [1, k]} (6.13)

where:

f is the function which uses a combination of the pixel’s location and value parameters

and the global E-mage characteristics to assign the pixel to the right class.

k is the number of classes admissible.

The possible functions for f include kmeans, linear thresholding, affinity propagation,

min-cut [90] and so on.

Over time this operation can be applied to each new e-mage and generate a classifi-

cation for its pixels.

γf (TES) = ((t0, γ(g0)), ..., (ti, γ(gi))) (6.14)

Example:

1) Classify Temporal E-mage Stream TES into 3 segments based on linear thresh-

olding with thresholds set as 1 and 4.

γLinear Thresholding(thresholds={1,4})(TES)

The effect of the operation on a sample e-mage is shown in Figure 6.7. Notice that

the pixel values have been to set 1, 2 , or 3 which identify the class to which those
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Figure 6.7: Example: Classification operation based on linear thresholding

pixels have been assigned. The class assignment corresponds to the thresholds set.

6.2.4 Characterization (@)

Spatial

E-mage characterization operation takes the active e-mage g in TES, and computes

a pixel which identifies selected spatial property of the e-mage g based on a function

f .

@f (g) = p =< θ, x1, x2, y >, where (x1, x2, y) = f(g), and

(x1, x2) ∈ X, and y ∈ N (6.15)

The function f can be selected from {count,max,min, sum, avg, epicenter, density}.

For functions such as max, min, epicenter, the coordinates (x1, x2) identify the lo-

cation where the corresponding property is reached. For instance, when using max,

the spatial coordinates and the value of the output pixel correspond to the E-mage
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pixel whose value is the largest among all others in g.

However, other functions such as count, sum, avg, density, shape, are global features

[98], and do not correspond to any specific location within the e-mage. Hence, the

function produces only a value y, and the coordinates (x1, x2) are set to (0,0).

Over time this operation can be applied to each new e-mage and generate a corre-

sponding pixel. Hence this operation can spatially characterize an evolving Temporal

E-mage Stream (TES) and generate a Temporal Pixel Stream.

@f (TES) = ((t0,@f (g0)), ..., (ti,@f (gi))) (6.16)

Temporal

Temporal characterization operation takes a temporal pixel stream TPS, and com-

putes a pixel output po which identifies the selected temporal property of the TPS in

a time window tw based on a function f . The time window corresponds to the last k

time cycles in the TPS yielding a windowed temporal pixel set WTPSi.

WTPSi = w(TPS) = {(ti−k+1, pi−k+1), ..., (ti, pi)} (6.17)

where:

w is the windowing function.

ti is the current time cycle,

pi is the active pixel, and

k is the size of the time window.
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As mentioned, the output pixel is computed based on the WTPS.

@f (WTPSi) = po =< θ, x1, x2, y >,where x1 = pi.x1, x2 = pi.x2,

y = f(WTPSi) and y ∈ N (6.18)

where f ∈ {displacement, distance, speed, acceleration, periodicity}.

Over time, different output pixels get generated yielding a new temporal pixel stream

TPSo

@f (TPSi) = TPSo = ((ti,@f (WTPSi)), (ti+1,@f (WTPSi+1)), ...) (6.19)

Examples:

1) Characterize the epicenter of the Temporal E-mage Stream TES

@spatial.epicenter(TES)

Note that the functions belonging to the spatial category are preceded by a keyword

‘spatial.’.

The effect of the operation on a sample e-mage gi is shown in Figure 6.8. Notice that

the (x1, x2) coordinates for the output pixel have been set to (2,2) which correspond

the epicenter of e-mage gi. The coordinate system here starts with top left pixel being

at (1,1). As epicenter is a spatial property, the value component v(x) does not carry

much importance, and here we assume that the function computing the epicenter sets

it to zero.

2) Find the average speed taken over 3 cycles, for the epicenter of the Temporal E-

mage Stream TES.
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Figure 6.8: Example: Characterization operation based on spatial epicenter

@temporal.speed(tw=3)(@spatial.epicenter(TES))

Note again that the functions belonging to the temporal category are preceded by

a keyword ‘temporal.’. The effect of the operation on a sample TPS is shown in

Figure 6.9. Notice that the value v(x) of the pixel has been set to 0.47, based on the

displacement observed over 3 time cycles. The coordinate values have simply been

copied over from pi.

Note also that this query builds upon the output of the previous query which yields

a TPS with the epicenters.

6.2.5 Pattern Matching (ψ)

Pattern matching operation compares the similarity between a TES/TPS and a pat-

tern, which can be defined from historical data or chosen from a library of relevant

patterns (i.e. kernels) [98].
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Figure 6.9: Example: Characterization operation based on average speed over 3 cycles

Spatial Pattern Matching

Spatial pattern matching compares every e-mage gi in TES with a pattern e-mage κ,

and defines a temporal pixel set where value at each pixel pi represents the computed

similarity.

ψf (g) = p =< θ, x1, x2, y >, where (x1, x2, y) = f(g, κ), and

(x1, x2) ∈ X, and y ∈ N (6.20)

where f is a function which computes the similarity between the E-mage g and

the kernel κ. Possible functions for f include convolution, correlation, normalized

correlation and so on.

Over time this yields a temporal pixel stream.

ψf (TES) = ((t0, p0), ..., (ti, pi), ...) (6.21)
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Temporal Pattern Matching

Temporal Pattern matching operation takes in a temporal pixel stream TPS and a

candidate temporal pattern κ to compute a pixel output po whose value identifies how

similar κ is to TPS over a time window tw, based on a function f . The time window

tw corresponds to the last k time cycles in the TPS stream yielding a windowed

temporal pixel set WTPSi, which is expected to be the same size as κ i.e. |κ|= k.

As earlier,

WTPSi = {(ti−k+1, pi−k+1), ..., (ti, pi)} (6.22)

where ti is the active time interval, and pi is the active pixel.

The output pixel is computed based on the WTPS.

ψf (WTPSi) = po =< θ, x1, x2, y > where x1 = pi.x1, x2 = pi.x2,

y = f(WTPSi, κ) and y ∈ N (6.23)

where f ∈ {correlation, normalized correlation}.

Over time, different output pixels get generated yielding a new temporal pixel stream

TPSo

TPSo = ((ti, ψf (WTPSi)), (ti+1, ψf (WTPSi+1)), ...) (6.24)

Examples:

1) Where and with how much similarity is a pattern matching with κ found in the
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Figure 6.10: Example: Pattern matching operation based on a spatial pattern

Temporal E-mage Stream TES?

ψspatial.correlation(pattern=κ)(TES)

The effect of the operation on a sample e-mage gi is shown in Figure 6.10. Notice

that the coordinate (x1, x2) of the output pixel have been set to (2,2) which is the

location of highest match, and the value has been set to 0.99 which represents the

degree of similarity found.

2) How similar is the value increase in TES to the pattern κ?

ψtemporal.correlation(pattern=κ,tw=3)(TES)

The effect of the operation on a sample pixel stream is shown in Figure 6.11. Notice

that the value of the output pixel has been set to 0.99 which represents the degree of

similarity found. The coordinate values (x1, x2) have simply been copied from pi.

A summary of all the operators defined and the corresponding input and output data

structures are shown in Table 6.2.
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Figure 6.11: Example: Pattern matching operation using on a temporal pattern

S.No Operation Input Output
1 Filter Π TES TES
2 Aggregate ⊕ K · TES TES
3 Classification γ TES TES
4 Characterization @:

- Spatial TES TPS
- Temporal TPS TPS

5 Pattern Matching ψ:
- Spatial TES TPS
- Temporal TPS TPS

Table 6.2: Summary of various query operations. TES=Temporal E-mage Stream,
TPS=Temporal Pixel Stream
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6.2.6 Combining operators to create composite queries

The operators presented are designed to be declarative and basic building blocks

which can be combined to support arbitrarily complex analysis. Here we see some

examples of combinations of operators to pose different queries which can be used

directly by analysts to derive insights or used as building block features for complex

situation recognition.

1) Select e-mages for the theme ‘Obama’ corresponding to the region USA.

ΠPR(region=USA)(TESObama) (6.25)

Note that here we assume that any system implementing this operation will have

access to spatial mask corresponding to the USA region.

2) Identify three different clusters for each E-mage above.

γkmeans(k=3)(ΠPR(region=USA)(TESObama)) (6.26)

3) Show me the cluster with most interest in Obama.

ΠPv(value=3)(γkmeans(k=3)(ΠPR(region=USA)(TESObama))) (6.27)

Such queries need not only be about political figures, but could also be about a

hurricane e.g. ‘Katrina’. Hence, we can identify the cluster showing highest level of

activity related to theme ‘Katrina’ and go on to identify its epicenter, and how it

moves over time.
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4) What is the speed for high interest cluster for ‘Katrina’ e-mages?

@temporal.speed(tw=3)(@spatial.epicenter(ΠPv(value=3)(γkmeans(k=3)(ΠPR(region=USA)(TESKatrina))))

(6.28)

5) How similar is pattern above to an exponential growth pattern generated with

parameters: base=2, growth rate=3?

ψtemporal.correlation(pattern=generated, type=exponential, base=2, growthrate=3)

(@temporal.speed(tw=3)(@spatial.epicenter(ΠPv(value=3)(γkmeans(k=3)(ΠPR(region=USA)(TESKatrina)))))

(6.29)

Again we assume that the system implementing the query understands the function

parameters (e.g. pattern =generated, type=exponential, base=2, growthrate=3 ).

86



Chapter 7

EventShop: Toward Interactive

Situation Recognition

Based on the framework, we have developed a web-based platform called EventShop

(http://auge.ics.uci.edu/eventshop/) that provides an easy way for different users

to experiment with different data streams and recognize situations. This system

operationalizes the various concepts promulgated in the framework. It provides an

easy way to test, and refine situation models (Chapter 5), and does so using the data

representation and operation algebra presented in Chapter 6.

EventShop provides operators for data stream ingestion, visualization, integration,

situation characterization, and sending out alerts. The system can be graphically

configured to interactively recognize different situations and undertake correspond-

ing actions. It adopts a modular approach to make the system reconfigurable for

different applications ‘on the fly’. A simple graphical interface makes it accessible

to non-technical users1. Hence, for the first time it provides non-technical users an

1The intended users are application designers. They need not be computer-science experts, but
they are expected to have access to the application logic i.e. Situation Models
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opportunity to experiment with real-time data streams coming from all parts of the

world and integrate them for diverse applications; thus making one concrete step

toward democratization of the process of situation-driven app-building.

EventShop includes a front end User Interface and a back end stream processing

engine. EventShop draws inspiration from PhotoShop and provides an environment

that allows users to apply different filters and operators to experiment with multiple

layers of data until they are satisfied with the processing result. Just like PhotoShop

moved image processing from specialists to common-person domain, EventShop aims

to make real-time data processing and action-taking capabilities easy and available

to all. EventShop is designed to allow its users to experiment with data sources and

formulate queries by combining a rich set of operators without worrying about the

underlying technical details.

Screenshot from EventShop is shown in Figure 7.1. The basic components are:

(a) Data-source Panel: To register different data sources into the system.

(b) Operators Panel: To show the different operators that can be applied to any

of the data streams.

(c) Intermediate Query Panel: A textual representation of the intermediate

query currently being composed by the user.

(d) Registered Queries: A list of completed queries registered with the system.

(e) Results Panel: To see the output of the query (which can be presented on a

map, timeline, as a numeric value or a combination of them).
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Figure 7.1: Screenshot of EventShop system
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7.1 System design: overview

The EventShop system architecture is shown in Figure 7.2. EventShop provides

a graphical interface that allows end users to register new data stream sources and

formulate queries by combining a rich set of built-in operators. Users are also provided

with a GUI tool that allows them to send personalized alerts to relevant people. In

the back end, data sources and queries requested from the front end are stored into

data source and query databases. Based on the information of registered data sources,

EventShop continuously ingests spatio-temporal-thematic data streams and converts

them to E-mage streams. Meantime, directed by the registered queries, EventShop

pulls E-mage streams from data ingestors in to the query processor, which then

processes the E-mage streams in each of the instantiated query operators. Besides

being converted to E-mage streams, the raw data stream (e.g. tweet stream) is also

persisted into raw data storage. This raw data can be combined with situation query

results to define action conditions in the Personalized Alert Unit.

The front end GUI of EventShop is implemented in JavaScript, and sends requests

to the back-end controller through a set of Ajax calls. The back-end controller to

respond to these requests is implemented using Java Servlets. The Data ingestor

component is implemented in Java. The implementation of runtime operators makes

use of the OpenCV package [16] and is written in C++.

In the following discussion, we focus on the description of EventShop’s back end

design. The back end system consists of three major components: data ingestor,

stream query processor, and personalized action alert unit. We will defer the detailed

discussion on personalized action alert unit to the next Chapter.
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Figure 7.2: System Architecture of EventShop
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7.2 Data Ingestor

Each time a new data source is registered and inserted into the data source database,

the back end controller creates a new instances of STTPointIterator as well as E-

mageIterator (as shown in Figure 7.3) and adds them to the data ingestor. The

data ingestor then connects to the data source and takes the raw data stream as

input and relies on these iterators to convert the raw data stream into an E-mage

stream. Note that the focus of EventShop is not on very sophisticated analysis of a

single stream (e.g. not on sentiment or natural language processing based analysis

of a twitter stream, or ‘object recognition’ in a Flickr stream) but rather on the

ability to combine, analyze, and interpret different streams to recognize situations

which can not be recognized by individual data streams. EventShop comes with

ingestors for deriving values from some commonly used data-sources, and it expects

more sophisticated individual wrappers to be developed by third party contributors

as required. Note though that these third party contributors will be different from

non-technical application designers (e.g. health care expert) who will focus only on

configuring applications via wrappers made available by (first-party or third-party)

developers.

Details of iterators are described in Section 7.2.2.

7.2.1 Data Sources

A data source registered by end users needs to include the following information to

enable the data ingestion process:
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Figure 7.3: System Architecture of Data Ingestor

1. Theme: which is the central topic discussed in a data source. For example,

hurricane, asthma, population, temperature, shelter locations etc.

2. Resource Locator: which is the API access link of a data source. For in-

stance, Twitter opens its Stream and Search API which allow users to query

the tweet stream. Sensor data, such as traffic sensors deployed by PeMS (Cal-

trans Performance Measurement Systems), is also often available online for user

access as well.

3. Data Type: Data sources provide raw data streams in different formats.

• STT data streams: In the case of Twitter, Facebook, and a variety

of sensors, a single STT data point (e.g. a tweet, a status update, or a

temperature reading) is the unit that is generated and appended to a data

stream.

• Geo-image streams: Some data sources aggregate their spatio-temporal-

thematic data and provide them only in geo-image format, e.g. pollen
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count data (http : //pollen.com/images/usamap.gif). These geo-images

get updated across time windows (e.g. every 5 mins for NASA satellite

images, and every 24 hours for pollen count data).

• Array Data Streams: Alternatively, some data sources provide the data

collected in a time window in an array format, such as in CSV(comma-

separated values) or KML(Keyhold Markup Language) structures. This

type of data gets updated across time windows and essentially forms an

array stream.

A data source needs to declare itself as one of the types above.

4. Type Specific Parameters: Type specific parameters are also required in

the data collection process.

• For a raw spatio-temporal-thematic data stream, users need to specify the

attributes that they are interested in. For Twitter and other social media

sources, this can be a bag of keywords that covers a specific theme. For

traffic and temperature sensors, attributes such as average speed, lane oc-

cupancy rate, max. temperature, and other measures recorded at sensors,

can be specified.

• For a geo-image stream, users can either specify the geo coordinate system

adopted by the original data sources or provide transformation matrices

that can be used to convert original geo images to E-mages which follow

the equirectangular projection system [112]. To map image colors to values

in E-mages, users can choose between converting images to grey-scale E-

mages or assigning values to certain bins of image colors.

• For an array data stream, depending on the data format, users are required

to specify field names or tag names from where the spatial coordinate and

value of a data point can be extracted.

94



5. Frame Parameters: The output of the data ingestor is an E-mage Stream.

Parameters that are sufficient for specifying the size, resolution and generation

frequency of an E-mage (or a frame, borrowing the concept of ‘frame’ from

video) are necessary in the creation of an E-mage stream. A set of frame

parameters specifies the size of the time window (e.g. 10 seconds, 1 hour, 1

day), the synchronization time point (e.g. creating an E-mage at every 10th

second, or at 6AM everyday), the resolution in latitude (e.g. 0.01 lat), resolution

in longitude, spatial boundary including southwest and northeast latitude and

longitude values (e.g. for the US, the southwest point is (24, -125), and the

northeast point is (50, -66)). That is,

FP =< window, sync, latUnit, longUnit, swLat, swLong, neLat, neLong >

(7.1)

The set of frame parameters that is used to guide the framing of a raw spatio-

temporal-thematic data stream to create an E-mage stream for a data source is

called its Initial Frame Parameters. We will later introduce the notion of Final

Frame Parameters, which are required by each formulated query.

7.2.2 Iterators

As shown in Figure 7.3, a data ingestor is comprised of two types of iterators, STT-

PointIterator and E-mageIterator.

1. STT Point Iterator

A STTPointIterator is a generic iterator that generates one single STTPoint for

each raw data point in spatio-temporal-thematic data stream, and outputs the
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STTPoint at each ‘next()’ function call. We call a specific STTPointIterator for

a data source a wrapper. For example, one can create a wrapper for a hurricane

related tweet stream, or create a wrapper for a Foursquare check-in stream at

a hospital. For example, the currently implemented Twitter wrapper parses

each incoming tweet in the Twitter stream of a specific topic θ (e.g. hurricane),

through the meta-data associated with the tweet, and identifies the time and

location of the tweet, to generate one STTPoint i.e. (tweet location, tweet time,

θ, 1). The value in the resulting STTPoint is decided by the logic adopted in the

wrapper which can be simple (e.g. a count value) or sophisticated (e.g. a user

sentiment value). EventShop expects all values to be real numbers. EventShop

expects all observed values to be real numbers i.e. v ∈ N. The responsibility

of maintaining the data in the right units, and normalized range lies with the

application designer, who can encode these when designing the application logic.

In the future, we will open APIs that allow third party developers to implement

their own wrappers to ingest more data streams.

2. E-mage Iterator

Guided by the initial frame parameters, an E-mageIterator generates one E-

mage at each time window, and stores the E-mage in its internal buffer until

query processor pulls the E-mage by calling ‘next()’ function. As described

above, based on the data source type, E-mages can be generated from STT

streams, geo-image streams and array streams.

• STT E-mage Iterator. By iterating and combining collected STTPoints

from the STT stream of a data source, the STTE-mageIterator generates

an E-mage stream for the data source. Based on the initial frame param-

eters and the spatial and temporal coordinates stored in a STTPoint, a

STTPoint is spatially mapped to a cell in the result E-mage. Suppose the
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original STTPoint is collected at (lat, long), and the target cell is cell (i, j).

Now given the initial frame parameters FP,

i =
⌈
long−FP.swLong

longUnit

⌉
, and j =

⌈
lat−FP.swLat

latUnit

⌉
The value at the cell(i, j)

is normally the sum of values of all the STTPoints that are mapped to

the cell. Depending on the applications, however, the aggregate could also

be max,min, average. The system defines a set of aggregates from which

users can select to combine values.

• Geo Image Stream Iterator. If data points from a data source are

already aggregated as a geo-image, an E-mage can also be created or im-

ported directly from the STTPoints in these geo-image formats. The result

E-mage has
⌈
neLat−FP.swLat

latUnit

⌉
rows, and

⌈
neLong−FP.swLong

longUnit

⌉
columns, and the

value at a cell(i, j) in E-mage is computed from the original or normalized

values at the pixels of the original geo-image that are projected to this

cell. Computation of the projected area depends on the geo coordinate

projection system.

• Array Stream Iterator. Similar to STT E-mage Iterator, each single

value in the array is associated with a spatial coordinate that can be used to

decide the E-mage cell to which the value is mapped. This value extraction

part is continuously repeated at the end of each time window to obtain

newer values from the resource location.

7.2.3 Handling different types of data

The list of data types supported by EventShop is extensible. However the current

version provides built-in wrappers for the following data types.
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Twitter

Users can specify a ‘bag of words’ to gather tweets related to any topic. The Twitter

API supports the selection of tweets based on these terms as well as the geo-location

of the tweets. We use Twitter4j (http://twitter4j.org) as an intermediary library for

creating the wrapper. The value at the STTPoint is set to the count of the tweets

containing the bag of words. More sophisticated wrappers, e.g. based on sentiment

analysis or natural language processing can be developed by interested parties and

plugged into EventShop as required.

Flickr

Similar to Twitter, users can specify a ‘bag of words’, and the value is set to the

number of new posts related to a particular topic being posted from any location.

We use FlickrJ (http://flickrj.sourceforge.net) as an intermediary library to create

the wrapper.

Simulator

In order to simulate data for some of the types not currently available (especially

at very high streaming rates), we have implemented a wrapper simulator. It creates

semi-random data based on Gaussian distributions, four of which are centered around

New York, Seattle, Los Angeles and San Francisco areas.
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Geo-image streams

EventShop supports the ingestion of web data made available as maps or geo images.

Examples of such data include satellite imagery, weather maps (http://www.weather.com),

pollen count data (http://pollen.com/images/usa˙map.gif ), pollution related data

(http://www.aqi.gov), and data from many other map like presentation interfaces.

Translation of such data into the equi-rectangular E-mage format requires a trans-

formation matrix [110]. To aid this, the users can either specify the geo coordinate

system adopted by the original data sources or provide their own transformation ma-

trices. To aid the users, we have built a separate tool to determine such matrices. To

map image colors to values in E-mages, users can choose between converting images

from grey-scale E-mages or assigning values to certain bins of image colors.

CSV (Comma separated values)

EventShop can also ingest other general data uploaded by the users or available on a

Web URL. This data needs to be a specified format i.e. contain columns corresponding

to the location, time-stamp, and the value parameters.

KML (Google’s geographical data format)

KML (Keyhole Markup Language) is a specialized XML format with a schema created

to support various geo-constructs. The provided wrapper can parse this data using

standard XML libraries. The KML format is expected to use specified tags for space,

time, and value parameters.
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MySQL archives

In order to be inclusive to offline (archived) data, the system also supports reading

data from MySQL databases. The additional parameters required are:

< HistoricalBeginT ime,EndT ime, TableName,DataType,DataRefreshRate >.

The ‘DataTypes’ supported are ‘Data table’, ‘Visual, aggregated data’, and ‘Region,

aggregated data’. The data tables are expected to be in STT (i.e. spatial location,

timestamp, theme, value) format. A ‘Visual aggregated data’ query points to the

location for the archived geo-image, which is thereafter handled the same as the geo-

images discussed above. The ‘Region, aggregated data’ option combines the values

read from the table with a system-maintained description (in KML) of the boundaries

of that region. The system currently only supports US states and metropolitan areas

within California.

The MySQL wrapper works on JDBC (Java Database Connectivity) and could be

modified to support other database systems (e.g. Oracle, MS SQLServer) as required.

7.3 Stream Query Processor

In contrast to traditional one-time queries issued to a database, a query in EventShop

is a ‘standing query’. A standing query needs to be registered and instantiated in the

system before relevant data streams flow into the system and get processed.

The system architecture of the EventShop query processor is shown in Figure 7.4. For

each operator of each registered query, the back end controller creates an operator

instance that performs the computation. Next, back end controller connects these

operator instances as defined in the logical operator tree of the query and forms a

runtime operator tree in the stream query processor. Then the controller pulls E-
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Figure 7.4: System Architecture of Query Processor

mage streams from the E-mage Iterators of the appropriate data sources, and feeds

the streams to the runtime operator tree. Each operator instance processes the E-

mage streams pulled from upstream operators and buffers the results in its internal

buffer. The E-mage stream output from the last operator instance is the output of

the entire query.

We now discuss the details of the process of query formulation and the operators

supported by EventShop.

7.3.1 Query

A query registered by an end user needs to specify two pieces of information, a Final

Frame Parameters and a logical operator tree.
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Final Frame Parameters

Frame parameters specify the size, resolution and generation frequency of an E-mage

(refer to Equation 7.1). When multiple queries need to access the same data source

but combine them with other data sources at different spatial bounding boxes, res-

olutions or time windows, the E-mages pulled from data ingestors need to be first

mapped to E-mages which conform to the final frame parameters. Therefore, every

query specifies a set of final frame parameters, which should be followed by all input

E-mage streams.

EventShop system has a Resolution Mapper (RM) component that takes an E-mage

stream of a data source, the corresponding initial frame parameters, and the final

frame parameters as requested by a query as its inputs; it then generates a new E-

mage stream following the final frame parameters. In the RM component, EventShop

allows users to select the strategy to perform this frame mapping. If E-mages at

coarser frame parameters are mapped to finer frame parameters, the set of available

strategies includes interpolation, repeat, and split. If the mapping is performed from

finer to coarser frame parameters, the users can choose strategies like sum, max, min,

avg, and majority for conversion.

Logical Operator Tree

The logical operator tree for a given query specifies the operators used and their

order. Nodes in the operator tree represent configured operators (refer to Section

7.3.2), and directed edges between nodes denote the the E-mage flows from upstream

to downstream operators. In EventShop, users sequentially configure operators as

part of issuing their queries. An example of a logical operator tree is shown in

Figure 7.5. In this example, the overall situation query involves the application of
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Figure 7.5: Operator tree for a situation query

‘Filter’ operation on three data sources, followed by their ‘Aggregation’, and finally

a ‘Classification’ on the aggregated value.

This operator tree is parsed, instantiated and converted to a runtime operator tree

by the back end controller. The runtime operator tree is then added to the stream

query processor to do the actual processing.

7.3.2 Operators

Operators take E-mage streams from upstream operators as input, combine and pro-

cess them, and create a new E-mage stream as output. Physically, operators are

instantiated as E-mage Iterators. Each operator in the system maintains a buffer

that stores the E-mages processed by it. Downstream operators continuously check

and pull the next E-mage from the buffers. The final E-mages are stored in the buffer

of the last operator until they are pulled by the user front-end.

We have implemented the operations described in Chapter 6. These operators are

defined in a closed algebraic structure that can be easily combined to form complex
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queries. In the future, we plan to provide interfaces to allow users to define their own

customized E-mage operators.

We have implemented the query operators using an underlying media processing en-

gine. Each query operator corresponds to one or more classes of media processing

operations (under OpenCV) as shown in Figure 7.6. As can be seen, multiple query

operations (e.g. ‘Characterization’, and ‘Pattern matching’) may employ the same

media processing operation (e.g. ‘Convolution’) in terms of the underlying imple-

mentation. For example both ‘Circularity’ (which is a ‘characteristic’ from a user

perspective) and Pattern matching with a library of Kernels, use the convolution

operation. However, they are different operators from a user perspective.

A summary of the operators currently supported in EventShop is presented as Figure

7.7. Here, we discuss the detailed parameter settings of each operator. While the

list of options/ configurations for each operator is extensible, here we review just the

currently implemented options.

Filter

The Filter operator takes an E-mage stream as input, and filters each E-mage in the

stream based on: a value range, a spatial bounding box, or a time interval. Addition-

ally, values of an E-mage can be normalized into a new range of values by using the

Filter operator. This allows the value ranges of different data streams to be made

comparable before undertaking any further analysis.
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Figure 7.6: Mapping of Situation recognition Algebra to Media Processing Operations
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Figure 7.7: Configuration Options for different operators in EventShop
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Aggregate

The Aggregate operator combines E-mages from two or more E-mage streams using

arithmetic and logical operations. The E-mages must have the same dimension, and

E-mages are aggregated per cell. For example, for each (i, j) pair, the sum aggregate

adds cells(i, j) of the E-mages from each input stream and stores the value at cell(i,

j) of the new E-mage. Again, note that the frame parameters followed by these E-

mages need to be the same to be combined. In addition, the system allows one or

more operands of an aggregation operator to be a scalar value or a 2D pattern, in

which case every E-mage in E-mage streams can be combined with the scalar value

(i.e. the same value is assumed at each cell) or the pattern.

Aggregates supported aremax,min, sum, avg, sub,mul, div, and, or, xor, and convolution.

Some aggregates, such as sub and div, can only be applied between two E-mages.

Users can also choose to normalize values of the resulting E-mages.

Classification

The Classification operator segments each E-mage in an E-mage stream based on the

chosen method. The methods currently supported are kmeans and linear threshold-

ing. For kmeans, users need to specify the number of groups, and the appropriate

value threshold is automatically selected by the system. For linear thresholding, users

provide the thresholds for each class. Users can specify whether to split the segmented

E-mage into multiple E-mages or create a single E-mage with cell values correspond-

ing to the assigned segment. If the result E-mage is not split, the users can select a

color code for visualizing each segment.
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Characterization

EventShop supports two types of Characterization operation - spatial and temporal.

(i) Spatial

The spatial characterization operator works on a single E-mage stream and

computes a spatially relevant property of each E-mage in the E-mage stream.

The output is an STTPoint stream. Each STTPoint in the output stream stores

the spatial coordinate where the measure is taken along with the associated

value.

The following characterization measures are allowed: max,min, sum, avg, epicenter,

and coverage. For some characteristics spatial-location is not relevant (i.e.

sum, avg, coverage) and thus set to (0,0).

(ii) Temporal

The temporal characterization operator takes a window of STTPoints from a

STTPoint stream and computes its characteristics like displacement, velocity,

acceleration, periodicity, and growthrate. The output of this operator is again

a STTPoint stream.

The time window (in seconds), over which the measure is taken for each of these

options needs to be chosen by the user.

Pattern Matching

Again, EventShop supports two variants of this type of operator - spatial and tem-

poral.

(i) Spatial
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The spatial pattern matching operator takes E-mages from an E-mage stream

and a two-dimensional pattern as its inputs and it tries to match the pattern

in the E-mage. The output of this operator is an STTPoint stream. The

output STTPoints record the location of the highest match along with the

corresponding similarity value.

The 2D pattern for the spatio-temporal pattern matching operator can be input

in two ways, either uploaded from an image file or generated by the system.

Image files in most of the common image formats, such as bmp and png, are

allowed as input. (See Section 9.3.3 for an example based on the use of an

uploaded image to detect a hurricane pattern in satellite data.)

The system also allows users to create some commonly used 2D patterns. Users

need to specify the resolution (i.e. number of rows and number of columns of

the pattern) and a spatial distribution ( including Gaussian2D and Linear2D).

To generate a Gaussian pattern, the center point coordinate, x,y variance and

the amplitude are needed. For a 2D linear pattern, a starting point, starting

value, directional gradient and value gradient are required.

Users can again choose to normalize the pattern resolution as well as the values

for matching purpose.

(ii) Temporal

The temporal pattern matching operator takes a 1D pattern and a window of

STTPoints from an STTPoint stream as input and tries to match the pattern

over the window of STTPoints. The output of this operator is an STTPoint

stream where STTPoint stores both the center position of the sub window of

STTPoints where the pattern matches with the highest similarity value and the

similarity value itself.

Users specify the window size in seconds, over which the pattern is to be
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matched.

The pattern can be input from a file (CSV format) or generated by the system.

Currently, we allow linear, exponential, and periodic patterns. For generating

a pattern, users specify the sampling rate and the duration. For example, the

sampling rate could be 1 value per 5 seconds, and the whole pattern duration

is 30 seconds. (See Section 9.3.3 for an example of temporal pattern matching.)

For a linear pattern, the parameters include its slope and Y-intercept. Expo-

nential patterns need the base value and the scale factor, and Periodic patterns

use frequency, amplitude, and phase delay.

Similar to spatial pattern matching, users can choose to normalize the pattern

size, pattern value, or both.

Note that in the current system, we handle spatio-temporal operators (e.g.

temporal pattern matching on velocity of epicenter of a hurricane) by applying

temporal operators on the outputs of spatial operators. See Section 9.3.3 for an

example.

7.4 Presentation of results

The results of an Eventshop query are presented on the results panel (refer to Figure

7.1). Different types of queries result in different types of outputs, which may include

one (or more) of the following: numeric value, temporal value, location, E-mage. The

output type is decided by the last operator used in the query. The output type for

each of the possible last operators is summarized in Table 7.1.

While any of the operators can be used to retrieve situational information, applica-

tions focusing on situation classification will tend to use ‘Classification’ as the final

query operator.
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S.No Type Numeric Temporal Spatial E-mage
(of last operator) value value location

1 Filter X
2 Aggregate X
3 Classification X
4 Characterization: Spatial X X X
5 Characterization: Temporal X X
6 Pattern matching: Spatial X X
7 Pattern matching: Temporal X X

Table 7.1: Output formats for different types of queries

The presentation of an EventShop output E-mage on the Google Map interface for

easy visualization requires two adaptations:

1. Value normalization: The output E-mage values are scaled between 0 and

255 to support natural visualization.

2. Translation to Mercator Projection system: Google maps uses the Mer-

cator projection system, which is different from the Equi-rectangular projection

system used by EventShop. Hence the E-mages must be projected to it. 2

7.5 Discussion

EventShop acts as a platform to operationalize the proposed framework for situation

recognition. It allows for easy translation of situation models into situation-based

applications. Different models can be tested, revised, and enhanced until the results

meet the application requirements (see Section 9.3 for case studies).

EventShop implements the operators described in Chapter 6, and it implements

2The x and y coordinates of a point on a Mercator map can be derived from its latitude κ and
longitude λ as follows:
x = R(λ− λ0), and y = R(ln(tan(π

4 + κ
2 )).

The number λ0 is the longitude for x = 0. R is the radius of the sphere of the Earth (6378.1 km) at
the scale of the map as drawn, and κ and λ are given in radians.
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the building blocks for the modeling approach described in Chapter 5 3. In effect

EventShop provides all of the components (i.e. data stream selection, ingestion,

unification, aggregation, situation evaluation, visualization, and personalized alerts)

needed in order to support the generic approach to situation recognition discussed in

Chapter 4 .

3Note: The operator for ‘learning’ (Chapter 5) has been left out of the current implementation.
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Chapter 8

Personalization and Alerts

While macro-situations (e.g. ‘epidemic level’) are of interest to the analysts/policy-

makers, individual users benefit most from realtime personalized alerts. Personaliza-

tion ensures that the information is relevant to the end-user receiving it, and alerts

allow them to take immediate actions based on the situations recognized. Hence the

framework needs to provide an ability to:

1) Personalize the recognized macro situations, and

2) Alert users in real-time to take the appropriate actions.

This allows different situation-aware application built using the framework to not

just passively observe, but rather act and respond to aid human lives and resources.

This changes the focus from just analysis, or future planning, to actually undertaking

real-time control to affect the evolving situation. Alerting people to respond in real

time can allow them to evacuate risky areas, safeguard important resources, save lives

of cattle and poultry, and escape unhealthy situations.

The approach for handling personalization and alerts is as shown in Figure 8.1. Differ-

ent data streams are combined to recognize macro situations (i.e. situations detected
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Figure 8.1: Approach to recognizing macro situations, personalized situations, and
sending alerts

over aggregated spatio-temporal data). These macro situations can be combined

with personal context, profile, and preferences for each user to recognize personalized

situations. Each personalized situation can be mapped to relevant action recommen-

dation. Each layer builds on the output from the previous layer. In this Chapter we

focus on step 2 (personalizing situations) and step 3 (alerts).

8.1 Personalized Situations

Definition

Personalized situation: An actionable integration of a user’s personal

context with surrounding spatiotemporal situation.

To aid the modeling and recognition of personalized situations, we consider:

1) Data Types and representation
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2) Operators

3) Modeling steps

8.1.1 Data types and representation

The data sources used for personalized situation recognition can be of three types.

The first two are stream based and highly dynamic, while the third one changes

infrequently.

1. Macro Situation:

Situation values detected by combining multiple data streams from a ‘macro’

view point. These situation values can be projected onto the user’s ST coordi-

nates.

2. Personal life streams:

• Sensor streams: Device based data streams reporting values about a par-

ticular user e.g. temperature, heart rate.

• Personal media streams: Personal user account on social media streams can

be used to detect various micro-events in the person’s life e.g. coughing,

sneezing, activity level.

3. User Profile + Preferences:

• Profile: Any data about the user’s personality which may be relevant to

the situation classification.

• Preferences: User’s preference as applicable to application relevant param-

eters.
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S.No Data Type Source Nature Examples
1 Macro Situation Combination of streams Streams Pandemic risk index = high

2 Personal life streams Sensors Streams Temperature = 99.1 F

Personal media Streams Sneezing severity = mid

3 Profile + preferences Profile Persistent Gender = male

Preferences Persistent Preferred medical coverage = Kaiser Permanante

Table 8.1: Examples of different data types

The representation of all of these data types can be in the form of Temporal E-mage

Sets, or Temporal Pixel Sets as discussed earlier in Chapter 6. We explicitly assume

that each data nugget comes inscribed with spatio-temporal parameters.

8.1.2 Operators

The operators supported for combining these streams are similar to those defined for

macro situation recognition (Chapter 6). However the focus now is to view the data

from a single user perspective rather than spatiotemporal aggregates. This implies

two important differences. First, STTPoint/Pixel streams, rather than Temporal E-

mage streams, become the primary data representation. Second, this implies that

operators focusing on the analysis of spatial aggregates (i.e. spatial characterization

and pattern matching) will not be relevant here.

The semantics of the operations however remain very similar to those in Chapter 6.

Rather than going through each operator in detail here we simply recap the relevant

operators, and summarize their corresponding input and output data structures in

Table 8.2.

To differentiate between the operators defined from a personal user perspective and

those defined from a macro perspective, we apply a superscript 1 on the personalized

situation recognition operators e.g. op1.
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Filter (Π1)

This operator acts as a filter to choose only the subset of data which is relevant to

the user application. This operator works the same as defined in Chapter 6 - except

the focus is now on spatial filtering to generate a user-location based TPS from the

TES input.

Aggregate (⊕1)

Aggregation operations work on combining two (or more) Pixel streams via arithmetic

and logical operations like +, ∗,max,min.

Classification (γ1)

This operator segments incoming data (TPS) into different categories based on func-

tions like linear thresholding, kmeans, affinity propagation.

Characterization: Temporal (@1)

Temporal characterization identifies the selected temporal property (e.g. displace-

ment, distance, speed, acceleration, periodicity, growthrate) of the TPS in a selected

time window.

Pattern Matching: Temporal (ψ1 )

Pattern matching operation compares the similarity between a TPS and a selected

pattern based on functions like correlation, normalized correlation.
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S.No Operation Input Output
1 Filter Π1 TES TPS
2 Aggregate ⊕1 K · TPS TPS
3 Classification γ1 TPS TPS
4 Characterization @1:

- Temporal TPS TPS
5 Pattern Matching ψ1:

- Temporal TPS TPS

Table 8.2: Summary of various query operations. TES=Temporal E-mage Stream,
TPS=Temporal Pixel Stream

Figure 8.2: Steps in personal situation modeling

8.1.3 Modeling Personalized Situations

The process of modeling the personalized situation is very similar to that described in

Chapter 5. Basically the domain experts need to keep splitting the possibly complex

and vague situation descriptor into its component features until each one of those can

be derived by simply applying an operator on a data source.

Also note that this modeling needs to happen from a user-based (not macro) per-

spective, and after the macro situation modeling has been completed. Hence spatio-

temporal bounds are no longer a required in this modeling, and at least one of the
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features (i.e. v1, . . . , vk) is expected to be the output of the macro situation classifi-

cation at the user’s location.

8.2 Alerts

The proposed framework provides an approach to send out alerts to people in different

situations. The alert may need to provide different types of information to tackle

problems in different scenarios. Here we adopt the perspective defined under Social

Life Networks [55, 54], where the focus is on ‘connecting people to the right resources

based on personalized situations detected ’. In effect, it focuses on aiding most basic

human needs (i.e. Level 1 of Maslow’s hierarchy - food, water, health) via automated

recognition of situations.

The problem of matching users to resources can be formulated as follows:

Γ : (U × Z)→ (U ×R) (8.1)

where:

U = {u0, . . . , uM} is the set of users,

R = {r0, . . . , rN} is the set of resources,

Z = {z0, . . . , rO} is the set of personalized situations,

and Γ is the function which takes users and their personal situations as input, and

gives out appropriate {u, r} i.e. user-resource pairs as outputs.

We consider the data types, representations, and the approach to undertake the

matching.
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8.2.1 Data types

The above mentioned perspective necessitates the use of three types of data sources

1. Situation recognition sources: Data sources used to recognize the macro or

personal situation.

2. User list sources: Data sources which provide a list of users.

3. Resource list sources: Data sources which provide a list of resources (e.g. shelter

spaces, ambulance, park). Note that detected situation E-mages can also act

as resources (e.g. healthy situation area).

All of these data sources are expected to be available or transformable into the STT

format (correspondingly TES/TPS) in this framework.

8.2.2 Situation-Action Rules

We adopt a rule based approach to match users to resources (i.e. to handle the Γ

function of eq. 8.1). It works as follows:

IF ui is in zj, THEN connect(ui, nearestLoc(ui, rk)).

Supporting such rules requires matching the user to the right resource type rk, and

then connecting her to the nearest resource location. Let us consider each of these

operations.
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Matching

The matching process can be defined as follows:

is in(ui, zj) =⇒ match(ui, rk) (8.2)

where:

ui is the ith user. zj is a personalized situation, and rk is the resource.

is in returns a Boolean output stating whether the user ui, falls under the personal-

ized situation zj, and

match creates a mapping between users and the resource types needed.

The framework expects the matching rules to be defined by the domain experts based

on the application.

Find nearest resource

Similarly, identifying the nearest location for the rl can be represented as:

nearestLoc(ui, rk) = argminp=1...P

Loc(ui),Loc(rkp)

dist(ui, rkp) (8.3)

where:

Loc(ui) is the location of the user,

Loc(rkp) is the pth location for the kth resource e.g. (kth resource = ‘Hospital’;

pthlocation=‘Hoag Hospital, 12, 4th St., Irvine, CA-92617’)

P is the total number of locations for the resource rk, and

dist is the Euclidean distance.

The nearestLoc function can be handled automatically by the system once the match-
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Figure 8.3: A snapshot of the Personalized Alert Unit

ing rules have been defined by the application designer. A collection of situation-

action rules can be registered identify the right resource for each user.

These rules can be considered an adaptation of E-C-A (Event Condition Action) [72]

rules, for handling situation based applications.

8.3 EventShop support for personalized alerts

Support for personalization and alerts is provided in EventShop via its Personalized

Alert Unit. Figure 8.3 shows an example via a screenshot.

The Personalized Alert Unit works on Situation-action rule templates that can be
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configured as follows. If the user belongs to a location with a prescribed macro-

situation, AND she satisfies defined personal conditions, then she can be directed

to the nearest location matching certain other situation conditions and sent an alert

message. The configurable options are:

1) User data stream: The personal media stream to be used for identifying users and

sending out alerts.

2) Macro-situation: As defined by a composed situation query and a value range on

it.

3) Personal context: Defined to be a value range on the selected personal me-

dia/sensor stream.

4) Desired Resource: Defined as a single resource stream or a composite situation

stream matching the proscribed value range.

5) Message: The alert to be sent out to the users.

Note that the current version of EventShop provides only limited support for per-

sonalized alerts. The ‘And’ operator is available to combine macro situation and

personal data-stream, and Twitter is available to send out alerts. Based on the expe-

rience gained by implementing and testing multiple applications, we plan to extend

these capabilities in the next development phase of EventShop.

8.4 Example: Asthma/ allergy recommendation

system

Let us consider an application that recognizes the allergy risk level for different lo-

cation in the US. It then advises highly-vulnerable people to stay indoors, while
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Figure 8.4: Situation Model for Asthma threat level

prompting those in healthy environments to enjoy the outdoors (e.g. to go jogging

at the nearest park). Building such an end-to-end application requires three steps,

which we detail next.

8.4.1 Defining macro situation

The first step is defining the macro-situation, which can be modeled following the

discussion in Chapter 5. On an experimental basis we can define the allergy risk for

an environment based on the pollen count, air quality, and the number of asthma

reports on social media (human sensors) in the neighborhood and create a situation

model as shown in Figure 8.4.

124



Figure 8.5: Situation Model for personal threat level

8.4.2 Defining personalized situation

For experimental purposes, the personal threat level can be defined based on com-

bining the environmental threat level with the personal exertion level. The exertion

level can be derived from the sensor stream from user’s mobile device. This can be

modeled as shown in Figure 8.5.

8.4.3 Situation-action rules

To send out alerts which will connect users to the appropriate resources, we configure

two situation-action rules.

1) To encourage people in good situations to go outdoors:

IF ui is in (Personal Asthma Threat = low), THEN connect(ui, nearestLoc(ui, Park)).

where (Personal Asthma Threat = low) can be defined in EventShop based on a
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combination of the macro asthma threat and the user’s personal activity level. Addi-

tionally, we can configure an accompanying messages, e.g. ‘Nice day to go jogging!’,

in the personalized alert unit as was shown back in Figure 8.3.

2) To encourage people in risky situations to stay indoors:

IF ui is-in (Personal Asthma Threat = High), THEN connect(ui, n/a).

with an accompanying message ‘stay indoors!’

Once configured, this acts as a real-time situation monitoring and alerting application

for allergy alleviation. Multiple such rules can be registered for defining various

applications, and multiple such applications can be created using the framework.
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Chapter 9

Evaluations

In this chapter we discuss experiments and case studies undertaken to validate the

different ideas proposed in this dissertation. We split the discussion into three sec-

tions.

We first test two of the design features of this work (humans as sensors, and space and

time as organization axes) to see if they make sense in the various real world scenar-

ios. Next we check if the data representation (E-mages) and the situation recognition

algebra is expressive and relevant enough to provide situational insights across mul-

tiple applications. Lastly we test the ability of the holistic framework to support

a design process of creating situation-based applications - from situation modeling,

to situation recognition, and personalized alerts. We pay particular attention to the

use of these applications in real world scenarios, and we discuss the ability of the

framework the meet the design goals set forth in Chapter 2.
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9.1 Validating the design principles

9.1.1 Using humans as sensors

The use of humans as sensors in this framework builds upon a hypothesis that human

reports on social media (e.g. Twitter, Facebook, Foursquare) are relevant and can be

used for detecting real world events and situations.

To test this hypothesis we ran the following experiment. We selected a list of 10

important events that happened in the USA (or Canada) during the period of Nov

2009-Mar 2010. We tried to be diverse in both the category of events as well as the

physical location. We ran the peak/ max (in time) and epicenter (in spatial location)

characterization operators on a relevant Twitter corpus. The data in the corpus was

obtained using two sources. The Twitter streaming API was used to download a

portion (10%) of all public Twitter feeds. While some Twitter posts are directly GPS

geo-coded, we geocoded the rest by using the ‘home’ location (e.g. San Francisco,

CA) of the user by using an opensource geocoding service (http : //ws.geonames.org).

Only the tweets successfully geocoded were used for the experiment. We augmented

this data set using location based queries for each location across the US for selected

topics. To counter the effect of high Twitter user bases in different parts of the country

we performed ‘background subtraction’ (with an e-mage composed by averaging the

first day of the month posts for all topics from different locations).

As shown in table 9.1, we found that the temporal peak coincided with the actual

event occurrence period for all 10 events. The spatial peak matched precisely for 7,

and was a nearby big city for 2 more, out of 10 events. Only for the Winter Olympics

event, was the peak (Toronto) not within a reasonable distance of the original lo-

cation (Vancouver). While a more detailed analysis is required to understand such
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Figure 9.1: Real World Events and their recognition via human sensor reports

phenomena, we found the results to highlight a reasonable correlation between real

world events and the related reports generated by humans.

Hence analyzing human reports can indeed be useful for detecting real world events

and situations.

9.1.2 Space and time semantics of social media data

Another important design feature of the framework is the use of space and time as

the axes to organize different types of data. While physical phenomena are known

to exhibit spatio-temporal correlation [48, 5], we posit that social media data also

exihibits spatio-temporal patterns just like real-world event data. Specifically, we

test if social media data for various events also exhibit spatio-temporal power laws

like those observed in seismic and other ‘physically grounded’ data streams.
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Figure 9.2: Variation of frequency of hashtags and their ranks for different time
durations

Figure 9.3: Variation of frequency of hashtags and their ranks for different geo-regions

Here we present the results of analysis of a corpus of 5.6 Million tweets over a period

of one month based on the hashtags (taken to be proxy for event tags) associated

with them [96]. We found that human report patterns on Twitter also exhibit spatio-

temporal power laws (akin to Gutenberg-Richter’s Law which has been well studied

for physical phenomena like earthquakes [48] ).

We ranked different event-tags based on their frequency of occurrence, and plotting

the rank of the tags against the frequency of occurrence on a Log-Log scale gave a

linear plot. More interestingly (See Figure 9.2), when we took subsets of the data
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corpus for different time durations (30 mins, 1 day, 1 week, 2 weeks, 3 weeks, and

1 month), we observed separate but still linear (and with very similar slope) plots

for each one of them. Further still (see Figure 9.3) when we took subsets of data

based on location (whole world, just United States, and just a 10 latitude by 10

longitude block around New York city), each collection independently exhibited the

Gutenberg-Richter law.

These observations provide support for the inherent spatio-temporality of social media

data and their correlation across space and time with other ‘physical’ data streams.

9.2 Validating the data representation and analy-

sis operations

We undertook experiments to validate the data representation (E-mage streams) and

Situation recognition Algebra as being expressive enough and sufficiently relevant to

gain situational insights across multiple applications. The three applications con-

sidered are for business intelligence, political event analytics, and seasonal pattern

analysis. The aim is to test the expressiveness of the algebra in posing meaningful

queries and to validate the data representation and operators with regard to their

ability to yield appropriate results to those queries.

The results presented here are based on a large data corpus of (> 100 million) tweets

collected using the ‘Spritzer’ stream (since Jun 2009) and then the higher rate ‘Gar-

denhose’ stream since Nov, 2009. The seasonal pattern analysis application uses a col-

lection of over 700,000 Flickr images. These applications were tested using a Matlab

based implementation of the operators and did not involve personalized action-taking.

The analysis was done on an offline corpus wherein Temporal E-mage Streams can
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be considered as Temporal E-mage Sets.

9.2.1 Application: Business analysis

We considered some sample queries which can be asked by a business analyst, when

dealing with spatio-temporal data, about a product of interest (P ) (e.g. ‘iPhone’).

1. When did the interest peak in our product across USA?

@temporal.max(@spatial.sum(ΠPR(region=USA)(TESP )))

2. Segment the above e-mages into three zones with varying interest levels.

γkmeans(k=3)(ΠPR(region=USA)(TESP ))

3. Where are the epicenters for each ‘zone’ of product interest?

@spatial.epicenter(γkmeans(k=3)(ΠPR(region=USA)(TESP )))

4. Show me the best location to open a new store for product P given the existing

store locations as an e-mage S, and the ‘catchment’ area kernel for each store

as an e-mage C.

@spatial.max(⊕convolution(⊕Subtract(⊕Add(ΠPR(region=USA)(TESP )),

(⊕Convolution(ΠPR(region=USA)(TESS), TESC))), TESC)

The data considered in this experiment is for Jun 2 to Jun 15, 2009, which included

the date of Iphone 3G version’s release (Jun 8). The results of applying queries 1

through 3 are shown in Figure 9.4. As can be noticed (amongst other things), the

peak of interest does indeed match with the actual release date.

For easier understanding, we visually illustrate (see fig. 9.5) query 4 and show a

sample result. The query aims to find the best location to start a new store for

‘iphone’. In this example, e-mages corresponding to the term ‘iPhone’ were added for
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Figure 9.4: Sample results of applying the queries 1-3, for iphone theme

14 days. On the other hand, the AT&T retail store locations1 E-mage was convolved

with the catchment area (assumed to be a Gaussian Kernel C) for each store. The

difference between the obtained ‘aggregate interest’ and ‘net catchment area’ E-mages

was taken to be a representative of the ‘under-served interest areas’ where it makes

sense to open a new retail store. To find out the best location for such a store, we

undertook a convolution operation between the catchment area of a new store and

this ‘under-served interest areas’ E-mage. The maxima operation on the obtained

E-mage gave the most appropriate location. Note that the obtained answer in this

case is not merely a pixel location but a physical geo-location with real life semantics.

We obtained the details of the physical location via reverse-geocoding using http :

//ws.geonames.org. Thus we were able to solve a sample real world business problem

using a combination of primitive situation recognition operators as defined on E-

mages.

1AT&T was the only legal service provider for iPhones in US at the time. We assume that
iPhones can only be sold from these retail locations.
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Figure 9.5: Combination of operators for undertaking a business decision
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9.2.2 Application: Political event analytics

We consider sample queries relevant to a political analyst, or campaign manager, when

dealing with spatio-temporal data about a personality of interest (P ) (e.g. ‘Obama’)

or issue of interest (I) (e.g. ‘Healthcare’).

1. When did the interest peak about personality P across USA?

@temporal.max(@spatial.sum(ΠPR(region=USA)(TESP )))

2. What is the periodicity of the interest in this personality?

@temporal.periodicity(@spatial.sum(ΠPR(region=USA)(TESP )))

3. Show me the interest in issue I when interest in personality P gained its peak?

ΠPt(time=tp)(ΠPR(region=USA)(TESI))

where tp = @temporal.max(@spatial.sum(ΠPR(region=USA)(TESP )))

4. What is the similarity between the interest patterns for I and P on the above

date?

ψspatial.correlation(ΠPt(time=tp)(ΠPR(region=USA)(TESI)),Πregion=USA∧time=tp(TESP ))

where tp = @temporal.max(@spatial.sum(ΠPR(region=USA)(TESP )))

Figure 9.6: Sample result for running query 3 for political theme I=‘Healthcare’, and
politician P=‘Obama’
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The results presented here are based on data collected for Personality ‘Obama’ and

issue ‘Healthcare’ between Nov 5th 2009, and Mar 30, 2010. The peak of interest in

Obama (Query 1) was found on 27th Jan, 2010, which corresponds with his ‘State of

the Union’ address. Obviously, multiple events of interest (and local maximas) about

‘Obama’ occurred during the 4 months. The periodicity value (query 2) was found to

be approximately 20 days. The E-mage for ‘Healthcare’ on the peak day (Query 3) is

shown in Fig. 9.6. Lastly, the similarity value (Query 4) between interest in ‘Obama’

and ‘Healthcare’ for that day was found to be 0.6934 (approx. 69.3%).

9.2.3 Application: Seasonal characteristics analysis

In this experiment we consider average green color intensity2 of all Flickr images

uploaded from a location to be the representative value for the STTPoint data cor-

responding to that location. The experiment is aimed at analyzing climatic seasonal

phenomena as they occur across different parts of US. Specifically we want to see

which parts of US are more green than others, and what are the seasonal patterns or

trajectory of such phenomena. This approach can be extended to understanding flora

growth, or bird migration patterns, by using more sophisticated concept detectors for

images in future. Here, we show queries for ‘snow’, based on e-mages created using

meta-data (tag) based recognition.

1. Show me the variation in green color intensity as it varies over the year.

@Sum(ΠPR(region=USA)(TESgreen))

2. Where is the peak in the greenery across whole of USA?

@spatial.max(ΠPR(region=USA)(TESgreen))

2We normalize the data by using value = G− average(R+G+B)
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Figure 9.7: Spatio-(temporal) E-mages representing average of Flickr images posted
from each location across months in 2010.

Figure 9.8: Snow themed E-mages through the year based on number of images tagged
with ‘snow’ coming from each location
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Figure 9.9: Movement of greenery zones (brightest= ‘most green’) across US through
the year

Figure 9.10: Answers for queries 1-2 for seasonal characteristics monitoring using
Flickr data

Figure 9.11: Answers for queries 3 and 4 for seasonal characteristics monitoring using
Flickr data
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3. Show me the segments based on greenery, as they vary over the year.

γkmeans(k=3)(ΠPR(region=USA)(TESgreen))

4. Show me difference between red and green colors for the New England region

as it varies over the year.

⊕subtract(ΠPR(region=[(40,−76),(44,−71)])(TESred),

ΠPR(region=[(40,−76),(44,−71)])(TESgreen))

5. Show me the trajectory of the epicenter of high-snow activity region throughout

the year.

@spatial.epicenter(ΠPv(val=3)(γkmeans(k=3)(ΠPR(region=USA)(TESsnow)))

6. What is the degree of similarity between snow e-mages and the North to South

linear decay pattern?

ψspatial.correlation(pattern=NSLinearDecay)(ΠPR(region=USA)(TESsnow))

These results are based on a Temporal E-mage Stream created from Flickr data from

US, at a monthly granularity for a whole year. A total of 706,415 images were aggre-

gated for answering queries 1-4, and the E-mages created by averaging images from

all over US are shown in Figure 9.7. As shown in Fig. 9.10, the overall green color

intensity (query 1) peaked during summer months. The area with most green pictures

(query 2) was at [35,-84], which happens to be at the intersection of 3 national forests

and 1 national park. The overall variation in zones (see Figure 9.9) of different green-

ery showed a reasonable trend, moving from the south-eastern US in April towards

the north, covering most of the US in summer and then receding southwards again.

The relative intensity of red and green colors also showed interesting trends. For

example, in the New England region, green dominated red over the summer months,

but red overtook green during the ‘Fall’ season.
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The queries 5 and 6 were answered using meta-data from 79,628 images. The ‘snow’

tags data was normalized using the number of geocoded images uploaded from that

region on any topic to generate E-mages as shown in Figure 9.8 The trajectory for the

epicenter of the high snow is shown in Fig.9.11. Lastly, the similarity value between

the aggregate snow activity and 2-D north-south linear decay pattern was found to

be 64.6%.

Taken together, the three applications provide evidence that the E-mage data repre-

sentation and operator can indeed be useful for generating situational insights.

9.3 Building multiple applications using the frame-

work

We now focus our attention on building diverse real-time situation-aware applications

by putting together all the three components of the framework viz. situation mod-

eling, situation recognition, and visualization/alerts. The applications discussed in

this section have been implemented using EventShop.

9.3.1 Flood evacuation in Thailand

We recently used the framework for suggesting safe locations to people who were

trapped in the Thailand flood of Nov-Dec 2011. To do this we first modeled the

Flood risk level, personalized it based on the concern shown, and configured rules

for sending out the necessary alerts to different users. Multiple people received these

tweets ‘on-the-ground’, and some tweets were re-tweeted. We discuss the models that

were created and the implementation that was undertaken using EventShop.
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Figure 9.12: Situation Model for flood risk level

Created Situation Models

A graduate student from Thailand whose family was affected by the floods acted as

our application domain expert in this study.

1) Macro situation:

A situation model was created using the approach described in Chapter 5. For brevity,

we directly present the final created model. A shown in Figure 9.12, the macro-

situation was defined based on a combination of the water level observed and the

access to a nearby shelter. Each of the open shelters was assumed to have a Gaussian

catchment area.

2) Defining personalized situation: Safety concern

The ‘safety concern’ level for each user was defined based on the combination of the

macro-situation (flood safety level) with personal concern level. The personal concern
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Figure 9.13: Situation Model for personal safety concern

level in this application was defined simply based on the incidence of predefined

keywords in the user’s Twitter-stream. These keywords indicated a user’s concern

about the situation, and their interest in seeking helpful information about nearby

safe places.

3) Action Rules

We configured the following action rule.

IF ui is˙in (Safety concern = High), THEN connect(ui, nearestLoc(ui, Shelter))

We implemented this conceptual model using the EventShop system as follows.

Evaluation and deployment using EventShop

1) Data Sources

The data sources employed in this application included the map of flood affected areas

across Thailand, as well as shelter map, which were each updated every a few hours.

The user concern was derived from Tweets coming from the considered area (central

142



Figure 9.14: Sample E-mages

Figure 9.15: Parameters for the data sources configured in the Flood Recommenda-
tion Application

Thailand) with keywords #ThaiFlood, #Flood, and #ThaiFloodEng 3. Sample E-

mages created from the actual data sources are shown in Figure 9.14.

2) Results

A sample of the macro-situation classification results is shown in Figure 9.16. As can

be seen, significant parts of the country were under high risk (shown in red in the

figure). The personalized action-taking rule was configured using the personalized

alert unit in EventShop (also shown in Figure 9.16).

A snapshot of some of the actual tweets sent out by the system is shown in Figure

9.17. As can be seen, some of the tweets were re-tweeted by users, thus indicating a

positive interest in receiving and spreading such information.

The Twitter account used was @SocLifeNetworks.

3This hashtag was used by Thai Flood tweets in English
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Figure 9.16: Resultant situation classification and Personalized Alert configuration

Figure 9.17: Sample tweets sent out to users
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Figure 9.18: ‘Wildfire’ recognition model using satellite data

9.3.2 Wildfire recognition in California

Wildfires affect large portions of human ecology and often last days and weeks while

spreading over large spatial boundaries. It is estimated that tropical fires around the

world have destroyed about 15 × 106km2 of forests in the last decade [65]. Quanti-

tative information about the spatial and temporal distribution of fires is important

for forest protection and in the management of forest resources. Hence we decided

to build a computational model for recognizing wildfires. For this we approached a

domain expert (a research scientist in Earth Science department at our university)

and requested her to volunteer for our case study.

Created models

Based on the process described in Chapter 5 and her expertise in the area of satellite

based fire recognition, the domain expert worked with us to create a situation model

as shown in Figure 9.3.2. This model is loosely based on the algorithm described
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Figure 9.19: Recognition performance of satellite data based detector for Wildfires
across California over last 2 years

in [59]. It focuses on using satellite data to recognize large wildfires. Specifically,

it focuses on anomalies in inter-band variations between 4µm and 11µm wavelength

radiations to recognize wildfires. This inter-band variation can only be observed in

unclouded regions, which are identified by analyzing the 12µm band’s radiation levels.

Satellite-data based detector: Comparison with ground truth

We configured the proposed wildfire model into EventShop and tried to detect the

various wildfire situations across California based on archives of satellite data streams.

The archive of satellite data was obtained from NASA’s LAADS website

http://ladsweb.nascom.nasa.gov/data/.

The created model could achieve 74% precision (refer to Figure 9.19) at detecting

large fires (> 1000m2) over last 2 years in California. The ground truth used for

comparison was obtained from the website of the California Department of Forestry

and Fire Protection (http://www.fire.ca.gov/).
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Figure 9.20: ‘Wildfire’ recognition model using social data

Re-iteration and refinement

We discussed these results with the expert and then built another model (see Figure

9.20) using purely social media (Fire related search queries made on Google from each

location) data, available from http://www.google.com/insights. Note that the spatial

granularity of this data is much coarser (data is available at ‘metro area’ level), but it

complements the satellite based recognition especially in cases where a fire occurred

in clouded regions, or was brief but affected large human populations.

We configured this model in EventShop and found that this model could recognize Fire

situations in the correct time-frame with 70% accuracy. We consider this by itself to

be an interesting finding, as it indicates that spatio-temporal data nuggets (millions

of search query logs) can be combined to create the same effective information as was

earlier limited to satellites or the proverbial ‘God’s view’[89].
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Figure 9.21: ‘Wildfire’ recognition model using satellite + social data

Figure 9.22: Recognition performance of satellite + social detector for Wildfires across
California over last 2 years

Final performance: Comparison with ground truth

Lastly, we decided to combine the two recognition approaches and create a unified

situation detector which simply combines the two detectors (see Figure 9.21).

The combined detector could recognize more than 90% of the large fires in Califor-

nia. Some of the sample results over different timeframes are shown in Figure 9.23,

and a video capture of the filter configuration and results observed is available at

http://auge.ics.uci.edu/eventshop/videos/.

9.3.3 Hurricane monitoring

In this experiment, we used simulated hurricane data to test EventShop’s ability

at performing spatio-temporal characterization and pattern matching queries as well
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Figure 9.23: Wildfire recognition results over different timeframes

as its ability to continuously update query results in real time. We considered an

Analyst level query aimed at analyzing the rate of growth in velocity of a hurricane

as observed in geo-imagery.

Created models

The created situation model is shown in Figure 9.24. The basic problem is to find

the location of the hurricane (via spatial pattern-matching), obtain its velocity, and

compare the velocity pattern to a known temporal pattern.

Evaluation using EventShop

Data Sources

EventShop supports a data source simulator which generates STTPoints as specified

by an initial set of frame parameters. We selected four locations as centers of four

2D-Gaussian distributions. We also specified amplitude and variance for each of the

distributions. In addition, at each time window, we introduced a hurricane pattern

at a randomly selected location in the generated E-mage. The parameters of the data
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Figure 9.24: Model for movement patterns in hurricanes

Figure 9.25: Parameters for simulated hurricane data source

sources are listed in Figure 9.25. A sample E-mage can be seen as in Figure 9.26.

The final frame parameters as well as the initial frame parameters used were

< 10s, 0, US, 0.1lat× 0.1long >

Results

Note that the situation model (shown in Figure 9.24) can be seen as a composite

of two steps. The first step is the spatial pattern matching operator, which takes a

hurricane pattern as an input and outputs the position and value of the best match.

The E-mages in this experiment were generated every 10 seconds; hence, the query

result was also updated accordingly every 10 seconds. The second step is the pattern

observed in the velocity of the hurricane. The system compared the velocity pattern
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Figure 9.26: Hurricane Application: Spatial pattern matching

with an exponential (base 2, scale 1) temporal pattern.

For easier presentation we first show the output of the first step (i.e. applying the

spatial pattern matching operator). The output has a geo coordinate as well as the

similarity value, both of which are updated every 10 seconds. They are presented on

the map, timeline and the output text box in EventShop. The location where the

highest match was found in the active e-mage has been marked on the map. The

similarity value (0.82) is shown in the numeric output text box, and the the variation

in this similarity value over time can be seen in the series shown in the timeline.

Result of the second (final) part is a similarity value (between the hurricane speed

observed over time, and a generated exponential pattern) which gets updated every

10 seconds. Figure 9.27 shows the results on a timeline. We do not try to draw any

insights from the observed values, as they are based on simulated data, and simply

verify that such applications can be supported by EventShop.
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Figure 9.27: Hurricane Application: Temporal pattern matching

9.3.4 Flu epidemic monitoring and recommendation

Here we resume and extend our discussion on modeling and detecting epidemic out-

breaks started in Chapter 5.

Created models

1) Defining macro situation: Flu Epidemic Outbreak Risk

We use the same model as discussed earlier in Chapter 5. As shown in Figure 9.28, it

is characterized by growing unusual activity in Influneze-Like-Illness (ILI) incidents.

Evaluation using EventShop

We translated the created model into EventShop. A video capture of the process is

available at http://auge.ics.uci.edu/eventshop/videos/. For the current purpose we

used the average of tweets on ILI for the last month to be the ‘historical’ average

level. We let the system run for two weeks (Apr/30/12-May/13/12) with real-time

Twitter data feeds passing through the created filter, and (thankfully!) saw no severe

Epidemic outbreak risks. Sample E-mages for the different data streams are shown in

Figure 9.29, and a sample of the configured detector’s result is shown in Figure 9.30.
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Figure 9.28: Situation Model for Epidemic Outbreaks

9.3.5 Asthma/Allergy recommendation system

This application builds upon our discussion in Chapter 8. The application detects

the Allergy /risk level for different location in the US, and then it advises the highly-

vulnerable people to stay indoors while prompting those in healthy environments to

enjoy the outdoors (e.g. to go jogging at the nearest park).

Created model

Let’s look at the 3 steps of personalized situation modeling:

1) Defining macro situation:

The macro-situation can be modeled as discussed in Chapter 8. The severity of risk

in an environment to an asthma patient is related to the pollen count and air quality
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Figure 9.29: E-mage for (a) Reports on Flu (brighter indicates more reports), (b)
Historical average, (c) Population
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Figure 9.30: ‘Epidemic outbreak risk level

Figure 9.31: Situation Model for asthma threat level

in that area. Similarly a large number of reports on social media (human sensors)

with allergy related terms indicate a high allergy incidence rate.

2) Defining personalized situation: Personal threat level

The personal threat level can be defined based on combining the environmental threat

level with the personal exertion level. The exertion level can be derived from the

sensor stream from a user’s mobile device.

3) Situation-action rule:

155



Figure 9.32: Situation Model for personal threat level

We configure two situation action rules:

IF ui is˙in (Personal Asthma Threat = low) THEN connect(ui, nearestLoc(ui, Park)),

‘Great day to go out jogging’.

and

IF ui is˙in (Personal Asthma Threat = High) THEN connect(ui, n/a), ‘Avoid exer-

tion! stay indoors’

Results

We implemented these models in EventShop and configured the various parameters

as shown in Figure 9.33.

The final frame parameters specified for this query are:

< 1day, 0, US, 0.1lat× 0.1long >

E-mages coming from the three data sources with distinct initial frame parameters
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Figure 9.33: Parameters for the data sources configured in the Allergy Risk Recom-
mendation Application

Figure 9.34: Asthma Application: Sample E-mages

are mapped to E-mages following the same final frame parameters by the Resolution

Mapper. Sample E-mages from the three data sources are shown in Figure 9.34, and

a sample macro-situation result is shown in Figure 9.35.

The personalization was undertaken using the physical level readings from users’ mo-

bile phones. Specifically, we have developed and distributed an Android application

(called RelaxMinder) using the ‘funf’ sensing framework [4] that reports each users

activity level. It can be configured as a data source in EventShop with the parameters

Figure 9.35: Sample result
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Figure 9.36: Parameters for the Personal activity level data source

Figure 9.37: Sample Tweets sent out from EventShop

as shown in Figure 9.36.

A combination of personal and macro values was used to send out personalized alerts.

Some of the sample tweets sent out to users are shown in Figure 9.37. Note that

different users are given different recommendations (e.g. ‘Stop exerting’, or ‘Great

day to be outdoors’) based on their personalized situations.

We are currently working with a practicing doctor (an allergist) to refine the appli-

cation and make it suitable for a field trial in the near future.

9.3.6 Discussion and looking back at the design goals

A summary of the different situation-based applications experimented with in this

dissertation is presented in Figure 9.38. We highlight three observations on the ap-
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plications and the use of the framework for creating them.

1. Application diversity:

The applications show a wide variety in their target domain e.g. Health, Natural

disasters, Seasonal patterns, Business Intelligence, and Political events. This

indicates the broad applicability of the situation recognition problem and the

framework’s ability to handle them.

2. Data diversity:

The data employed in these applications has varied from being offline to online,

real to simulated, and covered a wide variety in terms of data sources (Twitter,

Flickr, Google insights, Satellite data, Census, Geo-image streams, and Mobile

phone sensors).

3. Real-world validation:

Seven of the applications employed real world data. Situational insights in

the first three applications were found to be relevant to real world events (e.g.

launch of a new iPhone, Obama’s health care announcement, and Fall season

incidence). The Thailand flood application was deployed in practice, and sent

out tweets to thousands of real users, some of whom re-tweeted the messages.

Similarly, the wildfire recognition results were compared offline with ‘ground-

truth’ and showed > 90% correlation.

We now also look back at the design goals set forth in Chapter 2 and evaluate the

holistic design framework based on the experience at building the five applications.

1. Expressive power

We found the abstractions designed to be expressive enough to cover a wide va-

riety of situations in very varied applications. The level of sophistication varied
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Figure 9.38: Summary of different applications discussed in this dissertation

from basic aggregation of streams to sophisticated spatio-temporal matching.

The applications also varied in terms of their domain, region considered (USA,

California, and Thailand), Targeted audience (Analysts VS Lay-persons), and

data streams employed.

2. Lower the floor

(a) Reduced time to build

Once the framework was in place, building additional applications took

very little time (typically a couple of hours) - the majority of which were

spent designing the requirements and modeling the situation, rather than

building software. We consider this to be a very positive result. The actual

time taken to configure each of the applications discussed into EventShop

was less than 10 minutes (please refer to video captures at

http://auge.ics.uci.edu/eventshop/videos/).

(b) Lower CS expertise required
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The only level of expertise required was an ability to deal with a graphical

tool (EventShop) and configure its parameters. This is a huge improvement

over the base case scenario where the interested domain experts would need

to implement similar applications from scratch (e.g. write application code,

configure databases, streams, websites, and implement various analysis

operations)

3. Raise the ceiling

We argue that the framework not only supported situation recognition but also

raised the quality of the detectors defined.

(a) Better designed situation detectors.

The design support for situation modeling helped domain experts avoid the

‘cold-start’ mental block during the design process. It also lead to explicitly

defined situation models, which made it much easier for the domain experts

and the IT personnel to interact and agree on the building blocks and

their descriptions. An ability to rapidly test, and refine the models also

led to better quality detectors. For example in the wildfire recognition

application, the recognition performance could be improved by supporting

the use of diverse data streams and refining the model with very little

additional cost.

(b) Provide personalization options

Traditional situation recognition and action-taking has focused on single

large scale (e.g. over city, state, country) decision-making. The frame-

work provided tools for personalized situation recognition and control. As

seen in Thailand flood mitigation, Flu recommendation, and most promi-

nently in the Asthma recommendation application, the framework could

be configured to send out personalized alerts based on a combination of
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macro-situation and personal parameters. To the best of our knowledge,

this framework is the first systematic attempt at supporting this kind of

affordance.
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Chapter 10

Conclusions and Future Work

The growth in social media, multimodal mobile sensing, and location driven sensing

have paved the way for faster, more reliable, and more transparent concept recog-

nition than possible ever before. Situation recognition is the problem of deriving

actionable insights from heterogeneous, real-time, big multimedia data to benefit hu-

man lives and resources in different applications. This dissertation has presented a

framework for personalized situation recognition and control. Specifically, it defined

an approach for conceptual situation modeling, real-time situation evaluation, and

generating personalized alerts.

This dissertation has motivated and computationally grounded the problem of situa-

tion recognition (Chapter 2). It surveyed a variety of situation aware applications and

defined the abstractions required for a generic framework to create situation based

applications. The framework defines a common data-structure (STT) to unify hetero-

geneous data streams, to aggregate them (E-mage Streams), and then to analyze them

(Situation Recognition Algebra). Under the hood, each of the analysis operations was

transposed into image or video analysis operations, thus making sophisticated analysis
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of spatio-temporal content possible via off-the-shelf media processing operators.

The design support for modeling different situations, personalizing them, implement-

ing them, and rapidly refining them was provided via the Situation Models, Situation-

Action Rules, and the EventShop system. The Situation Models (Chapter 5) allow

the designers to logically partition their potentially vague and complex situation de-

scriptors into explicit, computable components derivable from different sources. The

personalization operators and Action rules templates (Chapter 8) support personal-

ized action-taking at scale. The developed web-based system, EventShop (Chapter

7) operationalizes the framework and allows for easy validation and refinement of

situation models for their deployment into diverse applications. The experiences with

implementing multiple situation-aware applications (Chapter 9) demonstrated the

expressive power of the framework as well as an ability to meet the design goals

of ‘raising the ceiling’ and ‘lowering the floor’ [75], thus resulting in conceptually

designed, faster, and easier-to-build situation-aware applications.

To the best of our knowledge, this framework is the first systematic attempt at com-

bining heterogeneous real-time multimedia data into actionable situations. This is

also a first attempt at creating a holistic toolkit which supports the creation of mul-

tiple situation-based applications spanning web-scale diversity in terms of functional

domains, the designer’s experience level, and the heterogeneity of the data employed.

Correspondingly, there are multiple opportunities for enhancement and future work.

• Scalability:

Scalability is a major concern when building web-scale systems which incorpo-

rate realtime data from all possible sources. Multiple efforts in the distributed

systems community (e.g. ‘Hadoop’, ‘Storm’ [15, 18]) are being developed and

showing early signs of competence at handling large-scale data processing. Sim-

164



ilar growth in other areas of computing, and their adoption into this framework

would be pivotal to making it available at a web scale.

• User experience:

User experience remains a key issue for designing social eco-systems for Situation

Recognition. Systems need to support users with varying cultural backgrounds,

access to computing infrastructure, and expertise levels. We need to design ways

in which thousands of users can easily collaborate to create different applications

for personal and shared benefit.

• Data discovery:

With the abundance of data, the real issue becomes how to find the right one.

Techniques for identifying the right sources for the problem, and/or repurposing

data for different problems, become important.

• Application discovery:

Just like abundance of data, there will be an abundance of available applications

and situation logics. Tools to easily find, experiment with, re-purpose, and

combine such applications will become increasingly important in the future.

• Personalization:

This work has taken the first steps towards large scale personalization of situ-

ations. Richer support for personalization, and its integration into EventShop,

would be very useful in numerous applications.

• Richer operation set:

With increasing adoption, there will be a demand for a richer array of tools

and operations. The operators in EventShop are extensible and will be made

open-source. More sophisticated operators developed by different parties will

need to be integrated into EventShop to support more advanced applications.
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This may also involve support for multiple data representations (e.g. grids +

graphs) and the interplay between them.

• Building an eco-system:

These tools can create societal impact only if they reach a large array of users for

solving diverse problems. The integration of such tools into active community-

based platforms like Ushahidi would leapfrog this process and build eco-systems

which support combination of real-time data for multiple applications. Design-

ing mechanisms which motivate users to become a part of such eco-systems will

become increasingly important.

To summarize, this dissertation marks an early effort at supporting the analysis of

real-time Spatio-temporal streams for understanding and responding to the evolving

world. Once made accessible to the masses such tools could have transformative so-

cietal impact. Just like Wikipedia allows for integration of all the (static) knowledge

in the world, this framework has a vision of integrating all the dynamic information

of the world and operationalizing it into actionable situations. Together, different

users can create various applications for personal and societal good and move to-

wards realizing the Utopian vision of prescient understanding and response. With

advancements in computational models and processing techniques, current systems

can evolve into an effective nervous system for our society [78], one that will provide

better civic services, a greener planet, and a safer, healthier population.
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