A radiometric response function relates sensor irradiance and brightness values. Radiometric calibration aims at recovering the inverse response function. Our method avoids over-regularization and can achieve close-to-ideal calibration for multiple exposure based method.

Transform Invariance Low-Rank Structure

- Radiometric calibration problem as Low-rank recovery problem
- An irradiance matrix has a low-rank structure

Calibration Algorithm

- Rank minimization \rightarrow Nuclear norm (sum of the singular values) minimization
- Response function changes not only the rank, but also the spectral norm (the largest singular value) of a matrix. The spectral norm changes after response function

We minimize the condition numbers (a ratio of singular values)

- Main factors causing rank variations:
 - Nonlinearity of response function
 - Low-frequency nature: monotonic and smooth curve
 - Only 2nd condition number has large value
 - Image noise
 - High-frequency nature: zero mean Gaussian random noise
 - All the condition numbers have very affected

Cost function

$$\hat{g} = \arg \min_G \| G \|_F + \lambda \sum_i H(\frac{\partial g_i(t)}{\partial D}) \quad \text{s.t. } A = g \circ D$$

g: response function

D: observation matrix

$H(x) = 1$ if $x \geq 0$, otherwise $H(x) = 0$

Experiments

- Simulation of multiple exposure based method
- 201 response functions in DoRF
- 4 radiance distributions
- Gaussian noise with $\sigma=0.005, 0.010, 0.020, 0.030$

Conclusions

- We introduce radiometric calibration algorithm that use low-rank structure of irradiance matrix.
- Radiometric calibration is formulated as rank minimization and solved by the condition number minimization.
- Our method can avoid over-fitting.
- Our method can be applied to various kind of radiometric calibration problems.

<table>
<thead>
<tr>
<th>σ</th>
<th>MN-0.005</th>
<th>Ours-0.005</th>
<th>MN-0.010</th>
<th>Ours-0.010</th>
<th>MN-0.020</th>
<th>Ours-0.020</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
</tr>
<tr>
<td>0.010</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
</tr>
<tr>
<td>0.020</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
</tr>
<tr>
<td>0.030</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
<td>0.0894</td>
</tr>
</tbody>
</table>

Quantitative results using the synthetic dataset in comparison with Misunaga and Mayer’s method (M4).

- Effects of condition numbers (D1, D2)
- Results of synthetic experiments (D1, D3)