3D Modeling and Tracking of Human Lip Motions MIT MEDIA LABORATORY
Sumit Basu
Nuria oliver
Alexpentland

TRAINING

THE MODEL

3D Reconstruction + test ability of model to reconstruct 3D shape from 2D data MAP estimate of 3D point locations given subset of data MSE per point is given in tabale
at left in (model is $2 \times 3 \times 5$ units) at left in (model is $2 \times 3 \times 5$ units) accurately reconstruct 3D lip accurately reconstruct 3 Iip shape from 2 D observations
due to the restricted subspace of possible motions learned by the model

T R A C K I N G

Tracking Lips in Raw Video

we no longer have 3D observations, but we have seen that we can accurately
econstruct the 3D shape from 2D data (given the head pose)
we now need to optimize the parameters $p^{\text {. }}$
(the coordinates in the learned subspace)
given some general observations 0 using
given some generatiobsal
$p^{*}=\arg \max _{p} f(p \mid 0)=\arg \max _{P} \frac{f(O \mid p) f(p)}{f(O)}$

+ we use the lip/skin probability maps obtained
We use the lip/skin probability yaps
with the system for our observations
due to their robust nature. We then smooth the maps for gradient computations.

Iterating to a Solution

+ we find the posterior probability of the parameter
values given the observation. This quantity is found
probabilities:
$\left.\log f(p) \mid O)=\log f(p) \prod_{i} f f(f(x, y) \mid p)\right]=\log f(p)+\gamma \Sigma \iint \log f(f(x, y) \mid p)$
+ we then use gradient ascent to optimize the parameters. Because of the linearity of the learned subspace, the
gradient can be computed with minimal computational cost:

$$
d \log f(p \mid O)=d \log _{d x} f(O \mid p) \underset{d x}{d x}+d \underset{d p}{\log f(Q \mid p)}
$$

from map gradients

$$
\begin{aligned}
& \text { modes } \\
& \text { e posterior }
\end{aligned}
$$

+ we then iterate this process until the posterior
probability converges to a local maximum. The
images below show several examples of the fina
images below show several

